EP0539365B1 - Structures et procedes de fabrication de cathodes a emission de champ - Google Patents
Structures et procedes de fabrication de cathodes a emission de champ Download PDFInfo
- Publication number
- EP0539365B1 EP0539365B1 EP90916570A EP90916570A EP0539365B1 EP 0539365 B1 EP0539365 B1 EP 0539365B1 EP 90916570 A EP90916570 A EP 90916570A EP 90916570 A EP90916570 A EP 90916570A EP 0539365 B1 EP0539365 B1 EP 0539365B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- field emission
- emission cathode
- cathode structure
- layer
- tip
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims abstract description 100
- 230000008569 process Effects 0.000 title claims abstract description 75
- 239000000463 material Substances 0.000 claims abstract description 171
- 239000000758 substrate Substances 0.000 claims abstract description 55
- 238000000151 deposition Methods 0.000 claims abstract description 50
- 238000005530 etching Methods 0.000 claims description 37
- 239000004020 conductor Substances 0.000 claims description 28
- 230000008021 deposition Effects 0.000 claims description 22
- 230000005684 electric field Effects 0.000 claims description 20
- 238000011049 filling Methods 0.000 claims description 20
- 230000004888 barrier function Effects 0.000 claims description 19
- 238000001020 plasma etching Methods 0.000 claims description 11
- 230000003647 oxidation Effects 0.000 claims description 10
- 238000007254 oxidation reaction Methods 0.000 claims description 10
- 239000011248 coating agent Substances 0.000 claims description 6
- 238000000576 coating method Methods 0.000 claims description 6
- 229910052750 molybdenum Inorganic materials 0.000 claims description 6
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- 238000001704 evaporation Methods 0.000 claims description 4
- 230000008020 evaporation Effects 0.000 claims description 4
- 239000004065 semiconductor Substances 0.000 claims description 4
- 238000004090 dissolution Methods 0.000 claims description 3
- 239000011521 glass Substances 0.000 claims description 3
- 229910052735 hafnium Inorganic materials 0.000 claims description 3
- 239000011810 insulating material Substances 0.000 claims description 3
- 229910052749 magnesium Inorganic materials 0.000 claims description 3
- 238000000465 moulding Methods 0.000 claims description 3
- 229910052709 silver Inorganic materials 0.000 claims description 3
- 239000006104 solid solution Substances 0.000 claims description 3
- 238000001039 wet etching Methods 0.000 claims description 3
- 229910052726 zirconium Inorganic materials 0.000 claims description 3
- 229910052684 Cerium Inorganic materials 0.000 claims description 2
- 238000002679 ablation Methods 0.000 claims description 2
- 229910045601 alloy Inorganic materials 0.000 claims description 2
- 239000000956 alloy Substances 0.000 claims description 2
- 229910052804 chromium Inorganic materials 0.000 claims description 2
- 229910052802 copper Inorganic materials 0.000 claims description 2
- 238000005553 drilling Methods 0.000 claims description 2
- 229910052737 gold Inorganic materials 0.000 claims description 2
- 238000010884 ion-beam technique Methods 0.000 claims description 2
- 238000002844 melting Methods 0.000 claims description 2
- 230000008018 melting Effects 0.000 claims description 2
- 229910052759 nickel Inorganic materials 0.000 claims description 2
- 229910052758 niobium Inorganic materials 0.000 claims description 2
- 229910052702 rhenium Inorganic materials 0.000 claims description 2
- 239000010980 sapphire Substances 0.000 claims description 2
- 229910052594 sapphire Inorganic materials 0.000 claims description 2
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 2
- 238000000992 sputter etching Methods 0.000 claims description 2
- 229910052715 tantalum Inorganic materials 0.000 claims description 2
- 229910052719 titanium Inorganic materials 0.000 claims description 2
- 229910052721 tungsten Inorganic materials 0.000 claims description 2
- 238000000605 extraction Methods 0.000 abstract description 34
- 239000010410 layer Substances 0.000 description 152
- 239000012212 insulator Substances 0.000 description 22
- 229910052710 silicon Inorganic materials 0.000 description 18
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 17
- 230000015572 biosynthetic process Effects 0.000 description 17
- 239000010703 silicon Substances 0.000 description 17
- 238000004519 manufacturing process Methods 0.000 description 12
- 230000000873 masking effect Effects 0.000 description 10
- 230000001419 dependent effect Effects 0.000 description 8
- 239000013078 crystal Substances 0.000 description 7
- 238000004377 microelectronic Methods 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 238000005253 cladding Methods 0.000 description 5
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- 229910052581 Si3N4 Inorganic materials 0.000 description 4
- 238000003491 array Methods 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 239000010408 film Substances 0.000 description 4
- 239000011733 molybdenum Substances 0.000 description 4
- 230000005855 radiation Effects 0.000 description 4
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 230000001627 detrimental effect Effects 0.000 description 3
- 150000004767 nitrides Chemical class 0.000 description 3
- 235000012239 silicon dioxide Nutrition 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000010406 cathode material Substances 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- 229910052761 rare earth metal Inorganic materials 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- -1 various nitrides Chemical class 0.000 description 2
- 239000011800 void material Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910025794 LaB6 Inorganic materials 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000002048 anodisation reaction Methods 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 230000009365 direct transmission Effects 0.000 description 1
- 238000007772 electroless plating Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 150000002222 fluorine compounds Chemical class 0.000 description 1
- 239000002241 glass-ceramic Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 239000000615 nonconductor Substances 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 238000002256 photodeposition Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- SBEQWOXEGHQIMW-UHFFFAOYSA-N silicon Chemical compound [Si].[Si] SBEQWOXEGHQIMW-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J9/00—Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
- H01J9/02—Manufacture of electrodes or electrode systems
- H01J9/022—Manufacture of electrodes or electrode systems of cold cathodes
Definitions
- the present invention relates generally to the structures of individual or arrays of field emission cathodes and a process of fabricating the same. These individual or arrays of field emission cathodes can be made both with or without integrated extraction and/or control electrodes. More specifically, the present invention relates to field emission cathode structures and process for making the same.
- Electron sources or cathodes are essential to the functioning of all electron devices.
- cathodes for vacuum devices such as vacuum tubes and cathode ray tubes used thermionic emission to produce the required electrons. This required raising cathode materials to very high temperatures either by direct conduction of current or through the use of auxiliary heaters. The process is very inefficient, requiring relatively large currents and dissipating most of the energy as wasted heat.
- Field emission cathodes consists of very sharp points (typically less then 100 nm radius) of field emission materials. These sharp points when biased with a negative potential concentrate the electric field at the point. This high electric field allows the electrons to "tunnel" through the tip into surrounding space which is normally maintained under high vacuum conditions. The magnitude of the potential required to produce sufficiently strong electric fields is proportional to the distance between the tip and the principal extraction electrode.
- This principal extraction electrode will be referred to as the extraction electrode. While this extraction electrode can be a physically separate structure, minimum extraction potentials can most conveniently be obtained by physically integrating the extraction electrode directly with the field emission cathode tips. This produces very small extraction electrode-cathode distances which are physically locked in proper alignment.
- Field emission cathode structures both with and with out integrated extraction electrodes are useful electron sources in a variety of current and potential applications such as displays, Vacuum Microelectronic Devices, and various electron microscopes.
- the field emission display elements that utilize these cathodes use the basic field emission structure and add additional structures, such as, an extension of the vacuum space, a phosphor surface opposite the cathode tip, and additional electrodes to collect and/or control the electron current.
- additional structures such as, an extension of the vacuum space, a phosphor surface opposite the cathode tip, and additional electrodes to collect and/or control the electron current.
- Groups of individual Vacuum Microelectronic Devices and/or display elements are electrically interconnected during fabrication to form integrated circuits and/or displays.
- Non-thermionic field emitters, field emission devices, and field emission displays are all known in the art.
- the fabrication of the field emission cathode structure is a critical element common to the devices mentioned.
- the material (insulators and conductors/field emitters) are all deposited and processed by relatively common deposition and lithographic processing techniques with the single exception of a special sharp edge (blade) or point (tip) structure which is common to all field emission cathodes.
- the art of fabricating the sharp field emission tip or blade can be broadly classified into five categories. Methods of creating the extraction electrode are also noted in the examples within these categories.
- the first category is one of the earliest categories in which the cathode tip structure is formed by the direct deposition of the material.
- An example of this type is exemplified in a paper by C. A. Spindt, "A Thin-Film Field-Emission Cathode", J. Appl. Phys., Vol. 39, No. 7, pages 3504-3505 (1968), in which sharp molybdenum cone-shaped emitters are formed inside holes in a molybdenum anode layer and on a molybdenum cathode layer.
- the two layers are separated by an insulating layer which has been etched away in the areas of the holes in the anode layer down to the cathode layer.
- the cones are formed by simultaneous normal and steep angle depositions of the molybdenum and alumina, respectfully, onto the rotating substrate containing the anode and cathode layers.
- the newly deposited alumina is selectively removed. Similar work has also been disclosed in U. S. Patent No. 3,755,704.
- a second category is the use of orientation-dependent etching of single crystal materials such as silicon.
- the principle of the orientation-dependent etching is to preferentially attack a particular crystallographic face of a material.
- the anisotropically etched areas will be bounded by the slow etching faces which intersect at well defined edges and points of the material's basic crystallographic shape.
- a suitable combination of etch, material, and orientation can result in very sharply defined points that can be used as field emitters.
- 3,665,241 issued to Spindt, et al. is an example of this method in which an etch mask of one or more islands is placed over a single-crystal material which is then etched using an etchant which attacks some of the crystallographic planes of the material faster than the others creating etch profiles bounded by the slow etching planes (an orientation-dependent etch).
- an etchant which attacks some of the crystallographic planes of the material faster than the others creating etch profiles bounded by the slow etching planes (an orientation-dependent etch).
- the slow etching planes converge under the center of the mask, multifaceted geometric forms with sharp edges and points are formed whose shape is determined by the etchant, orientation of the crystal, and shape of the mask.
- a third category uses isotropic etches to form the structure. Isotropic etches etch uniformly in all directions. When masked, the mask edge becomes the center point of an arc which outlines the classic isotropic etch profile under the masking material. The radius of the arc is equal to the etch depth. Etching around an isolated masked island allows the etch profile to converge on the center of the mask leaving a sharp tip of the unetched material which can be used as a field emitter. An example of this is exemplified in U. S. Patent No. 3,998,678, issued to Shigeo Fukase, et al. In this general class, an emitter material is masked using islands of a lithographically formed and etch resistant material.
- the emitter material is etched with an isotropic etchant which forms an isotropic etch profile (circular vertical profile with a radius extending under the resist from the edge).
- an isotropic etchant which forms an isotropic etch profile (circular vertical profile with a radius extending under the resist from the edge).
- a fourth category uses oxidation processes, which form a tip by oxidizing the emitter material. Oxidation profiles under oxidation masks are virtually identical to isotropic etch profiles under masks and form the same tip structure as the profiles converge under a circular mask. When the oxidized material is removed the unoxidized tip can function as a field emitter.
- U. S. Patent No. 3,970,887 issued to Smith et al. exemplifies this process.
- the process of this category is very similar to the isotropic etch category.
- a substrate of electron emission material such as silicon is used.
- a thermally grown oxide layer is grown on the substrate and is then lithographically featured and etched to result in one or more islands of silicon dioxide.
- the substrate is then reoxidized during which the islands of previously formed oxide act to significantly retard the oxidation of the silicon under them.
- the resulting oxidation profile is very similar to the isotropic etch profile and similarly converges under the islands leaving a sharp point profile in the silicon which can be exposed by removing the oxide.
- extraction electrodes are added to the structure after the tip has been formed.
- Other masking material such as silicon nitride can be used to similarly retard the oxidation and produce the desired sharp tip profile.
- a fifth category etches a pit which is the inverse of the desired sharply pointed shape in an expendable material which is used as a mold for the emitter material and then removed by etching.
- U. S. Patent No. 4,307,507 issued to Gray et al exemplifies a limited embodiment of this technique. Holes in a masking material are lithographically formed on a single crystal silicon substrate. The substrate is orientation-dependent etched through the mask holes forming etch pits with the inverse of the desired pointed shape. The mask is removed and a layer of emission material is deposited over the surface filling the pits. The silicon of the mold is then etched away freeing the pointed replicas of the pits whose sharp points can be used as field emitters.
- This patent does not disclose the use of an integrated extraction electrode.
- Orientation-dependent etching requires the use of a substrate of single crystal emitter material. Most all of them require the substrate to be made of or coated with the emitter material. Most all of them form the emitter first which complicates the fabrication of the subsequent electrode layers.
- a typical field emission cathode structure is made up of a sharply pointed tip or blade.
- the cathode tip or blade could also be surrounded by a control and/or extraction electrode.
- One of the key technologies in fabricating these devices is the formation of the sharp field emission (cathode) tip which has preferably a radius on the order of 10 - 100 nm.
- the most common methods of formation include orientation-dependent etching, isotropic etching, and thermal oxidation.
- Still another aspect of this invention comprises of a field emission cathode structure comprising a layer of material which is capable of emitting electrons under the influence of an electrical field, and having at least one tip formed by the process of this invention for the emission of electrons.
- the field emission cathode structure of this invention further comprises on the tip side of the electron-emitting layer at least one electrically conductive material which is separated from the layer by at least one insulative material such that the emitter tip is exposed.
- the field emission cathode structure of this invention still further comprises on the tip side of the electron-emitting layer a plurality of electrically conductive material, each of which is separated from each other and the electron-emitting layer by at least one insulative material such that the emitter tip is exposed.
- the field emission cathode structure of this invention could further comprise on the tip side of the electron-emitting layer at least one barrier layer, which is selectively removed to expose the tip.
- a product can also be made by any of the process of this invention.
- Another object of this invention is to eliminate the dependence on single crystal materials while maintaining a high degree of flexibility in the choice of field emission materials.
- Another object is to fabricate an integrated extraction electrode which is both self-aligned and formed as part of the tip formation process rather than added as a subsequent operation thus greatly simplifying the total fabrication process.
- Yet another objective is to provide a means of isolating and interconnecting multiple field emitters, extraction electrodes, and other electrodes in useful electrical configurations.
- the objects of the present invention are achieved hy using the cusp that is formed when a hole in an substrate is filled using a conformal layer deposition or formation technique.
- the cusp serves as a mold that can be filled with any material that is capable of emitting electrons under the influence of an electric field (emitter layer). Once the mold is removed either by some common release mechanism or by selectively etching both the substrate and the cusp forming layer, a sharp tip which is the replica of the cusp is freed.
- This tip is expected to have a small enough radius as formed to act as a field emission cathode. If for any reason a sharper tip is desired, tips may be sharpened using procedures already known in the art, such as slow isotropic tip etching, or the oxidation and subsequent removal of the oxide.
- the process is not limited to any particular material. Many materials and material combinations can be used for substrate, conformal layer, and emitter material.
- An extraction electrode can be added to the basic structure by first depositing a conductive electrode layer on the base substrate.
- the hole that is to be later used to form the cusp is etched through the conductive electrode layer and to or into the substrate.
- the conformal cusp forming layer is deposited or formed followed by the deposition of the emitter layer.
- the substrate is released or etched away selectively with an etchant that does not attack the conductive electrode.
- the conformal layer is then removed selectively by an etchant that does not attack either the conductive electrode (extraction electrode) or the emitter material, until the tip is freed to the desired degree.
- the process further allows the addition of more electrodes which can be used for extraction, control, or the selection of particular emitter structures within an array of such structures. These additional electrodes are added starting with the electrode covered substrate. An layer of an insulator is deposited followed by the deposition of an additional electrode layer. Each repetitive deposition of this new pair of layers will create an additional electrode. The hole that will be later used to form the cusp is now etched through all of the electrode and insulator layers down to or into the base layer itself. The process then proceeds just as it would be performed for the single extraction electrode structure.
- Multi-electrode structures open the possibility of nonproductive undercut etching of the insulators between electrodes. This occurs if isotropic etches which attack both the conformal cusp forming material and the electrode insulators is used. This can be minimized or eliminated by using an anisotropic etch which does not significantly attack the material of the first electrode, which is nearest the substrate, or the emitter layer.
- Release or barrier layers can be used at various steps in the process to provide for easy release of molds or substrates from the complete or partially complete structure, or as etch stops, or as protective layers to aid in controlling the process.
- the silicon-silicon interface would not allow the selective removal of the cusp to free the tip.
- This impediment can be eliminated by the addition of a very thin film of silicon nitride onto the cusp layer, followed by the silicon deposition to fill the cusp.
- This additional layer will now allow the cusp silicon etch to be stopped by the silicon nitride.
- the nitride can subsequently be removed with an etchant such as boiling phosphoric acid that does not attack the remaining silicon thus freeing the tip.
- the electrode layers including the emitter layer are typically good conductors and as such they can be lithographically patterned before the next layer is added to form isolations and interconnections between emitter structures.
- the associated insulators can be lithographically featured to provide via openings for vertical interconnections.
- One use of such patterning is the formation of X and Y addressing lines which can be used to selectively activate individual or groups of emitters for display applications.
- Figure 1A is a cross-sectional view of a single layered substrate having at least one hole for the subsequent formation of the emitter tip.
- Figure 1B is a cross-sectional view showing the deposition of a cusp forming layer and an emitter layer over the substrate.
- Figure 1C shows a cross-sectional view of a free standing emitter layer after the emitter tip has been freed.
- Figure 1D shows a cross-sectional view of a free standing emitter layer after the emitter tip has been cladded and the emitter layer has been provided with a support layer.
- Figure 2A is a cross-sectional view of another embodiment of the invention showing a substrate comprising of one expendable layer under an electrode layer and having at least one hole.
- Figure 2B is a cross-sectional view showing the structure of Figure 2A, covered with a cusp forming layer and the emitter material layer.
- Figure 2C is a cross-sectional view showing the structure of Figure 2B, after the expendable layer has been removed.
- Figure 2D is a cross-sectional view of the emitter tip being exposed after the partial removal of the cusp forming layer within an integrated extraction electrode.
- Figure 3A shows a cross-sectional view of still another embodiment of the invention showing a substrate comprising two electrode layers separated by an insulator layer over a base layer, and having at least one hole.
- Figure 3B is a cross-sectional view showing the structure of Figure 3A, after the emitter tip has been exposed.
- Figure 4A is a cross-sectional view showing yet another embodiment of this invention where the emitter layer has a barrier layer along with multiple electrodes separated by insulating material.
- Figure 4B shows a cross-sectional view of the structure of Figure 4A, where the barrier material at and around the emitter tip has been exposed.
- Figure 4C shows a cross-sectional view of the structure of Figure 4B, where the barrier material at and around the emitter tip has been removed and the emitter tip has been exposed.
- Figure 5A is a cross-sectional view showing a cusp that results from conformally filling a hole whose dimensions do not change with depth.
- Figure 5B shows a cross-sectional view of another method of making a cusp from an opening having a different profile so that the location of the cusp could be adjusted.
- Figure 5C shows a cross-sectional view of still another method of making a cusp from an opening having still a different profile.
- Figure 6 shows a cross-sectional view of a cusp made by a marginally conformal process in a hole whose dimensions are constant with depth.
- Figures 7A, 7B and 7C illustrate a cross-sectional view of a field emission cathode that had a blunt tip that was sharpened.
- Figure 8 illustrates a perspective and a partial cut-away view of a field emission cathode that has been interconnected.
- This invention describes a novel new technique and structure for the integrated fabrication of both field emission cathodes, and field emission cathodes with integral single or multiple extraction and/or control electrodes. Both of these structures may be made as individuals or groups.
- the field emission cathode of this invention may be used as an electron source in a Vacuum Microelectronic Device.
- VMD or Vacuum Microelectronic Device as used herein, means not only a diode but a triode, tetrode, pentode or any other device that is made using this process, including the interconnection thereof.
- a VMD is any device with at least a sharp emitter (cathode) tip, and a collector (anode) with an insulator separating the emitter from the anode and there is preferably a straight-line or direct transmission of electrons from the emitter to the collector (anode).
- lithographically defined refers to a process sequence of the following process steps.
- a masking layer that is sensitive in a positive or negative sense to some form of actinic radiation, for example, light, e-beams, and/or X-rays, is deposited on the surface of interest.
- this layer is exposed patternwise to the appropriate actinic radiation and developed to selectively remove the masking layer and expose the underlying surface in the patterns required.
- Third the exposed surface is etched to remove all or part of the underlying material as required. Fourth, the remaining areas of the masking layer are removed.
- the term "lithographically defined” can refer to following "liftoff process.”
- the same required patterns in a material layer as produced in the previously described process are created. This process starts on the surface that is to receive the desired patterned material layer.
- a masking layer that is sensitive in a positive or negative sense to some actinic radiation, for example, light, e-beams, and/or X-rays, is deposited on the surface.
- this layer is exposed patternwise to the appropriate actinic radiation and developed to selectively remove the masking layer and expose the underlying surface in patterns where the desired material layer is to remain.
- the deposition, exposure, and development process is controlled in such a way that the edges of the remaining mask imaqe has a negative or undercut profile.
- the desired material is deposited over both the open and mask covered areas by a line of sight deposition process such as evaporation.
- the mask material is removed, for example, by dissolution and freeing any material over it and allowing it to be washed away.
- conductive material or “conductor layer” or “conductive substrate” refers to any of a wide variety of materials which are electrical conductors. Typical examples include the elements Mo, W, Ta, Re, Pt, Au, Ag, Al, Cu, Nb, Ni, Cr, Ti, Zr, and Hf, alloys or solid solutions containing two or more of these elements, doped and undoped semiconductors such as Si, Ge, or those commonly known as III-V compounds, and non-semiconducting compounds such as various nitrides, borides, cubides (for example LaB 6 ), and some oxides (of for example Sn, Ag, InSn).
- insulative material or "insulator layer” or “insulative substrate” refers to a wide variety of materials that are electrical insulators especially glasses, and ceramics. Typical examples include elements such as carbon in a diamond form (crystalline or amorphous), single crystal compounds such as sapphire, glasses and polycrystalline or amorphous compounds such as some oxides of Si, Al, Mg, and Ce, some fluorides of Ca, and Mg, some carbides and nitrides of silicon, and ceramics such as alumina or glass ceramic.
- electron-emitting material or “emitter layer” or “emitter material” refers to any material capable of emitting electrons under the influence of an electric field. Typical examples include any of the electrical conductors, such as in the examples listed above, and borides of the rare earth elements, solid solutions consisting of 1) a boride of a rare earth or an alkaline earth (such as Ca, Sr, or Ba), and 2) a boride of a transition metal (such as Hf or Zr).
- the emitter material can be a single layered, a composite or a multilayered structure.
- a multilayered emitter might include the addition of one or more of the following; a work function enhancement layer, a robust emitter layer, a high performance electrically conductive layer, a thermally conductive layer, a physically strengthening layer or a stiffening layer.
- This multilayered composite may contain both emitter and non-emitter materials, which can all act synergistically together to optimize emitter performance. An example of this is discussed in Busta, H. H. et al. "Field Emission from Tungsten-Clad Silicon Pyramids", IEEE Transactions on Electron Devices, Vol. 36, No. 11, pages 2679-2685 (November 1989), where they show the use of coating or cladding on these cathode tips or pyramids to enhance or modify the cathode tip properties.
- This coating or cladding can also be used in situations where one cannot form the desired tip structure or it is difficult to form the desired tip structure for the cathode emitter.
- deposited refers to any method of layer formation that is suitable to the material as are generally practiced throughout the semiconductor industry.
- deposition techniques can be used with the previously mentioned materials, such as, sputtering, chemical vapor deposition, electro or electroless plating, oxidation, evaporation, sublimation, plasma deposition, anodization, anodic deposition, molecular beam deposition or photodeposition.
- tip means not only a pointed projection but also a blade.
- Field emitter shapes other than points are sometimes used, such as blades.
- Blades are formed using the same methods except that the hole is a narrow elongated segment.
- the shape of the sharp edge of the blade can be linear or circular or a linear segment or a curve segment to name a few.
- the hole to make the field emission cathode structure of this invention is preferably formed by a process selected from a group comprising, ablation, drilling, etching, ion milling or molding.
- the hole can also be etched, using etching techniques selected from a group comprising anisotropic etching, ion beam etching, isotropic etching, reactive ion etching, plasma etching or wet etching.
- the hole profile or dimensions could be constant with depth or vary with depth.
- the material underneath the tip in t e cusp forming layer or material is removed preferably by a process selected from the group comprising, dissolution, etching, evaporation, melting or subliming.
- a process selected from the group comprising, dissolution, etching, evaporation, melting or subliming As discussed elsewhere the entire substrate underneath the layer of electron-emitting material could also be completely removed. In some situations the entire material underneath the electron-emitting material can be completely removed.
- a barrier layer or material could also be formed prior to the deposition of the electron-emitting material.
- the barrier layer subsequently can be selectively removed.
- the field emission cathode structure of this invention can be used as an electron source. As discussed elsewhere at least one tip of this cathode structure could be electrically isolated from another tip, or at least one tip could be electrically connected to another electronic component. Of course the field emission cathode structure of this invention could be used in or be a part of an electronic display device.
- Figures 1A through 1C demonstrate the fabrication of the simplest field emission structure 35, having the field emission tip 31, on a field emission layer 30.
- a hole or opening 15 is formed, as for example by lithographical techniques.
- the substrate or base 5, could be a single-layered or a multilayered structure.
- the shape of the hole 15, can be square, round, oval, etc., and the hole 15, can be formed by any method known to a person skilled in the art, for example, hole 15, can be etched by reactive ion etching (RIE) which typically results in the profile shown in Figure 1A.
- RIE reactive ion etching
- the depth of the hole 15, should be greater than half of its diameter. Therefore, the base or substrate 5, should be of sufficient thickness to allow for the proper formation of hole 15. The effects of hole profile variations will be discussed later.
- a layer of a second expendable material 20, is conformally deposited on the substrate 5, until the growing thickness on the sidewalls of the hole 15, converge in the center of hole 15, to form a cusp 21.
- An emitter layer 30, is deposited to fill cusp 21, as well as other desired areas as shown in Figure 1B.
- Substrate 5 is now selectively etched away.
- the top of emitter layer 30, or the surface 32, away from the emitter tip 31, may be protected if necessary by mechanical means or by the temporary deposition of a masking or backing layer which is subsequently removed.
- Layer 20 is then selectively removed freeing tip 31, as shown in Figure 1C.
- layer 30 can be pealed off from the layer 20, avoiding the need to etch substrate 5 and layer 20, which will again result in the structure shown in Figure 1C.
- the release agent or the thin release layer that is used between layers 20 and 30, will depend upon the material that is used to make layers 20 and 30.
- the field emission cathode 35 can also be coated or clad with a layer 29, as illustrated in Figure 1D, and would result in a coated or clad field emission cathode 38.
- the layer 29, must be of a material which is capable of emitting electrons under the influence of an electrical field. Therefore, it is obvious that if the "emitter tip" can be coated or clad with an electron-emitting material then the emitter layer 30, could be made from any material that will subsequently allow the cladding or coating of the "emitter tip” with an electron-emitting material 29.
- the emitter tip 37 will result from coating or cladding "emitter tip" 31, with layer 29. As shown in Figure 1D, on the back 32, of emitter layer 30, one could also provide a backing or support layer 26'.
- the basic process can be expanded to create cathode 40, by forming an emitter tip 41, which is self-aligned inside an integral extraction electrode 10.
- electrode layer 10 is deposited on an expendable base layer or substrate 5.
- Hole 15, having a mouth or opening 38, is lithographically featured typically using RIE through electrode layer 10, into the substrate 5, to a depth which is greater than half the diameter of the hole 15, as shown in Figure 2A.
- the substrate 5, should be thick enough to allow for the proper formation of hole 15.
- An insulator layer 25, is conformally deposited on the electrode layer 10, and fills the hole 15, in the base layer or substrate 5, to form the cusp 26.
- Emitter layer 30, is then deposited to fill cusp 26, as shown in Figure 2B.
- the expendable base layer or substrate 5 is selectively etched away leaving behind the structure as shown in Figure 2C.
- Insulator 25 is then selectively etched through the mouth or opening 38, in electrode 10.
- Figure 2D shows the resulting cathode structure 40, having a cathode tip 41, that is self-aligned inside an integral extraction electrode 10.
- the etch profile for an isotropic etch 32 is shown in Figure 2D, while phantom lines 34, depict an etch profile that would result if a selective anisotropic etch was used instead to etch insulator layer 25.
- the structure 45 illustrates a cathode with two extraction/control electrodes. As shown in Figure 3A, the structure can be made starting again by depositing electrode layer 10, on expendable substrate 5, depositing insulator layer 12, on the already deposited electrode layer 10, and then depositing electrode layer 14, on the insulator layer 12. The hole or opening 15, is lithographically formed etching through layers 14, 12 and 10, to or into expendable substrate 5.
- the process then proceeds as before, by conformally depositing insulator 25, to form a cusp (not shown), depositing emitter layer 30, to fill the cusp, removing the expendable substrate 5, by peeling or etching, and then selectively etching insulator 25, from the bottom to expose emitter tip 51, as shown in Figure 3B.
- the degree of exposure can be varied as desired, by altering the etch time.
- Figure 3B shows the etch profiles 32, that results from etching layer 25, that had filled the hole 15, with an isotropic etch. A portion of the insulator layer 12, also gets etched when an isotropie etch is used.
- the evident undercut serves no useful purpose and may actually be detrimental by weakening the structure and occupying more spatial area then needed. This undercut can be eliminated by using an anisotropic etch such as RIE.
- the phantom lines 34 depict the etch profile that would result if an anisotropic etch had instead been used to etch layer 25.
- RIE etches are favored for their anisotropy and all dry processing but they are often not totally selective but rely on significant differences in the etch rates between different materials.
- some desirable RIE processes such as that suggested in the fabrication of structure 45, ( Figure 3B) to remove insulator 25, and expose emitter tip 51, without undercut, may actually attack the emitter material very slowly but enough to undesirably reduce the radius of tip 51.
- One method of correcting such a problem, if it occurs, is to sharpen the tip as been described elsewhere.
- Figures 4A through 4C show how such damage can be avoided and also represent an example how barrier layers can be used.
- the two electrode (plus emitter) field emission cathode of structure 45 is used for illustration. All of the steps up to the formation of the cusp are identical to those of the preceding paragraphs.
- a very thin barrier layer 28, which preserves the cusp profile is deposited to cover layer 25.
- the barrier can be any material that forms a film, that preserves the cusp structure, that is selectively removable without damage to the other cathode substructures, and is stable enough to remain with the finished structure.
- silicon nitride which is selectively soluble in hot phosphoric acid.
- the emitter layer 30, is deposited over the barrier layer 28, to fill the cusp as shown in Figure 4A.
- the substrate 5, is then removed by peeling or etching.
- the insulator layer 25, is then etched using the RIE process to expose barrier 28, without undercutting electrodes 10 or 14, as shown in Figure 4B.
- the barrier layer 28, can now be selectively etched exposing emitter tip 51, and completing the structure 55, as shown in Figure 4C.
- FIG 5A illustrates a typical cusp forming hole profile
- Figures 5B and 5C illustrate some of the alternative cusp forming hole profiles.
- holes 15, 16 and 17 are shown as being in simple solid substrates, but they are not limited in any way to these examples and may be usefully created in the previously discussed multielectrode or multilayered substrate or composites as well.
- Figure 5A shows the vertical sidewall hole 15, which has been used in the previous descriptions of the process. It has the advantage of occupying the smallest spatial area.
- One of its characteristics is that the tip 21, of the cusp initially forms at the level of the substrate surface 62, and if the conformal deposition is continued will move vertically upwards as shown by phantom line 22, to a position above the surface whose height is controlled by the amount of additional deposition. Under some deposition conditions one or more voids 23, may form in the hole 15. Since the material 20, in the hole 15, will be removed later to free the emitter tip (not shown), these voids are not detrimental to the invention.
- the location of the emitter tip 31 may be of little or no consequence, but in applications using additional electrodes, a more optimum placement of the emitter tip is desired.
- Some field models suggest that the optimum placement of the emitter tip is at a height between the heights of the top and bottom of the electrode layer nearest to the emitter layer.
- One method of adjusting this placement is to adjust the profile of the vacuum space hole.
- An example of such a profile is shown in Figure 5B, where the dimensions of the hole profile varies or changes with depth.
- hole 16 has sloped sidewalls so that the conformal film 20, grows perpendicular to the sloped side wall which forces initial convergence at a point equidistant from the sides and bottom which is well below the top surface 62, of the substrate 5.
- Additional deposition as shown by phantom lines 22, moves the cusp upward and the location of the cusp can be selected to nominally place the cusp vertically where desired. This allows a process variations to move the cusp up or down through desired range. With proper choice of the nominal position and the vacuum space hole wall angle, the accumulated process tolerances can be absorbed and the cusp will stay within its optimal placement range.
- Figure 5C shows that complex hole profiles can be used to produce useful cusp structures.
- electrode layer 10 on substrate 5 was lithographically featured with hole 17, first by anisotropically etching into electrode 10, followed by the selective isotropic etching of the substrate 5.
- the deposition of conformal layer 20, produces the cusp 21, and may produce void 23. It should be noted that void 23, does not affect the successful use of this structure for the formation of the emitter tip (not shown) because it will be subsequently removed to expose the emitter tip.
- Figure 6 is an example of how even marginally conformal processes can be used to form useful cusp structures.
- nominally vertical walled hole 15, in substrate 5, is sputter coated with layer 27.
- the cusps produced should have the following attributes. First, it should be open and should thus be easier to fill. Secondly, it should naturally form below the surface of the electrode without requiring special vacuum space hole profiles.
- sputter deposition is only a partially conformal deposition technique, materials like sputtered quartz are good and very stable insulators, and thus will produce useful cusp structures 28'.
- One traditional problem with sputtering is its tendency to leave voids or "mouse holes" 29, at the bottom edge of the hole 15. While these are potentially very harmful to semiconductor personalization processes, for the purposes of this invention, they are not detrimental because layer 27, will later be removed from this area after the emitter tip (not shown) is formed.
- the sharply pointed cusp is the ideal shape for molding the field emitters but incompletely formed molds can also be used.
- Figure 7A shows the shape of the conformal film recess 71, that forms before the sidewalls converge to form the cusp. While this recess 71, is not sharply pointed, it can still be used to mold emitter materials deposited into it.
- the emitter material 30 After the substrate 5, and cusp forming layer or film 20, is removed, as described in previous sections, the emitter material 30, has the approximate shape of a tip 72, which is more like a blunt tip, as shown in Figure 7B. This approximate shape can be sharpened using the sharpening techniques previously mentioned in the "Background of the Invention" section to create the desired sharply pointed emitter 73, as shown in Figure 7C.
- Means of isolating and interconnecting multiple field emitters, extraction electrodes, and other electrodes in useful electrical configurations can also be provided. This can be done because, the electrode layers including the emitter layer are typically good conductors and as such they can be lithographically patterned before the next layer is added to form isolations and interconnections between emitter structures. Similarly the associated insulators can be lithographically featured to provide via openings for vertical interconnections. One use of such patterning is the formation of X and Y addressing lines which can be used to selectively activate individual or groups of emitters for display applications. Groups of individual Vacuum Microelectronic Devices and/or display elements are electrically interconnected during fabrication to form integrated circuits and/or displays.
- FIG 8. An example of an interconnection of the field emission cathodes is shown in Figure 8.
- the emitter layer has been lithographically featured into lines which interconnect individual emitters 84, in the "X” direction and form “X” emitter lines 94.
- the space 88 isolates one "X” emitter line 94, from another "X” emitter line 94.
- the extraction electrode layer is lithographically featured into "Y" electrode line 92, with spaces 87, that isolate one "Y” electrode line 92, from another "Y” electrode line 92.
- open spaces 87 and 88 one could also have insulating material there.
- Insulating or cusp forming layer 85 separates the individual extraction electrode 82 or "Y" electrode line 92, from the individual emitter electrode 84 or the "X" emitter line 94. Also, shown is the secondary cusp 86, that will result from the formation of the emitter tip 81. Of course it would be obvious to one skilled in the art to have one or more electrodes in this structure between the emitter electrode and the anode (not shown). This interconnection arrangement allows a particular emitter to be activated by putting a negative potential on a particular emitter 84, in the "X" emitter line 94, and a positive potential on a particular extraction electrode 82 or "Y” electrode line 92.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Cold Cathode And The Manufacture (AREA)
Abstract
Claims (69)
- Un procédé de fabrication d'au moins une structure (35) de cathode à émission de champ comprenant les étapes consistant à :a) produire au moins un trou (15) dans le substrat (5);b) déposer au moins un premier matériau (20) et remplir au moins une partie dudit trou suffisamment pour former un point de rebroussement (21);c) déposer au moins une couche d'un matériau (30), qui est susceptible d'émettre des électrons sous l'influence d'un champ électrique, et remplir au moins une partie de la pointe (31) dudit point de rebroussement (21), et;d) enlever ledit premier matériau (20) au dessous du point de rebroussement, pour exposer au moins une partie de la pointe (31) dudit matériau émetteur d'électrons, et former ainsi au moins ladite structure (35) de cathodes à émission de champ.
- Le procédé de fabrication d'une structure (35) de cathodes à émission de champ selon la revendication 1, dans lequel ledit substrat est une structure à une simple couche.
- Le procédé de fabrication d'une structure de cathode à émission de champ selon la revendication 1, dans lequel ledit substrat est une structure multicouche.
- Le procédé de fabrication d'une structure de cathode à émission de champ selon la revendication 3, dans lequel la structure multicouche est composée de couches alternées de matériaux isolant et conducteur de l'électricité.
- Le procédé de fabrication d'une structure de cathode à émission de champ selon la revendication 1, dans lequel ledit trou est formé par un processus sélectionné dans un groupe comprenant l'ablation, le percement, l'attaque chimique, le broyage ionique, l'arrachement ou le moulage.
- Le procédé de fabrication d'une structure de cathode à émission de champ selon la revendication 1, dans lequel ledit trou est mordu chimiquement, en utilisant des techniques d'attaque sélectionné dans un groupe comprenant l'attaque anisotrope, l'attaque par faisceau d'ions, l'attaque isotrope, l'attaque par ions réactifs, l'attaque au plasma, l'attaque par voie humide.
- Le procédé de fabrication d'une structure de cathode à émission de champ selon la revendication 1, dans lequel ledit premier matériau est déposé en conformité.
- Le procédé de fabrication d'une structure de cathode à émission de champ selon la revendication 1, dans lequel ledit premier matériau est un matériau isolant.
- Le procédé de fabrication d'une structure de cathode à émission de champ selon la revendication 1, dans lequel ledit premier matériau est un matériau semi-conducteur.
- Le procédé de fabrication d'une structure de cathode à émission de champ selon la revendication 1, dans lequel ledit premier matériau est un matériau conducteur de l'électricité.
- Le procédé de fabrication d'une structure de cathode à émission de champ selon la revendication 1, dans lequel ledit premier matériau est composé de multicouches
- Le procédé de fabrication d'une structure de cathode à émission de champ selon la revendication 1, dans lequel ledit premier matériau est composé d'une couche de relâchement.
- Le procédé de fabrication d'une structure de cathode à émission de champ selon la revendication 1, dans lequel le matériau émetteur d'électrons est un matériau à une simple couche.
- Le procédé de fabrication d'une structure de cathode à émission de champ selon la revendication 1, dans lequel le matériau émetteur d'électrons est multicouche.
- Le procédé de fabrication d'une structure de cathode à émission de champ selon la revendication 1, dans lequel ledit premier matériau se trouvant sous le point de rebroussement est enlevé par un processus sélectionné dans un groupe comprenant la dissolution, la morsure chimique, l'évaporation, la fusion ou la sublimation.
- Le procédé de fabrication d'une structure de cathode à émission de champ selon la revendication 1, dans lequel tout le substrat présent sous la couche du matériau émetteur d'électrons est complètement enlevé.
- Le procédé de fabrication d'une structure de cathode à émission de champ selon la revendication 16, dans lequel tout ledit premier matériau présent sous la couche du matériau émetteur d'électrons est complètement enlevé.
- Le procédé de fabrication d'une structure de cathode à émission de champ selon la revendication 1, dans lequel ledit trou a un profil dans lequel les dimensions du trou sont constantes quelle que soit la profondeur.
- Le procédé de fabrication d'une structure de cathode à émission de champ selon la revendication 1, dans lequel ledit trou a un profil dans lequel les dimensions du trou varient avec la profondeur.
- Le procédé de fabrication d'une structure de cathode à émission de champ selon la revendication 1, dans lequel une couche d'arrêt est formée avant la déposition dudit matériau émetteur d'électrons.
- Le procédé de fabrication d'une structure de cathode à émission de champ selon la revendication 20, dans lequel ladite couche d'arrêt est enlevée sélectivement.
- Le procédé de fabrication d'une structure de cathode à émission de champ selon la revendication 1, dans lequel la pointe est recouverte d'un matériau émetteur d'électrons.
- Le procédé de fabrication d'une structure de cathode à émission de champ selon la revendication 1, dans lequel la pointe est sélectivement avivée par un processus sélectionné dans un groupé comprenant une attaque isotropique ou une oxydation, lente.
- Le procédé de fabrication d'une structure de cathode à émission de champ selon la revendication 1, dans lequel une couche support est formée à l'arrière de ladite structure.
- Le procédé de fabrication d'une structure de cathode à émission de champ selon la revendication 1, dans lequel une couche de relâchement est formée avant la déposition dudit matériau émetteur d'électrons.
- Un procédé de fabrication d'au moins une structure de cathode à émission de champ comprenant les étapes consistant à :a) former au moins une couche d'un matériau conducteur de l'électricité au dessus d'une couche de base,b) forer au moins un trou au moins au travers d'au moins une dite couche conductrice de l'électricité,c) déposer au moins un matériau isolant au dessus de ladite au moins une couche du matériau conducteur de l'électricité, et remplir au moins une partie dudit trou suffisamment pour former un point de rebroussement,d) déposer au moins une couche d'un matériau, qui est susceptible d'émettre des électrons sous l'influence d'un champ électrique, au dessus dudit matériau isolant venant de l'étape (c), et remplissage d'au moins une partie de la pointe dudit point de rebroussement, ete) enlever le matériau se trouvant au dessous du point de rebroussement pour exposer au moins une partie du matériau émetteur d'électrons et former de cette manière au moins une structure de cathode à émission de champ.
- Un procédé de fabrication d'au moins une structure de cathodes à émission de champ comprenant les étapes consistant à :a) former une pluralité de couches de matériau conducteur de l'électricité au dessus d'une couche de base, de manière que chaque dite couche de matériau conducteur de l'électricité soit séparée par un matériau isolant,b) former au moins un trou moins au travers desdites couches conductrices de l'électricité,c) déposer au moins un matériau isolant au dessus desdites couches de matériau conducteur de l'électricité, et remplir au moins une partie dudit trou suffisamment pour former un point de rebroussement,d) déposer au moins une couche de matériau, qui soit susceptible d'émettre des électrons sous l'influence d'un champ électrique, au dessus dudit matériau isolant de l'étape (c), et remplir au moins une partie de la pointe du point de rebroussement, et
- Une structure de cathode à émission de champ caractérisé par au moins une couche de matériau (30), qui est susceptible d'émettre des électrons sous l'influence d'un champ électrique, et ayant au moins une pointe (31) pour l'émission des électrons formés par le processus comprenant les étapes consistant à :(a) réaliser au moins un trou (15) dans un substrat (5),(b) déposer au moins un premier matériau (20), et remplir au moins une partie dudit trou suffisamment pour former un point de rebroussement (21),(c) déposer ladite au moins une couche (30) d'un matériau qui est susceptible d'émettre des électrons sous l'influence d'un champ électrique, et remplir au moins une partie dudit point de rebroussement pour former ladite au moins une pointe (31) pour l'émission desdits électrons, et(d) enlever ledit premier matériau (20) pour exposer au moins une partie de ladite pointe (31) dudit matériau émetteur d'électrons (30), et de cette manière former ladite au moins une structure de cathode à émission de champ.
- La structure de cathode à émission de champ selon la revendication 28, caractérisée en ce que cettedite couche émettrice d'électrons est une structure à multicouches (29, 30).
- La structure de cathode à émission de champ selon la revendication 28, caractérisée en ce qu'au moins une pointe (37) de ladite couche émettrice d'électrons est une structure à multicouches (29, 31).
- La structure de cathode à émission de champ selon la revendication 28, caractérisée en ce que cettedite couche émettrice d'électrons est composée en outre d'une couche support (26).
- La structure de cathode à émission de champ selon la revendication 28, caractérisée en ce que, du côté de la pointe (51) de la couche émettrice d'électrons (30), est prévu au moins un matériau conducteur de l'électricité (14), qui est séparé de ladite couche émettrice d'électrons par au moins un matériau isolant (25), de manière qu'au moins une dite pointe émettrice soit exposée.
- La structure de cathode à émission de champ selon la revendication 32, caractérisée en ce que ladite couche émettrice d'électrons est une structure multicouche (28, 30).
- La structure de cathode à émission de champ selon la revendication 32, caractérisée en ce qu'au moins une pointe (41) de ladite couche émettrice d'électrons est une structure multicouche.
- La structure de cathode à émission de champ selon la revendication 32, caractérisée en ce que ladite couche émettrice d'électrons est composée en outre d'une couche support (30).
- La structure de cathode à émission de champ selon la revendication 28, caractérisée en ce que, du côté de la pointe de la couche émettrice d'électrons, est prévue une pluralité de couches (14, 10) de matériau conducteur de l'électricité, chacune d'entre elles étant séparée des autres et de ladite couche émettrice d'électrons, par au moins un matériau isolant (25), de manière qu'au moins une dite pointe émettrice soit exposée.
- La structure de cathode à émission de champ selon la revendication 36, caractérisée en ce que ladite couche émettrice d'électrons est une structure multicouches (28, 30).
- La structure de cathode à émission de champ selon la revendication 36, caractérisée en ce qu'au moins un pointe (41) de ladite couche émettrice d'émettrice d'électrons est une structure multicouche.
- La structure de cathode à émission de champ selon la revendication 36, caractérisée en ce que ladite couche émettrice d'électrons comprend en outre une couche support (26) .
- La structure de cathode à émission de champ selon la revendication 28, caractérisée en ce que, du côté de la pointe de la couche émettrice d'électrons (30), est prévue au moins une couche d'arrêt (28), qui est enlevée sélectivement pour exposer ladite pointe (51).
- La structure de cathode à émission de champ selon la revendication 40, caractérisée en ce que ladite couche émettrice d'électrons est une structure multicouche (28, 30).
- La structure de cathode à émission de champ selon la revendication 41, caractérisée en ce qu'au moins une pointe (41) de ladite couche émettrice d'électrons est une structure multicouche (28, 30).
- La structure de cathode à émission de champ selon la revendication 41, caractérisée en ce que ladite couche émettrice d'électrons comprend en outre une couche support (26) .
- La structure de cathode à émission de champ selon la revendication 28, caractérisée en ce que ladite pointe a un revêtement (29) d'un matériau émetteur d'électrons.
- La structure de cathode à émission de champ selon la revendication 28, dans laquelle la pointe (31) est avivée.
- La structure de cathode à émission de champ selon la revendication 28, caractérisée en ce que ladite pointe (31) est utilisée comme source d'électron.
- La structure de cathode à émission de champ selon la revendication 28, caractérisée en ce qu'au moins une pointe est électriquement isolée d'une autre pointe.
- La structure de cathode à émission de champ selon la revendication 28, caractérisée en ce qu'au moins une pointe (21) est électriquement connectée à un autre composant électronique.
- La structure de cathode à émission de champ selon la revendication 28, caractérisée en ce que ladite pointe est utilisée dans un dispostif d'affichage électronique.
- La structure de cathode à émission de champ selon la revendication 28, caractérisée en ce que ladite pointe a un point (73) ayant un profil en lame (72).
- La structure de cathode à émission de champ selon la revendication 28, caractérisée en ce qu'au moins le premier matériau est un matériau multicouche (25, 28).
- La structure de cathode à émission de champ selon la revendication 28, caractérisée en ce qu'au moins une couche dudit matériau multicouche est d'un matériau d'arrêt (28).
- La structure de cathode à émission de champ selon la revendication 28, dans laquelle ladite structure a au moins deux cathodes (10, 14), et dans laquelle au moins une partie d'une cathode est isolé électriquement (12) d'une partie de la seconde cathode.
- La structure de cathode à émission de champ selon la revendication 28, dans laquelle ladite structure a au moins deux cathodes (28, 30), et dans laquelle au moins une partie d'une cathode est connectée électriquement à une partie de la seconde cathode.
- Une structure de cathode à émission de champ caractérisée par au moins une couche de matériau (30), qui est susceptible d'émettre des électrons sous l'influence d'un champ électrique, ayant au moins une pointe (41) pour l'émission d'électrons crées par le procédé composé des étapes consistant à :a) former au moins une couche (10) d'un matériau conducteur de l'électricité au dessus de la couche base (15),b) former au moins un trou (15) au moins au travers d'au moins une couche conductrice de l'électricité,c) déposer au moins un matériau isolant (25) au dessus de ladite couche conductrice de l'électricité, et remplir au moins une partie dudit trou suffisamment pour former un point de rebroussement,d) déposer au moins une couche de matériau, qui est susceptible d'émettre des électrons (30) sous l'influence d'un champ électrique, au dessus d'au moins dudit matériau isolant de l'étape (c), et remplir au moins une partie dudit point de rebroussement pour former au moins une dite pointe (41) pour l'émission desdits électrons, ete) enlever au moins une partie dudit matériau (25) au dessous de ladite pointe pour exposer au moins une partie de ladite pointe dudit matériau émetteur d'électrons, et de cette manière former au moins unedite structure de cathode à émission de champ.
- La structure de cathode à émission de champ selon la revendication 55, caractérisée en ce qu'au moins un matériau isolant est un matériau multicouche (25, 28).
- La structure de cathode à émission de champ selon la revendication 55, caractérisée en ce qu'au moins une couche dudit matériau multicouche est en matériau d'arrêt (28).
- La structure de cathode à émission de champ selon la revendication 55, caractérisée en ce que ladite structure a au moins deux cathodes (10, 14), et dans laquelle au moins une partie d'une première cathode est électriquement isolée d'une partie de la seconde cathode.
- La structure de cathode à émission de champ selon la revendication 55, caractérisée en ce que ladite structure a au moins deux cathodes (28, 30), et dans laquelle au moins une partie d'une première cathode est électriquement connectée à une partie de la seconde cathode.
- La structure de cathode à émission de champ selon la revendication 55, caractérisée en ce que, dans l'étape (e), au moins une partie de la surface d'au moins un dit matériau conducteur de l'électricité (10) faisant face au trou qui expose ladite pointe, est aussi exposée.
- Une structure de cathode à émission de champ caractérisé par au moins une couche de matériau (30), qui est susceptible d'émettre des électrons sous l'influence d'un champ électrique, et ayant au moins une pointe (51) pour l'émission d'électrons produits par le procédé comprenant les étapes consistant à :a) former une pluralité de couches (10, 14) de matériau électriquement conducteur au dessus d'une couche de base (5), de manière que chaque dite couche du matériau conducteur de l'électricité soit séparée par un matériau isolant (12),b) former au moins un trou (15) au moins à travers lesdites couches conductrices de l'électricité,c) déposer au moins une couche de matériau isolant (25) au dessus du matériau conducteur de l'électricité, et remplir au moins une partie dudit trou suffisamment pour former un point de rebroussement,d) déposer au moins une couche de matériau (31), qui soit susceptible d'émettre des électrons sous l'influence d'un champ électrique, au dessus dudit matériau isolant de l'étape (c), et remplir au moins une partie dudit point de rebroussement, pour former au moins une pointe pour l'émission desdits électrons, ete) enlever au moins une partie du matériau (25) présent au dessous de ladite pointe dudit matériau émetteur d'électrons, et de cette manière former au moins unedite structure de cathode à émission de champ.
- La structure de cathode à émission de champ selon l'une quelconque des revendications 26, 55, ou 61, caractérisée en ce que ledit matériau émetteur d'électrons est sélectionné dans un groupe comprenant Mo, W, Ta, Re, Au, Ag, Al, Cu, Nb, Ni, Cr, Ti, Zr, Hf, et leirs alliages, ou des solutions solides contenant deux ou plusieurs de ces éléments.
- La structure de cathode à émission de champ des revendications 55 ou 61, dans lesquelles ledit matériau isolant est sélectionné dans un groupe comprenant le saphir, le verre ou les oxydes de Si, Al, Mg et Ce.
- La structure de cathode à émission de champ selon quelconque des revendications 26, 55, ou 61, caractérisée en ce que ledit matériau émetteur d'électrons est sélectionné dans un groupe comprenant des semi-conducteurs dopés et non dopés.
- La structure de cathode à émission de champ selon la revendication 61, caractérisée en ce qu'au moins un matériau isolant est un matériau multicouches (25, 28).
- La structure de cathode à émission de champ selon la revendication 64, caractérisée en ce qu'au moins une couche dudit matériau multicouches est un matériau d'arrêt (28).
- La structure de cathode à émission de champ selon la revendication 61, caractérisée en ce que ladite structure a au moins deux cathodes, et dans lesquelles au moins une partie d'une première cathode est électriquement isolée d'une partie de la seconde cathode.
- La structure de cathode à émission de champ selon la revendication 61, caractérisée en ce que ladite structure a au moins deux cathodes, et dans lesquelles une partie au moins d'une première cathode est électriquement connectée à une partie de la seconde cathode.
- La structure de cathode à émission de champ selon la revendication 61, dans laquelle à l'étape (e) au moins une partie de la surface du au moins undit matériau conducteur de l'électricité, faisant face au trou qui expose ladite pointe, est aussi exposée.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US55521390A | 1990-07-18 | 1990-07-18 | |
US555213 | 1990-07-18 | ||
PCT/US1990/005964 WO1992002031A1 (fr) | 1990-07-18 | 1990-10-17 | Structures et procedes de fabrication de cathodes a emission de champ |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0539365A1 EP0539365A1 (fr) | 1993-05-05 |
EP0539365B1 true EP0539365B1 (fr) | 1997-04-23 |
Family
ID=24216420
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP90916570A Expired - Lifetime EP0539365B1 (fr) | 1990-07-18 | 1990-10-17 | Structures et procedes de fabrication de cathodes a emission de champ |
Country Status (12)
Country | Link |
---|---|
EP (1) | EP0539365B1 (fr) |
JP (1) | JP2602584B2 (fr) |
KR (1) | KR950001485B1 (fr) |
CN (1) | CN1021389C (fr) |
AU (1) | AU639342B2 (fr) |
CA (1) | CA2085982C (fr) |
DE (1) | DE69030589T2 (fr) |
DK (1) | DK0539365T3 (fr) |
ES (1) | ES2100178T3 (fr) |
MY (1) | MY106537A (fr) |
NZ (1) | NZ238590A (fr) |
WO (1) | WO1992002031A1 (fr) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB9210419D0 (en) * | 1992-05-15 | 1992-07-01 | Marconi Gec Ltd | Cathode structures |
US5795208A (en) * | 1994-10-11 | 1998-08-18 | Yamaha Corporation | Manufacture of electron emitter by replica technique |
US5599749A (en) * | 1994-10-21 | 1997-02-04 | Yamaha Corporation | Manufacture of micro electron emitter |
KR100343205B1 (ko) * | 2000-04-26 | 2002-07-10 | 김순택 | 카본나노튜브를 이용한 삼극 전계 방출 어레이 및 그 제작방법 |
US6986693B2 (en) | 2003-03-26 | 2006-01-17 | Lucent Technologies Inc. | Group III-nitride layers with patterned surfaces |
US7952109B2 (en) | 2006-07-10 | 2011-05-31 | Alcatel-Lucent Usa Inc. | Light-emitting crystal structures |
US7266257B1 (en) | 2006-07-12 | 2007-09-04 | Lucent Technologies Inc. | Reducing crosstalk in free-space optical communications |
CN104064434A (zh) * | 2013-03-22 | 2014-09-24 | 海洋王照明科技股份有限公司 | 一种场发射平面光源及其制备方法 |
EP3748667B1 (fr) * | 2019-06-05 | 2025-10-08 | Siemens Healthineers AG | Émetteur en silicium à effet de champ |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3753022A (en) * | 1971-04-26 | 1973-08-14 | Us Army | Miniature, directed, electron-beam source |
DE2951287C2 (de) * | 1979-12-20 | 1987-01-02 | Gesellschaft für Schwerionenforschung mbH, 6100 Darmstadt | Verfahren zur Herstellung von mit einer Vielzahl von feinsten Spitzen versehenen Oberflächen |
US4307507A (en) * | 1980-09-10 | 1981-12-29 | The United States Of America As Represented By The Secretary Of The Navy | Method of manufacturing a field-emission cathode structure |
US4721885A (en) * | 1987-02-11 | 1988-01-26 | Sri International | Very high speed integrated microelectronic tubes |
US5012153A (en) * | 1989-12-22 | 1991-04-30 | Atkinson Gary M | Split collector vacuum field effect transistor |
US5100355A (en) * | 1991-06-28 | 1992-03-31 | Bell Communications Research, Inc. | Microminiature tapered all-metal structures |
-
1990
- 1990-10-17 EP EP90916570A patent/EP0539365B1/fr not_active Expired - Lifetime
- 1990-10-17 CA CA002085982A patent/CA2085982C/fr not_active Expired - Fee Related
- 1990-10-17 JP JP2515595A patent/JP2602584B2/ja not_active Expired - Lifetime
- 1990-10-17 DE DE69030589T patent/DE69030589T2/de not_active Expired - Lifetime
- 1990-10-17 ES ES90916570T patent/ES2100178T3/es not_active Expired - Lifetime
- 1990-10-17 DK DK90916570.6T patent/DK0539365T3/da active
- 1990-10-17 WO PCT/US1990/005964 patent/WO1992002031A1/fr active IP Right Grant
-
1991
- 1991-06-18 NZ NZ238590A patent/NZ238590A/xx unknown
- 1991-06-18 AU AU78494/91A patent/AU639342B2/en not_active Ceased
- 1991-06-18 MY MYPI91001091A patent/MY106537A/en unknown
- 1991-06-18 CN CN91104165.6A patent/CN1021389C/zh not_active Expired - Lifetime
- 1991-06-18 KR KR91010044A patent/KR950001485B1/ko not_active Expired - Lifetime
Non-Patent Citations (1)
Title |
---|
Display, January 1987, Butterworth & Co., UK. pages 37 - 40; G Labrunie et al.: "Novel type of emissive flat panel display: the matrixed cold-cathode microtip fluorescent display" * |
Also Published As
Publication number | Publication date |
---|---|
CA2085982C (fr) | 1999-03-09 |
DK0539365T3 (da) | 1997-10-27 |
EP0539365A1 (fr) | 1993-05-05 |
JPH05507580A (ja) | 1993-10-28 |
CA2085982A1 (fr) | 1992-01-19 |
NZ238590A (en) | 1993-07-27 |
AU639342B2 (en) | 1993-07-22 |
DE69030589T2 (de) | 1997-11-13 |
KR950001485B1 (en) | 1995-02-25 |
WO1992002031A1 (fr) | 1992-02-06 |
DE69030589D1 (de) | 1997-05-28 |
JP2602584B2 (ja) | 1997-04-23 |
MY106537A (en) | 1995-06-30 |
CN1058295A (zh) | 1992-01-29 |
ES2100178T3 (es) | 1997-06-16 |
AU7849491A (en) | 1992-01-23 |
CN1021389C (zh) | 1993-06-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5141459A (en) | Structures and processes for fabricating field emission cathodes | |
US5334908A (en) | Structures and processes for fabricating field emission cathode tips using secondary cusp | |
EP0544663B1 (fr) | Procede de fabrication et structure d'un dispositif microelectronique sous vide integre | |
US5629579A (en) | Process and structure of an integrated vacuum microelectronic device | |
US4307507A (en) | Method of manufacturing a field-emission cathode structure | |
US5038070A (en) | Field emitter structure and fabrication process | |
EP0539365B1 (fr) | Structures et procedes de fabrication de cathodes a emission de champ | |
US7670203B2 (en) | Process for making an on-chip vacuum tube device | |
KR100243990B1 (ko) | 전계방출 캐소드와 그 제조방법 | |
JP2728813B2 (ja) | 電界放出型電子源及びその製造方法 | |
US5607335A (en) | Fabrication of electron-emitting structures using charged-particle tracks and removal of emitter material | |
CA2085981C (fr) | Methode de fabrication et structure de dispositif microelectronique a vide integree | |
JPH0689651A (ja) | 微小真空デバイスとその製造方法 | |
JP2852356B2 (ja) | フィールドエミッタの表面改質方法 | |
JPH0817330A (ja) | 電界放出型電子源およびその製造方法 | |
JP2636630B2 (ja) | 電界放出素子及びその製造方法 | |
JP2969913B2 (ja) | 電界放出型エミッタ | |
JP3127054B2 (ja) | 電界放出型真空管 | |
US7404980B2 (en) | Method for producing an addressable field-emission cathode and an associated display structure | |
JPH0541152A (ja) | 電界放出陰極の製造方法 | |
Borkowicz et al. | Simple fabrication process of high-density field emission arrays | |
JPH08190856A (ja) | 電界放射冷陰極の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): BE CH DE DK ES FR GB IT LI NL SE |
|
17P | Request for examination filed |
Effective date: 19930115 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
17Q | First examination report despatched |
Effective date: 19960710 |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): BE CH DE DK ES FR GB IT LI NL SE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: CARL O. BARTH C/O IBM CORPORATION ZURICH INTELLECT Ref country code: CH Ref legal event code: EP |
|
REF | Corresponds to: |
Ref document number: 69030589 Country of ref document: DE Date of ref document: 19970528 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2100178 Country of ref document: ES Kind code of ref document: T3 |
|
ET | Fr: translation filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19971018 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19971031 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19971031 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19971031 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
BERE | Be: lapsed |
Owner name: INTERNATIONAL BUSINESS MACHINES CORP. Effective date: 19971031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19980501 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 19980501 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DK Payment date: 19981005 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19981026 Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19991017 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY Effective date: 19991030 |
|
EUG | Se: european patent has lapsed |
Ref document number: 90916570.6 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: EBP |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20011001 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20011017 Year of fee payment: 12 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20021017 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20021017 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030630 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 19981113 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20051017 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20091027 Year of fee payment: 20 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20101017 |