JP2001313474A - Wiring board - Google Patents
Wiring boardInfo
- Publication number
- JP2001313474A JP2001313474A JP2001043758A JP2001043758A JP2001313474A JP 2001313474 A JP2001313474 A JP 2001313474A JP 2001043758 A JP2001043758 A JP 2001043758A JP 2001043758 A JP2001043758 A JP 2001043758A JP 2001313474 A JP2001313474 A JP 2001313474A
- Authority
- JP
- Japan
- Prior art keywords
- wiring board
- resin
- wiring
- insulating layer
- layers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
- H01L2224/161—Disposition
- H01L2224/16151—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/16221—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/16225—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
Landscapes
- Production Of Multi-Layered Print Wiring Board (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、配線基板本体など
の内部に電子部品を内蔵した配線基板、および配線基板
の表面上方にICチップなどの半導体素子を搭載した配
線基板に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wiring board having electronic components built in a wiring board body and the like, and a wiring board having a semiconductor element such as an IC chip mounted above the surface of the wiring board.
【0002】[0002]
【従来の技術】近年における配線基板の小型化および配
線基板内における配線の高密度化に対応するため、配線
基板の第1主面上にICチップなどの電子部品を搭載す
るだけでなく、コア基板の内部に電子部品を内蔵する配
線基板が提案されている。例えば、図6(A)に示す配
線基板70は、絶縁基板71に明けた貫通孔72にチッ
プコンデンサ73を挿入し、その両端の電極74,74
をハンダ78を介して、絶縁基板71および隣接する絶
縁層76の間に形成したランド77と接続している。貫
通孔72内に樹脂79を充填することで、上記コンデン
サ73を固着して内臓する。かかるコンデンサ73内に
は内部電極75が内設されている。2. Description of the Related Art In order to cope with recent miniaturization of wiring boards and densification of wiring in the wiring boards, not only electronic parts such as IC chips are mounted on a first main surface of the wiring board, but also cores are mounted. 2. Description of the Related Art There has been proposed a wiring board in which electronic components are embedded inside a board. For example, in a wiring board 70 shown in FIG. 6A, a chip capacitor 73 is inserted into a through hole 72 formed in an insulating board 71, and electrodes 74, 74 at both ends thereof are provided.
Are connected via solder 78 to a land 77 formed between the insulating substrate 71 and the adjacent insulating layer 76. By filling the resin 79 in the through-hole 72, the capacitor 73 is fixedly mounted. An internal electrode 75 is provided inside the capacitor 73.
【0003】また、図6(B)に示す配線基板80は、絶
縁基板81に明けた貫通孔82の一方の開口部を、図示
しない予め粘着性の仮固定膜により塞ぎ、この仮固定膜
に内部電極85を有するチップコンデンサ83を貼り付
けた状態で、貫通孔82内に樹脂89を充填し固化させ
た後、上記仮固定膜を除去したものである。かかる配線
基板80は、図6(B)に示すように、上記コンデンサ8
3の両端に位置する電極84,84を、予め上記絶縁基
板81とこれに隣接する絶縁層86との間に設けたラン
ド87,87にハンダ88,88を介して接続してい
る。In a wiring board 80 shown in FIG. 6B, one opening of a through hole 82 formed in an insulating substrate 81 is closed with an adhesive temporary fixing film (not shown). In a state where a chip capacitor 83 having an internal electrode 85 is attached, a resin 89 is filled in the through hole 82 and solidified, and then the temporary fixing film is removed. As shown in FIG. 6B, such a wiring board 80
The electrodes 84, 84 located at both ends of 3 are connected to lands 87, 87 previously provided between the insulating substrate 81 and the insulating layer 86 adjacent thereto via solders 88, 88.
【0004】[0004]
【発明が解決すべき課題】しかしながら、以上の配線基
板70,80では、絶縁基板71,81とその貫通孔7
2,82に充填される樹脂79,89との間、および樹
脂79,89とこれに埋設されるコンデンサ(電子部品)
73,83との間の少なくとも一方において、製造過程
での加熱時に熱膨張率の差により境界付近で絶縁基板7
1,81や樹脂79,89に割れが生じることがある。
このため、前記ハンダ78,88が割れたり剥離するた
め、電子部品73,83と配線基板70,80内部の配
線層との導通が不安定になったり断線する、という問題
があった。本発明は、以上に説明した従来の技術におけ
る問題点を解決し、配線基板本体に樹脂を介して電子部
品を埋設する配線基板において、かかる樹脂や配線基板
本体が割れたり破損せず、上記電子部品と内部の配線層
等との導通を確実に且つ安定して取り得る配線基板を提
供する、ことを課題とする。However, in the wiring boards 70 and 80 described above, the insulating boards 71 and 81 and the through holes 7 are provided.
Between the resin 79, 89 filled in the resin 2, 82, and between the resin 79, 89 and a capacitor (electronic component) embedded in the resin 79, 89
73 and 83, at least one of the insulating substrates 7 near the boundary due to a difference in the coefficient of thermal expansion during heating in the manufacturing process.
1,81 and resins 79,89 may be cracked.
For this reason, since the solders 78 and 88 are cracked or peeled off, there is a problem that conduction between the electronic components 73 and 83 and the wiring layers inside the wiring boards 70 and 80 becomes unstable or breaks. The present invention solves the above-described problems in the conventional technology. In a wiring board in which electronic components are embedded in a wiring board body via a resin, the resin or the wiring board body is not broken or broken, It is an object of the present invention to provide a wiring board capable of reliably and stably providing conduction between a component and an internal wiring layer or the like.
【0005】[0005]
【課題を解決するための手段】本発明は、上記の課題を
解決するため、配線基板本体、樹脂、および内臓される
電子部品などの熱膨張率の関係に着目する、ことにより
成されたものである。即ち、本発明の第1の配線基板
(請求項1)は、表面および裏面を有する配線基板本体
と、この配線基板本体の表面および裏面上に配線層を介
して積層された絶縁層と、上記配線基板本体とその表面
および裏面上に積層された絶縁層とを貫通する貫通孔、
または上記絶縁層の表面側に開口する凹部と、この貫通
孔または凹部内に内臓され且つ樹脂を介して固着される
電子部品と、を含むと共に、上記配線基板本体、樹脂、
および電子部品の熱膨張率α1,α2,α3(即ち、配
線基板本体の熱膨張率α1、樹脂の熱膨張率α2、電子
部品の熱膨張率α3とする)が数式3の関係にある、こ
とを特徴とする。SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention has been made by paying attention to the relationship between the thermal expansion coefficients of a wiring board main body, a resin, and built-in electronic components. It is. That is, the first wiring board of the present invention
(Claim 1) is a wiring board main body having a front surface and a back surface, an insulating layer laminated on the front surface and the back surface of the wiring substrate body via a wiring layer, and the wiring board body and the front and back surfaces thereof. A through-hole penetrating through the laminated insulating layer,
Or a concave portion opened on the surface side of the insulating layer, and an electronic component incorporated in the through hole or the concave portion and fixed via a resin, and the wiring board body, the resin,
And the thermal expansion coefficients α1, α2, α3 of the electronic components (that is, the thermal expansion coefficient α1, the thermal expansion coefficient α2 of the resin, and the thermal expansion coefficient α3 of the electronic component of the wiring board body) are in the relationship of Expression 3. It is characterized by.
【0006】[0006]
【数3】α3<α1≦α2[Equation 3] α3 <α1 ≦ α2
【0007】これによれば、配線基板本体の熱膨張率
は、電子部品のそれよりも大きく、且つ上記電子部品が
埋設される樹脂のそれと等しいか、またはそれより小さ
い関係にある。このため、溶けた上記樹脂を固化させる
際や別途の位置での加熱に際し、上記電子部品が膨張し
ても、配線基板本体や樹脂は更に大きく膨張するため、
かかる配線基板本体中の貫通孔または凹部、あるいは上
記電子部品を包囲する樹脂自体が大きくなる。従って、
樹脂や配線基板本体が割れたり破損する事態を防止でき
るので、電子部品と内部の配線層との間における導通を
安定して確実に取ることが可能となる。尚、本明細書に
おいて、熱膨張率とは、対象物の縦・横(X−Y)方向
(配線基板の厚み方向に対する直角方向)における熱膨張
率を言う。[0007] According to this, the thermal expansion coefficient of the wiring board body is higher than that of the electronic component, and is equal to or smaller than that of the resin in which the electronic component is embedded. For this reason, when solidifying the melted resin or heating at a separate position, even if the electronic component expands, the wiring board body and the resin further expand more greatly.
The size of the through hole or the concave portion in the wiring board main body or the resin itself surrounding the electronic component becomes large. Therefore,
Since the situation in which the resin or the wiring board body is broken or damaged can be prevented, the conduction between the electronic component and the internal wiring layer can be stably and reliably obtained. In this specification, the coefficient of thermal expansion refers to the vertical and horizontal (X-Y) directions of the object.
(The direction perpendicular to the thickness direction of the wiring board).
【0008】また、本発明の第2の配線基板(請求項2)
は、表面および裏面を有する配線基板本体と、この配線
基板本体の表面および裏面上に配線層を介して積層され
た絶縁層と、上記配線基板本体とその表面および裏面上
に積層された絶縁層とを貫通する貫通孔、または上記絶
縁層の表面側に開口する凹部と、この貫通孔または凹部
内に内臓され且つ樹脂を介して固着される電子部品と、
上記配線基板本体の表面上方に搭載され且つ上記電子部
品と導通される半導体素子と、を含むと共に、上記配線
基板本体、樹脂、電子部品、および半導体素子の熱膨張
率α1,α2,α3,α4(即ち、配線基板本体の熱膨
張率α1、樹脂の熱膨張率α2、電子部品の熱膨張率α
3、半導体素子の熱膨張率α4とする)が数式4の関係
にある、ことを特徴とする。A second wiring board according to the present invention (claim 2)
Are a wiring board main body having a front surface and a back surface, an insulating layer laminated on the front surface and the back surface of the wiring substrate body via a wiring layer, and an insulating layer laminated on the wiring substrate body and the front and rear surfaces thereof. A through-hole, or a recess opening on the surface side of the insulating layer, and an electronic component incorporated in the through-hole or the recess and fixed via a resin,
A semiconductor element mounted above the surface of the wiring board body and electrically connected to the electronic component; and thermal expansion coefficients α1, α2, α3, α4 of the wiring board body, resin, electronic component, and semiconductor element. (That is, the coefficient of thermal expansion α1 of the wiring board body, the coefficient of thermal expansion α2 of the resin, the coefficient of thermal expansion α of the electronic component
3, the thermal expansion coefficient α4 of the semiconductor element) is in the relationship of Expression 4.
【0009】[0009]
【数4】α4≦α3<α1≦α2[Equation 4] α4 ≦ α3 <α1 ≦ α2
【0010】これによれば、前記数式3の関係に加え、
半導体素子の熱膨張率は内蔵される電子部品の熱膨張率
と同じかそれ以下の関係にあるため、例えば配線基板の
第1主面上に半導体素子を搭載する際のハンダ付け時に
おいて、半導体素子が熱膨しても電子部品と同じかそれ
以下となり、配線基板本体や電子部品を埋設する樹脂に
影響しなくなる。従って、第1主面上などに搭載した半
導体素子と電子部品とを直に、または内部の配線層を介
して確実且つ安定して導通できると共に、かかる配線基
板を効率良く製造することも可能となる。[0010] According to this, in addition to the relationship of the above equation 3,
Since the coefficient of thermal expansion of the semiconductor element is equal to or less than the coefficient of thermal expansion of the built-in electronic components, for example, when the semiconductor element is mounted on the first main surface of the wiring board by soldering, Even if the element thermally expands, it becomes equal to or less than the electronic component, and does not affect the wiring board body or the resin in which the electronic component is embedded. Therefore, the semiconductor element mounted on the first main surface or the like and the electronic component can be reliably and stably conducted directly or via an internal wiring layer, and the wiring board can be efficiently manufactured. Become.
【0011】尚付言すると、表面および裏面を有する配
線基板本体と、この配線基板本体の表面および裏面上に
配線層を介して積層された絶縁層と、上記配線基板本体
とその表面および裏面上に積層された絶縁層とを貫通す
る貫通孔、または上記絶縁層の表面側に開口する凹部
と、この貫通孔または凹部内に内臓され且つ樹脂を介し
て固着される電子部品と、を含むと共に、上記樹脂の熱
膨張率α2と絶縁層の熱膨張率α5とが関係が数式5の
関係にある、配線基板を本発明に含めることも可能であ
る。It is to be noted that a wiring board body having a front surface and a back surface, an insulating layer laminated on the front surface and the back surface of the wiring board body via a wiring layer, A through-hole penetrating through the laminated insulating layer, or a concave portion opened on the surface side of the insulating layer, and an electronic component incorporated in the through-hole or concave portion and fixed via a resin, It is also possible to include a wiring board in which the thermal expansion coefficient α2 of the resin and the thermal expansion coefficient α5 of the insulating layer have a relationship represented by Expression 5.
【0012】[0012]
【数5】α2≦α5[Equation 5] α2 ≦ α5
【0013】数式5による場合、絶縁層の熱膨張率α5
は、樹脂の熱膨張率α2と同じかそれ以上の関係とな
る。このため、かかる樹脂を固化させる際や別途の位置
での加熱に際し当該樹脂が膨張しても、絶縁層はこれら
よりも更に大きく膨張するので、かかる樹脂自体の膨張
を吸収することができる。従って、樹脂や配線基板本体
が割れたり破損する事態を防止できるので、電子部品と
内部の配線層との間における導通を安定して確実に取る
ことが可能となる。In the case of Equation 5, the thermal expansion coefficient α5 of the insulating layer
Has a relationship equal to or higher than the coefficient of thermal expansion α2 of the resin. Therefore, even if the resin expands when the resin is solidified or heated at a separate position, the insulating layer expands more than the resin, so that the expansion of the resin itself can be absorbed. Accordingly, it is possible to prevent the resin or the wiring board body from being broken or damaged, so that it is possible to stably and reliably establish conduction between the electronic component and the internal wiring layer.
【0014】付言すれば、本発明の配線基板は、表面お
よび裏面を有する配線基板本体と、この配線基板本体の
表面および裏面上に配線層を介して積層された絶縁層
と、上記配線基板本体とその表面および裏面上に積層さ
れた絶縁層とを貫通する貫通孔、または上記絶縁層の表
面側に開口する凹部と、この貫通孔または凹部内に内臓
され且つ樹脂を介して固着される電子部品と、上記配線
基板本体の表面上方に搭載され且つ上記電子部品と導通
される半導体素子と、を含むと共に、上記配線基板本
体、樹脂、電子部品、半導体素子、および絶縁層の熱膨
張率α1,α2,α3,α4,α5(即ち、配線基板本
体の熱膨張率α1、樹脂の熱膨張率α2、電子部品の熱
膨張率α3、半導体素子の熱膨張率α4、絶縁層の熱膨
張率α5とする)が数式6の関係にある、とすることも
できる。In other words, the wiring board of the present invention comprises a wiring board body having a front surface and a back surface, an insulating layer laminated on the front surface and the back surface of the wiring board body via a wiring layer, And a through hole penetrating through the insulating layer laminated on the front and back surfaces thereof, or a concave portion opening on the front surface side of the insulating layer, and an electron incorporated in the through hole or concave portion and fixed via resin. And a thermal expansion coefficient α1 of the wiring substrate body, resin, electronic component, semiconductor element, and insulating layer. , Α2, α3, α4, α5 (that is, the coefficient of thermal expansion α1 of the wiring board body, the coefficient of thermal expansion α2 of the resin, the coefficient of thermal expansion α3 of the electronic component, the coefficient of thermal expansion α4 of the semiconductor element, the coefficient of thermal expansion α5 of the insulating layer) Is the relationship of Equation 6 , Can also be.
【0015】[0015]
【数6】α4≦α3<α1α2≦α5[Equation 6] α4 ≦ α3 <α1α2 ≦ α5
【0016】更に、前記何れかのは配線基板において、
前記樹脂の熱膨張率α2が、40ppm/℃よりも小さ
い、配線基板も本発明に含まれる。これによれば、前記
樹脂や配線基板本体が割れたり破損する事態を防止した
り、半導体素子の膨張による配線基板本体などへの影響
を一層確実に防ぐことが可能となる。尚、上記熱膨張率
α2は、35ppm/℃以下(望ましくは30ppm/
℃以下、より望ましくは25ppm/℃以下、更に望ま
しくは20ppm/℃以下、但し下限値は10ppm/
℃以上)が一層望ましい。Further, any of the above is a wiring board,
The present invention also includes a wiring board in which the coefficient of thermal expansion α2 of the resin is smaller than 40 ppm / ° C. According to this, it is possible to prevent the resin or the wiring board main body from being cracked or damaged, and to more reliably prevent the expansion of the semiconductor element from affecting the wiring board main body. The coefficient of thermal expansion α2 is 35 ppm / ° C. or less (preferably 30 ppm /
° C or lower, more preferably 25 ppm / ° C or lower, further preferably 20 ppm / ° C or lower, provided that the lower limit is 10 ppm / ° C.
C. or more).
【0017】尚、上記何れかの配線基板本体には、内部
配線を有する絶縁基板や、複数の絶縁板と配線とを積層
した基板などの多層基板も含まれる。且つ、これらの配
線基板本体は、ガラスクロスやガラスフィラ入りの配線
基板本体としても良い。尚また、貫通孔は、配線基板本
体や絶縁層に対しレーザ加工やドリル加工することによ
り形成される。一方、凹部は、配線基板本体と絶縁層と
配線層とをエンドミルを用いるルータ加工により形成し
たり、あるいは予めルータ加工またはレーザ加工した絶
縁層を別の絶縁層や配線層と積層することにより形成で
きる。尚更に、前記電子部品には、コンデンサ、インダ
クタ、抵抗、フィルタなどの受動部品や、ローノイズア
ンプ(LNA)、トランジスタ、半導体素子、FETなど
の能動部品、SAWフィルタ、LCフィルタ、アンテナ
スイッチモジュール、カプラ、ダイプレクサなどや、こ
れらをチップ状にしたものが含まれるがこれらに限らな
い。また、これらのうちで異種の電子部品同士を同じ貫
通孔や凹部内に内蔵しても良い。更に、電子部品には、
配線基板本体の表面または裏面寄りの一方にのみ電極を
有する形態も含まれる。Incidentally, any of the above-mentioned wiring board bodies includes a multi-layer board such as an insulating board having internal wiring and a board in which a plurality of insulating plates and wiring are laminated. Further, these wiring board bodies may be wiring board bodies containing glass cloth or glass filler. In addition, the through holes are formed by laser processing or drilling of the wiring board body and the insulating layer. On the other hand, the recess is formed by forming the wiring board body, the insulating layer, and the wiring layer by router processing using an end mill, or by laminating an insulating layer that has been previously processed by router or laser processing with another insulating layer or wiring layer. it can. Further, the electronic components include passive components such as capacitors, inductors, resistors, and filters, active components such as low-noise amplifiers (LNA), transistors, semiconductor elements, and FETs, SAW filters, LC filters, antenna switch modules, and couplers. , Diplexers and the like, and those obtained by making them into chips are included, but not limited to these. Further, among them, different kinds of electronic components may be incorporated in the same through-hole or recess. In addition, electronic components
A mode in which an electrode is provided only on one of the front and rear sides of the wiring board body is also included.
【0018】[0018]
【発明の実施の形態】以下において本発明の実施に好適
な形態を図面と共に説明する。図1は、本発明の1形態
の配線基板1における主要部の断面を示す。配線基板1
は、図1に示すように、配線基板本体2と、その表面2
a上および裏面2b下に積層した絶縁層4,5と、これ
らの間に位置する配線層6,7と、絶縁層4,5の表面
4a上および裏面5a下に形成した配線層16,22,
17,23および樹脂絶縁層18,24,19,25と
を有する。配線基板本体(本実施形態では、いわゆるコ
ア基板を用いる)2は、平面視がほぼ正方形で且つ厚み
が約0.6mmで、ガラスクロス入りのエポキシ樹脂か
らなる絶縁基板である。また、その表面2a上や裏面2
b下に積層した絶縁層4,5は、厚みが例えば35μm
でシリカフィラなどの無機フィラ入りのエポキシ系樹脂
からなり、これらの間に厚みが18μmで銅製の配線層
6,7が位置する。Preferred embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a cross section of a main part of a wiring board 1 according to one embodiment of the present invention. Wiring board 1
As shown in FIG. 1, a wiring board main body 2 and its surface 2
a, insulating layers 4 and 5 stacked under the rear surface 2b, wiring layers 6 and 7 located therebetween, and wiring layers 16 and 22 formed on the front surface 4a and under the rear surface 5a of the insulating layers 4 and 5, respectively. ,
17 and 23 and resin insulating layers 18, 24, 19 and 25. The wiring substrate body (in the present embodiment, a so-called core substrate is used) 2 is an insulating substrate made of an epoxy resin containing glass cloth, which is approximately square in plan view and has a thickness of about 0.6 mm. In addition, on the front surface 2a or the back surface 2
b, the thickness of the insulating layers 4 and 5 is, for example, 35 μm.
And an epoxy resin containing an inorganic filler such as silica filler, between which copper wiring layers 6 and 7 having a thickness of 18 μm are located.
【0019】また、配線基板本体2や絶縁層4,5など
における所定の位置(中央部)をドリル加工やレーザ加工
することにより、図1に示すように、平面視がほぼ正方
形で一辺が8mmの貫通孔8が穿孔されている。尚、貫
通孔8の側壁の表面粗さは、中心線平均粗さRaで0.
5〜5.0μmの範囲であって、十点平均粗さRzで
5.0〜30.0μmの範囲に入るようにすのが望まし
い。このため、ドリル加工などの後、貫通孔8の側壁に
対し必要に応じて過マンガン酸カリウムやクロム酸によ
る化学的粗化処理が施される。これにより、配線基板本
体2や絶縁層4,5と後述する樹脂9との密着性を高め
ることができる。尚また、貫通孔8の側壁や次述する電
子部品10の表面に対して、更に有機化合物(カップリ
ング剤:チタン系、アルミニウム系、シラン系の何れか
からなる有機系化合物、またはこれら有機系化合物の混
合物)を塗布しても良い。Further, by drilling or laser processing a predetermined position (central portion) in the wiring board main body 2, the insulating layers 4, 5 and the like, as shown in FIG. Are formed. Incidentally, the surface roughness of the side wall of the through hole 8 is defined as a center line average roughness Ra of 0.1.
It is desirable that the average roughness Rz be in the range of 5.0 to 30.0 μm in the range of 5 to 5.0 μm. Therefore, after drilling or the like, the side wall of the through hole 8 is subjected to a chemical roughening treatment with potassium permanganate or chromic acid as needed. Thereby, the adhesion between the wiring board body 2 and the insulating layers 4 and 5 and the resin 9 described later can be improved. Further, an organic compound (coupling agent: an organic compound composed of any of titanium, aluminum, and silane, or an organic compound of these compounds) may be further applied to the side wall of the through hole 8 and the surface of the electronic component 10 described below. (Mixture of compounds).
【0020】また、上記貫通孔8内には、シリカフィラ
などの無機フィラを含むエポキシ系の(埋込)樹脂9を介
して、複数のチップコンデンサ(電子部品)10が内蔵さ
れる。かかる樹脂9の体積熱膨張係数は、40ppm/
℃以下、好ましくは35ppm/℃以下であり、且つそ
の下限値としては10ppm/℃以上である。本実施形
態では、32ppm/℃の樹脂を用いる。これにより、
配線基板1に内臓されるチップコンデンサ(電子部品)1
0と配線基板1の表面に実装されるICチップ(半導体
素子)との熱膨張率の差に起因する応力集中を少なくす
ることが可能となり、クラックの発生防止に役立つ。
尚、無機フィラとしては、特に制限しないが、結晶性シ
リカ、溶融シリカ、アルミナ、または窒化ケイ素などが
用いられる。また、チップコンデンサ10は、その両側
面において上下端に突出し且つ樹脂9の表面9cまたは
裏面9bに位置する複数の電極11,12を対称に有す
る。かかるチップコンデンサ10は、例えばチタン酸バ
リウムを主成分とする誘電層と内部電極となるNi層と
を交互に積層したセラミックスコンデンサであって、
3.2mm×1.6mm×0.7mmのサイズを有す
る。A plurality of chip capacitors (electronic components) 10 are built in the through holes 8 via an epoxy (embedded) resin 9 containing an inorganic filler such as silica filler. The volumetric thermal expansion coefficient of the resin 9 is 40 ppm /
° C or lower, preferably 35 ppm / ° C or lower, and the lower limit thereof is 10 ppm / ° C or higher. In this embodiment, a resin of 32 ppm / ° C. is used. This allows
Chip capacitor (electronic component) 1 built in wiring board 1
It is possible to reduce stress concentration caused by a difference in the coefficient of thermal expansion between the IC chip (semiconductor element) mounted on the surface of the wiring board 1 and the IC chip, thereby helping to prevent the occurrence of cracks.
The inorganic filler is not particularly limited, but crystalline silica, fused silica, alumina, silicon nitride, or the like is used. Further, the chip capacitor 10 has a plurality of electrodes 11 and 12 symmetrically protruding from the upper and lower ends on both side surfaces thereof and located on the front surface 9c or the back surface 9b of the resin 9. The chip capacitor 10 is a ceramic capacitor in which, for example, a dielectric layer containing barium titanate as a main component and a Ni layer serving as an internal electrode are alternately laminated,
It has a size of 3.2 mm x 1.6 mm x 0.7 mm.
【0021】図1に示すように、貫通孔8の周囲には、
所要のスペースを置いて配線基板本体2を含む絶縁層
4,5の表・裏面4a,5a間を貫通する複数のスルー
ホール13が穿孔され、その内部に銅メッキからなるス
ルーホール導体14とシリカフィラを含む充填樹脂15
とがそれぞれ形成されている。各スルーホール導体14
は、その中間で配線層6または配線層7と接続される。
但し、配線層6,7の丸孔6a,7a部分では、スルー
ホール導体14は配線層6,7と接続されていない。
尚、上記充填樹脂15に替え、多量の金属粉末を含む導
電性樹脂、または金属粉末を含む非導電性樹脂を用いて
も良い。図1に示すように、絶縁層4の表面4aと樹脂
9の表面9cとの上には、銅メッキからなる配線層16
と、シリカフィラを含むエポキシ樹脂からなる樹脂絶縁
層18とが形成される。配線層16は、チップコンデン
サ10の電極11およびスルーホール導体14の上端と
接続される。また、図1に示すように、樹脂絶縁層18
内の所定の位置には、複数のフィルドビア導体20が形
成され、これらのビア導体20の上端と絶縁層18との
上には配線層22が形成されている。As shown in FIG. 1, around the through hole 8,
A plurality of through holes 13 penetrating between the front and back surfaces 4a and 5a of the insulating layers 4 and 5 including the wiring board main body 2 are formed in a required space, and a through-hole conductor 14 made of copper plating and a silica Filling resin containing filler 15
Are formed respectively. Each through-hole conductor 14
Is connected to the wiring layer 6 or the wiring layer 7 in the middle.
However, in the round holes 6a and 7a of the wiring layers 6 and 7, the through-hole conductor 14 is not connected to the wiring layers 6 and 7.
Instead of the filling resin 15, a conductive resin containing a large amount of metal powder or a non-conductive resin containing metal powder may be used. As shown in FIG. 1, a wiring layer 16 made of copper plating is provided on the surface 4a of the insulating layer 4 and the surface 9c of the resin 9.
Then, a resin insulating layer 18 made of an epoxy resin containing silica filler is formed. The wiring layer 16 is connected to the electrode 11 of the chip capacitor 10 and the upper end of the through-hole conductor 14. In addition, as shown in FIG.
A plurality of filled via conductors 20 are formed at predetermined positions in the inside, and a wiring layer 22 is formed on upper ends of these via conductors 20 and the insulating layer 18.
【0022】配線層22の上には、ソルダーレジスト層
(樹脂絶縁層)24と、これを貫通し且つ第1主面26よ
りも高く突出する複数のハンダバンプ(IC接続端子(S
n−Ag、Pb−Sn、Sn−Sb、Sn−Zn、Sn
−Ag−Cu系など))28とが形成される。以上の配線
層16,22および樹脂絶縁層18,24は、ビルドア
ップ層BU1を形成する。また、上記ハンダバンプ28
は、第1主面26上に実装されるICチップ(半導体素
子)29の底面に突設された図示しない接続端子と個別
に接続される。尚、ICチップ29の接続端子(図示せ
ず)およびハンダバンプ28の周囲には、これらを埋設
するようにICチップ29と第1主面26との間に図示
しないアンダーフィル材が充填される。On the wiring layer 22, a solder resist layer
(Resin insulating layer) 24 and a plurality of solder bumps (IC connection terminals (S
n-Ag, Pb-Sn, Sn-Sb, Sn-Zn, Sn
-Ag-Cu type)) 28 are formed. The wiring layers 16 and 22 and the resin insulating layers 18 and 24 form the build-up layer BU1. Also, the solder bump 28
Are individually connected to connection terminals (not shown) protruding from the bottom surface of an IC chip (semiconductor element) 29 mounted on the first main surface 26. Around the connection terminals (not shown) of the IC chip 29 and the solder bumps 28, an underfill material (not shown) between the IC chip 29 and the first main surface 26 is filled so as to bury them.
【0023】図1に示すように、絶縁層5の裏面5aお
よび樹脂9の裏面9bの下にも銅メッキからなる配線層
17とシリカフィラ入りのエポキシ樹脂からなる樹脂絶
縁層19とが形成される。配線層17は、チップコンデ
ンサ10の電極12およびスルーホール導体14の下端
と接続されている。また、樹脂絶縁層19の所定の位置
には、複数のフィルドビア導体21が形成され、かかる
ビア導体21の下端と絶縁層19の下には配線層23が
形成されている。配線層23の下には、ソルダーレジス
ト層(樹脂絶縁層)25が形成され、第2主面25a側に
開口する開口部25b内に露出する配線層23内の配線
27は、その表面にNiおよびAuメッキが被覆され、
当該配線基板1自体を搭載する図示しないプリント基板
などのマザーボードとの接続端子となる。尚、接続端子
の上記配線27には、ピン(コバール、Fe−42wt%
Ni合金、銅など)がハンダ付けされていても良い。As shown in FIG. 1, a wiring layer 17 made of copper plating and a resin insulating layer 19 made of epoxy resin containing silica filler are also formed below the back surface 5a of the insulating layer 5 and the back surface 9b of the resin 9. You. The wiring layer 17 is connected to the electrode 12 of the chip capacitor 10 and the lower end of the through-hole conductor 14. Further, a plurality of filled via conductors 21 are formed at predetermined positions of the resin insulating layer 19, and a wiring layer 23 is formed below the lower end of the via conductor 21 and under the insulating layer 19. Under the wiring layer 23, a solder resist layer (resin insulating layer) 25 is formed, and the wiring 27 in the wiring layer 23 exposed in the opening 25b opening to the second main surface 25a side has Ni And Au plating is coated,
It becomes a connection terminal to a motherboard such as a printed board (not shown) on which the wiring board 1 itself is mounted. In addition, a pin (Kovar, Fe-42 wt%) is connected to the wiring 27 of the connection terminal.
Ni alloy, copper, etc.) may be soldered.
【0024】以上の配線層17,23および樹脂絶縁層
19,25は、ビルドアップ層BU2を形成する。尚、
配線基板本体2や絶縁層4,5を挟んだ上下の配線層1
6,17は、スルーホール導体14を介して導通し、且
つ各チップコンデンサ10の電極11,12を介しても
導通している。そして、以上のような配線基板1におけ
る配線基板本体2、樹脂9、および電子部品であるチッ
プコンデンサ10の各熱膨張率α1,α2,α3は、数
式7の関係になるように予め設定される(即ち、配線基
板本体2の熱膨張率:α1、樹脂9の熱膨張率:α2、
電子部品10の熱膨張率:α3)。The wiring layers 17, 23 and the resin insulating layers 19, 25 form a build-up layer BU2. still,
Upper and lower wiring layers 1 sandwiching wiring board body 2 and insulating layers 4 and 5
6 and 17 are conductive through the through-hole conductor 14 and are also conductive through the electrodes 11 and 12 of each chip capacitor 10. The coefficients of thermal expansion α1, α2, α3 of the wiring board main body 2, the resin 9, and the chip capacitor 10 as an electronic component in the wiring board 1 as described above are set in advance so as to satisfy the relationship of Expression 7. (That is, the coefficient of thermal expansion of the wiring board body 2 is α1, the coefficient of thermal expansion of the resin 9 is α2,
Thermal expansion coefficient of electronic component 10: α3).
【0025】[0025]
【数7】α3<α1≦α2Equation 3 α3 <α1 ≦ α2
【0026】本実施形態では、α1:15ppm/℃、
α2:32ppm/℃、α3:10ppm/℃とした。
これにより、樹脂9のキュア処理時の加熱や第1主面2
6上にICチップ29を搭載する際の前記バンプ28の
加熱時において、各コンデンサ10が膨張しても配線基
板本体2や樹脂9は更に大きく膨張し、配線基板本体2
中の貫通孔8および各コンデンサ10を包囲する樹脂9
自体が大きくなる。従って、樹脂9や配線基板本体2が
割れたり破損する事態を防止できるので、各コンデンサ
10と内部の配線層22,23などとの間における導通
を安定した状態で確実に取り得る。また、数式7に対し
て更にICチップ(半導体素子)29の熱膨張率α4を加
えると、数式8の関係になる。In the present embodiment, α1: 15 ppm / ° C.,
α2: 32 ppm / ° C., α3: 10 ppm / ° C.
Thereby, heating during the curing process of the resin 9 and the first main surface 2
When the bumps 28 are heated when the IC chip 29 is mounted on the wiring board 6, the wiring board body 2 and the resin 9 expand further even if the capacitors 10 expand, and the wiring board body 2
Resin 9 surrounding through hole 8 and each capacitor 10 inside
It grows larger. Therefore, the resin 9 and the wiring board main body 2 can be prevented from being broken or damaged, so that the conduction between each capacitor 10 and the internal wiring layers 22 and 23 can be reliably obtained in a stable state. Further, when the coefficient of thermal expansion α4 of the IC chip (semiconductor element) 29 is further added to Expression 7, the relationship of Expression 8 is obtained.
【0027】[0027]
【数8】α4≦α3<α1≦α2[Equation 8] α4 ≦ α3 <α1 ≦ α2
【0028】本実施形態では、α4:4ppm/℃とし
た。このため、例えば第1主面26上にICチップ29
を搭載する際の前記バンプ28の加熱時に、ICチップ
29が熱膨しても該チップ29の熱膨張率α4は各チッ
プコンデンサ(電子部品)10の熱膨張率α3と同じかそ
れ以下である。このため、配線基板本体2やコンデンサ
10を内蔵する樹脂9に影響しなくなる。従って、IC
チップ29と各コンデンサ10とを配線層22などを介
して確実且つ安定して導通できる。尚、絶縁層18,1
9などには、熱膨張率α5が60ppm/℃の樹脂を用
いた。In the present embodiment, α4: 4 ppm / ° C. Therefore, for example, the IC chip 29 is placed on the first main surface 26.
Even when the IC chip 29 thermally expands when the bumps 28 are heated when mounting the chip, the thermal expansion coefficient α4 of the chip 29 is equal to or less than the thermal expansion coefficient α3 of each chip capacitor (electronic component) 10. . For this reason, it does not affect the wiring board main body 2 or the resin 9 containing the capacitor 10. Therefore, IC
The chip 29 and each capacitor 10 can be reliably and stably conducted through the wiring layer 22 or the like. The insulating layers 18 and 1
For 9 and the like, a resin having a coefficient of thermal expansion α5 of 60 ppm / ° C. was used.
【0029】前記絶縁層4,5には、配線層6,16間
または配線層7,17間を接続するビア導体を形成して
も良い。また、本実施形態において、ビア導体はフィル
ドビア導体20などでなく、完全に導体で埋まってない
コンフォーマルビア導体とすることもできる。また、配
線基板1によれば、図1に示すように、スルーホール導
体14が配線基板本体2および絶縁層4,5などを貫通
する。このため、その直上(図1で上側/下側)にビア導
体20,21を形成可能となるので、かかるスルーホー
ル導体14の部分(絶縁層4,5の貫通部分)にフィルド
ビア導体を形成して、スタックドビア(積み上げビア)構
造とする必要がなくなる。これにより、フィルドビア導
体を絶縁層4,5に形成する必要がなく、ビア導体形成
のコストを低減することもできる。更に、チップコンデ
ンサ10の電極11とICチップ29との間の導通経路
も比較的短くなり、かかる経路のループインダクタンス
を低減できるなどの電気的特性を安定化することも可能
となる。In the insulating layers 4 and 5, via conductors for connecting the wiring layers 6 and 16 or connecting the wiring layers 7 and 17 may be formed. In the present embodiment, the via conductor is not limited to the filled via conductor 20 or the like, but may be a conformal via conductor that is not completely filled with the conductor. According to the wiring board 1, as shown in FIG. 1, the through-hole conductor 14 penetrates the wiring board body 2, the insulating layers 4, 5, and the like. For this reason, the via conductors 20 and 21 can be formed immediately above (upper / lower in FIG. 1), and a filled via conductor is formed in the portion of the through-hole conductor 14 (the penetrating portion of the insulating layers 4 and 5). This eliminates the need for a stacked via (stacked via) structure. Accordingly, it is not necessary to form the filled via conductor in the insulating layers 4 and 5, and the cost of forming the via conductor can be reduced. Furthermore, the conduction path between the electrode 11 of the chip capacitor 10 and the IC chip 29 is relatively short, and it is also possible to stabilize electrical characteristics such as reducing the loop inductance of such a path.
【0030】図2乃至図4に基づいて、前記配線基板1
の主要な製造工程を説明する。図2(A)に示すように、
表・裏面2a,2bに厚さ18μmの銅箔3a,3bを
有する厚さ0.55mmのガラスクロスーエポキシ樹脂
からなる配線基板本体(コア基板)2を用意する。尚、本
実施形態では、配線基板本体に単層の絶縁基板2を用い
たが、これに限ることなく、内部配線を有する絶縁基板
や、複数の絶縁基板と配線とを積層した絶縁基板などの
多層基板を使用しても良い。次に、銅箔3a,3b上に
所定のパターンを有する図示しないエッチングレジスト
を形成した後、エッチング(公知のサブトラクティブ法)
を施す。この結果、図2(B)に示すように、配線基板本
体2の表・裏面2a,2b上に所定パターンの配線層
6,7が形成される。尚、配線層6,7は、丸孔6a,
7aを有する。次いで、配線基板本体2の表・裏面2
a,2bおよび配線層6,7を粗化した後、これらの上
に厚さ60μmで且つシリカフィラ入りのエポキシ系樹
脂のフィルムを熱圧着により貼り付ける。この結果、図
2(B)に示すように、配線基板本体2の表・裏面2a,
2b上に絶縁層4,5が形成される。Referring to FIG. 2 to FIG.
The main manufacturing steps will be described. As shown in FIG.
A wiring board main body (core board) 2 made of glass cloth-epoxy resin and having a thickness of 0.55 mm and having copper foils 3a and 3b having a thickness of 18 μm on the front and back surfaces 2a and 2b is prepared. In the present embodiment, a single-layer insulating substrate 2 is used for the wiring substrate body. However, the present invention is not limited to this. For example, an insulating substrate having internal wiring, an insulating substrate in which a plurality of insulating substrates and wiring are stacked, or the like may be used. A multilayer substrate may be used. Next, after forming an etching resist (not shown) having a predetermined pattern on the copper foils 3a and 3b, etching is performed (known subtractive method).
Is applied. As a result, as shown in FIG. 2B, wiring layers 6 and 7 having a predetermined pattern are formed on the front and back surfaces 2a and 2b of the wiring board main body 2. Note that the wiring layers 6 and 7 have round holes 6a,
7a. Next, the front and back surfaces 2 of the wiring board body 2
After roughening the wiring layers a and 2b and the wiring layers 6 and 7, an epoxy resin film having a thickness of 60 μm and containing silica filler is bonded thereon by thermocompression bonding. As a result, as shown in FIG. 2 (B), the front and back surfaces 2a,
The insulating layers 4 and 5 are formed on 2b.
【0031】更に、図2(B)に示すように、絶縁層4の
表面4a側からレーザLs(本実施形態ではCO2レー
ザ)を所定の位置に照射する。この結果、図2(C)に示
すように、直径350μmの複数のスルーホール13
が、配線基板本体2などを含む絶縁層4,5の表・裏面
4a,5a間を貫通して形成される。尚、スルーホール
13は、配線層6,7内の丸孔6a,7aの中央部分を
貫通している。次に、各スルーホール13の内壁および
絶縁層4,5の表・裏面4a,5aに対して、無電解銅
メッキおよび電解銅メッキを施す。該メッキは、当該配
線基板本体2などを含む多数個取り用のパネルにおける
複数の製品単位(配線基板1)に対して施される。この結
果、図2(D)に示すように、各スルーホール13の内壁
に沿って厚さ18μmのスルーホール導体14が形成さ
れ、且つ絶縁層4,5の表・裏面4a,5aに銅メッキ
層4b,5bが形成される。この際、スルーホール導体
14と配線層6,7とは、丸孔6a,7a部分を除いて
接続される。更に、図2(D)に示すように、スルーホー
ル導体14の内側の中空部に充填樹脂15を充填する。Further, as shown in FIG. 2B, a predetermined position is irradiated with a laser Ls (CO 2 laser in this embodiment) from the surface 4a side of the insulating layer 4. As a result, as shown in FIG. 2C, a plurality of through holes 13 having a diameter of 350 μm were formed.
Are formed to penetrate between the front and back surfaces 4a and 5a of the insulating layers 4 and 5 including the wiring board body 2 and the like. The through hole 13 penetrates through the central portions of the round holes 6a and 7a in the wiring layers 6 and 7. Next, electroless copper plating and electrolytic copper plating are applied to the inner wall of each through hole 13 and the front and back surfaces 4a and 5a of the insulating layers 4 and 5. The plating is applied to a plurality of product units (wiring board 1) in the multi-cavity panel including the wiring board body 2 and the like. As a result, as shown in FIG. 2D, a through-hole conductor 14 having a thickness of 18 μm is formed along the inner wall of each through-hole 13 and copper plating is applied to the front and back surfaces 4a and 5a of the insulating layers 4 and 5. The layers 4b and 5b are formed. At this time, the through-hole conductor 14 and the wiring layers 6 and 7 are connected except for the round holes 6a and 7a. Further, as shown in FIG. 2 (D), a hollow resin inside the through-hole conductor 14 is filled with a filling resin 15.
【0032】更に、図3(A)に示すように、配線基板本
体2および絶縁層4,5の中央部をドリル加工して、平
面視が正方形で縦8mm×横8mmの貫通孔8を穿設す
る。この際、貫通孔8における側壁間のコーナに、面取
りまたはアール面を同時に形成しても良い。また、貫通
孔8の側壁に対し、必要に応じて化学的粗化処理を施す
ことにより、表面粗さが中心線平均粗さRaで0.5〜
5.0μmの範囲で、且つ十点平均粗さRzで5.0〜
30.0μmの範囲に入るようにしても良い。更に、か
かる貫通孔8の側壁および次述するチップコンデンサ
(電子部品)10の表面に対し、有機化合物(カップリン
グ剤)を塗布しても良い。次に、図3(A)に示すよう
に、配線基板本体2などを180°回転し、絶縁層4,
5の表・裏面4a,5aを上下逆にした状態で、貫通孔
8の表面4a側に、当該配線基板本体2や絶縁層4,5
を含む多数個取り用のパネルにおける複数の製品単位
(配線基板1)に跨ってテープTを貼り付ける。かかるテ
ープTの粘着面は、貫通孔8側に向けられている。Further, as shown in FIG. 3A, the central portions of the wiring board main body 2 and the insulating layers 4 and 5 are drilled to form a through hole 8 having a square shape in plan view and a length of 8 mm × width 8 mm. Set up. At this time, a chamfer or a round surface may be formed at the corner between the side walls of the through hole 8 at the same time. By subjecting the side wall of the through hole 8 to a chemical roughening treatment as necessary, the surface roughness is 0.5 to 0.5 mm in center line average roughness Ra.
In a range of 5.0 μm and a ten-point average roughness Rz of 5.0 to 5.0.
You may make it fall in the range of 30.0 micrometers. Further, the side wall of the through hole 8 and a chip capacitor described below.
An organic compound (coupling agent) may be applied to the surface of the (electronic component) 10. Next, as shown in FIG. 3A, the wiring board main body 2 and the like are
5, the wiring board body 2 and the insulating layers 4, 5 are placed on the surface 4 a side of the through hole 8 with the front and back surfaces 4 a, 5 a upside down.
Product units in multi-cavity panels, including
The tape T is attached across the (wiring board 1). The adhesive surface of the tape T faces the through hole 8 side.
【0033】次いで、図3(B)に示すように、複数のチ
ップコンデンサ(電子部品)10を図示しないチップマウ
ンタを用いて貫通孔8内に挿入すると共に、各チップコ
ンデンサ10の電極11をテープTの粘着面上における
所定の位置に接着する。図示のように、各チップコンデ
ンサ10における電極11,12の端面は、絶縁層4,
5の表・裏面4a,5a付近に位置している。かかる状
態で、図3(C)に示すように、絶縁層5の裏面5a側か
ら貫通孔8内に、エポキシ樹脂を主成分とする溶けた
(埋込)樹脂9を充填した後、脱泡処理および約100℃
に加熱し且つ約60分保持する硬化処理を施す。次い
で、樹脂9の盛り上がった裏面9aを、例えばバフ研磨
などにより平坦に整面する。Next, as shown in FIG. 3B, a plurality of chip capacitors (electronic components) 10 are inserted into the through holes 8 using a chip mounter (not shown), and the electrodes 11 of each chip capacitor 10 are taped. Adhere to a predetermined position on the adhesive surface of T. As shown, the end faces of the electrodes 11 and 12 in each chip capacitor 10 are
5 are located near the front and back surfaces 4a and 5a. In this state, as shown in FIG. 3 (C), the epoxy resin as a main component was melted into the through hole 8 from the back surface 5 a side of the insulating layer 5.
(Embedding) After filling the resin 9, defoaming treatment and about 100 ° C
Is applied and a curing treatment is carried out for about 60 minutes. Next, the raised back surface 9a of the resin 9 is flattened by, for example, buffing.
【0034】この結果、図4(A)に示すように、各チッ
プコンデンサ10の電極12が露出する平坦な裏面9b
が形成される。また、図示のように、テープTを剥離す
ると、樹脂9の表面9cには各チップコンデンサ10の
電極11がそれぞれ露出する。尚、表面9cも上記同様
に整面すると各電極11を確実に露出させ得る。更に、
図4(B)に示すように、銅メッキ層4b,5bと樹脂9
の表・裏面9c,9bとに渉って銅メッキ層16a,1
7aを形成する。尚、図4(B)では、配線基板本体2は
再度180°回転され表・裏面4a,5aが逆になって
いる。次に、かかる銅メッキ層16a,17aの上に、
所定パターンの図示しないエッチングレジストを形成し
た後、エッチングを施す。As a result, as shown in FIG. 4A, the flat back surface 9b where the electrode 12 of each chip capacitor 10 is exposed is formed.
Is formed. As shown in the figure, when the tape T is peeled off, the electrodes 11 of each chip capacitor 10 are exposed on the surface 9c of the resin 9. If the surface 9c is also leveled in the same manner as described above, each electrode 11 can be reliably exposed. Furthermore,
As shown in FIG. 4B, the copper plating layers 4b and 5b and the resin 9
Copper plating layers 16a, 1b across the front and back surfaces 9c, 9b.
7a is formed. In FIG. 4B, the wiring board main body 2 is again rotated by 180 ° and the front and back surfaces 4a and 5a are reversed. Next, on the copper plating layers 16a and 17a,
After forming an etching resist (not shown) having a predetermined pattern, etching is performed.
【0035】この結果、図4(C)に示すように、絶縁層
4,5の表・裏面4a,5a上に所定パターンの配線層
16,17が形成される。配線層16,17は、チップ
コンデンサ10の電極11,12と接続され、且つスル
ーホール導体14の上下端とも接続される。同時に、ス
ルーホール導体14の内側の充填樹脂15は蓋メッキさ
れ、樹脂9の表・裏面9c,9bが露出する。尚、図4
(C)で、配線層16,17は、前記銅メッキ層4b,5
bのうちで残留した部分を含んでいる。As a result, as shown in FIG. 4C, wiring layers 16 and 17 having a predetermined pattern are formed on the front and back surfaces 4a and 5a of the insulating layers 4 and 5. The wiring layers 16 and 17 are connected to the electrodes 11 and 12 of the chip capacitor 10 and also connected to the upper and lower ends of the through-hole conductor 14. At the same time, the filling resin 15 inside the through-hole conductor 14 is plated with a lid, and the front and back surfaces 9c and 9b of the resin 9 are exposed. FIG.
3C, the wiring layers 16 and 17 correspond to the copper plating layers 4b and 5b.
b includes the remaining portion.
【0036】これ以降は、配線層16,17の上/下
に、エポキシ樹脂のフィルムを熱圧着により貼り付けて
樹脂絶縁層18,19を形成し、かかる絶縁層18,1
9における所定の位置には、フォトリソグラフィ技術な
どにより前記フィルドビア導体20,21が充填・形成
される。更に、ビルドアップ層BU1,BU2を形成す
る配線層22,23、および樹脂絶縁層24,25を、
公知のビルドアップ工程(セミアディティブ法、フルア
ディティブ法、サブトラクティブ法、フィルム状樹脂材
料のラミネートによる絶縁層の形成、フォトリソグラフ
ィ技術など)により形成する。これにより、前記図1に
示した配線基板1を得ることができる。Thereafter, resin insulating layers 18 and 19 are formed by applying an epoxy resin film on / under the wiring layers 16 and 17 by thermocompression bonding.
The filled via conductors 20 and 21 are filled and formed at predetermined positions in 9 by a photolithography technique or the like. Further, the wiring layers 22 and 23 forming the build-up layers BU1 and BU2 and the resin insulating layers 24 and 25 are
It is formed by a known build-up process (a semi-additive method, a full-additive method, a subtractive method, formation of an insulating layer by laminating a film-like resin material, a photolithography technique, and the like). Thus, the wiring board 1 shown in FIG. 1 can be obtained.
【0037】図5は、異なる形態の配線基板30におけ
る主要部の断面を示す。配線基板30は、図5に示すよ
うに、配線基板本体32と、その表面32a上および裏
面32b下に積層した絶縁層34,35と、これらの間
に位置する配線層36,37と、絶縁層34,35の表
・裏面34a上や35a下に形成した配線層46,5
2,47,53、および樹脂絶縁層48,54,49,
55とを有する。配線基板本体32は、平面視が一辺3
0mm正方形で且つ厚み約0.45mmで、ガラスクロ
ス入りのエポキシ樹脂からなる絶縁板(コア基板)であ
る。かかる配線基板本体32の上下に積層した絶縁層3
4,35は、厚みが35μmでシリカフィラなどの無機
フィラ入りのエポキシ系樹脂からなり、これらの間に厚
みが18μmで銅製の配線層36,37が位置する。FIG. 5 shows a cross section of a main part of a wiring board 30 of a different form. As shown in FIG. 5, the wiring board 30 includes a wiring board main body 32, insulating layers 34 and 35 laminated on the front surface 32a and the rear surface 32b thereof, and wiring layers 36 and 37 located therebetween. Wiring layers 46 and 5 formed on the front and back surfaces 34a and 35a of the layers 34 and 35, respectively.
2, 47, 53, and resin insulation layers 48, 54, 49,
55. The wiring board main body 32 has three sides on a plan view.
It is an insulating plate (core substrate) made of epoxy resin containing glass cloth and having a square of 0 mm and a thickness of about 0.45 mm. Insulating layers 3 stacked on and under the wiring board body 32
Reference numerals 4 and 35 each have a thickness of 35 μm and are made of an epoxy-based resin containing an inorganic filler such as silica filler. Between them, copper wiring layers 36 and 37 having a thickness of 18 μm are located.
【0038】また、図5に示すように、配線基板本体3
2および絶縁層34,35の中央付近には、絶縁層34
の表面34a側に開口した凹部38が形成されている。
かかる凹部38は、平面視が正方形で一辺が8mmのサ
イズであり、絶縁層34および配線基板本体32をドリ
ル加工した後、絶縁層35を圧着するか、絶縁層34の
表面34a側からエンドミルによるルータ加工を、絶縁
層34と配線基板本体32との合計厚さ分で行うことに
より形成される。尚、凹部38の側壁および底面も、前
記貫通孔8と同様の表面粗さとしたり、前記有機化合物
を被覆しても良く、そのコーナを面取りやアール面とし
ても良い。Further, as shown in FIG.
2 and near the center of the insulating layers 34 and 35, the insulating layer 34
A concave portion 38 is formed on the surface 34a side.
The recess 38 is square in plan view and has a size of 8 mm on a side. After the insulating layer 34 and the wiring board main body 32 are drilled, the insulating layer 35 is crimped or an end mill is used from the surface 34a side of the insulating layer 34. It is formed by performing router processing with the total thickness of the insulating layer 34 and the wiring board main body 32. Incidentally, the side wall and the bottom surface of the concave portion 38 may have the same surface roughness as the through hole 8 or may be coated with the organic compound, and the corner thereof may be chamfered or rounded.
【0039】かかる凹部38には、(埋込)樹脂39を介
して、複数のチップコンデンサ40が内蔵される。かか
るチップコンデンサ40は、その両側面において上下端
に突出し且つ絶縁層34の表面34aまたは凹部38の
底面38aに位置する複数の電極41,42を対称に有
する。また、図5に示すように、凹部38の底面38a
には、絶縁層35を貫通するスルーホール導体60の上
端に接続する配線層62が複数形成され、上記コンデン
サ40の各電極42と個別に接続されている。スルーホ
ール導体60は、その下端で絶縁層35の裏面35aに
形成される配線層47と個別に接続される。尚、各スル
ーホール導体60の内側には、充填樹脂64が形成され
ている。A plurality of chip capacitors 40 are built in the recess 38 via a (buried) resin 39. The chip capacitor 40 has a plurality of electrodes 41 and 42 symmetrically protruding from the upper and lower ends on both side surfaces thereof and located on the surface 34 a of the insulating layer 34 or the bottom surface 38 a of the recess 38. Also, as shown in FIG.
A plurality of wiring layers 62 connected to the upper end of the through-hole conductor 60 penetrating the insulating layer 35 are formed, and are individually connected to the respective electrodes 42 of the capacitor 40. The through-hole conductors 60 are individually connected at their lower ends to the wiring layers 47 formed on the back surface 35a of the insulating layer 35. Note that a filling resin 64 is formed inside each through-hole conductor 60.
【0040】更に、図5に示すように、凹部38の周囲
には、前記形態と同様にして、配線基板本体32を含む
絶縁層34,35の表・裏面34a,35a間を貫通す
る複数のスルーホール43が穿孔され、その内部に銅メ
ッキからなるスルーホール導体44とシリカフィラを含
む充填樹脂45とがそれぞれ形成されている。各スルー
ホール導体44は、その中間で配線層36または配線層
37と接続される。但し、配線層36,37の丸孔36
a,37a部分では、スルーホール導体44は配線層3
6,37と接続されていない。また、図5に示すよう
に、絶縁層34の表面34aの上方には、前記形態と同
様に、配線層46,52、樹脂絶縁層48,54、フィ
ルドビア導体50、およびハンダバンプ(IC接続端子)
58が形成され、且つ第1主面56にはICチップ29
が実装可能とされている。配線層46,52および樹脂
絶縁層48,54は、ビルドアップ層BU3を形成す
る。Further, as shown in FIG. 5, around the concave portion 38, a plurality of insulating layers 34 and 35 including the wiring board main body 32 penetrate between the front and back surfaces 34a and 35a of the insulating layers 34 and 35 in the same manner as in the above embodiment. A through-hole 43 is drilled, and a through-hole conductor 44 made of copper plating and a filling resin 45 containing silica filler are formed therein. Each through-hole conductor 44 is connected to the wiring layer 36 or the wiring layer 37 in the middle. However, the round holes 36 of the wiring layers 36 and 37
a, 37a, the through-hole conductor 44 is connected to the wiring layer 3
6 and 37 are not connected. As shown in FIG. 5, above the surface 34a of the insulating layer 34, the wiring layers 46 and 52, the resin insulating layers 48 and 54, the filled via conductors 50, and the solder bumps (IC connection terminals) are formed in the same manner as in the above embodiment.
58 are formed, and the IC chip 29 is formed on the first main surface 56.
Can be implemented. The wiring layers 46 and 52 and the resin insulating layers 48 and 54 form a build-up layer BU3.
【0041】更に、図5に示すように、絶縁層35の裏
面35aの下方にも、前記形態と同様に、配線層47,
53、樹脂絶縁層49,55、フィルドビア導体51、
および、配線層53から延び且つ第2主面55a側に開
口する開口部57内で露出する接続端子用の配線59が
形成されている。配線層47,53および樹脂絶縁層4
9,55は、ビルドアップ層BU4を形成する。そし
て、以上のような配線基板30における配線基板本体3
2、樹脂39、および電子部品であるチップコンデンサ
40の各熱膨張率α1,α2,α3も、数式9の関係に
なるように予め設定される。Further, as shown in FIG. 5, below the back surface 35a of the insulating layer 35, the wiring layers 47,
53, resin insulation layers 49 and 55, filled via conductor 51,
In addition, a wiring 59 for a connection terminal is formed, which extends from the wiring layer 53 and is exposed in an opening 57 that opens to the second main surface 55a side. Wiring layers 47 and 53 and resin insulating layer 4
9, 55 form the build-up layer BU4. The wiring board body 3 in the wiring board 30 as described above
2, the thermal expansion coefficients α1, α2, α3 of the resin 39 and the chip capacitor 40, which is an electronic component, are also set in advance so as to satisfy the relationship of Expression 9.
【0042】[0042]
【数9】α3<α1≦α2## EQU9 ## α3 <α1 ≦ α2
【0043】本実施形態では、α1:16ppm/℃、
α2:23ppm/℃、α3:8ppm/℃とした。こ
の結果、樹脂39のキュア処理時の加熱や第1主面56
上にICチップ29を搭載する際の前記バンプ58の加
熱時において、各コンデンサ40が膨張しても配線基板
本体32や樹脂39は更に大きく膨張し、配線基板本体
32中の凹部38および各コンデンサ40を包囲する樹
脂39自体が大きくなる。従って、配線基板本体32や
樹脂39が割れたり破損する事態を防止できるので、各
コンデンサ40と内部の配線層52,53などとの間の
導通を安定して確実に取り得る。また、数式9に対して
更にICチップ(半導体素子)29の熱膨張率α4を加え
ると、数式10の関係になる。In this embodiment, α1: 16 ppm / ° C.,
α2: 23 ppm / ° C., α3: 8 ppm / ° C. As a result, heating during the curing process of the resin 39 and the first main surface 56
When the bumps 58 are heated when the IC chip 29 is mounted thereon, even if each capacitor 40 expands, the wiring board main body 32 and the resin 39 expand more greatly, and the concave portion 38 in the wiring board main body 32 and each capacitor The resin 39 surrounding the resin 40 itself becomes large. Accordingly, it is possible to prevent the wiring board main body 32 and the resin 39 from being cracked or damaged, so that the conduction between each capacitor 40 and the internal wiring layers 52 and 53 can be stably and reliably obtained. Further, when the thermal expansion coefficient α4 of the IC chip (semiconductor element) 29 is further added to Expression 9, the relationship of Expression 10 is obtained.
【0044】[0044]
【数10】α4≦α3<α1≦α2## EQU10 ## α4 ≦ α3 <α1 ≦ α2
【0045】本実施形態では、α4:4ppm/℃とし
た。このため、例えば第1主面56上にICチップ29
を搭載する際の前記バンプ58の加熱時に、ICチップ
29が熱膨しても該チップ29の熱膨張率α4は、各コ
ンデンサ(電子部品)40の熱膨張率α3と同じかそれ以
下となる。このため、配線基板本体32やコンデンサ4
0を内蔵する樹脂39に影響しなくなる。従って、各コ
ンデンサ40とICチップ29とを配線層52などを介
して確実に安定して導通できる。尚、配線基板30にお
いて、上端側の電極41のみを有するチップコンデンサ
40を用いても良い。かかる形態では、凹部38の底面
38aと絶縁層35の裏面35aとの間を貫通する前記
スルーホール導体60や充填樹脂64などを省略するこ
とができる。また、絶縁層48,49などには、熱膨張
率α5が60ppm/℃の樹脂を用いた。In the present embodiment, α4: 4 ppm / ° C. Therefore, for example, the IC chip 29 is placed on the first main surface 56.
When the bumps 58 are heated when the IC chip 29 is mounted, the thermal expansion coefficient α4 of the chip 29 becomes equal to or less than the thermal expansion coefficient α3 of each capacitor (electronic component) 40 even if the IC chip 29 thermally expands. . For this reason, the wiring board body 32 and the capacitor 4
It does not affect the resin 39 containing 0. Accordingly, each capacitor 40 and the IC chip 29 can be reliably and stably conducted through the wiring layer 52 and the like. In the wiring board 30, a chip capacitor 40 having only the upper electrode 41 may be used. In such a form, the through-hole conductor 60 and the filling resin 64 penetrating between the bottom surface 38a of the concave portion 38 and the back surface 35a of the insulating layer 35 can be omitted. For the insulating layers 48 and 49, a resin having a coefficient of thermal expansion α5 of 60 ppm / ° C. was used.
【0046】本発明は、以上において説明した各形態に
限定されるものではない。例えば、前記電子部品には、
インダクタ、抵抗、フィルタなどの受動部品や、ローノ
イズアンプ(LNA)、メモリ、またはトランジスタなど
の能動部品、あるいは、これらをチップ状にしたもの、
更には、これらのうち異種のもの同士を同じ貫通孔や凹
部内に内蔵しても良い。また、電子部品は、一つのみを
前記貫通孔または凹部内に内蔵しても良い。この場合、
電子部品の電極をハンダ付けにより、配線層やこれに接
続するランドに接続することも可能である。更に、配線
基板本体や絶縁層などには、複数の貫通孔または凹部を
形成しても良く、あるいは、貫通孔と凹部とを隣接して
併設することも可能である。また、前記配線基板本体
(コア基板)2,32の材質は、前記ガラス−エポキシ樹
脂複合材料の他、同様の耐熱性、機械強度、可撓性、加
工容易性などを有するガラス織布や、ガラス織布などの
ガラス繊維とエポキシ樹脂、ポリイミド樹脂、BT樹脂
などの樹脂との複合材料であるガラス繊維−樹脂系の材
料を用いても良い。あるいは、ポリイミド繊維などの有
機繊維と樹脂との複合材料、連続気孔を有するPTFE
などの3次元網目構造のフッ素系樹脂にエポキシ樹脂な
どの樹脂を含浸させた樹脂−樹脂系の複合材料などを用
いることも可能である。The present invention is not limited to the embodiments described above. For example, in the electronic component,
Passive components such as inductors, resistors, and filters, active components such as low-noise amplifiers (LNA), memories, or transistors, or chips of these,
Further, of these, different types may be incorporated in the same through hole or recess. Further, only one electronic component may be built in the through hole or the concave portion. in this case,
The electrodes of the electronic component can be connected to the wiring layer and the lands connected thereto by soldering. Further, a plurality of through holes or recesses may be formed in the wiring board main body, the insulating layer, or the like, or the through holes and the recesses may be provided adjacent to each other. Also, the wiring board body
(Core substrate) The material of 2, 32 is a glass woven cloth having the same heat resistance, mechanical strength, flexibility, workability, etc., and glass woven cloth other than the glass-epoxy resin composite material. A glass fiber-resin-based material that is a composite material of a fiber and a resin such as an epoxy resin, a polyimide resin, or a BT resin may be used. Alternatively, a composite material of an organic fiber such as a polyimide fiber and a resin, PTFE having continuous pores
It is also possible to use a resin-resin composite material in which a resin such as an epoxy resin is impregnated into a fluorine resin having a three-dimensional network structure.
【0047】更に、前記絶縁層4,5などや前記樹脂絶
縁層18,19などの材質は、前記エポキシ樹脂を主成
分とするものの他、同様の耐熱性、パターン成形性など
を有するポリイミド樹脂、BT樹脂、PPE樹脂、ある
いは、連続気孔を有するPTFEなどの3次元網目構造
のフッ素系樹脂にエポキシ樹脂などの樹脂を含浸させた
樹脂−樹脂系の複合材料などを用いることもできる。ま
た、前記配線層16,17などの材質は、前記銅メッキ
の他、Niや、Ni−Auなどの金属メッキにしても良
く、あるいは、かかる金属メッキを用いず、導電性樹脂
を塗布する等の方法によって形成することも可能であ
る。更に、ICチップ29との接続端子には、前記ハン
ダバンプ28などの他、フリップチップパッド、ワイヤ
ボンディングパッド、あるいはTAB接続用パッドを形
成したものなどを用いても良い。Further, the material of the insulating layers 4 and 5 and the resin insulating layers 18 and 19 may be a polyimide resin having the same heat resistance and pattern moldability in addition to the epoxy resin as a main component. A BT resin, a PPE resin, or a resin-resin composite material in which a resin such as an epoxy resin is impregnated with a fluorine-based resin having a three-dimensional network structure such as PTFE having continuous pores can also be used. The material of the wiring layers 16 and 17 may be metal plating such as Ni or Ni-Au other than the copper plating, or a conductive resin may be applied without using such metal plating. It is also possible to form by the method of. Further, as the connection terminals to the IC chip 29, in addition to the solder bumps 28 and the like, flip chip pads, wire bonding pads, or those formed with TAB connection pads may be used.
【0048】また、電子部品の前記コンデンサ10,4
0では、BaTiO3を主成分とする高誘電体セラミッ
クを用いたが、PbTiO3,PbZrO3,Ti
O2,SrTiO3,CaTiO3,MgTiO3,K
NbO3,NaTiO3,KTaO3,PbTaO3,
(Na1/2Bi1/2)TiO3,Pb(Mg1/2W
1 /2)O3,(K1/2Bi1/2)TiO3などを主
成分とするものを用いても良い。更に、前記電子部品1
0,40の電極11,12などの材質は、Cuを主成分
としたが、電子部品10,40との適合性を有するP
t,Ag,Ag−Pt,Ag−Pd,Cu,Au,Ni
などを用いることができる。加えて、電子部品の前記コ
ンデンサ10は、高誘電体セラミックを主成分とする誘
電体層やAg−Pd等からなる電極層と、樹脂やCuメ
ッキ、Niメッキ等からなるビア導体や配線層とを複合
させたコンデンサとしたものとしても良い。尚、本発明
の配線基板には、前記絶縁層4,5,34,35の表面
4a,34aと裏面5a,35aとに配線層16,17
などのみを有する形態も含まれる。The capacitors 10 and 4 of the electronic parts
0, a high dielectric ceramic containing BaTiO 3 as a main component was used, but PbTiO 3 , PbZrO 3 , Ti
O 2 , SrTiO 3 , CaTiO 3 , MgTiO 3 , K
NbO 3 , NaTiO 3 , KTaO 3 , PbTaO 3 ,
(Na 1/2 Bi 1/2 ) TiO 3 , Pb (Mg 1 / 2W
1/2) O 3, it may be used as the main component such as (K 1/2 Bi 1/2) TiO 3 . Further, the electronic component 1
The materials of the 0, 40 electrodes 11, 12, etc. are mainly composed of Cu, but P which has compatibility with the electronic components 10, 40.
t, Ag, Ag-Pt, Ag-Pd, Cu, Au, Ni
Etc. can be used. In addition, the capacitor 10 of the electronic component includes a dielectric layer mainly composed of a high dielectric ceramic, an electrode layer made of Ag-Pd, and a via conductor or a wiring layer made of resin, Cu plating, Ni plating, or the like. May be combined as a capacitor. The wiring board of the present invention has wiring layers 16, 17 on the front surfaces 4a, 34a and the back surfaces 5a, 35a of the insulating layers 4, 5, 34, 35.
A form having only the above is also included.
【0049】[0049]
【発明の効果】以上において説明した本発明の配線基板
(請求項1)によれば、配線基板本体の熱膨張率は、電子
部品のそれよりも大きく、且つかかる電子部品が埋設さ
れる樹脂のそれと等しいか、またはそれよりも小さい関
係にある。このため、溶けた樹脂を固化させるためや別
途の位置での加熱に際し、上記電子部品が膨張しても配
線基板本体や樹脂は更に大きく膨張するので、かかる配
線基板本体中の貫通孔または凹部、あるいは上記電子部
品を包囲する樹脂自体が大きくなる。従って、樹脂や配
線基板本体が割れたり破損する事態を防止できるので、
電子部品と内部の配線層との間における導通を安定して
確実に取ることが可能となる。The wiring board of the present invention described above.
According to the first aspect, the thermal expansion coefficient of the wiring board main body is higher than that of the electronic component, and is equal to or smaller than that of the resin in which the electronic component is embedded. For this reason, in order to solidify the melted resin or when heating at a separate position, even if the electronic component expands, the wiring board main body and the resin further expand, so that a through hole or a concave portion in the wiring board main body, Alternatively, the resin itself surrounding the electronic component becomes large. Therefore, it is possible to prevent the resin or the wiring board body from being broken or damaged,
Conduction between the electronic component and the internal wiring layer can be stably and reliably achieved.
【0050】また、請求項2の配線基板によれば、上記
に加えて、半導体素子の熱膨張率が電子部品の熱膨張率
と同じかそれ以下の関係になるため、例えば第1主面上
等に半導体素子を搭載する際のハンダ付け時において、
半導体素子が熱膨してもその熱膨張率は電子部品と同じ
かそれ以下であるため、配線基板本体や電子部品を埋設
する樹脂に影響しなくなる。従って、搭載した半導体素
子と電子部品とを直にまたは内部の配線層を介して確実
且つ安定して導通できると共に、かかる配線基板を効率
良く製造することも可能となる。更に、請求項3の配線
基板によれば、前記樹脂や配線基板本体が割れたり破損
する事態を防止したり、半導体素子の膨張による配線基
板本体などへの影響を一層確実に阻止することが可能と
なる。According to the second aspect of the present invention, in addition to the above, since the coefficient of thermal expansion of the semiconductor element is equal to or less than the coefficient of thermal expansion of the electronic component, for example, on the first main surface. At the time of soldering when mounting semiconductor elements on etc.
Even if the semiconductor element expands thermally, its coefficient of thermal expansion is equal to or less than that of the electronic component, and thus does not affect the wiring board body or the resin in which the electronic component is embedded. Accordingly, the mounted semiconductor element and the electronic component can be reliably and stably conducted directly or via the internal wiring layer, and the wiring substrate can be manufactured efficiently. Further, according to the wiring board of the third aspect, it is possible to prevent the resin or the wiring board main body from being cracked or damaged, and to more reliably prevent the expansion of the semiconductor element from affecting the wiring board main body. Becomes
【図1】本発明の1形態の配線基板における主要部を示
す断面図。FIG. 1 is a cross-sectional view illustrating a main part of a wiring board according to one embodiment of the present invention.
【図2】(A)〜(D)は図1の配線基板の製造方法におけ
る主要な工程を示す概略図。FIGS. 2A to 2D are schematic diagrams showing main steps in a method of manufacturing the wiring board of FIG. 1;
【図3】(A)〜(C)は図2(D)に続く前記製造方法の主
要な工程を示す概略図。3 (A) to 3 (C) are schematic views showing main steps of the manufacturing method following FIG. 2 (D).
【図4】(A)〜(C)は図3(C)に続く前記製造方法の主
要な工程を示す概略図。4 (A) to 4 (C) are schematic views showing main steps of the manufacturing method following FIG. 3 (C).
【図5】本発明の異なる形態の配線基板における主要部
を示す断面図。FIG. 5 is a sectional view showing a main part of a wiring board according to another embodiment of the present invention.
【図6】(A),(B)は従来の配線基板を示す概略図。6A and 6B are schematic diagrams showing a conventional wiring board.
1,30…………………配線基板 2,32…………………配線基板本体 2a,32a……………表面 2b,32b……………裏面 4,5,34,35……絶縁層 6,7,36,37……配線層 8…………………………貫通孔 9,39…………………樹脂 10,40………………チップコンデンサ(電子部品) 26,56………………第1主面(配線基板本体の表面
上方) 29………………………ICチップ(半導体素子) 34a……………………絶縁層の表面 38………………………凹部1, 30 Wiring board 2, 32 Wiring board body 2a, 32a Front surface 2b, 32b Back surface 4, 5, 34, 35 ... Insulating layer 6,7,36,37 ... Wiring layer 8 ... Through hole 9,39 ... Resin 10,40 ... Chip capacitor (Electronic components) 26, 56… First main surface (above the surface of the wiring board main body) 29… IC chip (semiconductor element) 34a ……………… Insulating layer surface 38 recess
フロントページの続き (72)発明者 小川 幸樹 愛知県名古屋市瑞穂区高辻町14番18号 日 本特殊陶業株式会社内 Fターム(参考) 5E346 AA25 AA26 CC04 CC09 CC32 FF03 FF45 GG15 HH07 HH11Continued on the front page (72) Inventor Yuki Ogawa 14-18 Takatsuji-cho, Mizuho-ku, Nagoya-shi, Aichi F-term in Japan Special Ceramics Co., Ltd. 5E346 AA25 AA26 CC04 CC09 CC32 FF03 FF45 GG15 HH07 HH11
Claims (3)
積層された絶縁層と、 上記配線基板本体とその表面および裏面上に積層された
絶縁層とを貫通する貫通孔、または上記絶縁層の表面側
に開口する凹部と、 上記貫通孔または凹部内に内臓され且つ樹脂を介して固
着される電子部品と、を含むと共に、上記配線基板本
体、樹脂、および電子部品の熱膨張率α1,α2,α3
が数式1の関係にある、ことを特徴とする配線基板。 【数1】α3<α1≦α2A wiring board main body having a front surface and a back surface; an insulating layer laminated on the front surface and the back surface of the wiring substrate body via a wiring layer; A through hole penetrating through the insulating layer, or a recess opening on the surface side of the insulating layer; and an electronic component incorporated in the through hole or the recess and fixed via a resin, and Thermal expansion coefficients α1, α2, α3 of substrate body, resin, and electronic components
Has the relationship of Formula 1. Equation 1 α3 <α1 ≦ α2
積層された絶縁層と、 上記配線基板本体とその表面および裏面上に積層された
絶縁層とを貫通する貫通孔、または上記絶縁層の表面側
に開口する凹部と、 上記貫通孔または凹部内に内臓され且つ樹脂を介して固
着される電子部品と、 上記配線基板本体の表面上方に搭載され且つ上記電子部
品と導通される半導体素子と、を含むと共に、 上記配線基板本体、樹脂、電子部品、および半導体素子
の熱膨張率α1,α2,α3,α4が数式2の関係にあ
る、 ことを特徴とする配線基板。 【数2】α4≦α3<α1≦α22. A wiring board body having a front surface and a back surface, an insulating layer laminated on the front surface and the back surface of the wiring substrate body via a wiring layer, and a wiring substrate body and the insulating layer laminated on the front surface and the back surface thereof. A through hole that penetrates through the insulating layer, or a concave portion that opens on the surface side of the insulating layer; an electronic component that is embedded in the through hole or the concave portion and that is fixed via a resin; And a thermal expansion coefficient α1, α2, α3, α4 of the wiring board main body, the resin, the electronic component, and the semiconductor element. A wiring board, characterized in that: ## EQU2 ## α4 ≦ α3 <α1 ≦ α2
℃よりも小さい、 ことを特徴とする請求項1または2に記載の配線基板。3. The resin has a coefficient of thermal expansion α2 of 40 ppm /
The wiring board according to claim 1, wherein the wiring board is lower than ℃.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2001043758A JP2001313474A (en) | 2000-02-21 | 2001-02-20 | Wiring board |
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2000043619 | 2000-02-21 | ||
| JP2000-43619 | 2000-02-21 | ||
| JP2001043758A JP2001313474A (en) | 2000-02-21 | 2001-02-20 | Wiring board |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JP2001313474A true JP2001313474A (en) | 2001-11-09 |
Family
ID=26585786
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2001043758A Pending JP2001313474A (en) | 2000-02-21 | 2001-02-20 | Wiring board |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP2001313474A (en) |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2006080203A (en) * | 2004-09-08 | 2006-03-23 | Hitachi Chem Co Ltd | Multilayer printed circuit board, semiconductor-chip loading substrate and semiconductor package and these manufacturing method |
| US7644497B2 (en) | 2002-10-08 | 2010-01-12 | Dai Nippon Printing Co., Ltd. | Component built-in wiring board and manufacturing method of component built-in wiring board |
| US7923367B2 (en) | 2006-10-20 | 2011-04-12 | Shinko Electric Industries Co., Ltd. | Multilayer wiring substrate mounted with electronic component and method for manufacturing the same |
| CN106463494A (en) * | 2014-05-21 | 2017-02-22 | 高通股份有限公司 | Embedded package substrate capacitor |
| US9859221B2 (en) | 2014-02-21 | 2018-01-02 | Ibiden Co., Ltd. | Multilayer wiring board with built-in electronic component |
Citations (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH04320390A (en) * | 1991-04-19 | 1992-11-11 | Hitachi Ltd | Mounting method for surface-mounted semiconductor components |
| JPH07263586A (en) * | 1994-03-18 | 1995-10-13 | Hitachi Ltd | Resin-sealed semiconductor device and semiconductor mounting device |
| JPH07297560A (en) * | 1994-04-28 | 1995-11-10 | Hitachi Ltd | Multilayer printed wiring board and its mounting structure |
| JPH088354A (en) * | 1994-06-17 | 1996-01-12 | Hitachi Ltd | Semiconductor device and manufacturing method thereof |
| JPH09172110A (en) * | 1995-12-21 | 1997-06-30 | Toshiba Corp | Semiconductor device |
| JPH09199824A (en) * | 1995-11-16 | 1997-07-31 | Matsushita Electric Ind Co Ltd | Printed wiring board and its assembly |
| JPH09237962A (en) * | 1995-12-28 | 1997-09-09 | Sanyo Electric Co Ltd | Electronic circuit device |
| JPH09321408A (en) * | 1996-05-31 | 1997-12-12 | Nec Corp | High density mounting structure of electronic circuit board |
| JPH1117346A (en) * | 1997-06-20 | 1999-01-22 | Hitachi Chem Co Ltd | Multilayer wiring board |
| JPH11284111A (en) * | 1998-03-30 | 1999-10-15 | Sumitomo Special Metals Co Ltd | Heat sink member, manufacture thereof and semiconductor package using the hear sink member |
| JPH11312868A (en) * | 1998-04-28 | 1999-11-09 | Kyocera Corp | Element built-in multilayer wiring board and method of manufacturing the same |
-
2001
- 2001-02-20 JP JP2001043758A patent/JP2001313474A/en active Pending
Patent Citations (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH04320390A (en) * | 1991-04-19 | 1992-11-11 | Hitachi Ltd | Mounting method for surface-mounted semiconductor components |
| JPH07263586A (en) * | 1994-03-18 | 1995-10-13 | Hitachi Ltd | Resin-sealed semiconductor device and semiconductor mounting device |
| JPH07297560A (en) * | 1994-04-28 | 1995-11-10 | Hitachi Ltd | Multilayer printed wiring board and its mounting structure |
| JPH088354A (en) * | 1994-06-17 | 1996-01-12 | Hitachi Ltd | Semiconductor device and manufacturing method thereof |
| JPH09199824A (en) * | 1995-11-16 | 1997-07-31 | Matsushita Electric Ind Co Ltd | Printed wiring board and its assembly |
| JPH09172110A (en) * | 1995-12-21 | 1997-06-30 | Toshiba Corp | Semiconductor device |
| JPH09237962A (en) * | 1995-12-28 | 1997-09-09 | Sanyo Electric Co Ltd | Electronic circuit device |
| JPH09321408A (en) * | 1996-05-31 | 1997-12-12 | Nec Corp | High density mounting structure of electronic circuit board |
| JPH1117346A (en) * | 1997-06-20 | 1999-01-22 | Hitachi Chem Co Ltd | Multilayer wiring board |
| JPH11284111A (en) * | 1998-03-30 | 1999-10-15 | Sumitomo Special Metals Co Ltd | Heat sink member, manufacture thereof and semiconductor package using the hear sink member |
| JPH11312868A (en) * | 1998-04-28 | 1999-11-09 | Kyocera Corp | Element built-in multilayer wiring board and method of manufacturing the same |
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7644497B2 (en) | 2002-10-08 | 2010-01-12 | Dai Nippon Printing Co., Ltd. | Component built-in wiring board and manufacturing method of component built-in wiring board |
| JP2006080203A (en) * | 2004-09-08 | 2006-03-23 | Hitachi Chem Co Ltd | Multilayer printed circuit board, semiconductor-chip loading substrate and semiconductor package and these manufacturing method |
| US7923367B2 (en) | 2006-10-20 | 2011-04-12 | Shinko Electric Industries Co., Ltd. | Multilayer wiring substrate mounted with electronic component and method for manufacturing the same |
| US8222747B2 (en) | 2006-10-20 | 2012-07-17 | Shinko Electric Industries Co., Ltd. | Multilayer wiring substrate mounted with electronic component and method for manufacturing the same |
| US9859221B2 (en) | 2014-02-21 | 2018-01-02 | Ibiden Co., Ltd. | Multilayer wiring board with built-in electronic component |
| CN106463494A (en) * | 2014-05-21 | 2017-02-22 | 高通股份有限公司 | Embedded package substrate capacitor |
| JP2017524245A (en) * | 2014-05-21 | 2017-08-24 | クアルコム,インコーポレイテッド | Embedded package board capacitors |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US7102085B2 (en) | Wiring substrate | |
| US6809268B2 (en) | Printed wiring substrate and method for fabricating the same | |
| US7025607B1 (en) | Capacitor material with metal component for use in circuitized substrates, circuitized substrate utilizing same, method of making said circuitized substrate, and information handling system utilizing said circuitized substrate | |
| US6335076B1 (en) | Multi-layer wiring board and method for manufacturing the same | |
| JP4740406B2 (en) | Wiring board and manufacturing method thereof | |
| JP2006521708A (en) | Method for making a three-dimensional all-organic interconnect structure | |
| KR20040018989A (en) | Semiconductor package, method of production of same, and semiconductor device | |
| US20100108371A1 (en) | Wiring board with built-in electronic component and method for manufacturing the same | |
| US11019725B2 (en) | Wiring substrate | |
| JP2002016327A (en) | Wiring board and its manufacturing method | |
| JP2002076637A (en) | Chip component built-in substrate and manufacturing method thereof | |
| US20100236822A1 (en) | Wiring board and method for manufacturing the same | |
| JP4685979B2 (en) | Wiring board | |
| JP2001144245A (en) | Semiconductor package, manufacturing method therefor and semiconductor device | |
| JP4685251B2 (en) | Wiring board manufacturing method | |
| KR101046084B1 (en) | Metal core substrate and multilayer printed circuit board including the same and method for manufacturing same | |
| US8546922B2 (en) | Wiring board | |
| JP4885366B2 (en) | Wiring board manufacturing method | |
| JP2002151847A (en) | Wiring substrate and method of manufacturing the same | |
| JP4778148B2 (en) | Multilayer wiring board | |
| JP4851652B2 (en) | Wiring board and manufacturing method thereof | |
| JP2001313474A (en) | Wiring board | |
| JP2005026573A (en) | Manufacturing method of module with built-in component | |
| JP2005123547A (en) | Interposer and multilayer printed wiring board | |
| JP4695289B2 (en) | Wiring board manufacturing method |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080214 |
|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100831 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100914 |
|
| A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20110125 |