[go: up one dir, main page]

CN111769043A - Method for forming gate dielectric layer, semiconductor structure and method for forming the same - Google Patents

Method for forming gate dielectric layer, semiconductor structure and method for forming the same Download PDF

Info

Publication number
CN111769043A
CN111769043A CN201910261759.8A CN201910261759A CN111769043A CN 111769043 A CN111769043 A CN 111769043A CN 201910261759 A CN201910261759 A CN 201910261759A CN 111769043 A CN111769043 A CN 111769043A
Authority
CN
China
Prior art keywords
dielectric layer
gate dielectric
substrate
thickness
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910261759.8A
Other languages
Chinese (zh)
Other versions
CN111769043B (en
Inventor
赵永敏
汪军
陈永强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Manufacturing International Shanghai Corp
Semiconductor Manufacturing International Beijing Corp
Original Assignee
Semiconductor Manufacturing International Shanghai Corp
Semiconductor Manufacturing International Beijing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Manufacturing International Shanghai Corp, Semiconductor Manufacturing International Beijing Corp filed Critical Semiconductor Manufacturing International Shanghai Corp
Priority to CN201910261759.8A priority Critical patent/CN111769043B/en
Publication of CN111769043A publication Critical patent/CN111769043A/en
Application granted granted Critical
Publication of CN111769043B publication Critical patent/CN111769043B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/20Electrodes characterised by their shapes, relative sizes or dispositions 
    • H10D64/27Electrodes not carrying the current to be rectified, amplified, oscillated or switched, e.g. gates
    • H10D64/311Gate electrodes for field-effect devices
    • H10D64/411Gate electrodes for field-effect devices for FETs
    • H10D64/511Gate electrodes for field-effect devices for FETs for IGFETs
    • H10D64/514Gate electrodes for field-effect devices for FETs for IGFETs characterised by the insulating layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/60Electrodes characterised by their materials
    • H10D64/66Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes
    • H10D64/68Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes characterised by the insulator, e.g. by the gate insulator
    • H10D64/693Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes characterised by the insulator, e.g. by the gate insulator the insulator comprising nitrogen, e.g. nitrides, oxynitrides or nitrogen-doped materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Formation Of Insulating Films (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

A forming method of a gate dielectric layer, a semiconductor structure and a forming method of the semiconductor structure are provided, wherein the forming method of the gate dielectric layer comprises the following steps: providing a substrate, and forming a gate dielectric layer on the substrate, wherein the gate dielectric layer has a target physical thickness and a target electrical thickness; carrying out nitrogen doping treatment on the gate dielectric layer, and adjusting the doping amount of the nitrogen doping treatment to enable the electrical thickness of the gate dielectric layer to be equal to the target electrical thickness; wherein the target physical thickness of the gate dielectric layer satisfies: after the nitrogen doping treatment, the longitudinal distance of nitrogen diffusing to the surface of the substrate in the gate dielectric layer is smaller than the target physical thickness. The embodiment of the invention is beneficial to improving the interface defect at the interface between the gate dielectric layer and the substrate while ensuring that the electrical thickness of the gate dielectric layer meets the electrical requirement.

Description

栅介质层的形成方法、半导体结构及其形成方法Method for forming gate dielectric layer, semiconductor structure and method for forming the same

技术领域technical field

本发明实施例涉及半导体制造领域,尤其涉及一种栅介质层的形成方法、半导体结构及其形成方法。Embodiments of the present invention relate to the field of semiconductor manufacturing, and in particular, to a method for forming a gate dielectric layer, a semiconductor structure and a method for forming the same.

背景技术Background technique

随着半导体器件制造工艺水平的不断提升,以及集成电路的快速发展,对器件加工技术提出更多的特殊要求,其中,MOS器件特征尺寸进入纳米时代对栅介质层的要求就是一个明显的挑战。栅介质层的制备工艺是半导体制造工艺中的关键技术,直接影响和决定了器件的电学特性和可靠性。With the continuous improvement of the manufacturing process level of semiconductor devices and the rapid development of integrated circuits, more special requirements are placed on device processing technology. Among them, the requirement for the gate dielectric layer of the MOS device feature size entering the nano-era is an obvious challenge. The preparation process of the gate dielectric layer is a key technology in the semiconductor manufacturing process, which directly affects and determines the electrical characteristics and reliability of the device.

MOSFET器件的关键性能指标是驱动电流,驱动电流的大小取决于栅极电容。栅极电容与栅极表面积成正比,与栅介质厚度成反比。因此,通过增加栅极表面积和降低栅介质厚度均可提高栅极电容,而降低栅介质层厚度就变成推进MOSFET器件性能提高的首要手段。The key performance indicator of a MOSFET device is the drive current, which depends on the gate capacitance. Gate capacitance is proportional to gate surface area and inversely proportional to gate dielectric thickness. Therefore, the gate capacitance can be improved by increasing the gate surface area and reducing the thickness of the gate dielectric, and reducing the thickness of the gate dielectric layer has become the primary means to promote the performance improvement of MOSFET devices.

但随着器件尺寸的进一步缩小,传统单纯降低栅介质厚度的方法遇到了前所未有的挑战。目前一种做法是通过对栅介质层进行掺氮处理,从而提高栅介质层的有效电学厚度。通过掺氮处理可以提高栅介质层的介电常数,而且还能有效的抑制硼等栅极掺杂原子在栅介质层中的扩散,提高器件的可靠性和稳定性。However, with the further shrinking of the device size, the traditional method of simply reducing the thickness of the gate dielectric has encountered unprecedented challenges. A current practice is to perform nitrogen doping treatment on the gate dielectric layer, thereby increasing the effective electrical thickness of the gate dielectric layer. The nitrogen doping treatment can improve the dielectric constant of the gate dielectric layer, and can effectively suppress the diffusion of gate doping atoms such as boron in the gate dielectric layer, thereby improving the reliability and stability of the device.

发明内容SUMMARY OF THE INVENTION

本发明实施例解决的问题是提供一种栅介质层的形成方法、半导体结构及其形成方法,在保证所述栅介质层的电学厚度满足电性需求的同时,改善所述栅介质层和基底界面处的界面缺陷。The problem solved by the embodiments of the present invention is to provide a method for forming a gate dielectric layer, a semiconductor structure and a method for forming the same, which can improve the gate dielectric layer and the substrate while ensuring that the electrical thickness of the gate dielectric layer meets electrical requirements. Interface defects at the interface.

为解决上述问题,本发明实施例提供一种栅介质层的形成方法,包括:提供基底;在所述基底上形成栅介质层,所述栅介质层具有目标物理厚度和目标电学厚度;对所述栅介质层进行掺氮处理,并通过调整所述掺氮处理的掺杂剂量,适于使所述栅介质层的电学厚度等于所述目标电学厚度;其中,所述栅介质层的目标物理厚度满足:在所述掺氮处理后,氮在所述栅介质层中向所述基底表面扩散的纵向距离小于所述目标物理厚度。To solve the above problems, embodiments of the present invention provide a method for forming a gate dielectric layer, including: providing a substrate; forming a gate dielectric layer on the substrate, the gate dielectric layer having a target physical thickness and a target electrical thickness; The gate dielectric layer is subjected to nitrogen doping treatment, and by adjusting the doping dose of the nitrogen doping treatment, the electrical thickness of the gate dielectric layer is adapted to be equal to the target electrical thickness; wherein, the target physical thickness of the gate dielectric layer is The thickness satisfies: after the nitrogen doping treatment, the longitudinal distance that nitrogen diffuses in the gate dielectric layer to the surface of the substrate is less than the target physical thickness.

相应的,本发明实施例还提供一种半导体结构的形成方法,包括:采用前述栅介质层的形成方法,在基底上形成栅介质层,所述栅介质层适于作为第一栅介质层,其中,所述基底包括周边区、第一核心区以及第二核心区,所述第二核心区的工作电压大于所述第一核心区的工作电压;去除所述第二核心区上的第一栅介质层;去除所述第二核心区上的第一栅介质层后,在所述第二核心区的基底上形成第二栅介质层,所述第二栅介质层的厚度小于所述第一栅介质层的厚度;形成所述第二栅介质层后,去除所述第一核心区基底上的第一栅介质层;去除所述第一核心区基底上的第一栅介质层后,在所述第一核心区的基底上形成第三栅介质层,所述第三栅介质层的厚度小于所述第二栅介质层的厚度。Correspondingly, an embodiment of the present invention further provides a method for forming a semiconductor structure, comprising: using the foregoing method for forming a gate dielectric layer to form a gate dielectric layer on a substrate, where the gate dielectric layer is suitable for serving as the first gate dielectric layer, Wherein, the substrate includes a peripheral area, a first core area and a second core area, and the working voltage of the second core area is greater than that of the first core area; removing the first core area on the second core area a gate dielectric layer; after removing the first gate dielectric layer on the second core region, a second gate dielectric layer is formed on the substrate of the second core region, and the thickness of the second gate dielectric layer is smaller than that of the first gate dielectric layer. a thickness of a gate dielectric layer; after forming the second gate dielectric layer, remove the first gate dielectric layer on the substrate of the first core region; after removing the first gate dielectric layer on the substrate of the first core region, A third gate dielectric layer is formed on the substrate of the first core region, and the thickness of the third gate dielectric layer is smaller than that of the second gate dielectric layer.

相应的,本发明实施例还提供一种采用前述形成方法形成的半导体结构,包括:基底,所述基底包括周边区、第一核心区以及第二核心区,所述第二核心区的工作电压大于所述第一核心区的工作电压;第一栅介质层,位于所述周边区的基底上,所述第一栅介质层内掺杂有氮离子,且所述氮离子位于所述基底上方的第一栅介质层中;第二栅介质层,位于所述第二核心区的基底上,所述第二栅介质层的厚度小于所述第一栅介质层的厚度;第三栅介质层,位于所述第一核心区的基底上,所述第三栅介质层的厚度小于所述第二栅介质层的厚度。Correspondingly, an embodiment of the present invention further provides a semiconductor structure formed by the foregoing formation method, comprising: a substrate, the substrate includes a peripheral region, a first core region and a second core region, and the operating voltage of the second core region is greater than the operating voltage of the first core region; a first gate dielectric layer is located on the substrate of the peripheral region, the first gate dielectric layer is doped with nitrogen ions, and the nitrogen ions are located above the substrate in the first gate dielectric layer of the , located on the substrate of the first core region, and the thickness of the third gate dielectric layer is smaller than the thickness of the second gate dielectric layer.

与现有技术相比,本发明实施例的技术方案具有以下优点:Compared with the prior art, the technical solutions of the embodiments of the present invention have the following advantages:

本发明实施例在所述基底上形成栅介质层,所述栅介质层具有目标物理厚度和目标电学厚度,随后对所述栅介质层进行掺氮处理,适于增大所述栅介质层的介电常数,使所述栅介质层的电学厚度等于目标电学厚度,其中,所述栅介质层的预设物理厚度满足:在所述掺氮处理后,氮在所述栅介质层中向所述基底表面扩散的纵向扩散距离小于所述目标物理厚度;在半导体结构的形成过程中,通常包括高温处理的步骤,通过使所述栅介质层的目标物理厚度满足上述条件,能够防止所述栅介质层中的氮扩散到所述栅介质层和基底的界面处,从而改善界面缺陷的问题,而且,通过相应调整所述掺氮处理的掺杂剂量,且与栅介质层的目标物理厚度相配合,使所述栅介质层的电学厚度等于目标电学厚度;综上,本发明实施例能够在保证所述栅介质层的电学厚度满足电性需求的同时,改善所述栅介质层和基底界面处的界面缺陷,提升了半导体结构的性能。In the embodiment of the present invention, a gate dielectric layer is formed on the substrate, and the gate dielectric layer has a target physical thickness and a target electrical thickness, and then nitrogen doping is performed on the gate dielectric layer, which is suitable for increasing the thickness of the gate dielectric layer. The dielectric constant is set, so that the electrical thickness of the gate dielectric layer is equal to the target electrical thickness, wherein the preset physical thickness of the gate dielectric layer satisfies: after the nitrogen doping treatment, nitrogen in the gate dielectric layer flows to all The vertical diffusion distance of the substrate surface diffusion is smaller than the target physical thickness; in the formation process of the semiconductor structure, the step of high temperature treatment is usually included, and by making the target physical thickness of the gate dielectric layer meet the above conditions, the gate dielectric layer can be prevented from Nitrogen in the dielectric layer diffuses to the interface between the gate dielectric layer and the substrate, thereby improving the problem of interface defects. Moreover, by adjusting the doping amount of the nitrogen doping treatment accordingly, it is consistent with the target physical thickness of the gate dielectric layer. In order to make the electrical thickness of the gate dielectric layer equal to the target electrical thickness; to sum up, the embodiments of the present invention can improve the interface between the gate dielectric layer and the substrate while ensuring that the electrical thickness of the gate dielectric layer meets the electrical requirements. The interfacial defects at the location improve the performance of the semiconductor structure.

附图说明Description of drawings

图1至图6是一种半导体结构的形成方法中各步骤对应的结构示意图;1 to 6 are schematic structural diagrams corresponding to each step in a method for forming a semiconductor structure;

图7是一种半导体结构的饱和电流和关态漏电流的关系图;FIG. 7 is a relationship diagram of saturation current and off-state leakage current of a semiconductor structure;

图8至图9是本发明栅介质层的形成方法一实施例各步骤对应的结构示意图;8 to 9 are schematic structural diagrams corresponding to each step of an embodiment of a method for forming a gate dielectric layer of the present invention;

图10至图16是本发明半导体结构的形成方法一实施例中各步骤对应的结构示意图;10 to 16 are schematic structural diagrams corresponding to each step in an embodiment of a method for forming a semiconductor structure of the present invention;

图17是本发明实施例半导体结构中氮的掺杂浓度随深度变化的SIMS分析图;17 is a SIMS analysis diagram of the variation of nitrogen doping concentration with depth in the semiconductor structure of the embodiment of the present invention;

图18是本发明实施例半导体结构的饱和电流和关态漏电流的关系图。FIG. 18 is a graph showing the relationship between the saturation current and the off-state leakage current of the semiconductor structure according to the embodiment of the present invention.

具体实施方式Detailed ways

目前所形成的器件仍有性能不佳的问题。现结合一种半导体结构的形成方法分析器件性能不佳的原因。The devices formed so far still suffer from poor performance. Now combined with a method of forming a semiconductor structure, the reasons for the poor performance of the device are analyzed.

参考图1至图6,示出了一种半导体结构的形成方法中各步骤对应的结构示意图。Referring to FIG. 1 to FIG. 6 , schematic structural diagrams corresponding to each step in a method for forming a semiconductor structure are shown.

参考图1,提供基底1,所述基底1包括周边区I、第一核心区II以及第二核心区III,所述第二核心区III的工作电压大于所述第一核心区II的工作电压;Referring to FIG. 1, a substrate 1 is provided, the substrate 1 includes a peripheral region I, a first core region II and a second core region III, and the operating voltage of the second core region III is greater than that of the first core region II ;

继续参考图1,在所述基底1上形成第一栅介质层2。Continuing to refer to FIG. 1 , a first gate dielectric layer 2 is formed on the substrate 1 .

参考图2,对所述第一栅介质层2进行掺氮处理3。Referring to FIG. 2 , nitrogen doping treatment 3 is performed on the first gate dielectric layer 2 .

参考图3,进行所述掺氮处理3后,去除所述第二核心区III上的第一栅介质层2。Referring to FIG. 3 , after the nitrogen doping treatment 3 is performed, the first gate dielectric layer 2 on the second core region III is removed.

参考图4,去除所述第二核心区III上的第一栅介质层2后,在所述第二核心区III的基底1上形成第二栅介质层4,所述第二栅介质层4的厚度小于所述第一栅介质层2的厚度。Referring to FIG. 4 , after removing the first gate dielectric layer 2 on the second core region III, a second gate dielectric layer 4 is formed on the substrate 1 of the second core region III. The second gate dielectric layer 4 The thickness is smaller than the thickness of the first gate dielectric layer 2 .

参考图5,形成所述第二栅介质层4后,去除所述第一核心区II基底上的第一栅介质层2。Referring to FIG. 5 , after the second gate dielectric layer 4 is formed, the first gate dielectric layer 2 on the substrate of the first core region II is removed.

参考图6,去除所述第一核心区II基底上的第一栅介质层2后,在所述第一核心区II的基底1上形成第三栅介质层5,所述第三栅介质层5的厚度小于所述第二栅介质层4的厚度。Referring to FIG. 6 , after removing the first gate dielectric layer 2 on the substrate of the first core region II, a third gate dielectric layer 5 is formed on the substrate 1 of the first core region II. The third gate dielectric layer The thickness of 5 is smaller than the thickness of the second gate dielectric layer 4 .

在半导体领域中,通常采用双栅极氧化物(dual gate oxide,DGO)层工艺,即基底上通常仅形成有两种器件:输入/输出器件和核心器件,所述基底相应仅包括一种周边区和一周核心区。所述形成方法中,因部分产品的设计需求(例如:超低漏电)而引入三栅极氧化物(triple gate oxide,TGO)层工艺,即所述基底还包括另一种核心区(即第二核心区III),且形成所述第二栅介质层4通常包括高温处理的步骤,也即,与传统工艺相比,所述形成方法中的第一栅介质层2会额外经历一次高温处理的步骤,所述第一栅介质层2受到高温处理的影响增大,所述周边区I基底1上的第一栅介质层2中掺杂的氮在所述高温处理的步骤中会发生扩散,这不仅容易导致所述第一栅介质层2中的氮扩散到空气中从而引起氮含量的降低,而且还容易导致所述第一栅介质层2中的氮扩散到基底1的表面,从而引起界面缺陷,导致所形成的半导体器件的性能不佳。In the semiconductor field, a dual gate oxide (DGO) layer process is usually used, that is, only two devices are usually formed on a substrate: an input/output device and a core device, and the substrate accordingly only includes one peripheral district and a week core. In the formation method, a triple gate oxide (TGO) layer process is introduced due to the design requirements of some products (eg, ultra-low leakage), that is, the substrate further includes another core region (ie, the first core region). Two core regions III), and the formation of the second gate dielectric layer 4 usually includes a step of high temperature treatment, that is, compared with the conventional process, the first gate dielectric layer 2 in the formation method will undergo an additional high temperature treatment step, the first gate dielectric layer 2 is greatly affected by the high temperature treatment, and the nitrogen doped in the first gate dielectric layer 2 on the substrate 1 in the peripheral region I will diffuse during the high temperature treatment step , which not only easily causes nitrogen in the first gate dielectric layer 2 to diffuse into the air to cause a reduction in nitrogen content, but also easily causes nitrogen in the first gate dielectric layer 2 to diffuse to the surface of the substrate 1 , thereby Causes interface defects, resulting in poor performance of the resulting semiconductor device.

结合参考图7,示出了采用传统工艺形成的半导体结构和采用前述形成方法形成的半导体结构的饱和电流(IDSAT)和关态漏电流(IOFF)的关系图。其中,DGO为采用传统工艺形成的半导体结构,TGO为采用前述形成方法形成的半导体结构。由图可知,在相同的工艺条件下,在相同饱和电流下,与采用传统工艺形成的半导体结构相比,采用前述形成方法所形成的半导体结构的关态漏电流较大,所形成的半导体结构性能不佳。Referring to FIG. 7 in conjunction with FIG. 7 , a graph of saturation current (IDSAT) and off-state leakage current (IOFF) of a semiconductor structure formed using a conventional process and a semiconductor structure formed using the aforementioned formation method is shown. Wherein, DGO is a semiconductor structure formed by a conventional process, and TGO is a semiconductor structure formed by the aforementioned formation method. As can be seen from the figure, under the same process conditions and under the same saturation current, compared with the semiconductor structure formed by the traditional process, the off-state leakage current of the semiconductor structure formed by the aforementioned formation method is larger, and the formed semiconductor structure Poor performance.

为解决上述问题,目前提出了以下两种方法:To solve the above problems, the following two methods are currently proposed:

第一种方法是不对所述第一栅介质层进行掺氮处理,或者,减小所述掺氮处理的掺杂剂量。所述方法中通过使所述第一栅介质层中不含有氮原子或减小氮的含量,从而能够避免氮原子在后续高温处理步骤中的扩散,或者减小氮原子在后续高温处理步骤中的扩散,降低氮原子扩散到基底表面的概率。但是,所述第一栅介质层中不含有氮原子或氮原子的含量过低容易使所述第一栅介质层的电学厚度难以满足工艺需求,而且容易降低半导体器件的可靠性,例如:引起NBTI(Negative-bias temperature instability)效应。The first method is to not perform nitrogen doping treatment on the first gate dielectric layer, or to reduce the doping dose of the nitrogen doping treatment. In the method, by making the first gate dielectric layer not contain nitrogen atoms or reducing the nitrogen content, the diffusion of nitrogen atoms in the subsequent high temperature processing steps can be avoided, or the nitrogen atoms in the subsequent high temperature processing steps can be reduced. diffusion, reducing the probability of nitrogen atoms diffusing to the substrate surface. However, the first gate dielectric layer does not contain nitrogen atoms or the content of nitrogen atoms is too low, so that the electrical thickness of the first gate dielectric layer is difficult to meet the process requirements, and it is easy to reduce the reliability of the semiconductor device, such as causing: NBTI (Negative-bias temperature instability) effect.

第二种方法是降低形成所述第二栅介质层的步骤中高温处理的温度,这也有利于减小所述第一栅介质层中氮原子的扩散,降低氮原子扩散到基底表面的概率。但是,在半导体领域中通常采用热氧化生长工艺形成所述第二栅介质层,所述热氧化生长工艺通常需要较高的温度,从而有利于提高所述第二栅介质层的薄膜质量,使所述第二栅介质层的致密度较好。所述方法中,降低所述高温处理的温度,容易降低所述第二栅介质层的致密度,从而导致所述第二栅介质层的薄膜质量难以满足工艺需求。The second method is to reduce the temperature of the high-temperature treatment in the step of forming the second gate dielectric layer, which is also beneficial to reduce the diffusion of nitrogen atoms in the first gate dielectric layer and reduce the probability of nitrogen atoms diffusing to the surface of the substrate . However, in the semiconductor field, a thermal oxidation growth process is usually used to form the second gate dielectric layer, and the thermal oxidation growth process usually requires a higher temperature, which is beneficial to improve the film quality of the second gate dielectric layer, so that the The density of the second gate dielectric layer is better. In the method, reducing the temperature of the high-temperature treatment can easily reduce the density of the second gate dielectric layer, thereby making it difficult for the film quality of the second gate dielectric layer to meet process requirements.

综上,亟需一种半导体结构的形成方法,在保证输入/输出器件的栅介质层的电学厚度满足工艺需求的同时,改善半导体器件的界面缺陷,而且,减小对其他膜层结构的影响,提高工艺兼容性。To sum up, there is an urgent need for a method for forming a semiconductor structure, which can improve the interface defects of the semiconductor device while ensuring that the electrical thickness of the gate dielectric layer of the input/output device meets the process requirements, and also reduce the impact on other film layer structures. , to improve process compatibility.

为了解决所述技术问题,本发明实施例提供一种栅介质层的形成方法,包括:提供基底;在所述基底上形成栅介质层,所述栅介质层具有目标物理厚度和目标电学厚度;对所述栅介质层进行掺氮处理,并通过调整所述掺氮处理的掺杂剂量,适于使所述栅介质层的电学厚度等于所述目标电学厚度;其中,所述栅介质层的目标物理厚度满足:在所述掺氮处理后,氮在所述栅介质层中向所述基底表面扩散的纵向距离小于所述目标物理厚度。In order to solve the technical problem, an embodiment of the present invention provides a method for forming a gate dielectric layer, including: providing a substrate; forming a gate dielectric layer on the substrate, the gate dielectric layer having a target physical thickness and a target electrical thickness; Nitrogen doping is performed on the gate dielectric layer, and the doping dose of the nitrogen doping treatment is adjusted so that the electrical thickness of the gate dielectric layer is equal to the target electrical thickness; wherein, the gate dielectric layer has an electrical thickness equal to the target electrical thickness. The target physical thickness satisfies: after the nitrogen doping treatment, the longitudinal distance that nitrogen diffuses in the gate dielectric layer to the surface of the substrate is smaller than the target physical thickness.

本发明实施例在所述基底上形成栅介质层,所述栅介质层具有目标物理厚度和目标电学厚度,随后对所述栅介质层进行掺氮处理,适于增大所述栅介质层的介电常数,使所述栅介质层的电学厚度等于目标电学厚度,其中,所述栅介质层的目标物理厚度满足:在所述掺氮处理后,氮在所述栅介质层中向所述基底表面扩散的纵向扩散距离小于所述目标物理厚度;在半导体结构的形成过程中,通常包括高温处理的步骤,通过使所述栅介质层的目标物理厚度满足上述条件,能够防止所述栅介质层中的氮扩散到所述栅介质层和基底的界面处,从而改善界面缺陷的问题,而且,通过相应调整所述掺氮处理的掺杂剂量,且与栅介质层的目标物理厚度相配合,使所述栅介质层的电学厚度等于目标电学厚度;综上,本发明实施例能够在保证所述栅介质层的电学厚度满足电性需求的同时,改善所述栅介质层和基底界面处的界面缺陷,提升了半导体结构的性能。In the embodiment of the present invention, a gate dielectric layer is formed on the substrate, and the gate dielectric layer has a target physical thickness and a target electrical thickness, and then nitrogen doping is performed on the gate dielectric layer, which is suitable for increasing the thickness of the gate dielectric layer. The dielectric constant is such that the electrical thickness of the gate dielectric layer is equal to the target electrical thickness, wherein the target physical thickness of the gate dielectric layer satisfies: after the nitrogen doping treatment, nitrogen in the gate dielectric layer is transferred to the The vertical diffusion distance of the diffusion on the surface of the substrate is smaller than the target physical thickness; in the formation process of the semiconductor structure, a step of high temperature treatment is usually included. By making the target physical thickness of the gate dielectric layer meet the above conditions, the gate dielectric layer can be prevented from being Nitrogen in the layer diffuses to the interface between the gate dielectric layer and the substrate, thereby improving the problem of interface defects, and by adjusting the doping amount of the nitrogen doping treatment accordingly, and matching with the target physical thickness of the gate dielectric layer , so that the electrical thickness of the gate dielectric layer is equal to the target electrical thickness; in summary, the embodiments of the present invention can improve the interface between the gate dielectric layer and the substrate while ensuring that the electrical thickness of the gate dielectric layer meets the electrical requirements. The interfacial defects can improve the performance of the semiconductor structure.

为使本发明实施例的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。In order to make the above objects, features and advantages of the embodiments of the present invention more clearly understood, specific embodiments of the present invention will be described in detail below with reference to the accompanying drawings.

图8至图9是本发明栅介质层的形成方法一实施例中各步骤对应的结构示意图。8 to 9 are schematic structural diagrams corresponding to each step in an embodiment of the method for forming a gate dielectric layer of the present invention.

参考图8,提供基底10。Referring to Figure 8, a substrate 10 is provided.

所述基底10用于为后续栅介质层的形成提供工艺平台。The substrate 10 is used to provide a process platform for the subsequent formation of the gate dielectric layer.

本实施例中,所述基底10用于形成平面型场效应晶体管,所述基底10相应仅包括衬底(图未示)。在其他实施例中,当所述基底用于形成鳍式场效应晶体管(FinFET)时,所述基底相应包括衬底以及凸出于所述衬底的鳍部。In this embodiment, the substrate 10 is used to form a planar field effect transistor, and the substrate 10 only includes a substrate (not shown). In other embodiments, when the substrate is used to form a fin field effect transistor (FinFET), the substrate correspondingly includes a substrate and a fin protruding from the substrate.

本实施例中,所述衬底为硅衬底。在其他实施例中,所述衬底的材料还可以为锗、锗化硅、碳化硅、砷化镓或镓化铟等其他材料,所述衬底还可以为绝缘体上的硅衬底或者绝缘体上的锗衬底等其他类型的衬底。In this embodiment, the substrate is a silicon substrate. In other embodiments, the material of the substrate may also be other materials such as germanium, silicon germanium, silicon carbide, gallium arsenide or indium gallium, and the substrate may also be a silicon-on-insulator substrate or an insulator other types of substrates such as germanium substrates.

继续参考图8,在所述基底10上形成栅介质层11,所述栅介质层11具有目标物理厚度和目标电学厚度。Continuing to refer to FIG. 8 , a gate dielectric layer 11 is formed on the substrate 10 , and the gate dielectric layer 11 has a target physical thickness and a target electrical thickness.

其中,所述物理厚度指的是:沿垂直于所述基底100表面的方向上,所述栅介质层11顶面至所述基底100表面的距离;后续还包括对所述栅介质层11进行掺氮处理的步骤,所述电学厚度指的是,经过所述掺氮处理后,所述栅介质层11的等效氧化物厚度(equivalentoxide thickness,EOT)。The physical thickness refers to the distance from the top surface of the gate dielectric layer 11 to the surface of the substrate 100 along the direction perpendicular to the surface of the substrate 100; In the nitrogen doping process, the electrical thickness refers to the equivalent oxide thickness (EOT) of the gate dielectric layer 11 after the nitrogen doping process.

所述栅介质层11具有目标物理厚度和目标电学厚度,从而在使所述栅介质层11的物理厚度满足器件的小型化、高集成度的同时,提升半导体器件的性能,例如:减小遂穿电流,提高器件的稳定性和可靠性。The gate dielectric layer 11 has a target physical thickness and a target electrical thickness, so that the physical thickness of the gate dielectric layer 11 satisfies the miniaturization and high integration of the device, while improving the performance of the semiconductor device, for example: reducing the Through current, improve the stability and reliability of the device.

本实施例中,所述栅介质层10为栅氧化(gate oxide,GOX)层。所述栅介质层10的材料相应为氧化硅。In this embodiment, the gate dielectric layer 10 is a gate oxide (GOX) layer. The material of the gate dielectric layer 10 is correspondingly silicon oxide.

需要说明的是,在半导体领域中,MOSFET器件的关键电学参数(例如:阈值电压Vt,驱动电流等)通常取决于栅极电容,根据电容公式(C=ε0εA/t),为保证栅极结构对沟道具有相同的控制能力以使MOSFET器件的电学参数满足需求,在其他条件不变时,当增加栅介质层11的厚度t时,相应需要增加栅介质层11材料的介电常数ε。其中,ε0是真空介电常数,A为栅极和栅介质层11的接触面积。It should be noted that in the field of semiconductors, the key electrical parameters of MOSFET devices (such as threshold voltage Vt, drive current, etc.) usually depend on the gate capacitance. According to the capacitance formula (C=ε 0 εA/t), in order to ensure the gate The pole structure has the same control ability for the channel to make the electrical parameters of the MOSFET device meet the requirements. When other conditions remain unchanged, when the thickness t of the gate dielectric layer 11 is increased, the dielectric constant of the gate dielectric layer 11 material needs to be increased accordingly. ε. Among them, ε 0 is the vacuum dielectric constant, and A is the contact area between the gate electrode and the gate dielectric layer 11 .

后续步骤还包括对所述栅介质层11进行掺氮处理,所述掺氮处理适于增大所述栅介质层11材料的介电常数ε,也即,当增加栅介质层11的物理厚度t时,相应需要增加所述掺氮处理的掺杂剂量。Subsequent steps further include performing nitrogen doping treatment on the gate dielectric layer 11 , and the nitrogen doping treatment is suitable for increasing the dielectric constant ε of the material of the gate dielectric layer 11 , that is, when increasing the physical thickness of the gate dielectric layer 11 t, the doping dose of the nitrogen doping treatment needs to be increased accordingly.

还需要说明的是,栅极结构对沟道的控制能力可通过栅介质层11的电学厚度来表征,且MOSFET器件的多个关键电学参数可用于表征栅介质层11的目标电学厚度。本实施例中,以MOSFET器件的目标阈值电压来表征所述目标电学厚度。在其他实施例中,还可以采用其他关键电学参数来表征。It should also be noted that the control ability of the gate structure on the channel can be characterized by the electrical thickness of the gate dielectric layer 11 , and multiple key electrical parameters of the MOSFET device can be used to characterize the target electrical thickness of the gate dielectric layer 11 . In this embodiment, the target electrical thickness is characterized by the target threshold voltage of the MOSFET device. In other embodiments, other key electrical parameters may also be used to characterize.

为此,本实施例中,形成所述栅介质层11之前,还包括:获取在目标阈值电压条件下,所述栅介质层11的物理厚度与掺氮处理的掺杂剂量的函数关系;形成不同厚度的栅介质层11,并确定所述不同厚度的栅介质层11对应的掺杂剂量;检测各掺杂剂量条件下,氮在对应的所述栅介质层11中的扩散程度。其中,所述目标阈值电压指的是:所形成MOSFET器件的目标阈值电压,该目标阈值电压可根据MOSFET器件的性能需求而定。To this end, in this embodiment, before forming the gate dielectric layer 11, the method further includes: obtaining the functional relationship between the physical thickness of the gate dielectric layer 11 and the doping dose of the nitrogen doping treatment under the condition of the target threshold voltage; forming gate dielectric layers 11 with different thicknesses, and determine the corresponding doping doses of the gate dielectric layers 11 with different thicknesses; and detect the diffusion degree of nitrogen in the corresponding gate dielectric layers 11 under each doping dose condition. Wherein, the target threshold voltage refers to the target threshold voltage of the formed MOSFET device, and the target threshold voltage may be determined according to the performance requirements of the MOSFET device.

具体地,获取在目标阈值电压条件下,所述栅介质层11的物理厚度与掺氮处理的掺杂剂量的函数关系包括:首先确定目标阈值电压;在该目标阈值电压条件下,对某一物理厚度的栅介质层11进行多组具有不同掺杂剂量的掺氮处理,并测得每一栅介质层11对应的器件的实际阈值电压,选择满足所述实际阈值电压等于目标阈值电压条件下时,栅介质层11的物理厚度和对应的掺杂剂量数据;在同一目标阈值电压条件下,改变所述栅介质层11的物理厚度,同时进行多组具有不同掺杂剂量的掺氮处理,并测得每一栅介质层11对应的器件的阈值电压,将满足所述实际阈值电压等于目标阈值电压条件下,栅介质层11的物理厚度和对应的掺杂剂量数据选出。Specifically, obtaining the functional relationship between the physical thickness of the gate dielectric layer 11 and the doping dose of the nitrogen doping treatment under the condition of the target threshold voltage includes: firstly determining the target threshold voltage; under the condition of the target threshold voltage, for a certain The gate dielectric layer 11 of the physical thickness is subjected to multiple groups of nitrogen doping treatments with different doping doses, and the actual threshold voltage of the device corresponding to each gate dielectric layer 11 is measured, and the actual threshold voltage is selected to satisfy the condition that the actual threshold voltage is equal to the target threshold voltage. , the physical thickness of the gate dielectric layer 11 and the corresponding doping dose data; under the condition of the same target threshold voltage, changing the physical thickness of the gate dielectric layer 11, and simultaneously performing multiple groups of nitrogen doping treatments with different doping doses, The threshold voltage of the device corresponding to each gate dielectric layer 11 is measured, and the physical thickness of the gate dielectric layer 11 and the corresponding dopant dose data are selected under the condition that the actual threshold voltage is equal to the target threshold voltage.

重复以上步骤,从而得出多组不同目标阈值电压条件下,栅介质层11物理厚度和对应掺杂剂量的函数关系。The above steps are repeated to obtain the functional relationship between the physical thickness of the gate dielectric layer 11 and the corresponding dopant dose under multiple sets of different target threshold voltage conditions.

形成不同厚度的栅介质层11,并确定所述不同厚度的栅介质层11对应的掺杂剂量。具体地,根据前述所获取的函数关系,确定不同厚度的栅介质层11对应的掺杂剂量。Gate dielectric layers 11 with different thicknesses are formed, and the corresponding doping doses of the gate dielectric layers 11 with different thicknesses are determined. Specifically, according to the functional relationship obtained above, the doping doses corresponding to the gate dielectric layers 11 with different thicknesses are determined.

检测各掺杂剂量条件下,氮在对应的所述栅介质层11中的扩散程度。具体地,可以通过检测氮在所述基底10表面的浓度,或者测量栅极漏电流等方式,检测氮在对应的所述栅介质层11中的扩散程度。将满足以下条件的实际阈值电压、栅介质层11的物理厚度和对应的掺氮处理的掺杂剂量的数据组选出:实际阈值电压等于目标阈值电压,且氮未扩散到基底10表面。The diffusion degree of nitrogen in the corresponding gate dielectric layer 11 is detected under the condition of each doping dose. Specifically, the diffusion degree of nitrogen in the corresponding gate dielectric layer 11 can be detected by detecting the concentration of nitrogen on the surface of the substrate 10 or measuring the gate leakage current. Data sets of actual threshold voltage, physical thickness of gate dielectric layer 11 and corresponding dopant dose of nitrogen doping treatment are selected that satisfy the following conditions: the actual threshold voltage is equal to the target threshold voltage, and nitrogen is not diffused to the surface of substrate 10 .

需要说明的是,阈值电压通常与所述电学厚度一一对应,通过获取阈值电压的数值,即可推算出相对应的电学厚度,且阈值电压为半导体领域中用于表征半导体结构电学性能的常用参数,因此,本实施例中,以获取目标阈值电压条件下,栅介质层11的物理厚度与掺氮处理的掺杂剂量的关系为例。在其他实施例中,也可以获取其他的目标电学参数条件下,栅介质层的物理厚度与掺氮处理的掺杂剂量的关系,例如:驱动电流等。It should be noted that the threshold voltage is usually in one-to-one correspondence with the electrical thickness. By obtaining the value of the threshold voltage, the corresponding electrical thickness can be calculated, and the threshold voltage is a commonly used method in the semiconductor field to characterize the electrical properties of semiconductor structures. Therefore, in this embodiment, the relationship between the physical thickness of the gate dielectric layer 11 and the doping amount of the nitrogen doping treatment under the condition of obtaining the target threshold voltage is taken as an example. In other embodiments, the relationship between the physical thickness of the gate dielectric layer and the doping dose of the nitrogen doping treatment can also be obtained under other target electrical parameter conditions, such as driving current and the like.

参考图9,对所述栅介质层11进行掺氮处理20,并通过调整所述掺氮处理20的掺杂剂量,适于使所述栅介质层11的电学厚度等于所述目标电学厚度。其中,所述栅介质层11的目标物理厚度满足:在所述掺氮处理20后,氮在所述栅介质层11中向所述基底10表面扩散的纵向距离小于所述目标物理厚度。Referring to FIG. 9 , nitrogen doping treatment 20 is performed on the gate dielectric layer 11 , and the doping dose of the nitrogen doping treatment 20 is adjusted so that the electrical thickness of the gate dielectric layer 11 is equal to the target electrical thickness. Wherein, the target physical thickness of the gate dielectric layer 11 satisfies that after the nitrogen doping treatment 20, the longitudinal distance that nitrogen diffuses in the gate dielectric layer 11 to the surface of the substrate 10 is smaller than the target physical thickness.

在后续工艺制程中,通常包括高温处理的步骤,通过使所述栅介质层11的目标物理厚度满足上述条件,能够防止所述栅介质层11中的氮扩散到所述栅介质层11和基底10的界面处,从而改善界面缺陷的问题,而且,通过相应调整所述掺氮处理20的掺杂剂量,且与栅介质层11的目标物理厚度相配合(例如:当增加栅介质层11的物理厚度时,相应需要增加所述掺氮处理20的掺杂剂量),使所述栅介质层11的电学厚度等于目标电学厚度;综上,本发明实施例能够在保证所述栅介质层11的电学厚度满足电性需求的同时,改善所述栅介质层11和基底100界面处的界面缺陷,提升了半导体结构的性能。In the subsequent process, the step of high temperature treatment is usually included. By making the target physical thickness of the gate dielectric layer 11 meet the above conditions, the nitrogen in the gate dielectric layer 11 can be prevented from diffusing into the gate dielectric layer 11 and the substrate. 10 at the interface, thereby improving the problem of interface defects, and by adjusting the doping dose of the nitrogen doping treatment 20 accordingly, and matching with the target physical thickness of the gate dielectric layer 11 (for example: when increasing the When the physical thickness is increased, the doping dose of the nitrogen doping treatment 20 needs to be increased accordingly, so that the electrical thickness of the gate dielectric layer 11 is equal to the target electrical thickness; in conclusion, the embodiment of the present invention can ensure the gate dielectric layer 11 While meeting the electrical requirements, the electrical thickness of 1000 Å improves the interface defects at the interface between the gate dielectric layer 11 and the substrate 100, and improves the performance of the semiconductor structure.

需要说明的是,在物理厚度不变的情况下,栅介质层11的介电常数越大,等效氧化物厚度越小,晶体管的尺寸就能按照摩尔定律进一步的缩小。It should be noted that, under the condition that the physical thickness remains unchanged, the larger the dielectric constant of the gate dielectric layer 11 is, the smaller the equivalent oxide thickness is, and the size of the transistor can be further reduced according to Moore's Law.

本实施例中,所述栅介质层11的材料为氧化硅,氧化硅材料的介电常数小于氮化硅材料的介电常数。通过对所述栅介质层11进行掺氮处理,增大了所述栅介质层11中的氮含量,能够增大所述栅介质层11的介电常数,进而使所述栅介质层11的电学厚度等于目标电学厚度,从而在满足器件的小型化的同时,保证器件的电学性能满足工艺需求,改善器件的可靠性和稳定性。In this embodiment, the material of the gate dielectric layer 11 is silicon oxide, and the dielectric constant of the silicon oxide material is smaller than that of the silicon nitride material. By performing nitrogen doping on the gate dielectric layer 11 , the nitrogen content in the gate dielectric layer 11 is increased, the dielectric constant of the gate dielectric layer 11 can be increased, and the gate dielectric layer 11 has a higher dielectric constant. The electrical thickness is equal to the target electrical thickness, so as to meet the miniaturization of the device, ensure that the electrical performance of the device meets the process requirements, and improve the reliability and stability of the device.

本实施例中,对所述栅介质层11进行掺氮处理20的步骤包括:根据所述函数关系和所述栅介质层11的目标物理厚度,确定所述掺氮处理20的掺杂剂量。In this embodiment, the step of performing the nitrogen doping treatment 20 on the gate dielectric layer 11 includes: determining the doping amount of the nitrogen doping treatment 20 according to the functional relationship and the target physical thickness of the gate dielectric layer 11 .

具体地,首先确定所述栅介质层11的目标阈值电压,在该目标阈值电压条件下,根据前述的函数关系、所述栅介质层11的目标物理厚度、以及所述栅介质层11的目标物理厚度需满足的条件,确定合适的目标物理厚度下,以及所述目标物理厚度对应的掺氮剂量;根据所获得的掺氮剂量,对所述栅介质层11进行掺氮处理20。Specifically, first determine the target threshold voltage of the gate dielectric layer 11 , under the condition of the target threshold voltage, according to the aforementioned functional relationship, the target physical thickness of the gate dielectric layer 11 , and the target threshold voltage of the gate dielectric layer 11 The conditions to be met by the physical thickness are determined under the appropriate target physical thickness and the nitrogen doping dose corresponding to the target physical thickness; according to the obtained nitrogen doping dose, the gate dielectric layer 11 is subjected to nitrogen doping treatment 20 .

本实施例中,采用去耦合等离子体氮化(Decoupled Plasma Nitridation,DPN)工艺进行所述掺氮处理20。去耦合等离子体氮化工艺的工艺温度较低,有利于减小氮扩散到基底10表面的概率,同时使所述栅介质层11具有较高的氮含量,从而获得更好的EOT,有利于改善栅漏电流、提高载流子迁移率。In this embodiment, the nitrogen doping treatment 20 is performed by a decoupled plasma nitridation (Decoupled Plasma Nitridation, DPN) process. The process temperature of the decoupling plasma nitridation process is lower, which is beneficial to reduce the probability of nitrogen diffusing to the surface of the substrate 10, and at the same time, the gate dielectric layer 11 has a higher nitrogen content, so as to obtain better EOT, which is beneficial to Improve gate leakage current and improve carrier mobility.

图10至图16是本发明半导体结构的形成方法一实施例中各步骤对应的结构示意图。10 to 16 are schematic structural diagrams corresponding to each step in an embodiment of a method for forming a semiconductor structure of the present invention.

参考图10,采用前述栅介质层的形成方法,在基底100上形成栅介质层,所述栅介质层适于作为第一栅介质层110,其中,所述基底100包括周边区A、第一核心区B以及第二核心区C,所述第二核心区C的工作电压大于所述第一核心区B的工作电压。Referring to FIG. 10 , a gate dielectric layer is formed on a substrate 100 by using the foregoing method for forming a gate dielectric layer, and the gate dielectric layer is suitable as a first gate dielectric layer 110 , wherein the substrate 100 includes a peripheral region A, a first gate dielectric layer The core region B and the second core region C, the working voltage of the second core region C is greater than the working voltage of the first core region B.

通过采用前述栅介质层的形成方法,在所述基底100上形成第一栅介质层110,从而使所述第一栅介质层110的电学厚度等于目标电学厚度,且所述第一栅介质层110的目标物理厚度满足:所述第一栅介质层110中的氮原子在所述第一栅介质层110中向所述基底100表面扩散的纵向距离小于所述目标物理厚度,从而在后续高温处理的步骤中,能够防止所述第一栅介质层110中的氮扩散到所述第一栅介质层110和基底100的界面处,从而在保证所述第一栅介质层110的电学厚度满足电性需求的同时,改善所述第一栅介质层110和基底100界面处的界面缺陷,提升了半导体结构的性能。By using the foregoing method for forming a gate dielectric layer, a first gate dielectric layer 110 is formed on the substrate 100, so that the electrical thickness of the first gate dielectric layer 110 is equal to the target electrical thickness, and the first gate dielectric layer The target physical thickness of 110 satisfies: the longitudinal distance of nitrogen atoms in the first gate dielectric layer 110 diffusing to the surface of the substrate 100 in the first gate dielectric layer 110 is smaller than the target physical thickness, so that in the subsequent high temperature In the processing step, nitrogen in the first gate dielectric layer 110 can be prevented from diffusing to the interface between the first gate dielectric layer 110 and the substrate 100, so as to ensure that the electrical thickness of the first gate dielectric layer 110 satisfies While meeting the electrical requirements, the interface defects at the interface between the first gate dielectric layer 110 and the substrate 100 are improved, and the performance of the semiconductor structure is improved.

所述基底100用于为后续形成半导体结构提供工艺平台。The substrate 100 is used to provide a process platform for the subsequent formation of semiconductor structures.

关于所述基底100的描述,可参考前述对基底的具体描述,本实施例在此不再赘述。For the description of the substrate 100, reference may be made to the foregoing specific description of the substrate, which is not repeated in this embodiment.

所述周边区A用于形成输入/输出器件(I/O device)。其中,输入/输出器件一般是芯片与外部接口交互时所使用的器件,输入/输出器件的工作电压一般比较高。The peripheral area A is used to form input/output devices (I/O devices). Among them, the input/output device is generally a device used when the chip interacts with the external interface, and the working voltage of the input/output device is generally relatively high.

所述第一核心区B用于形成第一核心器件(core device),所述第二核心区C用于形成第二核心器件,且所述第二核心器件的工作电压大于所述第一核心器件的工作电压。其中,核心器件一般是指芯片内部所使用的器件,核心器件的工作电压一般比较低,且核心器件的工作电压通常远低于输入/输出器件。The first core region B is used to form a first core device, the second core region C is used to form a second core device, and the operating voltage of the second core device is greater than that of the first core device operating voltage. Among them, the core device generally refers to the device used inside the chip, the working voltage of the core device is generally relatively low, and the working voltage of the core device is usually much lower than that of the input/output device.

本实施例中,所述第一栅介质层110用于作为所述输入/输出器件的栅介质层。In this embodiment, the first gate dielectric layer 110 is used as a gate dielectric layer of the input/output device.

本实施例中,通过采用前述栅介质层的形成方法形成所述第一栅介质层110,有利于在使所述第一栅介质层110的电学厚度满足输入/输出器件的工艺要求的同时,改善所述第一栅介质层110和所述基底100界面处的界面缺陷,提升了输入/输出器件的性能。In this embodiment, the first gate dielectric layer 110 is formed by using the foregoing method for forming the gate dielectric layer, which is beneficial to make the electrical thickness of the first gate dielectric layer 110 meet the process requirements of the input/output device, and at the same time, The interface defects at the interface between the first gate dielectric layer 110 and the substrate 100 are improved, and the performance of the input/output device is improved.

本实施例中,所述第一栅介质层110为栅氧化层。所述第一栅介质层110的材料相应为氧化硅。In this embodiment, the first gate dielectric layer 110 is a gate oxide layer. The material of the first gate dielectric layer 110 is correspondingly silicon oxide.

本实施例中,进行所述掺氮处理的步骤中,所述第一栅介质层110的目标物理厚度大于预设物理厚度。其中,所述预设物理厚度指的是:在采用双栅极氧化物层工艺时,也即,所述基底仅包括一种周边区和一种核心区的情况下,所述第一栅介质层的物理厚度。In this embodiment, in the step of performing the nitrogen doping treatment, the target physical thickness of the first gate dielectric layer 110 is greater than a preset physical thickness. Wherein, the preset physical thickness refers to: when a double gate oxide layer process is adopted, that is, when the substrate only includes one kind of peripheral region and one kind of core region, the first gate dielectric The physical thickness of the layer.

通过使所述目标物理厚度大于所述预设物理厚度,从而增大所述的第一栅介质层110顶面至所述基底100表面的纵向距离,进而降低第一栅介质层110中氮在后续高温处理的步骤中扩散到基底100表面的概率,从而改善所述第一栅介质层110和基底100界面处的界面缺陷。By making the target physical thickness larger than the preset physical thickness, the longitudinal distance from the top surface of the first gate dielectric layer 110 to the surface of the substrate 100 is increased, thereby reducing the nitrogen concentration in the first gate dielectric layer 110 The probability of diffusing to the surface of the substrate 100 in the subsequent high temperature treatment step can improve the interface defects at the interface between the first gate dielectric layer 110 and the substrate 100 .

需要说明的是,所述目标物理厚度与所述预设物理厚度的差值不宜过小。如果所述差值过小,则用于降低第一栅介质层110中氮扩散到基底100表面的概率的效果不显著,或者,难以起到降低第一栅介质层110中氮扩散到基底100表面的概率的作用。为此,本实施例中,所述目标物理厚度与所述预设物理厚度的差值至少为20埃米。It should be noted that, the difference between the target physical thickness and the preset physical thickness should not be too small. If the difference is too small, the effect of reducing the probability of the diffusion of nitrogen in the first gate dielectric layer 110 to the surface of the substrate 100 is not significant, or it is difficult to reduce the diffusion of nitrogen in the first gate dielectric layer 110 to the substrate 100 The role of surface probability. Therefore, in this embodiment, the difference between the target physical thickness and the preset physical thickness is at least 20 angstroms.

本实施例中,为了使所形成的半导体结构能够满足器件小型化、薄型化的需求,且节省形成所述第一栅介质层110的时间和成本,所述第一栅介质层110的物理厚度也不宜过大。具体地,所述目标物理厚度与所述预设物理厚度的差值为20埃米至40埃米。In this embodiment, in order to make the formed semiconductor structure meet the requirements of device miniaturization and thinning, and save the time and cost of forming the first gate dielectric layer 110, the physical thickness of the first gate dielectric layer 110 Nor should it be too large. Specifically, the difference between the target physical thickness and the preset physical thickness is 20 angstroms to 40 angstroms.

本实施例中,进行所述掺氮处理的步骤中,所述掺氮处理的掺杂剂量高于预设掺杂剂量。其中,所述预设掺杂剂量指的是:在采用双栅极氧化物层技术时,也即,所述基底仅包括一种周边区和一种核心区的情况下,掺氮处理的掺杂剂量。In this embodiment, in the step of performing the nitrogen doping treatment, the doping dose of the nitrogen doping treatment is higher than the preset doping dose. Wherein, the preset doping dose refers to: when the double gate oxide layer technology is adopted, that is, when the substrate only includes one kind of peripheral region and one kind of core region, the doping amount of nitrogen doping treatment Miscellaneous doses.

本实施例中,所述第一栅介质层110的目标物理厚度大于预设物理厚度。如果不对所述掺氮处理的掺杂剂量进行调整,容易导致所述第一栅介质层110中的氮含量较低,从而所述第一栅介质层110的介电常数也较低,所述第一栅介质层110的电学厚度难以满足目标电学厚度的要求。In this embodiment, the target physical thickness of the first gate dielectric layer 110 is greater than the preset physical thickness. If the doping dose of the nitrogen doping treatment is not adjusted, the nitrogen content in the first gate dielectric layer 110 is likely to be low, so that the dielectric constant of the first gate dielectric layer 110 is also low. The electrical thickness of the first gate dielectric layer 110 is difficult to meet the requirements of the target electrical thickness.

通过使所述掺氮处理的掺杂剂量高于预设掺杂剂量,从而能够和所述目标物理厚度相配合,在改善所述第一栅介质层110和基底100界面处的界面缺陷的同时,保证所述第一栅介质层110的电学厚度等于目标电学厚度,使所述第一栅介质层110的电学厚度满足电性需求。By making the doping dose of the nitrogen doping treatment higher than the preset doping dose, it can be matched with the target physical thickness, and the interface defects at the interface of the first gate dielectric layer 110 and the substrate 100 can be improved at the same time. , to ensure that the electrical thickness of the first gate dielectric layer 110 is equal to the target electrical thickness, so that the electrical thickness of the first gate dielectric layer 110 meets electrical requirements.

需要说明的是,所述掺杂剂量与预设掺杂剂量的差值不宜过小。如果所述差值过小,由于所述第一栅介质层110的目标物理厚度大于预设物理厚度,容易导致所述第一栅介质层110中的氮含量过低,进而导致所述第一栅介质层110的电学厚度难以满足电性需求。本实施例中,所述目标物理厚度与所述预设物理厚度的差值至少为20埃米,相应地,所述掺杂剂量与所述预设掺杂剂量的差值至少为1E15原子每平方厘米。It should be noted that, the difference between the doping dose and the preset doping dose should not be too small. If the difference is too small, since the target physical thickness of the first gate dielectric layer 110 is greater than the preset physical thickness, the nitrogen content in the first gate dielectric layer 110 is likely to be too low, which in turn causes the first gate dielectric layer 110 to have an excessively low nitrogen content. The electrical thickness of the gate dielectric layer 110 is difficult to meet electrical requirements. In this embodiment, the difference between the target physical thickness and the preset physical thickness is at least 20 angstroms. Correspondingly, the difference between the doping dose and the preset doping dose is at least 1E15 atoms per atom square centimeters.

具体地,所述目标物理厚度与所述预设物理厚度的差值为20埃米至40埃米。如果所述差值过大,则所述第一栅介质层110中的氮含量过高,容易增加第一栅介质层110中氮扩散到基底100表面的概率,难以起到改善所述第一栅介质层110和基底100界面处的界面缺陷的作用。为此,本实施例中,所述掺杂剂量和第一栅介质层110的目标物理厚度与预设物理厚度的差值相匹配,所述掺杂剂量与所述预设掺杂剂量的差值为1E15原子每平方厘米至5E15原子每平方厘米。Specifically, the difference between the target physical thickness and the preset physical thickness is 20 angstroms to 40 angstroms. If the difference is too large, the nitrogen content in the first gate dielectric layer 110 is too high, which easily increases the probability of nitrogen in the first gate dielectric layer 110 diffusing to the surface of the substrate 100 , making it difficult to improve the first gate dielectric layer 110 . The role of interface defects at the interface between the gate dielectric layer 110 and the substrate 100 . Therefore, in this embodiment, the difference between the dopant dose and the target physical thickness of the first gate dielectric layer 110 and the preset physical thickness is matched, and the difference between the dopant dose and the preset dopant dose Values range from 1E15 atoms per square centimeter to 5E15 atoms per square centimeter.

还需要说明的是,进行掺氮处理后,还包括:对所述第一栅介质层110进行退火处理。通过所述退火处理,从而修复所述掺氮处理的步骤中所产生的晶格缺陷,同时还激活掺杂的氮原子。It should also be noted that, after the nitrogen doping treatment is performed, the method further includes: performing an annealing treatment on the first gate dielectric layer 110 . Through the annealing treatment, the lattice defects generated in the step of the nitrogen doping treatment are repaired, and the doped nitrogen atoms are also activated at the same time.

其中,通过使所述目标物理厚度大于所述预设物理厚度,增大了所述第一栅介质层110顶面至所述基底100表面的纵向距离,相应降低了氮扩散到基底100表面的概率,因此,可以适当增加所述退火处理的工艺温度,以提高所述退火处理的工艺效果。Wherein, by making the target physical thickness larger than the preset physical thickness, the longitudinal distance from the top surface of the first gate dielectric layer 110 to the surface of the substrate 100 is increased, and the diffusion of nitrogen to the surface of the substrate 100 is correspondingly reduced. Therefore, the process temperature of the annealing treatment can be appropriately increased to improve the process effect of the annealing treatment.

但是,所述退火处理的工艺温度不宜过低,也不宜过高。如果所述退火处理的工艺温度过低,则所述退火处理用于修复晶格缺陷、激活氮原子的效果较差;如果所述退火处理的工艺温度过高,容易增加所述第一栅介质层110中氮的扩散,从而增加氮扩散到基底100表面的概率。为此,本实施例中,所述退火处理的工艺温度为1000℃至1150℃。However, the process temperature of the annealing treatment should not be too low nor too high. If the process temperature of the annealing treatment is too low, the effect of the annealing treatment for repairing lattice defects and activating nitrogen atoms is poor; if the process temperature of the annealing treatment is too high, it is easy to increase the first gate dielectric Diffusion of nitrogen in layer 110 , thereby increasing the probability of nitrogen diffusing to the surface of substrate 100 . Therefore, in this embodiment, the process temperature of the annealing treatment is 1000°C to 1150°C.

本实施例中,采用快速热退火(Rapid Thermal Anneal,RTA)工艺进行所述退火处理。In this embodiment, a rapid thermal annealing (Rapid Thermal Anneal, RTA) process is used to perform the annealing treatment.

参考图11至图12,去除所述第二核心区C上的第一栅介质层110。Referring to FIG. 11 to FIG. 12 , the first gate dielectric layer 110 on the second core region C is removed.

通过去除所述第二核心区C上的第一栅介质层110,从而露出所述第二核心区C的基底100表面,为后续在所述第二核心区C的基底100上形成第二栅介质层作准备。By removing the first gate dielectric layer 110 on the second core region C, the surface of the substrate 100 of the second core region C is exposed, and a second gate is subsequently formed on the substrate 100 of the second core region C Prepare the dielectric layer.

具体的,去除所述第二核心区C上的第一栅介质层110的步骤包括:在所述基底100上形成第一掩膜层101(如图11所示),所述第一掩膜层101露出所述第二核心区C基底100上的第一栅介质层110;以所述第一掩膜层101为掩膜,去除所述第二核心区C上的第一栅介质层110;去除所述第二核心区C上的第一栅介质层110后,去除所述第一掩膜层101。Specifically, the step of removing the first gate dielectric layer 110 on the second core region C includes: forming a first mask layer 101 on the substrate 100 (as shown in FIG. 11 ), the first mask layer The layer 101 exposes the first gate dielectric layer 110 on the substrate 100 of the second core region C; using the first mask layer 101 as a mask, remove the first gate dielectric layer 110 on the second core region C ; After removing the first gate dielectric layer 110 on the second core region C, remove the first mask layer 101 .

本实施例中,所述第一掩膜层101的材料为光刻胶。光刻胶材料为半导体工艺中常用的掩膜材料,且形成所述第一掩膜层101的工艺为半导体领域中常用的光刻工艺,工艺兼容性较高。In this embodiment, the material of the first mask layer 101 is photoresist. The photoresist material is a commonly used mask material in the semiconductor process, and the process for forming the first mask layer 101 is a commonly used photolithography process in the semiconductor field, with high process compatibility.

本实施例中,采用湿法刻蚀工艺去除所述第二核心区C上的第一栅介质层110。湿法刻蚀工艺操作简单,工艺成本低。In this embodiment, the first gate dielectric layer 110 on the second core region C is removed by a wet etching process. The wet etching process has simple operation and low process cost.

具体的,采用氢氟酸稀释溶液进行所述湿法刻蚀工艺。Specifically, the wet etching process is performed using a dilute solution of hydrofluoric acid.

本实施例中,所述第一栅介质层110的目标物理厚度大于预设物理厚度。因此,根据工艺需求,可适当增加所述氢氟酸稀释溶液的浓度,从而提高所述湿法刻蚀工艺的刻蚀速率,缩短刻蚀时间,提高生产效率。在其他实施例中,根据实际工艺需求,也可以适当增加所述湿法刻蚀工艺的时间。In this embodiment, the target physical thickness of the first gate dielectric layer 110 is greater than the preset physical thickness. Therefore, according to process requirements, the concentration of the hydrofluoric acid dilution solution can be appropriately increased, thereby increasing the etching rate of the wet etching process, shortening the etching time, and improving the production efficiency. In other embodiments, according to actual process requirements, the time of the wet etching process may also be appropriately increased.

去除所述第二核心区C上的第一栅介质层110后,还包括:采用灰化工艺去除所述第一掩膜层101。After removing the first gate dielectric layer 110 on the second core region C, the method further includes: removing the first mask layer 101 by using an ashing process.

参考图13,去除所述第二核心区C上的第一栅介质层110后,在所述第二核心区C的基底100上形成第二栅介质层120,所述第二栅介质层120的厚度小于所述第一栅介质层110的厚度。Referring to FIG. 13 , after removing the first gate dielectric layer 110 on the second core region C, a second gate dielectric layer 120 is formed on the substrate 100 of the second core region C. The second gate dielectric layer 120 is smaller than the thickness of the first gate dielectric layer 110 .

所述第二栅介质层120用于作为第二核心器件的栅介质层。The second gate dielectric layer 120 is used as a gate dielectric layer of the second core device.

在半导体领域中,为保证器件的驱动电流符合工艺需求,以及器件的击穿电压等可靠性、稳定性,器件的工作电压越大,所需的栅介质层厚度通常也越大。所述第二核心器件的工作电压小于所述输入/输出器件的工作电压,因此,所述第二栅介质层120的厚度小于所述第一栅介质层110的厚度。In the semiconductor field, in order to ensure that the driving current of the device meets the process requirements, as well as the reliability and stability of the breakdown voltage of the device, the larger the operating voltage of the device, the larger the required thickness of the gate dielectric layer is usually. The operating voltage of the second core device is lower than the operating voltage of the input/output device, therefore, the thickness of the second gate dielectric layer 120 is smaller than the thickness of the first gate dielectric layer 110 .

本实施例中,所述形成方法引入三栅极氧化物层工艺,所述第二栅介质层120用于作为TGO层。In this embodiment, the formation method introduces a triple gate oxide layer process, and the second gate dielectric layer 120 is used as a TGO layer.

本实施例中,所述第二栅介质层120为栅氧化层,所述第二栅介质层120的材料为氧化硅。In this embodiment, the second gate dielectric layer 120 is a gate oxide layer, and the material of the second gate dielectric layer 120 is silicon oxide.

本实施例中,采用热氧化生长工艺形成所述第二栅介质层120。热氧化生长工艺通常是在高温环境下,利用硅与氧化剂之间的氧化反应,在基底100上形成氧化硅薄膜,工艺操作简单,且所形成的氧化硅薄膜的厚度一致性和致密性较好,有利于提高所述第二栅介质层120的薄膜质量。In this embodiment, the second gate dielectric layer 120 is formed by a thermal oxidation growth process. The thermal oxidation growth process is usually in a high temperature environment, using the oxidation reaction between silicon and an oxidant to form a silicon oxide film on the substrate 100, the process operation is simple, and the thickness consistency and compactness of the formed silicon oxide film are good. , which is beneficial to improve the film quality of the second gate dielectric layer 120 .

本实施例中,所述第一栅介质层110中掺杂有氮原子,掺杂的氮原子容易在高温下发生扩散。所述第一栅介质层110通过采用前述形成栅介质层的方法形成,因此,在经过形成所述第二栅介质层120的高温环境后,所述第一栅介质层110中的氮扩散到基底100表面的概率较低,从而改善所述第一栅介质层110和基底100界面处的界面缺陷。In this embodiment, the first gate dielectric layer 110 is doped with nitrogen atoms, and the doped nitrogen atoms are easily diffused at high temperature. The first gate dielectric layer 110 is formed by using the aforementioned method for forming the gate dielectric layer. Therefore, after passing through the high temperature environment for forming the second gate dielectric layer 120, nitrogen in the first gate dielectric layer 110 diffuses into the The probability of the surface of the substrate 100 is low, thereby improving the interface defects at the interface between the first gate dielectric layer 110 and the substrate 100 .

具体的,可采用水汽氧化工艺、干氧工艺或湿氧工艺进行所述热氧化生长工艺。Specifically, the thermal oxidation growth process may be performed by a water vapor oxidation process, a dry oxygen process or a wet oxygen process.

参考图14至图15,形成所述第二栅介质层120后,去除所述第一核心区B基底100上的第一栅介质层110。Referring to FIG. 14 to FIG. 15 , after the second gate dielectric layer 120 is formed, the first gate dielectric layer 110 on the substrate 100 in the first core region B is removed.

通过去除所述第一核心区B基底100上的第一栅介质层110,从而露出所述第一核心区B的基底100表面,为后续在所述第一核心区B的基底100上形成第三栅介质层作准备。By removing the first gate dielectric layer 110 on the substrate 100 of the first core region B, the surface of the substrate 100 of the first core region B is exposed, so as to form the first gate dielectric layer 100 on the substrate 100 of the first core region B subsequently. Prepare the triple gate dielectric layer.

具体的,去除所述第一核心区B基底100上的第一栅介质层110的步骤包括:在所述基底100上形成第二掩膜层102(如图14所示),所述第二掩膜层102露出所述第一核心区B基底100上的第一栅介质层110;以所述第二掩膜层102为掩膜,去除所述第一核心区B上的第一栅介质层110;去除所述第一核心区B上的第一栅介质层110后,去除所述第二掩膜层102。Specifically, the step of removing the first gate dielectric layer 110 on the substrate 100 of the first core region B includes: forming a second mask layer 102 on the substrate 100 (as shown in FIG. 14 ), the second The mask layer 102 exposes the first gate dielectric layer 110 on the substrate 100 of the first core region B; using the second mask layer 102 as a mask, the first gate dielectric layer on the first core region B is removed layer 110; after removing the first gate dielectric layer 110 on the first core region B, the second mask layer 102 is removed.

本实施例中,所述第二掩膜层102的材料为光刻胶。关于第二掩膜层102的详细描述,可参考前述对第一掩膜层101的相关描述,在此不再赘述。In this embodiment, the material of the second mask layer 102 is photoresist. For the detailed description of the second mask layer 102 , reference may be made to the foregoing description of the first mask layer 101 , which will not be repeated here.

本实施例中,采用湿法刻蚀工艺去除所述第一核心区B基底100上的第一栅介质层110。湿法刻蚀工艺操作简单,工艺成本低。In this embodiment, the first gate dielectric layer 110 on the substrate 100 of the first core region B is removed by a wet etching process. The wet etching process has simple operation and low process cost.

具体的,采用氢氟酸稀释溶液进行所述湿法刻蚀工艺。关于所述湿法刻蚀工艺的具体描述,可参考前述对去除所述第二核心区C上的第一栅介质层110的湿法刻蚀工艺的相关描述,在此不再赘述。Specifically, the wet etching process is performed using a dilute solution of hydrofluoric acid. For the specific description of the wet etching process, reference may be made to the foregoing description of the wet etching process for removing the first gate dielectric layer 110 on the second core region C, which will not be repeated here.

本实施例中,去除所述第一核心区B基底100上的第一栅介质层110的工艺和去除所述第二核心区C上的第一栅介质层110的工艺相同,本实施例在此不再赘述。In this embodiment, the process of removing the first gate dielectric layer 110 on the substrate 100 of the first core region B is the same as the process of removing the first gate dielectric layer 110 on the second core region C. This will not be repeated here.

去除所述第一核心区B基底100上的第一栅介质层110后,采用灰化工艺去除所述第二掩膜层102。After removing the first gate dielectric layer 110 on the substrate 100 of the first core region B, the second mask layer 102 is removed by an ashing process.

参考图16,去除所述第一核心区B基底100上的第一栅介质层110后,在所述第一核心区B的基底100上形成第三栅介质层130,所述第三栅介质层130的厚度小于所述第二栅介质层120的厚度。Referring to FIG. 16 , after removing the first gate dielectric layer 110 on the substrate 100 of the first core region B, a third gate dielectric layer 130 is formed on the substrate 100 of the first core region B. The third gate dielectric The thickness of the layer 130 is smaller than the thickness of the second gate dielectric layer 120 .

所述第三栅介质层130用于作为第一核心器件的栅介质层。The third gate dielectric layer 130 is used as the gate dielectric layer of the first core device.

所述第一核心器件的工作电压小于所述第二核心器件的工作电压,保证器件的驱动电流符合工艺需求,以及器件的击穿电压等可靠性、稳定性,所述第三栅介质层130的厚度小于所述第二栅介质层120的厚度。The working voltage of the first core device is lower than the working voltage of the second core device, to ensure that the driving current of the device meets the process requirements, and the reliability and stability of the breakdown voltage of the device, the third gate dielectric layer 130 is smaller than the thickness of the second gate dielectric layer 120 .

本实施例中,所述第三栅介质层130为栅氧化层,所述第三栅介质层130的材料为氧化硅。In this embodiment, the third gate dielectric layer 130 is a gate oxide layer, and the material of the third gate dielectric layer 130 is silicon oxide.

本实施例中,采用热氧化生长工艺形成所述第三栅介质层130。热氧化生长工艺通常是在高温环境下,利用硅与氧化剂之间的氧化反应,在基底100上形成氧化硅薄膜,工艺操作简单,且所形成的氧化硅薄膜的厚度一致性和致密度较好,有利于提高所述第三栅介质层130的薄膜质量。In this embodiment, the third gate dielectric layer 130 is formed by a thermal oxidation growth process. The thermal oxidation growth process is usually in a high temperature environment, using the oxidation reaction between silicon and an oxidant to form a silicon oxide film on the substrate 100, the process operation is simple, and the thickness consistency and density of the formed silicon oxide film are good. , which is beneficial to improve the film quality of the third gate dielectric layer 130 .

本实施例中,所述第一栅介质层110中掺杂有氮原子,掺杂的氮原子容易在高温下发生扩散。所述第一栅介质层110通过采用前述形成栅介质层的方法形成,因此,在经过形成所述第三栅介质层130的高温环境后,所述第一栅介质层110中的氮扩散到基底100表面的概率较低,从而改善所述第一栅介质层110和基底100界面处的界面缺陷。In this embodiment, the first gate dielectric layer 110 is doped with nitrogen atoms, and the doped nitrogen atoms are easily diffused at high temperature. The first gate dielectric layer 110 is formed by using the aforementioned method for forming a gate dielectric layer. Therefore, after passing through the high temperature environment for forming the third gate dielectric layer 130, nitrogen in the first gate dielectric layer 110 diffuses into the The probability of the surface of the substrate 100 is low, thereby improving the interface defects at the interface between the first gate dielectric layer 110 and the substrate 100 .

具体的,可采用水汽氧化工艺、干氧工艺或湿氧工艺进行所述热氧化生长工艺。Specifically, the thermal oxidation growth process may be performed by a water vapor oxidation process, a dry oxygen process or a wet oxygen process.

结合参考图17,分别示出了采用传统工艺形成的半导体结构、采用现有技术形成的半导体结构、以及本发明实施例所形成的半导体结构中,氮的掺杂浓度随掺杂深度变化的SIMS(二次离子质谱)分析图,横坐标表示掺杂深度,纵坐标表示氮的掺杂浓度。其中,N-DGO为采用传统工艺所形成的半导体结构,N-TGO为采用现有技术所形成的半导体结构,N-TGO new为本发明实施例所形成的半导体结构。由图可知,在接近基底表面时,采用现有技术所形成的半导体结构中,氮的掺杂浓度仍比较大,氮接触到了基底表面,容易产生界面缺陷;而N-TGO new曲线的变化趋势和N-DGO曲线的变化趋势相接近,在接近基底100表面时,N-TGO new的掺杂浓度已为零,也就是说,本发明实施例所形成的半导体结构中,氮未扩散到基底100表面。Referring to FIG. 17 , the SIMS of the semiconductor structure formed by the conventional process, the semiconductor structure formed by the prior art, and the semiconductor structure formed by the embodiment of the present invention, the doping concentration of nitrogen varies with the doping depth are respectively shown (Secondary ion mass spectrometry) analysis diagram, the abscissa represents the doping depth, and the ordinate represents the nitrogen doping concentration. Among them, N-DGO is a semiconductor structure formed by a traditional process, N-TGO is a semiconductor structure formed by using the prior art, and N-TGO new is a semiconductor structure formed by an embodiment of the present invention. It can be seen from the figure that when approaching the substrate surface, in the semiconductor structure formed by the prior art, the nitrogen doping concentration is still relatively large, and the nitrogen contacts the substrate surface, which is easy to produce interface defects; while the change trend of the N-TGO new curve Similar to the change trend of the N-DGO curve, when it is close to the surface of the substrate 100, the doping concentration of N-TGO new is zero, that is to say, in the semiconductor structure formed by the embodiment of the present invention, nitrogen is not diffused into the substrate. 100 surfaces.

结合参考图18,示出了采用传统工艺形成的半导体结构和本发明实施例所形成的半导体结构的饱和电流(IDSAT)和关态漏电流(IOFF)的关系图。其中,DGO为采用传统工艺形成的半导体结构,new TGO为本发明实施例所形成的半导体结构。由图可知,在相同饱和电流下,本发明实施例所形成半导体结构和采用传统工艺所形成的半导体结构的关态漏电流数值较为接近,本发明实施例所形成的半导体结构的电学性能能够满足工艺需求。Referring to FIG. 18 in conjunction with FIG. 18 , a relationship diagram of saturation current (IDSAT) and off-state leakage current (IOFF) of a semiconductor structure formed by a conventional process and a semiconductor structure formed by an embodiment of the present invention is shown. Wherein, DGO is a semiconductor structure formed by a traditional process, and new TGO is a semiconductor structure formed by the embodiment of the present invention. It can be seen from the figure that, under the same saturation current, the off-state leakage current values of the semiconductor structure formed by the embodiment of the present invention and the semiconductor structure formed by the traditional process are relatively close, and the electrical performance of the semiconductor structure formed by the embodiment of the present invention can satisfy the process requirements.

相应的,本发明还提供一种采用前述形成方法所形成的半导体结构。参考图16,示出了本发明半导体结构一实施例的结构示意图。Correspondingly, the present invention also provides a semiconductor structure formed by the aforementioned forming method. Referring to FIG. 16, a schematic structural diagram of an embodiment of the semiconductor structure of the present invention is shown.

所述半导体结构包括:基底100,所述基底100包括周边区A、第一核心区B以及第二核心区C,所述第二核心区C的工作电压大于所述第一核心区B的工作电压;第一栅介质层110,位于所述周边区A的基底100上,所述第一栅介质层110内掺杂有氮离子,且所述氮离子位于所述基底100上方的第一栅介质层110中;第二栅介质层120,位于所述第二核心区C的基底100上,所述第二栅介质层120的厚度小于所述第一栅介质层110的厚度;第三栅介质层130,位于所述第一核心区B的基底100上,所述第三栅介质层130的厚度小于所述第二栅介质层120的厚度。The semiconductor structure includes: a substrate 100, the substrate 100 includes a peripheral area A, a first core area B and a second core area C, the operating voltage of the second core area C is greater than that of the first core area B voltage; the first gate dielectric layer 110 is located on the substrate 100 in the peripheral region A, the first gate dielectric layer 110 is doped with nitrogen ions, and the nitrogen ions are located on the first gate above the substrate 100 In the dielectric layer 110; the second gate dielectric layer 120, located on the substrate 100 of the second core region C, the thickness of the second gate dielectric layer 120 is smaller than the thickness of the first gate dielectric layer 110; the third gate dielectric layer 120 The dielectric layer 130 is located on the substrate 100 of the first core region B, and the thickness of the third gate dielectric layer 130 is smaller than that of the second gate dielectric layer 120 .

所述氮离子位于所述基底100上方的第一栅介质层110中,所述氮离子未接触到所述基底100表面,从而能够在保证所述第一栅介质层110的电学厚度满足电性需求的同时,改善所述第一栅介质层110和基底100界面处的界面缺陷,提升了半导体结构的电学性能。The nitrogen ions are located in the first gate dielectric layer 110 above the substrate 100, and the nitrogen ions do not contact the surface of the substrate 100, so as to ensure that the electrical thickness of the first gate dielectric layer 110 satisfies the electrical properties While meeting the requirements, the interface defects at the interface between the first gate dielectric layer 110 and the substrate 100 are improved, and the electrical performance of the semiconductor structure is improved.

本实施例中,所述基底100用于形成平面型场效应晶体管,所述基底100相应仅包括衬底(图未示)。在其他实施例中,当所述基底用于形成鳍式场效应晶体管时,所述基底相应包括衬底以及凸出于所述衬底的鳍部。In this embodiment, the substrate 100 is used to form a planar field effect transistor, and the substrate 100 only includes a substrate (not shown). In other embodiments, when the substrate is used to form a fin field effect transistor, the substrate correspondingly includes a substrate and a fin protruding from the substrate.

本实施例中,所述衬底为硅衬底。在其他实施例中,所述衬底的材料还可以为锗、锗化硅、碳化硅、砷化镓或镓化铟等其他材料,所述衬底还可以为绝缘体上的硅衬底或者绝缘体上的锗衬底等其他类型的衬底。In this embodiment, the substrate is a silicon substrate. In other embodiments, the material of the substrate may also be other materials such as germanium, silicon germanium, silicon carbide, gallium arsenide or indium gallium, and the substrate may also be a silicon-on-insulator substrate or an insulator other types of substrates such as germanium substrates.

所述周边区A用于形成输入/输出器件。其中,输入/输出器件一般是芯片与外部接口交互时所使用的器件,输入/输出器件的工作电压一般比较高。The peripheral area A is used to form input/output devices. Among them, the input/output device is generally a device used when the chip interacts with the external interface, and the working voltage of the input/output device is generally relatively high.

所述第一核心区B用于形成第一核心器件,所述第二核心区C用于形成第二核心器件,且所述第二核心器件的工作电压大于所述第一核心器件的工作电压。其中,核心器件一般是指芯片内部所使用的器件,核心器件的工作电压一般比较低,且核心器件的工作电压通常远低于输入/输出器件。The first core region B is used to form a first core device, the second core region C is used to form a second core device, and the operating voltage of the second core device is greater than the operating voltage of the first core device . Among them, the core device generally refers to the device used inside the chip, the working voltage of the core device is generally relatively low, and the working voltage of the core device is usually much lower than that of the input/output device.

本实施例中,所述第一栅介质层110用于作为所述输入/输出器件的栅介质层。In this embodiment, the first gate dielectric layer 110 is used as a gate dielectric layer of the input/output device.

本实施例中,通过采用前述栅介质层的形成方法形成所述第一栅介质层110,有利于在使所述第一栅介质层110的电学厚度满足输入/输出器件的工艺要求的同时,改善所述第一栅介质层110和所述基底100界面处的界面缺陷,提升了输入/输出器件的性能。In this embodiment, the first gate dielectric layer 110 is formed by using the foregoing method for forming the gate dielectric layer, which is beneficial to make the electrical thickness of the first gate dielectric layer 110 meet the process requirements of the input/output device, and at the same time, The interface defects at the interface between the first gate dielectric layer 110 and the substrate 100 are improved, and the performance of the input/output device is improved.

本实施例中,所述第一栅介质层110为栅氧化层。所述第一栅介质层110的材料相应为氧化硅。In this embodiment, the first gate dielectric layer 110 is a gate oxide layer. The material of the first gate dielectric layer 110 is correspondingly silicon oxide.

所述第二栅介质层120用于作为第二核心器件的栅介质层。The second gate dielectric layer 120 is used as a gate dielectric layer of the second core device.

在半导体领域中,为保证器件的驱动电流符合工艺需求,以及器件的击穿电压等可靠性、稳定性,器件的工作电压越大,所需的栅介质层厚度通常也越大。所述第二核心器件的工作电压小于所述输入/输出器件的工作电压,因此,所述第二栅介质层120的厚度小于所述第一栅介质层110的厚度。In the semiconductor field, in order to ensure that the driving current of the device meets the process requirements, as well as the reliability and stability of the breakdown voltage of the device, the larger the operating voltage of the device, the larger the required thickness of the gate dielectric layer is usually. The operating voltage of the second core device is lower than the operating voltage of the input/output device, therefore, the thickness of the second gate dielectric layer 120 is smaller than the thickness of the first gate dielectric layer 110 .

本实施例中,所述第二栅介质层120为栅氧化层,所述第二栅介质层120的材料为氧化硅。In this embodiment, the second gate dielectric layer 120 is a gate oxide layer, and the material of the second gate dielectric layer 120 is silicon oxide.

所述第三栅介质层130用于作为第一核心器件的栅介质层。The third gate dielectric layer 130 is used as the gate dielectric layer of the first core device.

所述第一核心器件的工作电压小于所述第二核心器件的工作电压,,保证器件的驱动电流符合工艺需求,以及器件的击穿电压等可靠性、稳定性,所述第三栅介质层130的厚度小于所述第二栅介质层120的厚度。The working voltage of the first core device is lower than the working voltage of the second core device, so as to ensure that the driving current of the device meets the process requirements, and the reliability and stability of the breakdown voltage of the device, and the third gate dielectric layer The thickness of 130 is smaller than the thickness of the second gate dielectric layer 120 .

本实施例中,所述第三栅介质层130为栅氧化层,所述第三栅介质层130的材料为氧化硅。In this embodiment, the third gate dielectric layer 130 is a gate oxide layer, and the material of the third gate dielectric layer 130 is silicon oxide.

所述半导体结构可以采用前述实施例所述的形成方法所形成,也可以采用其他形成方法所形成。对本实施例所述半导体结构的具体描述,可参考前述实施例中的相应描述,本实施例在此不再赘述。The semiconductor structure may be formed by the formation methods described in the foregoing embodiments, or may be formed by other formation methods. For the specific description of the semiconductor structure in this embodiment, reference may be made to the corresponding descriptions in the foregoing embodiments, which will not be repeated in this embodiment.

虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。Although the present invention is disclosed above, the present invention is not limited thereto. Any person skilled in the art can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, the protection scope of the present invention should be based on the scope defined by the claims.

Claims (18)

1.一种栅介质层的形成方法,其特征在于,包括:1. A method for forming a gate dielectric layer, comprising: 提供基底;provide a base; 在所述基底上形成栅介质层,所述栅介质层具有目标物理厚度和目标电学厚度;forming a gate dielectric layer on the substrate, the gate dielectric layer having a target physical thickness and a target electrical thickness; 对所述栅介质层进行掺氮处理,并通过调整所述掺氮处理的掺杂剂量,适于使所述栅介质层的电学厚度等于所述目标电学厚度;Nitrogen doping is performed on the gate dielectric layer, and by adjusting the doping dose of the nitrogen doping treatment, the electrical thickness of the gate dielectric layer is adapted to be equal to the target electrical thickness; 其中,所述栅介质层的目标物理厚度满足:在所述掺氮处理后,氮在所述栅介质层中向所述基底表面扩散的纵向距离小于所述目标物理厚度。Wherein, the target physical thickness of the gate dielectric layer satisfies: after the nitrogen doping treatment, the longitudinal distance that nitrogen diffuses in the gate dielectric layer to the surface of the substrate is less than the target physical thickness. 2.如权利要求1所述的栅介质层的形成方法,其特征在于,形成所述栅介质层之前,还包括:获取在目标阈值电压条件下,所述栅介质层的物理厚度与所述掺氮处理的掺杂剂量的函数关系;形成不同厚度的栅介质层,并确定所述不同厚度的栅介质层对应的掺杂剂量;检测各掺杂剂量条件下,氮在对应的所述栅介质层中的扩散程度;2 . The method for forming a gate dielectric layer according to claim 1 , wherein before forming the gate dielectric layer, the method further comprises: obtaining, under the condition of a target threshold voltage, the physical thickness of the gate dielectric layer and the The functional relationship of the doping dose of the nitrogen doping treatment; forming gate dielectric layers with different thicknesses, and determining the corresponding doping doses of the gate dielectric layers with different thicknesses; detecting under the conditions of each doping dose, nitrogen in the corresponding gate dielectric layer the degree of diffusion in the dielectric layer; 对所述栅介质层进行掺氮处理的步骤包括:根据所述函数关系和所述栅介质层的目标物理厚度,确定所述掺氮处理的掺杂剂量。The step of performing nitrogen doping treatment on the gate dielectric layer includes: determining a dopant amount of the nitrogen doping treatment according to the functional relationship and a target physical thickness of the gate dielectric layer. 3.如权利要求1所述的栅介质层的形成方法,其特征在于,采用去耦合等离子体氮化工艺进行所述掺氮处理。3 . The method for forming a gate dielectric layer according to claim 1 , wherein the nitrogen doping treatment is performed by a decoupling plasma nitridation process. 4 . 4.如权利要求1所述的栅介质层的形成方法,其特征在于,形成所述栅介质层的步骤中,所述栅介质层为栅氧化层。4. The method for forming a gate dielectric layer according to claim 1, wherein in the step of forming the gate dielectric layer, the gate dielectric layer is a gate oxide layer. 5.一种半导体结构的形成方法,其特征在于,包括:5. A method for forming a semiconductor structure, comprising: 采用如权利要求1~4中任一项所述栅介质层的形成方法,在基底上形成栅介质层,所述栅介质层适于作为第一栅介质层,其中,所述基底包括周边区、第一核心区以及第二核心区,所述第二核心区的工作电压大于所述第一核心区的工作电压;Using the method for forming a gate dielectric layer according to any one of claims 1 to 4, a gate dielectric layer is formed on a substrate, and the gate dielectric layer is suitable as the first gate dielectric layer, wherein the substrate includes a peripheral region , a first core region and a second core region, the working voltage of the second core region is greater than the working voltage of the first core region; 去除所述第二核心区上的第一栅介质层;removing the first gate dielectric layer on the second core region; 去除所述第二核心区上的第一栅介质层后,在所述第二核心区的基底上形成第二栅介质层,所述第二栅介质层的厚度小于所述第一栅介质层的厚度;After removing the first gate dielectric layer on the second core region, a second gate dielectric layer is formed on the substrate of the second core region, and the thickness of the second gate dielectric layer is smaller than that of the first gate dielectric layer thickness of; 形成所述第二栅介质层后,去除所述第一核心区基底上的第一栅介质层;after forming the second gate dielectric layer, removing the first gate dielectric layer on the substrate of the first core region; 去除所述第一核心区基底上的第一栅介质层后,在所述第一核心区的基底上形成第三栅介质层,所述第三栅介质层的厚度小于所述第二栅介质层的厚度。After removing the first gate dielectric layer on the substrate of the first core region, a third gate dielectric layer is formed on the substrate of the first core region, and the thickness of the third gate dielectric layer is smaller than that of the second gate dielectric layer thickness. 6.如权利要求5所述的半导体结构的形成方法,其特征在于,形成所述第一栅介质层的步骤中,所述第一栅介质层的目标物理厚度大于预设物理厚度。6 . The method for forming a semiconductor structure according to claim 5 , wherein, in the step of forming the first gate dielectric layer, the target physical thickness of the first gate dielectric layer is greater than a preset physical thickness. 7 . 7.如权利要求6所述的半导体结构的形成方法,其特征在于,所述目标物理厚度与所述预设物理厚度的差值至少为20埃米。7 . The method of claim 6 , wherein the difference between the target physical thickness and the preset physical thickness is at least 20 angstroms. 8 . 8.如权利要求6所述的半导体结构的形成方法,其特征在于,所述目标物理厚度与所述预设物理厚度的差值为20埃米至40埃米。8 . The method of claim 6 , wherein the difference between the target physical thickness and the preset physical thickness is 20 angstroms to 40 angstroms. 9 . 9.如权利要求5所述的半导体结构的形成方法,其特征在于,对所述第一栅介质层进行掺氮处理的步骤中,所述掺氮处理的掺杂剂量高于预设掺杂剂量。9 . The method for forming a semiconductor structure according to claim 5 , wherein in the step of performing nitrogen doping treatment on the first gate dielectric layer, the doping dose of the nitrogen doping treatment is higher than a preset doping amount. 10 . dose. 10.如权利要求9所述的半导体结构的形成方法,其特征在于,所述掺杂剂量与所述预设掺杂剂量的差值至少为1E15原子每平方厘米。10 . The method of claim 9 , wherein the difference between the dopant dose and the preset dopant dose is at least 1E15 atoms per square centimeter. 11 . 11.如权利要求9所述的半导体结构的形成方法,其特征在于,所述掺杂剂量与所述预设掺杂剂量的差值为1E15原子每平方厘米至5E15原子每平方厘米。11 . The method for forming a semiconductor structure according to claim 9 , wherein the difference between the doping dose and the preset doping dose is 1E15 atoms per square centimeter to 5E15 atoms per square centimeter. 12 . 12.如权利要求5所述的半导体结构的形成方法,其特征在于,采用湿法刻蚀工艺去除所述第一核心区基底上的第一栅介质层。12 . The method for forming a semiconductor structure according to claim 5 , wherein a wet etching process is used to remove the first gate dielectric layer on the substrate of the first core region. 13 . 13.如权利要求5所述的半导体结构的形成方法,其特征在于,采用湿法刻蚀工艺去除所述第二核心区基底上的第一栅介质层。13 . The method for forming a semiconductor structure according to claim 5 , wherein the first gate dielectric layer on the second core region substrate is removed by a wet etching process. 14 . 14.如权利要求5所述的半导体结构的形成方法,其特征在于,采用热氧化生长工艺形成所述第二栅介质层。14. The method for forming a semiconductor structure according to claim 5, wherein the second gate dielectric layer is formed by a thermal oxidation growth process. 15.如权利要求5所述的半导体结构的形成方法,其特征在于,采用热氧化生长工艺形成所述第三栅介质层。15 . The method for forming a semiconductor structure according to claim 5 , wherein the third gate dielectric layer is formed by a thermal oxidation growth process. 16 . 16.如权利要求5所述的半导体结构的形成方法,其特征在于,进行所述掺氮处理后,去除所述第二核心区上的第一栅介质层之前,还包括:进行退火处理。16 . The method for forming a semiconductor structure according to claim 5 , wherein after the nitrogen doping treatment is performed and before removing the first gate dielectric layer on the second core region, the method further comprises: performing an annealing treatment. 17 . 17.如权利要求16所述的半导体结构的形成方法,其特征在于,所述退火处理的工艺温度为1000℃至1150℃。17 . The method for forming a semiconductor structure according to claim 16 , wherein the process temperature of the annealing treatment ranges from 1000° C. to 1150° C. 18 . 18.一种采用如权利要求5~17中任一项所述形成方法形成的半导体结构,其特征在于,包括:18. A semiconductor structure formed by the forming method according to any one of claims 5 to 17, characterized in that, comprising: 基底,所述基底包括周边区、第一核心区以及第二核心区,所述第二核心区的工作电压大于所述第一核心区的工作电压;a substrate, the substrate includes a peripheral region, a first core region and a second core region, the working voltage of the second core region is greater than that of the first core region; 第一栅介质层,位于所述周边区的基底上,所述第一栅介质层内掺杂有氮离子,且所述氮离子位于所述基底上方的第一栅介质层中;a first gate dielectric layer, located on the substrate of the peripheral region, the first gate dielectric layer is doped with nitrogen ions, and the nitrogen ions are located in the first gate dielectric layer above the substrate; 第二栅介质层,位于所述第二核心区的基底上,所述第二栅介质层的厚度小于所述第一栅介质层的厚度;a second gate dielectric layer, located on the substrate of the second core region, the thickness of the second gate dielectric layer is smaller than the thickness of the first gate dielectric layer; 第三栅介质层,位于所述第一核心区的基底上,所述第三栅介质层的厚度小于所述第二栅介质层的厚度。A third gate dielectric layer is located on the substrate of the first core region, and the thickness of the third gate dielectric layer is smaller than that of the second gate dielectric layer.
CN201910261759.8A 2019-04-02 2019-04-02 Method for forming gate dielectric layer, semiconductor structure and method for forming same Active CN111769043B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910261759.8A CN111769043B (en) 2019-04-02 2019-04-02 Method for forming gate dielectric layer, semiconductor structure and method for forming same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910261759.8A CN111769043B (en) 2019-04-02 2019-04-02 Method for forming gate dielectric layer, semiconductor structure and method for forming same

Publications (2)

Publication Number Publication Date
CN111769043A true CN111769043A (en) 2020-10-13
CN111769043B CN111769043B (en) 2023-02-17

Family

ID=72718739

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910261759.8A Active CN111769043B (en) 2019-04-02 2019-04-02 Method for forming gate dielectric layer, semiconductor structure and method for forming same

Country Status (1)

Country Link
CN (1) CN111769043B (en)

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020130377A1 (en) * 2001-03-15 2002-09-19 International Business Machines Corporation Method for improved plasma nitridation of ultra thin gate dielectrics
US6486064B1 (en) * 2000-09-26 2002-11-26 Lsi Logic Corporation Shallow junction formation
CN101211768A (en) * 2006-12-25 2008-07-02 中芯国际集成电路制造(上海)有限公司 Grid electrode and method for forming same
CN101752235A (en) * 2008-12-08 2010-06-23 中芯国际集成电路制造(上海)有限公司 Method for forming and processing high-K gate dielectric layer and method for forming transistor
CN102064133A (en) * 2009-11-11 2011-05-18 中国科学院微电子研究所 A method of manufacturing a semiconductor device
CN103545355A (en) * 2012-07-12 2014-01-29 中芯国际集成电路制造(上海)有限公司 Semiconductor device and manufacturing method thereof
CN103617949A (en) * 2013-09-13 2014-03-05 复旦大学 Method of using nitrogen trifluoride to inhibit interface layer growth between high dielectric constant gate medium layer and silicon substrate
CN103855035A (en) * 2014-03-27 2014-06-11 上海华力微电子有限公司 Equipment for preparing gate dielectric layer
CN103887161A (en) * 2014-03-20 2014-06-25 上海华力微电子有限公司 Method for restraining doping atoms from diffusing in gate dielectric
CN103887162A (en) * 2014-03-27 2014-06-25 上海华力微电子有限公司 Method for preparing highly-dielectric SiON gate medium
CN103903986A (en) * 2014-03-24 2014-07-02 上海华力微电子有限公司 Manufacturing method of gate dielectric layer
CN104201098A (en) * 2014-09-23 2014-12-10 上海华力微电子有限公司 Gate dielectric oxide layer preparation method
CN105097527A (en) * 2014-05-04 2015-11-25 中国科学院微电子研究所 FinFET manufacturing method
CN105448709A (en) * 2014-07-08 2016-03-30 中芯国际集成电路制造(上海)有限公司 Semiconductor structure formation method and transistor and formation method thereof
CN106158656A (en) * 2015-04-20 2016-11-23 中芯国际集成电路制造(上海)有限公司 The forming method of semiconductor structure
CN108695254A (en) * 2017-04-10 2018-10-23 中芯国际集成电路制造(上海)有限公司 Semiconductor structure and forming method thereof

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6486064B1 (en) * 2000-09-26 2002-11-26 Lsi Logic Corporation Shallow junction formation
US20020130377A1 (en) * 2001-03-15 2002-09-19 International Business Machines Corporation Method for improved plasma nitridation of ultra thin gate dielectrics
CN101211768A (en) * 2006-12-25 2008-07-02 中芯国际集成电路制造(上海)有限公司 Grid electrode and method for forming same
CN101752235A (en) * 2008-12-08 2010-06-23 中芯国际集成电路制造(上海)有限公司 Method for forming and processing high-K gate dielectric layer and method for forming transistor
CN102064133A (en) * 2009-11-11 2011-05-18 中国科学院微电子研究所 A method of manufacturing a semiconductor device
CN103545355A (en) * 2012-07-12 2014-01-29 中芯国际集成电路制造(上海)有限公司 Semiconductor device and manufacturing method thereof
CN103617949A (en) * 2013-09-13 2014-03-05 复旦大学 Method of using nitrogen trifluoride to inhibit interface layer growth between high dielectric constant gate medium layer and silicon substrate
CN103887161A (en) * 2014-03-20 2014-06-25 上海华力微电子有限公司 Method for restraining doping atoms from diffusing in gate dielectric
CN103903986A (en) * 2014-03-24 2014-07-02 上海华力微电子有限公司 Manufacturing method of gate dielectric layer
CN103855035A (en) * 2014-03-27 2014-06-11 上海华力微电子有限公司 Equipment for preparing gate dielectric layer
CN103887162A (en) * 2014-03-27 2014-06-25 上海华力微电子有限公司 Method for preparing highly-dielectric SiON gate medium
CN105097527A (en) * 2014-05-04 2015-11-25 中国科学院微电子研究所 FinFET manufacturing method
CN105448709A (en) * 2014-07-08 2016-03-30 中芯国际集成电路制造(上海)有限公司 Semiconductor structure formation method and transistor and formation method thereof
CN104201098A (en) * 2014-09-23 2014-12-10 上海华力微电子有限公司 Gate dielectric oxide layer preparation method
CN106158656A (en) * 2015-04-20 2016-11-23 中芯国际集成电路制造(上海)有限公司 The forming method of semiconductor structure
CN108695254A (en) * 2017-04-10 2018-10-23 中芯国际集成电路制造(上海)有限公司 Semiconductor structure and forming method thereof

Also Published As

Publication number Publication date
CN111769043B (en) 2023-02-17

Similar Documents

Publication Publication Date Title
CN104347418B (en) The forming method of MOS transistor
CN107591437B (en) Method for forming semiconductor device
US20070218624A1 (en) Semiconductor device and method of manufacturing the same
WO2012097606A1 (en) Method of manufacturing field effect transistor
CN110164767B (en) Semiconductor device and method of forming the same
CN107591370B (en) Semiconductor device and method of forming the same
CN100481335C (en) Method for manufacturing semiconductor element
CN102856377B (en) n-type semiconductor device and method for manufacturing the same
CN107293489A (en) Improve the method for fin field effect pipe performance
CN106847874A (en) The forming method of the semiconductor devices with different threshold voltages
CN109087887B (en) Semiconductor structure and method of forming the same
CN106971977B (en) Semiconductor device and method of manufacturing the same
CN111769043B (en) Method for forming gate dielectric layer, semiconductor structure and method for forming same
CN108122760B (en) Semiconductor structure and forming method thereof
CN107481932B (en) Method for manufacturing semiconductor structure
CN110391285A (en) Semiconductor structure and method of forming the same
CN105990234B (en) The forming method of semiconductor devices
CN104347507B (en) The forming method of semiconductor devices
CN107919325A (en) The manufacture method of fin formula field effect transistor
CN108258028B (en) Semiconductor structure and method of forming the same
CN116504718A (en) Manufacturing method of semiconductor structure
CN106847695A (en) The forming method of fin field effect pipe
CN100442445C (en) Method for manufacturing grid and etching conductive layer
US20120322172A1 (en) Method for monitoring the removal of polysilicon pseudo gates
US7393787B2 (en) Formation of nitrogen containing dielectric layers having a uniform nitrogen distribution therein using a high temperature chemical treatment

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant