JP2003217898A - Discharge plasma processing device - Google Patents
Discharge plasma processing deviceInfo
- Publication number
- JP2003217898A JP2003217898A JP2002007673A JP2002007673A JP2003217898A JP 2003217898 A JP2003217898 A JP 2003217898A JP 2002007673 A JP2002007673 A JP 2002007673A JP 2002007673 A JP2002007673 A JP 2002007673A JP 2003217898 A JP2003217898 A JP 2003217898A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- discharge
- plasma
- discharge plasma
- electrodes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005684 electric field Effects 0.000 claims abstract description 28
- 239000007787 solid Substances 0.000 claims abstract description 21
- 238000000034 method Methods 0.000 claims abstract description 15
- 238000005520 cutting process Methods 0.000 claims description 2
- 230000006866 deterioration Effects 0.000 abstract description 7
- 230000002401 inhibitory effect Effects 0.000 abstract 2
- 208000028659 discharge Diseases 0.000 description 62
- 239000007789 gas Substances 0.000 description 38
- -1 polytetrafluoroethylene Polymers 0.000 description 8
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 5
- 238000004380 ashing Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- 239000004743 Polypropylene Substances 0.000 description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 238000010891 electric arc Methods 0.000 description 4
- 239000010408 film Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229910044991 metal oxide Inorganic materials 0.000 description 4
- 150000004706 metal oxides Chemical class 0.000 description 4
- 238000009832 plasma treatment Methods 0.000 description 4
- 230000000630 rising effect Effects 0.000 description 4
- 238000004381 surface treatment Methods 0.000 description 4
- 239000010409 thin film Substances 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N ZrO2 Inorganic materials O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 2
- 229910002113 barium titanate Inorganic materials 0.000 description 2
- 238000007664 blowing Methods 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000003989 dielectric material Substances 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 238000003672 processing method Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000004408 titanium dioxide Substances 0.000 description 2
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229910001369 Brass Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 102000020897 Formins Human genes 0.000 description 1
- 108091022623 Formins Proteins 0.000 description 1
- 229920000106 Liquid crystal polymer Polymers 0.000 description 1
- 239000004977 Liquid-crystal polymers (LCPs) Substances 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 238000001994 activation Methods 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229920001222 biopolymer Polymers 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- KYKAJFCTULSVSH-UHFFFAOYSA-N chloro(fluoro)methane Chemical compound F[C]Cl KYKAJFCTULSVSH-UHFFFAOYSA-N 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 229920001477 hydrophilic polymer Polymers 0.000 description 1
- 230000005660 hydrophilic surface Effects 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 229910052754 neon Inorganic materials 0.000 description 1
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000000678 plasma activation Methods 0.000 description 1
- 238000007750 plasma spraying Methods 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 230000002940 repellent Effects 0.000 description 1
- 239000005871 repellent Substances 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000003566 sealing material Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 238000007751 thermal spraying Methods 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- QHGNHLZPVBIIPX-UHFFFAOYSA-N tin(II) oxide Inorganic materials [Sn]=O QHGNHLZPVBIIPX-UHFFFAOYSA-N 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Plasma Technology (AREA)
- Drying Of Semiconductors (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、大気圧近傍の圧力
下における常圧プラズマ処理装置に関し、特に、放電空
間から離れた位置にある被処理体を常圧プラズマ処理す
る装置における対向電極面に適度な曲率半径を持たせて
安定的にプラズマを発生させることのできる放電プラズ
マ処理装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an atmospheric pressure plasma processing apparatus under a pressure near atmospheric pressure, and more particularly, to a counter electrode surface in an apparatus for performing atmospheric pressure plasma processing on an object to be processed which is located away from the discharge space. The present invention relates to a discharge plasma processing apparatus that can generate plasma stably with an appropriate radius of curvature.
【0002】[0002]
【従来の技術】従来から、低圧条件下でグロー放電プラ
ズマを発生させて被処理体の表面改質、又は被処理体上
に薄膜形成を行う方法が実用化されている。しかし、こ
れらの低圧条件下における処理は、真空チャンバー、真
空排気装置等が必要であり、表面処理装置は高価なもの
となり、大面積基板等を処理する際にはほとんど用いら
れていなかった。このため、大気圧近傍の圧力下で放電
プラズマを発生させる方法が提案されてきている。2. Description of the Related Art Conventionally, a method of generating a glow discharge plasma under a low pressure condition to modify the surface of an object to be processed or to form a thin film on the object to be processed has been put into practical use. However, the treatment under these low pressure conditions requires a vacuum chamber, a vacuum exhaust device, etc., and the surface treatment device becomes expensive, and it has hardly been used when treating a large area substrate or the like. Therefore, a method of generating discharge plasma under a pressure near atmospheric pressure has been proposed.
【0003】一般的な常圧プラズマ処理方法では、特開
平6−2149号公報、特開平7−85997号公報等
に記載されているように、主に処理槽内部において、固
体誘電体等で被覆した平行平板型電極間に被処理体を設
置し、処理槽に処理ガスを導入し、電極間に電圧を印加
し、発生したプラズマで被処理体を処理する方法が採ら
れている。これらの方法は、平らな電極を平行に対向さ
せ、この電極間の空間中に被処理体を配置させて処理を
行うものであり、被処理体全体を放電空間に置くために
処理強度は得やすいが、被処理体にダメージを与えるこ
とになりやすいという問題があった。In a general atmospheric pressure plasma processing method, as described in JP-A-6-2149, JP-A-7-85997, etc., the inside of the processing tank is mainly covered with a solid dielectric or the like. The object to be processed is installed between the parallel plate electrodes, the processing gas is introduced into the processing tank, a voltage is applied between the electrodes, and the object to be processed is treated with the generated plasma. In these methods, flat electrodes are made to face each other in parallel, and an object to be processed is placed in a space between the electrodes to perform processing. Although it is easy, there is a problem that it tends to damage the object to be processed.
【0004】一方、被処理体の特定部分のみにプラズマ
処理を行いやすく、しかも被処理物を連続的に処理する
ことができる装置として、先端にプラズマガス吹き出し
口を有するリモート型プラズマ処理装置が開発されてき
ている。リモート型とは、電極間で発生させたプラズマ
を放電空間外に配置された被処理体に向けて吹き出すも
ので、被処理体へのダメージは軽減されるが、従来のタ
イプと同程度のプラズマでは処理強度が得にくいという
問題があり、より高密度のプラズマが必要である。この
ような装置、特に、対向する面を平面にした電極を平行
に対向させてプラズマを発生させた場合には、小電力で
均一な高密度のプラズマが得られず、ストリーマー放電
等が生じやすいという問題があった。On the other hand, a remote plasma processing apparatus having a plasma gas outlet at its tip has been developed as an apparatus that can easily perform plasma processing only on a specific portion of an object to be processed and can continuously process the object. Has been done. The remote type is a type that blows out the plasma generated between the electrodes toward the object to be processed located outside the discharge space.It reduces damage to the object to be processed, but it is similar to the conventional type. In that case, there is a problem that the treatment strength is difficult to obtain, and a higher density plasma is required. Such a device, particularly, when plasma is generated by parallelly facing electrodes whose planes are opposed to each other in parallel, uniform high density plasma cannot be obtained with low power, and streamer discharge or the like is likely to occur. There was a problem.
【0005】この問題を解決する一つの手段として、特
開2000−200697号公報においては、処理ガス
として希ガスを用い、1〜25mmの曲率半径の曲面を
放電空間に突出させた誘電体を被覆した電極を用い、交
流電圧を印加することによりプラズマを発生させ、スト
リーマー放電の発生を防止する技術が開示されている。
しかしながら、曲率半径に小さい円筒状の電極を用いる
と電界集中が強すぎてかえってストリーマー放電が発生
しやすく、また、処理ガスが通過する放電空間が短くな
るため、十分に活性化が行われないという問題がある。
また、電極上の放電が局所的であるため、電極を被覆す
る誘電体の劣化が生じやすく、この劣化部位がストリー
マー放電を誘発することになる。さらに、曲率の小さい
円筒状電極は、その構成上電極骨材が少量となるので、
ガラス質やセラミックの誘電体を融着、溶射する過程の
熱で変形し易く、電極間隙を一定にすることが困難であ
る。さらにまた、電極を長尺にするほど前記変形の問題
が無視できなくなるので、大面積の処理に対応し難いと
いう問題を有している。As one means for solving this problem, in Japanese Unexamined Patent Publication No. 2000-200697, a rare gas is used as a processing gas, and a dielectric having a curved surface with a radius of curvature of 1 to 25 mm projected into a discharge space is coated. There is disclosed a technique in which a plasma is generated by applying an AC voltage using the above electrode and a streamer discharge is prevented from occurring.
However, if a cylindrical electrode with a small radius of curvature is used, the electric field concentration is too strong and streamer discharge is likely to occur, and the discharge space through which the processing gas passes becomes short, resulting in insufficient activation. There's a problem.
Further, since the discharge on the electrode is local, the dielectric covering the electrode is likely to be deteriorated, and this deteriorated portion induces streamer discharge. Furthermore, since the cylindrical electrode with a small curvature has a small amount of electrode aggregate due to its configuration,
It is easy to be deformed by heat in the process of fusing and spraying glassy or ceramic dielectrics, and it is difficult to make the electrode gap constant. Furthermore, as the length of the electrode becomes longer, the problem of the deformation cannot be ignored, so that there is a problem that it is difficult to deal with a large area process.
【0006】[0006]
【発明が解決しようとする課題】本発明は、上記問題に
鑑み、放電空間を十分に大きくでき、ストリーマー放電
の発生を抑え、小電力で高密度のプラズマを発生させる
放電が可能であり、かつ電極を被覆する固体誘電体の劣
化を抑えることのできる電極構造を有するリモート型の
放電プラズマ処理装置を提供することを目的とする。In view of the above problems, the present invention is capable of sufficiently increasing the discharge space, suppressing the generation of streamer discharges, and enabling discharges that generate high-density plasma with low power, and It is an object of the present invention to provide a remote type discharge plasma processing apparatus having an electrode structure capable of suppressing deterioration of a solid dielectric covering an electrode.
【0007】[0007]
【課題を解決するための手段】本発明者は、上記課題を
解決すべく鋭意研究した結果、対向する電極面の曲率半
径を大きくした略かまぼこ型にすることにより、放電空
間を十分に大きくでき、ストリーマー放電の発生を抑
え、小電力で高密度のプラズマを発生させ、かつ電極を
被覆する固体誘電体の劣化を抑えることのできる電極構
造が得られることを見出し、本発明を完成させた。DISCLOSURE OF THE INVENTION As a result of intensive studies to solve the above problems, the present inventor has made it possible to sufficiently increase the discharge space by using a substantially semi-cylindrical shape in which the radius of curvature of the facing electrode surface is increased. The inventors have found that an electrode structure capable of suppressing the occurrence of streamer discharge, generating high-density plasma with low power, and suppressing the deterioration of the solid dielectric covering the electrode can be obtained, and completed the present invention.
【0008】すなわち、本発明の第1の発明は、大気圧
近傍の圧力下、対向する電極の少なくとも一方の対向面
に固体誘電体を設置し、当該電極間に処理ガスを導入し
電界を印加することにより得られる放電プラズマを、放
電空間外に配置された被処理体に接触させて処理する放
電プラズマ処理装置であって、当該電極は、対向面が曲
率半径25mmを超え2000mm以下の凸状曲面によ
って構成される略かまぼこ形状であることを特徴とする
放電プラズマ処理装置である。That is, according to the first aspect of the present invention, a solid dielectric is provided on at least one opposing surface of opposing electrodes under a pressure near atmospheric pressure, and a processing gas is introduced between the electrodes to apply an electric field. A discharge plasma processing apparatus that processes discharge plasma obtained by contacting an object to be processed arranged outside the discharge space, wherein the electrode has a convex surface with a facing radius of more than 25 mm and 2000 mm or less. The discharge plasma processing apparatus is characterized by having a substantially semicylindrical shape formed by a curved surface.
【0009】また、本発明の第2の発明は、電極が、対
向面が曲率半径25mmを超え2000mm以下の凸状
曲面によって構成される略かまぼこ形状を切断して、被
処理面に略平行な面を形成するようになされた片かまぼ
こ形状であることを特徴とする第1の発明に記載の放電
プラズマ処理装置である。According to a second aspect of the present invention, the electrode is cut into a substantially semi-cylindrical shape whose opposing surface is formed by a convex curved surface having a radius of curvature of more than 25 mm and 2000 mm or less, and is substantially parallel to the surface to be processed. The discharge plasma processing apparatus according to the first invention is characterized in that it has a semi-cylindrical shape so as to form a surface.
【0010】また、本発明の第3の発明は、電極同士が
なす角度を可変となされていることを特徴とする第1又
は2の発明に記載の放電プラズマ処理装置である。A third invention of the present invention is the discharge plasma processing apparatus according to the first or second invention, wherein the angle formed by the electrodes is variable.
【0011】また、本発明の第4の発明は、電極の対向
面と側面の境界の角部が曲面処理されていることを特徴
とする第1〜3のいずれかの発明に記載の放電プラズマ
処理装置である。A fourth invention of the present invention is the discharge plasma according to any one of the first to third inventions, characterized in that the corners of the boundary between the facing surface and the side surface of the electrode are curved. It is a processing device.
【0012】[0012]
【発明の実施の形態】本発明の放電プラズマ処理装置
は、大気圧近傍の圧力下、対向する電極の少なくとも一
方の対向面に固体誘電体を設置し、当該電極間に処理ガ
スを導入し電界を印加することによりグロー放電プラズ
マを発生させる電極構造(以下、リモートソースと称す
ることがある。)から離れた位置に配置された被処理体
をプラズマ処理する放電プラズマ処理装置であって、該
装置に用いる電極は、対向面が凸状曲面によって構成さ
れる略かまぼこ形状をしているところに特徴がある。BEST MODE FOR CARRYING OUT THE INVENTION In a discharge plasma processing apparatus of the present invention, a solid dielectric is provided on at least one opposing surface of opposing electrodes under a pressure near atmospheric pressure, and a processing gas is introduced between the electrodes to generate an electric field. A discharge plasma processing apparatus for performing plasma processing on an object to be processed which is arranged at a position apart from an electrode structure (hereinafter, sometimes referred to as a remote source) for generating glow discharge plasma by applying The electrode used for is characterized in that the opposing surface has a substantially semicylindrical shape composed of convex curved surfaces.
【0013】本発明の装置を図で説明する。図1は、本
発明のリモートソースを用いた被処理体の処理装置を説
明する模式的断面図である。図1において、対向する電
極2及び電極3は、対向する面が凸状曲面21及び31
によって構成される略かまぼこ形状の電極である。プラ
ズマ処理は、処理ガスを矢印方向に、電極2と電極3で
構成される放電空間4に導入し、電源1より電極2と電
極3に電界を印加し、放電空間4でプラズマを発生さ
せ、プラズマ吹き出し口からプラズマを吹き出し、支持
台6上の被処理体5の表面に吹き付けて行う。The device of the present invention will be described with reference to the drawings. FIG. 1 is a schematic cross-sectional view illustrating a processing apparatus for an object to be processed using a remote source of the present invention. In FIG. 1, the opposing electrodes 2 and 3 have convex curved surfaces 21 and 31 at their opposing surfaces.
It is a substantially semi-cylindrical electrode composed of. In the plasma treatment, a treatment gas is introduced in an arrow direction into a discharge space 4 composed of an electrode 2 and an electrode 3, an electric field is applied to the electrodes 2 and 3 from a power source 1 to generate plasma in the discharge space 4, Plasma is blown out from the plasma blowout port and blown onto the surface of the object 5 to be processed on the support 6.
【0014】ここで、かまぼこ形状とは、直方体の一面
をゆるやかな弓なり状の曲面で構成し、中央が膨れ、両
側が次第に低くなている形状を指す。本発明で用いる電
極においては、上記曲面は、曲率半径25mmを超え2
000mm以下、好ましくは40〜1000mmのゆる
やかな曲面で構成されることが必要であり、この曲面同
士を対向させてプラズマを発生させることにより小電力
で安定した放電が可能となる。曲率半径が25mm以下
では電界集中が強いためストリーマーが発生し易くな
り、2000mmを超えると加工が精度的に困難とな
る。Here, the kamaboko shape refers to a shape in which one surface of a rectangular parallelepiped is formed by a gentle bow-shaped curved surface, the center of which is swollen and both sides are gradually lowered. In the electrode used in the present invention, the curved surface has a radius of curvature of 25 mm or more.
It is necessary to form a gentle curved surface of 000 mm or less, preferably 40 to 1000 mm, and by causing the curved surfaces to face each other to generate plasma, stable discharge can be performed with a small electric power. When the radius of curvature is 25 mm or less, electric field concentration is strong, so that streamers are likely to occur, and when it exceeds 2000 mm, processing becomes difficult in terms of accuracy.
【0015】本発明の装置の電極では、この曲面を電極
対向面として配置し、曲面の周方向に処理ガスの導入及
び吹き出し方向を設けている。対向面が適度な曲面であ
るために放電が安定しやすく、さらに放電空間が大きく
なるのでプラズマ活性化がより促進され、誘電体の劣化
も抑えることができる。In the electrode of the apparatus of the present invention, this curved surface is arranged as an electrode facing surface, and the introduction and blowing directions of the processing gas are provided in the circumferential direction of the curved surface. Since the opposing surface is an appropriately curved surface, the discharge is likely to be stable, and the discharge space becomes large, so that plasma activation is further promoted and deterioration of the dielectric can be suppressed.
【0016】また、略かまぼこ形状の電極は、電極対向
面と側面の境界の角部が曲面処理されていることが好ま
しい。電極2の略かまぼこ形状の電極の斜視図である図
2で説明する。図2において、ゆるやかな弓なり状の凸
状曲面21の短辺端部22及び23は、曲率半径(以
下、Rと表示)が2mm〜100mm、好ましくは4m
m〜20mmになるように曲面処理されているのが好ま
しい。短辺端部がR2mm未満では電界集中が起こりス
トリーマーが発生し易くなり、R100mmを超えると
ストリーマーは立ちにくくなるがその効果は変わらな
い。また、凸状曲面21の長辺端部24及び25は、R
2mm〜R20mm、好ましくはR4mm〜R20mm
になるように曲面処理されているのが好ましい。長辺端
部がR2mm未満では電界集中が起こりストリーマーが
発生し易くなり、R20mmを超えるとストリーマーは
立ちにくくなるがその効果は変わらない。電極3におい
ても同様である。In addition, it is preferable that the substantially semi-cylindrical electrode has a curved surface at the corner of the boundary between the electrode facing surface and the side surface. It will be described with reference to FIG. 2, which is a perspective view of a substantially semicylindrical electrode of the electrode 2. In FIG. 2, the short side ends 22 and 23 of the convex curved surface 21 having a gentle bow shape have a radius of curvature (hereinafter, indicated as R) of 2 mm to 100 mm, preferably 4 m.
It is preferable that the curved surface is processed so as to be m to 20 mm. When the short side end is less than R2 mm, electric field concentration occurs and streamers are likely to occur, and when R100 mm is exceeded, the streamer is hard to stand, but the effect remains the same. Further, the long side end portions 24 and 25 of the convex curved surface 21 are R
2 mm to R20 mm, preferably R4 mm to R20 mm
The curved surface is preferably processed so that If the end portion of the long side is less than R2 mm, electric field concentration tends to occur and streamers are likely to occur. If it exceeds R20 mm, the streamer becomes difficult to stand, but the effect remains the same. The same applies to the electrode 3.
【0017】図1の装置を用いて放電プラズマ処理を行
うと、小電力でプラズマ放電ができ、処理ガスが通過す
る放電空間が十分あるため活性化され易く、更にストリ
ーマーの発生も抑制でき、電極表面に被覆される固体誘
電体の劣化も抑えられる。さらに電極骨材の量が多いた
め、融着や溶射により、電極表面に固体誘電体を被覆す
る際にも、加工熱による変形が少なく長尺品の製造も可
能である。When discharge plasma treatment is performed using the apparatus of FIG. 1, plasma discharge can be performed with a small amount of electric power, the discharge space through which the treatment gas passes is sufficiently activated, and is easily activated. Further, generation of streamers can be suppressed and the electrode Deterioration of the solid dielectric coated on the surface is also suppressed. Furthermore, since the amount of the electrode aggregate is large, even when the solid dielectric is coated on the electrode surface by fusion bonding or thermal spraying, deformation due to processing heat is small and a long product can be manufactured.
【0018】図3は、本発明の第2の発明の例を説明す
るリモートソースを用いた被処理体の処理装置を説明す
る模式的断面図である。対向する電極2及び電極3は、
図1に示す略かまぼこ形状の電極を切断した片かまぼこ
形状電極で、曲面21及び曲面31を対向させて、被処
理面に略平行な面を形成するように設置した装置であ
る。処理ガスを矢印方向に、電極2及び電極3で構成さ
れる放電空間4に導入し、電源1より電極2と電極3に
電界を印加し、放電空間4でプラズマを発生させ、プラ
ズマ吹き出し口からプラズマを吹き出し、支持台6上の
被処理体5の表面を処理する。FIG. 3 is a schematic cross-sectional view for explaining a processing apparatus for processing an object using a remote source for explaining the second example of the present invention. The opposing electrode 2 and electrode 3 are
The apparatus is a single-sided, semi-cylindrical electrode obtained by cutting the generally semi-cylindrical electrode shown in FIG. 1, and is installed so that the curved surface 21 and the curved surface 31 are opposed to each other to form a surface substantially parallel to the surface to be processed. The processing gas is introduced in the direction of the arrow into the discharge space 4 composed of the electrodes 2 and 3, an electric field is applied from the power supply 1 to the electrodes 2 and 3, plasma is generated in the discharge space 4, and the plasma is discharged from the plasma outlet. Plasma is blown out to process the surface of the object 5 to be processed on the support 6.
【0019】上記片かまぼこ形状電極においても、対向
する曲面21及び31の曲率半径は、第1の発明の場合
と同様であり、曲面の短辺端部の角部及び長辺端部の角
部は、それぞれ曲面処理されているのが好ましい。本発
明の第2の発明の片かまぼこ形状電極では、第1の発明
の特徴に加えて、プラズマ吹き出し口の径を絞る効果が
あり、吹き出しプラズマの流速を上げることが容易にで
きる。Also in the one-sided semi-cylindrical electrode, the radii of curvature of the opposing curved surfaces 21 and 31 are the same as in the case of the first invention, and the corners of the short side end and the long side end of the curved surface are the same. Is preferably curved. In addition to the features of the first invention, the one-sided, semi-cylindrical electrode of the second invention of the present invention has the effect of narrowing the diameter of the plasma outlet, and can easily increase the flow velocity of the blown plasma.
【0020】図4は、本発明の第3の発明の例を説明す
るリモートソースを用いた被処理体の処理装置を説明す
る模式的断面図である。対向する電極2及び電極3は、
対向する面が曲面の略かまぼこ形状電極であり、垂直方
向の固定角度を可変にしてある。図3(a)は、電極上
部間隔を狭くなる様に角度を変更したリモートソースの
例を示す図であり、図3(b)は、電極下部間隔を狭く
なる様に角度を変更したリモートソースの例を示す図で
あり、図3(c)は、電極間隔の調整をした場合のリモ
ートソースの例を示す図である。各図において、処理ガ
スは、矢印方向に、電極2及び電極3の間に構成される
放電空間4に導入され、電源1より電極2と電極3に電
界を印加し、放電空間4でプラズマを発生させ、プラズ
マ吹き出し口からプラズマを吹き出し、被処理体5の表
面を処理する。図3(a)においては、プラズマ吹き出
し口を大きくすることができ、大面積基材の処理に有効
であり、図3(b)においては、プラズマ吹き出し口を
小さくすることができ、プラズマの流速を上げることが
でき、図3(c)においては、目的に応じて角度を変更
して電極間隔の調整をしている。このように本発明の第
3の発明の装置は電極の垂直方向の固定角度を可変にす
ることにより、第1の発明の特徴に加えて、プラズマ処
理効果に影響するガス流速を調整できたり、電極の放電
相当部分を変更して、固体誘電体の劣化を制御できる特
徴を有する。すなわち、本発明の装置においては、電極
同士がなす角度を可変とすることにより、放電の調整及
び被処理体へのプラズマ吹き付け角度及び速度の調整を
容易に行うことができる。特に、電極間距離は、ガス雰
囲気や温度などの環境により調整が必要であるが、本発
明の電極形状であれば、角度を変えるだけで電極間距離
を調整できるので簡易な操作で調整を行うことができ
る。FIG. 4 is a schematic cross-sectional view for explaining an apparatus for processing an object to be processed using a remote source for explaining the third example of the present invention. The opposing electrode 2 and electrode 3 are
The opposing surface is a substantially semi-cylindrical electrode having a curved surface, and the fixed angle in the vertical direction is variable. FIG. 3 (a) is a diagram showing an example of a remote source in which the angle is changed so that the upper electrode spacing is narrowed, and FIG. 3 (b) is a remote source in which the angle is changed so that the lower electrode spacing is narrowed. FIG. 3C is a diagram showing an example of a remote source when the electrode spacing is adjusted. In each figure, the processing gas is introduced in the direction of the arrow into the discharge space 4 formed between the electrodes 2 and 3, and an electric field is applied from the power supply 1 to the electrodes 2 and 3 to generate plasma in the discharge space 4. The plasma is blown out from the plasma blowing port to treat the surface of the target object 5. In FIG. 3 (a), the plasma outlet can be increased, which is effective for treating a large-area substrate. In FIG. 3 (b), the plasma outlet can be decreased and the plasma flow velocity can be increased. 3C, the electrode spacing is adjusted by changing the angle according to the purpose. As described above, in the device of the third invention of the present invention, by making the fixed angle of the electrodes in the vertical direction variable, in addition to the features of the first invention, the gas flow velocity affecting the plasma processing effect can be adjusted, It has a characteristic that the deterioration of the solid dielectric can be controlled by changing the portion of the electrode corresponding to the discharge. That is, in the apparatus of the present invention, the angle formed by the electrodes is made variable, so that the discharge can be adjusted and the plasma spraying angle and speed of the plasma to the object can be easily adjusted. In particular, the inter-electrode distance needs to be adjusted depending on the environment such as the gas atmosphere and the temperature, but with the electrode shape of the present invention, the inter-electrode distance can be adjusted simply by changing the angle, and therefore the adjustment is performed by a simple operation. be able to.
【0021】なお、第3の発明においても略かまぼこ形
状電極の対向する曲面21及び31の曲率半径は、第1
の発明の場合と同様であり、曲面の短辺端部の角部及び
長辺端部角部は、第1の発明の場合と同様の曲面処理さ
れていることが好ましい。Also in the third invention, the curvature radii of the opposed curved surfaces 21 and 31 of the substantially semicylindrical electrode are as follows:
It is similar to the case of the first aspect of the invention, and it is preferable that the corners of the short side ends and the long side edges of the curved surface are subjected to the same curved surface treatment as in the case of the first invention.
【0022】本発明において用いる略かまぼこ形状電極
の大きさとしては、略かまぼこ形状の短辺(図2のa)
が10〜300mm、長辺(図2のb)が20〜250
0mm、山高(図2のc)が10〜100mmのものが
好ましい。また、電極の材質としては、銅、アルミニウ
ム等の金属単体、ステンレス、真鍮等の合金、金属間化
合物等からなるものが挙げられる。Regarding the size of the substantially semicylindrical electrode used in the present invention, the short side of the generally semicylindrical shape (a in FIG. 2) is used.
Is 10 to 300 mm and the long side (b in FIG. 2) is 20 to 250
It is preferably 0 mm and the peak height (c in FIG. 2) is 10 to 100 mm. Examples of the material of the electrodes include those made of simple metals such as copper and aluminum, alloys such as stainless steel and brass, and intermetallic compounds.
【0023】上記電極間の距離は、固体誘電体の厚さ、
印加電圧の大きさ、プラズマを利用する目的等を考慮し
て適宜決定されるが、0.1〜50mmであることが好
ましく、より好ましくは0.1〜5mmである。0.1
mm未満では、電極間の間隔を置いて設置するのに充分
でないことがあり、一方、50mmを超えると、均一な
放電プラズマを発生させにくい。The distance between the electrodes is determined by the thickness of the solid dielectric,
Although it is appropriately determined in consideration of the magnitude of the applied voltage, the purpose of utilizing plasma, etc., it is preferably 0.1 to 50 mm, more preferably 0.1 to 5 mm. 0.1
If it is less than mm, it may not be enough to install the electrodes with a space therebetween, while if it exceeds 50 mm, it is difficult to generate uniform discharge plasma.
【0024】なお、対向する電極は、一対のみでなく、
複数の電極を対向して配置することにより複数の放電空
間を設けることができる。複数の放電空間を設けること
により、大容量の処理ガスのプラズマを発生させること
ができ、高速処理を行うことができる。The opposing electrodes are not limited to a pair,
By disposing a plurality of electrodes facing each other, a plurality of discharge spaces can be provided. By providing a plurality of discharge spaces, plasma of a large amount of processing gas can be generated and high-speed processing can be performed.
【0025】上記固体誘電体は、電極の対向面の一方又
は双方に設置する必要がある。固体誘電体は、電極と密
着して電極同士の対向面を完全に覆うようにする。固体
誘電体によって覆われずに電極同士が直接対向する部位
があると、そこからアーク放電が生じやすい。The above-mentioned solid dielectric must be installed on one or both of the facing surfaces of the electrodes. The solid dielectric is in close contact with the electrodes so as to completely cover the facing surfaces of the electrodes. If there is a portion where the electrodes directly face each other without being covered with the solid dielectric, arc discharge easily occurs from there.
【0026】上記固体誘電体は、厚みが0.01〜4m
mであることが好ましい。厚すぎると放電プラズマを発
生するのに高電圧を要することがあり、薄すぎると電圧
印加時に絶縁破壊が起こり、アーク放電が発生すること
がある。The above solid dielectric has a thickness of 0.01 to 4 m.
It is preferably m. If it is too thick, a high voltage may be required to generate discharge plasma, and if it is too thin, dielectric breakdown may occur when a voltage is applied and arc discharge may occur.
【0027】固体誘電体の材質としては、例えば、ポリ
テトラフルオロエチレン、ポリエチレンテレフタレート
等のプラスチック、ガラス、二酸化珪素、酸化アルミニ
ウム、二酸化ジルコニウム、二酸化チタン等の金属酸化
物、チタン酸バリウム等の複酸化物等が挙げられる。Examples of the material of the solid dielectric include plastics such as polytetrafluoroethylene and polyethylene terephthalate, glass, metal oxides such as silicon dioxide, aluminum oxide, zirconium dioxide and titanium dioxide, and double oxidation such as barium titanate. Things etc. are mentioned.
【0028】特に、25℃環境下における比誘電率が1
0以上のものである固体誘電体を用いれば、低電圧で高
密度の放電プラズマを発生させることができ、処理効率
が向上する。比誘電率の上限は特に限定されるものでは
ないが、現実の材料では18,500程度のものが入手
可能であり、本発明に使用出来る。特に好ましくは比誘
電率が10〜100の固体誘電体である。上記比誘電率
が10以上である固体誘電体の具体例としては、二酸化
ジルコニウム、二酸化チタン等の金属酸化物、チタン酸
バリウム等の複酸化物を挙げることが出来る。Particularly, the relative permittivity under the environment of 25 ° C. is 1
If a solid dielectric material of 0 or more is used, a high density discharge plasma can be generated at a low voltage, and the processing efficiency is improved. The upper limit of the relative permittivity is not particularly limited, but as a practical material, about 18,500 is available and can be used in the present invention. A solid dielectric having a relative dielectric constant of 10 to 100 is particularly preferable. Specific examples of the solid dielectric having a relative dielectric constant of 10 or more include metal oxides such as zirconium dioxide and titanium dioxide, and complex oxides such as barium titanate.
【0029】本発明では、上記電極間に、高周波、パル
ス波、マイクロ波等による電界が印加され、プラズマを
発生させるが、パルス電界を印加することが好ましく、
特に、電界の立ち上がり及び/又は立ち下がり時間が、
10μs以下である電界が好ましい。10μsを超える
と放電状態がアークに移行しやすく不安定なものとな
り、パルス電界による高密度プラズマ状態を保持しにく
くなる。また、立ち上がり時間及び立ち下がり時間が短
いほどプラズマ発生の際のガスの電離が効率よく行われ
るが、40ns未満の立ち上がり時間のパルス電界を実
現することは、実際には困難である。より好ましくは5
0ns〜5μsである。なお、ここでいう立ち上がり時
間とは、電圧(絶対値)が連続して増加する時間、立ち
下がり時間とは、電圧(絶対値)が連続して減少する時
間を指すものとする。In the present invention, an electric field of high frequency, pulse wave, microwave or the like is applied between the electrodes to generate plasma, but it is preferable to apply the pulse electric field.
In particular, the rise and / or fall time of the electric field is
An electric field of 10 μs or less is preferred. If it exceeds 10 μs, the discharge state easily shifts to an arc and becomes unstable, and it becomes difficult to maintain the high-density plasma state due to the pulsed electric field. Further, the shorter the rise time and the fall time are, the more efficiently the gas is ionized at the time of plasma generation, but it is actually difficult to realize a pulsed electric field having a rise time of less than 40 ns. More preferably 5
It is 0 ns to 5 μs. Note that the rising time referred to here means the time when the voltage (absolute value) continuously increases, and the falling time means the time when the voltage (absolute value) continuously decreases.
【0030】上記パルス電界の電界強度は、10〜10
00kV/cmとなるようにするのが好ましい。電界強
度が10kV/cm未満であると処理に時間がかかりす
ぎ、1000kV/cmを超えるとアーク放電が発生し
やすくなる。The electric field strength of the pulsed electric field is 10 to 10
It is preferably set to 00 kV / cm. If the electric field strength is less than 10 kV / cm, the treatment takes too long, and if it exceeds 1000 kV / cm, arc discharge is likely to occur.
【0031】上記パルス電界の周波数は、0.5kHz
以上であることが好ましい。0.5kHz未満であると
プラズマ密度が低いため処理に時間がかかりすぎる。上
限は特に限定されないが、常用されている13.56M
Hz、試験的に使用されている500MHzといった高
周波帯でも構わない。負荷との整合のとり易さや取り扱
い性を考慮すると、500kHz以下が好ましい。この
ようなパルス電界を印加することにより、処理速度を大
きく向上させることができる。The frequency of the pulsed electric field is 0.5 kHz.
The above is preferable. If it is less than 0.5 kHz, the plasma density is low and the treatment takes too long. The upper limit is not particularly limited, but is commonly used 13.56M
A high frequency band such as Hz or a test-use 500 MHz may be used. Considering the ease of matching with the load and the handling property, the frequency is preferably 500 kHz or less. By applying such a pulsed electric field, the processing speed can be greatly improved.
【0032】また、上記パルス電界におけるひとつのパ
ルス継続時間は、200μs以下であることが好まし
い。200μsを超えるとアーク放電に移行しやすくな
る。ここで、ひとつのパルス継続時間とは、ON、OF
Fの繰り返しからなるパルス電界における、ひとつのパ
ルスの連続するON時間を言う。Further, one pulse duration in the above pulsed electric field is preferably 200 μs or less. If it exceeds 200 μs, arc discharge is likely to occur. Here, one pulse duration is ON, OF
It means the continuous ON time of one pulse in the pulse electric field composed of the repetition of F.
【0033】本発明の放電プラズマ処理装置は、どのよ
うな圧力下でも用いることができるが、大気圧近傍の圧
力下でグロー放電プラズマを発生させる常圧放電プラズ
マ処理に用いるとその効果を十分に発揮できる。常圧放
電プラズマ処理においては、低圧下の処理よりも高い電
圧を必要とするため、本発明の装置が特に有利である。The discharge plasma processing apparatus of the present invention can be used under any pressure, but when it is used for normal pressure discharge plasma processing for generating glow discharge plasma under a pressure near atmospheric pressure, its effect is sufficiently exerted. Can be demonstrated. The apparatus of the present invention is particularly advantageous in the atmospheric pressure discharge plasma treatment because it requires a higher voltage than the treatment under a low pressure.
【0034】上記大気圧近傍の圧力下とは、1.333
×104〜10.664×104Paの圧力下を指す。中
でも、圧力調整が容易で、装置が簡便になる9.331
×104〜10.397×104Paの範囲が好ましい。The above-mentioned pressure near the atmospheric pressure means 1.333.
It refers to under a pressure of × 10 4 to 10.664 × 10 4 Pa. Among them, the pressure adjustment is easy, and the device is simple.
The range of × 10 4 to 10.397 × 10 4 Pa is preferable.
【0035】本発明で処理できる被処理体としては、ポ
リエチレン、ポリプロピレン、ポリスチレン、ポリカー
ボネート、ポリエチレンテレフタレート、ポリテトラフ
ルオロエチレン、ポリイミド、液晶ポリマー、エポキシ
樹脂、アクリル樹脂、レジスト樹脂等のプラスチック、
ガラス、セラミック、金属、シリコン基板等が挙げられ
る。被処理体の形状としては、板状、フィルム状等のも
のが挙げられるが、特にこれらに限定されない。本発明
によれば、様々な形状を有する被処理体の処理に容易に
対応することができる。例えば、基板の洗浄、表面処
理、アッシング、エッチング、デスカム、デスミア、薄
膜形成、滅菌などのプラズマ処理に利用できる。The object to be treated in the present invention includes polyethylene, polypropylene, polystyrene, polycarbonate, polyethylene terephthalate, polytetrafluoroethylene, polyimide, liquid crystal polymer, epoxy resin, acrylic resin, resist resin and other plastics,
Examples thereof include glass, ceramic, metal, silicon substrate and the like. Examples of the shape of the object to be processed include a plate shape and a film shape, but are not particularly limited thereto. According to the present invention, it is possible to easily deal with processing of objects to be processed having various shapes. For example, it can be used for plasma treatment such as substrate cleaning, surface treatment, ashing, etching, descum, desmear, thin film formation, and sterilization.
【0036】本発明で用いる処理ガスとしては、電界を
印加することによってプラズマを発生するガスであれ
ば、特に限定されず、処理目的により種々のガスを使用
できる。The processing gas used in the present invention is not particularly limited as long as it is a gas that generates plasma by applying an electric field, and various gases can be used depending on the processing purpose.
【0037】上記処理用ガスとして、CF4、C2F6、
CClF3、SF6等のフッ素含有化合物ガスを用いるこ
とによって、撥水性表面を得ることができる。As the processing gas, CF 4 , C 2 F 6 ,
A water repellent surface can be obtained by using a fluorine-containing compound gas such as CClF 3 or SF 6 .
【0038】また、処理用ガスとして、O2、O3、水、
空気等の酸素元素含有化合物、N2、NH3等の窒素元素
含有化合物、SO2、SO3等の硫黄元素含有化合物を用
いて、基材表面にカルボニル基、水酸基、アミノ基等の
親水性官能基を形成させて表面エネルギーを高くし、親
水性表面を得ることができる。また、アクリル酸、メタ
クリル酸等の親水基を有する重合性モノマーを用いて親
水性重合膜を堆積することもできる。Further, as the processing gas, O 2 , O 3 , water,
Hydrophilicity of carbonyl group, hydroxyl group, amino group, etc. on the surface of the base material by using oxygen element-containing compounds such as air, nitrogen element-containing compounds such as N 2 , NH 3 and sulfur element-containing compounds such as SO 2 , SO 3 A hydrophilic surface can be obtained by forming a functional group to increase the surface energy. Further, the hydrophilic polymer film can be deposited by using a polymerizable monomer having a hydrophilic group such as acrylic acid or methacrylic acid.
【0039】さらに、Si、Ti、Sn等の金属の金属
−水素化合物、金属−ハロゲン化合物、金属アルコラー
ト等の処理用ガスを用いて、SiO2、TiO2、SnO
2等の金属酸化物薄膜を形成させ、基材表面に電気的、
光学的機能を与えることができ、ハロゲン系ガスを用い
てエッチング処理、ダイシング処理を行ったり、酸素系
ガスを用いてレジスト処理や有機物汚染の除去を行った
り、アルゴン、窒素等の不活性ガスによるプラズマで表
面クリーニングや表面改質を行うこともできる。Further, by using a processing gas such as a metal-hydrogen compound of a metal such as Si, Ti or Sn, a metal-halogen compound or a metal alcoholate, SiO 2 , TiO 2 or SnO is used.
A metal oxide thin film such as 2 is formed and is electrically and
Optical function can be given, and halogen gas is used for etching and dicing, oxygen gas is used for resist treatment and removal of organic contaminants, and inert gas such as argon and nitrogen is used. Surface cleaning and surface modification can also be performed with plasma.
【0040】経済性及び安全性の観点から、上記処理ガ
スを以下に挙げるような希釈ガスによって希釈された雰
囲気中で処理を行うこともできる。希釈ガスとしては、
ヘリウム、ネオン、アルゴン、キセノン等の希ガス、窒
素気体等が挙げられる。これらは単独でも2種以上を混
合して用いてもよい。希釈ガスの混合割合は、用途によ
って異なるが、例えば、親水生重合膜、金属酸化物薄膜
を形成する場合は、処理用ガスの割合が0.01〜10
体積%であることが好ましい。From the viewpoint of economy and safety, it is possible to carry out the treatment in an atmosphere diluted with the above-mentioned treatment gas by the following diluent gas. As a diluent gas,
Examples of the rare gas include helium, neon, argon, xenon, and nitrogen gas. You may use these individually or in mixture of 2 or more types. The mixing ratio of the diluting gas varies depending on the application, but for example, when forming a hydrophilic biopolymer film or a metal oxide thin film, the ratio of the processing gas is 0.01 to 10.
Volume% is preferred.
【0041】なお、本発明のプラズマ処理装置において
は、プラズマ流の整流や排ガス回収のために排ガス排気
機構を備えていてもよい。The plasma processing apparatus of the present invention may be provided with an exhaust gas exhaust mechanism for rectifying the plasma flow and collecting exhaust gas.
【0042】[0042]
【実施例】本発明を実施例に基づいてさらに詳細に説明
するが、本発明はこれら実施例のみに限定されるもので
はない。EXAMPLES The present invention will be described in more detail based on examples, but the present invention is not limited to these examples.
【0043】実施例1
図2に示す形状の電極を用いてレジストのアッシング処
理を行った。対向電極は、表面に1.0mm厚のアルミ
ナをコーティングし、内部を水で冷却するようにした長
辺700mm×短辺50mm×山高40mmの片かまぼ
こ形状電極で、曲面の曲率半径が100mm、電極対向
面の長辺端部角部がR10mm、短辺端部角部がR5m
mに曲面処理されたのSUS製の片かまぼこ形状電極を
用い、対向させた曲面最頂点の距離を1.0mmにし
た。処理ガスとしてN2/O2=98/2(体積%)の混
合ガスを用い、370mm×470mm角のCrコート
ガラス上に残レジストのある基材をプラズマ吹き出し口
から5mmの距離で、100mm/minで搬送し、電
極間にVP-P30kV、周波数50KHz、パルス立ち
上がり速度5μsの電界を印加しアッシング処理を行っ
た。その結果、基材全面において均一にアッシング処理
が行われており、アッシング量は、1.5μmであっ
た。Example 1 A resist ashing process was performed using an electrode having the shape shown in FIG. The counter electrode is a one-sided, semi-cylindrical electrode with a long side of 700 mm, a short side of 50 mm, and a mountain height of 40 mm, the surface of which is coated with alumina having a thickness of 1.0 mm and which is cooled with water. R10mm at the long side end corner of the facing surface, R5m at the short side end corner
A SUS single-sided semi-cylindrical electrode having a curved surface treated to m was used, and the distance between the curved top points of the opposed surfaces was set to 1.0 mm. Using a mixed gas of N 2 / O 2 = 98/2 (volume%) as a processing gas, a substrate having a residual resist on a 370 mm × 470 mm square Cr-coated glass was placed at a distance of 5 mm from a plasma outlet at 100 mm / It was transported for min, and an ashing process was performed by applying an electric field having V PP of 30 kV, a frequency of 50 KHz, and a pulse rising speed of 5 μs between the electrodes. As a result, the ashing treatment was uniformly performed on the entire surface of the base material, and the ashing amount was 1.5 μm.
【0044】実施例2
図1に示す形状の電極を用いて、プリント基板の洗浄処
理を行った。対向電極は、表面に1.0mm厚のアルミ
ナをコーティングし、内部を水で冷却するようにした長
辺150mm×短辺30mm×山高20mmの略かまぼ
こ形状電極で、曲面の曲率半径が50mm、電極対向面
の長辺端部角部がR10mm、短辺端部角部がR5mm
に曲面処理されたSUS製の略かまぼこ形状電極を用
い、対向させた曲面の最短部の距離を0.5mmにし
た。処理ガスとしてN2ガスを用い、表面にソルダーレ
ジストや金配線のある120mm×50mm角のプリン
ト基板プラズマ吹き出し口から3.5mmの距離で、3
00mm/minで搬送し、電極間にVP-P20kV、
周波数20KHz、パルス立ち上がり速度5μsの電界
を印加し洗浄処理を行った。その結果、基材全面におい
て均一に洗浄処理が行われており、未処理品と比較して
封止材料との接着性が5倍になり、ワイヤーボンディン
グ強度が2.5倍になった。Example 2 A printed board was washed using the electrodes having the shape shown in FIG. The opposite electrode is a substantially semi-cylindrical electrode having a long side of 150 mm, a short side of 30 mm, and a mountain height of 20 mm, which is formed by coating the surface with alumina having a thickness of 1.0 mm and cooling the inside with water. R10 mm at the long side end corner of the facing surface, R5 mm at the short side end corner
The SUS-made substantially semi-cylindrical electrode having been subjected to the curved surface was used, and the distance between the shortest portions of the opposed curved surfaces was set to 0.5 mm. N 2 gas was used as a processing gas, and a distance of 3.5 mm from a 120 mm × 50 mm square printed circuit board plasma outlet having a solder resist or gold wiring on the surface was used.
Transported at 00 mm / min, V PP 20 kV between electrodes,
A cleaning process was performed by applying an electric field having a frequency of 20 KHz and a pulse rising speed of 5 μs. As a result, the entire surface of the base material was uniformly washed, and the adhesiveness to the sealing material was 5 times and the wire bonding strength was 2.5 times that of the untreated product.
【0045】実施例3
図3(b)に示す形状の電極を用いて、高分子フィルム
の親水性向上処理を行った。対向電極は、表面に1.0
mm厚のアルミナをコーティングし、内部を水で冷却す
るようにした長辺1300mm×短辺200mm×山高
50mmの略かまぼこ形状電極で、曲面の曲率半径が1
000mm、電極対向面の長辺端部角部がR50mm、
短辺端部角部がR20mmに曲面処理されたSUS製の
略かまぼこ形状電極を用い、対向させた曲面を向かい合
わせに平行にした状態から内側に20度傾けて、最頂部
の距離を1.5mmにした。処理ガスとしてアルゴンガ
スを用い、幅1000mm×長さ100mm×厚さ0.
04mmの巻物状ポリイミドフィルムをプラズマ吹き出
し口から1mmの距離で、500mm/minで搬送
し、電極間にVP-P6kV、周波数10KHz、パルス
立ち上がり速度5μsの電界を印加し表面処理を行っ
た。その結果、フィルム全面にわたって均一に親水性が
付与されており、水の濡れ性評価の結果、接触角が5度
以下という結果となり、非常に効果があった。Example 3 Using the electrode having the shape shown in FIG. 3 (b), the polymer film was subjected to hydrophilicity improving treatment. The counter electrode is 1.0 on the surface.
mm-shaped electrode coated with mm-thick alumina and cooled inside with water having a long side of 1300 mm, a short side of 200 mm, and a mountain height of 50 mm.
000 mm, the long side end corners of the electrode facing surface are R50 mm,
Using a substantially cylindrical electrode made of SUS whose short side end corners are curved to R20 mm, the curved surfaces facing each other are tilted inward by 20 degrees from the state parallel to each other, and the distance of the top is 1. It was set to 5 mm. Argon gas is used as a processing gas, and the width is 1000 mm × the length 100 mm × the thickness is 0.1 mm.
A 04 mm roll-shaped polyimide film was conveyed at a distance of 1 mm from the plasma outlet at 500 mm / min, and an electric field of V PP 6 kV, frequency 10 KHz, and pulse rising speed 5 μs was applied between the electrodes for surface treatment. As a result, the hydrophilic property was uniformly imparted to the entire surface of the film, and the result of the wettability evaluation with water was that the contact angle was 5 degrees or less, which was very effective.
【0046】[0046]
【発明の効果】本発明の放電プラズマ処理装置は、放電
空間を十分に大きくでき、ストリーマー放電の発生を抑
え、小電力で高密度のプラズマを発生させる放電が可能
であり、かつ電極を被覆する固体誘電体の劣化を抑える
ことのできる電極構造を有するリモート型の放電プラズ
マ処理装置である。したがって、高速処理及び大面積処
理に対応可能でかつ半導体製造工程で用いられる種々の
方法を始めとして、あらゆるプラズマ処理方法におい
て、インライン化及び高速化を実現するのに有効に用い
ることができる。According to the discharge plasma processing apparatus of the present invention, the discharge space can be made sufficiently large, the generation of streamer discharge can be suppressed, the discharge can generate the high density plasma with a small electric power, and the electrode can be covered. It is a remote type discharge plasma processing apparatus having an electrode structure capable of suppressing deterioration of a solid dielectric. Therefore, it can be effectively used to realize in-line and high-speed processing in various plasma processing methods including various methods applicable to high-speed processing and large-area processing and used in semiconductor manufacturing processes.
【図1】本発明のプラズマ放電処理装置を説明する模式
的断面図である。FIG. 1 is a schematic cross-sectional view illustrating a plasma discharge processing apparatus of the present invention.
【図2】本発明のプラズマ放電処理装置の電極を説明す
る模式的断面図である。FIG. 2 is a schematic sectional view illustrating an electrode of the plasma discharge treatment apparatus of the present invention.
【図3】本発明のプラズマ放電処理装置を説明する模式
的断面図である。FIG. 3 is a schematic cross-sectional view illustrating a plasma discharge processing apparatus of the present invention.
【図4】本発明のプラズマ放電処理装置を説明する模式
的断面図である。FIG. 4 is a schematic cross-sectional view illustrating a plasma discharge processing apparatus of the present invention.
1 電源 2、3 電極 4 放電空間 5 被処理体 6 支持台 21、31 電極曲面 22、23、24、25 電極端部角部 1 power supply A few electrodes 4 discharge space 5 Object to be processed 6 support 21, 31 Electrode curved surface 22, 23, 24, 25 Electrode end corners
Claims (4)
なくとも一方の対向面に固体誘電体を設置し、当該電極
間に処理ガスを導入し電界を印加することにより得られ
る放電プラズマを、放電空間外に配置された被処理体に
接触させて処理する放電プラズマ処理装置であって、当
該電極は、対向面が曲率半径25mmを超え2000m
m以下の凸状曲面によって構成される略かまぼこ形状で
あることを特徴とする放電プラズマ処理装置。1. A discharge plasma obtained by placing a solid dielectric on at least one opposing surface of opposing electrodes under a pressure near atmospheric pressure, introducing a processing gas between the electrodes, and applying an electric field, It is a discharge plasma processing apparatus which processes by making it contact with the to-be-processed object arrange | positioned outside discharge space, Comprising: The said electrode has a curvature radius of 25 mm over 2000 m.
A discharge plasma processing apparatus having a substantially semicylindrical shape formed by a convex curved surface of m or less.
え2000mm以下の凸状曲面によって構成される略か
まぼこ形状を切断して、被処理面に略平行な面を形成す
るようになされた片かまぼこ形状であることを特徴とす
る請求項1に記載の放電プラズマ処理装置。2. A piece of an electrode, which is formed by cutting a substantially semi-cylindrical shape whose opposing surface is formed by a convex curved surface having a radius of curvature of more than 25 mm and 2000 mm or less to form a surface substantially parallel to the surface to be processed. The discharge plasma processing apparatus according to claim 1, wherein the discharge plasma processing apparatus has a semicylindrical shape.
ることを特徴とする請求項1又は2に記載の放電プラズ
マ処理装置。3. The discharge plasma processing apparatus according to claim 1, wherein an angle formed by the electrodes is variable.
処理されていることを特徴とする請求項1〜3のいずれ
か1項に記載の放電プラズマ処理装置。4. The discharge plasma processing apparatus according to claim 1, wherein a corner portion of a boundary between the facing surface and the side surface of the electrode is curved.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2002007673A JP2003217898A (en) | 2002-01-16 | 2002-01-16 | Discharge plasma processing device |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2002007673A JP2003217898A (en) | 2002-01-16 | 2002-01-16 | Discharge plasma processing device |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JP2003217898A true JP2003217898A (en) | 2003-07-31 |
Family
ID=27646131
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2002007673A Pending JP2003217898A (en) | 2002-01-16 | 2002-01-16 | Discharge plasma processing device |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP2003217898A (en) |
Cited By (67)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR100606451B1 (en) | 2004-06-16 | 2006-08-01 | 송석균 | Atmospheric pressure plasma generator |
| JP2007042503A (en) * | 2005-08-04 | 2007-02-15 | Sharp Corp | Atmospheric pressure plasma processing apparatus and atmospheric pressure plasma processing method |
| US7686971B2 (en) | 2004-11-24 | 2010-03-30 | Panasonic Corporation | Plasma processing apparatus and method |
| US7767024B2 (en) | 2004-02-26 | 2010-08-03 | Appplied Materials, Inc. | Method for front end of line fabrication |
| US7780793B2 (en) | 2004-02-26 | 2010-08-24 | Applied Materials, Inc. | Passivation layer formation by plasma clean process to reduce native oxide growth |
| US8679983B2 (en) | 2011-09-01 | 2014-03-25 | Applied Materials, Inc. | Selective suppression of dry-etch rate of materials containing both silicon and nitrogen |
| US8679982B2 (en) | 2011-08-26 | 2014-03-25 | Applied Materials, Inc. | Selective suppression of dry-etch rate of materials containing both silicon and oxygen |
| US8765574B2 (en) | 2012-11-09 | 2014-07-01 | Applied Materials, Inc. | Dry etch process |
| US8771539B2 (en) | 2011-02-22 | 2014-07-08 | Applied Materials, Inc. | Remotely-excited fluorine and water vapor etch |
| US8801952B1 (en) | 2013-03-07 | 2014-08-12 | Applied Materials, Inc. | Conformal oxide dry etch |
| US8895449B1 (en) | 2013-05-16 | 2014-11-25 | Applied Materials, Inc. | Delicate dry clean |
| US8921234B2 (en) | 2012-12-21 | 2014-12-30 | Applied Materials, Inc. | Selective titanium nitride etching |
| US8927390B2 (en) | 2011-09-26 | 2015-01-06 | Applied Materials, Inc. | Intrench profile |
| US8951429B1 (en) | 2013-10-29 | 2015-02-10 | Applied Materials, Inc. | Tungsten oxide processing |
| US8956980B1 (en) | 2013-09-16 | 2015-02-17 | Applied Materials, Inc. | Selective etch of silicon nitride |
| US8969212B2 (en) | 2012-11-20 | 2015-03-03 | Applied Materials, Inc. | Dry-etch selectivity |
| US8975152B2 (en) | 2011-11-08 | 2015-03-10 | Applied Materials, Inc. | Methods of reducing substrate dislocation during gapfill processing |
| US8980763B2 (en) | 2012-11-30 | 2015-03-17 | Applied Materials, Inc. | Dry-etch for selective tungsten removal |
| US8999856B2 (en) | 2011-03-14 | 2015-04-07 | Applied Materials, Inc. | Methods for etch of sin films |
| US9023734B2 (en) | 2012-09-18 | 2015-05-05 | Applied Materials, Inc. | Radical-component oxide etch |
| US9023732B2 (en) | 2013-03-15 | 2015-05-05 | Applied Materials, Inc. | Processing systems and methods for halide scavenging |
| US9034770B2 (en) | 2012-09-17 | 2015-05-19 | Applied Materials, Inc. | Differential silicon oxide etch |
| US9040422B2 (en) | 2013-03-05 | 2015-05-26 | Applied Materials, Inc. | Selective titanium nitride removal |
| US9064815B2 (en) | 2011-03-14 | 2015-06-23 | Applied Materials, Inc. | Methods for etch of metal and metal-oxide films |
| US9064816B2 (en) | 2012-11-30 | 2015-06-23 | Applied Materials, Inc. | Dry-etch for selective oxidation removal |
| US9111877B2 (en) | 2012-12-18 | 2015-08-18 | Applied Materials, Inc. | Non-local plasma oxide etch |
| US9117855B2 (en) | 2013-12-04 | 2015-08-25 | Applied Materials, Inc. | Polarity control for remote plasma |
| US9114438B2 (en) | 2013-05-21 | 2015-08-25 | Applied Materials, Inc. | Copper residue chamber clean |
| US9132436B2 (en) | 2012-09-21 | 2015-09-15 | Applied Materials, Inc. | Chemical control features in wafer process equipment |
| US9136273B1 (en) | 2014-03-21 | 2015-09-15 | Applied Materials, Inc. | Flash gate air gap |
| US9159606B1 (en) | 2014-07-31 | 2015-10-13 | Applied Materials, Inc. | Metal air gap |
| US9165786B1 (en) | 2014-08-05 | 2015-10-20 | Applied Materials, Inc. | Integrated oxide and nitride recess for better channel contact in 3D architectures |
| US9190293B2 (en) | 2013-12-18 | 2015-11-17 | Applied Materials, Inc. | Even tungsten etch for high aspect ratio trenches |
| US9236265B2 (en) | 2013-11-04 | 2016-01-12 | Applied Materials, Inc. | Silicon germanium processing |
| US9236266B2 (en) | 2011-08-01 | 2016-01-12 | Applied Materials, Inc. | Dry-etch for silicon-and-carbon-containing films |
| US9245762B2 (en) | 2013-12-02 | 2016-01-26 | Applied Materials, Inc. | Procedure for etch rate consistency |
| US9263278B2 (en) | 2013-12-17 | 2016-02-16 | Applied Materials, Inc. | Dopant etch selectivity control |
| US9287134B2 (en) | 2014-01-17 | 2016-03-15 | Applied Materials, Inc. | Titanium oxide etch |
| US9287095B2 (en) | 2013-12-17 | 2016-03-15 | Applied Materials, Inc. | Semiconductor system assemblies and methods of operation |
| US9293568B2 (en) | 2014-01-27 | 2016-03-22 | Applied Materials, Inc. | Method of fin patterning |
| US9299537B2 (en) | 2014-03-20 | 2016-03-29 | Applied Materials, Inc. | Radial waveguide systems and methods for post-match control of microwaves |
| US9299582B2 (en) | 2013-11-12 | 2016-03-29 | Applied Materials, Inc. | Selective etch for metal-containing materials |
| US9299575B2 (en) | 2014-03-17 | 2016-03-29 | Applied Materials, Inc. | Gas-phase tungsten etch |
| US9299538B2 (en) | 2014-03-20 | 2016-03-29 | Applied Materials, Inc. | Radial waveguide systems and methods for post-match control of microwaves |
| US9309598B2 (en) | 2014-05-28 | 2016-04-12 | Applied Materials, Inc. | Oxide and metal removal |
| US9324576B2 (en) | 2010-05-27 | 2016-04-26 | Applied Materials, Inc. | Selective etch for silicon films |
| JP2016072258A (en) * | 2014-09-26 | 2016-05-09 | 株式会社Screenホールディングス | Etching device |
| US9355856B2 (en) | 2014-09-12 | 2016-05-31 | Applied Materials, Inc. | V trench dry etch |
| US9362130B2 (en) | 2013-03-01 | 2016-06-07 | Applied Materials, Inc. | Enhanced etching processes using remote plasma sources |
| US9373517B2 (en) | 2012-08-02 | 2016-06-21 | Applied Materials, Inc. | Semiconductor processing with DC assisted RF power for improved control |
| US9378978B2 (en) | 2014-07-31 | 2016-06-28 | Applied Materials, Inc. | Integrated oxide recess and floating gate fin trimming |
| US9378969B2 (en) | 2014-06-19 | 2016-06-28 | Applied Materials, Inc. | Low temperature gas-phase carbon removal |
| US9385028B2 (en) | 2014-02-03 | 2016-07-05 | Applied Materials, Inc. | Air gap process |
| US9390937B2 (en) | 2012-09-20 | 2016-07-12 | Applied Materials, Inc. | Silicon-carbon-nitride selective etch |
| US9396989B2 (en) | 2014-01-27 | 2016-07-19 | Applied Materials, Inc. | Air gaps between copper lines |
| US9406523B2 (en) | 2014-06-19 | 2016-08-02 | Applied Materials, Inc. | Highly selective doped oxide removal method |
| US9425058B2 (en) | 2014-07-24 | 2016-08-23 | Applied Materials, Inc. | Simplified litho-etch-litho-etch process |
| US9493879B2 (en) | 2013-07-12 | 2016-11-15 | Applied Materials, Inc. | Selective sputtering for pattern transfer |
| US9496167B2 (en) | 2014-07-31 | 2016-11-15 | Applied Materials, Inc. | Integrated bit-line airgap formation and gate stack post clean |
| US9553102B2 (en) | 2014-08-19 | 2017-01-24 | Applied Materials, Inc. | Tungsten separation |
| US9576809B2 (en) | 2013-11-04 | 2017-02-21 | Applied Materials, Inc. | Etch suppression with germanium |
| US9659753B2 (en) | 2014-08-07 | 2017-05-23 | Applied Materials, Inc. | Grooved insulator to reduce leakage current |
| US9773648B2 (en) | 2013-08-30 | 2017-09-26 | Applied Materials, Inc. | Dual discharge modes operation for remote plasma |
| US9847289B2 (en) | 2014-05-30 | 2017-12-19 | Applied Materials, Inc. | Protective via cap for improved interconnect performance |
| US9903020B2 (en) | 2014-03-31 | 2018-02-27 | Applied Materials, Inc. | Generation of compact alumina passivation layers on aluminum plasma equipment components |
| US10256079B2 (en) | 2013-02-08 | 2019-04-09 | Applied Materials, Inc. | Semiconductor processing systems having multiple plasma configurations |
| KR101959676B1 (en) * | 2018-06-18 | 2019-07-04 | 주식회사 코비플라텍 | Atmospheric Pressure Bulk Plasma System |
-
2002
- 2002-01-16 JP JP2002007673A patent/JP2003217898A/en active Pending
Cited By (80)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7767024B2 (en) | 2004-02-26 | 2010-08-03 | Appplied Materials, Inc. | Method for front end of line fabrication |
| US7780793B2 (en) | 2004-02-26 | 2010-08-24 | Applied Materials, Inc. | Passivation layer formation by plasma clean process to reduce native oxide growth |
| US8343307B2 (en) | 2004-02-26 | 2013-01-01 | Applied Materials, Inc. | Showerhead assembly |
| US10593539B2 (en) | 2004-02-26 | 2020-03-17 | Applied Materials, Inc. | Support assembly |
| KR100606451B1 (en) | 2004-06-16 | 2006-08-01 | 송석균 | Atmospheric pressure plasma generator |
| US7686971B2 (en) | 2004-11-24 | 2010-03-30 | Panasonic Corporation | Plasma processing apparatus and method |
| JP2007042503A (en) * | 2005-08-04 | 2007-02-15 | Sharp Corp | Atmospheric pressure plasma processing apparatus and atmospheric pressure plasma processing method |
| US9324576B2 (en) | 2010-05-27 | 2016-04-26 | Applied Materials, Inc. | Selective etch for silicon films |
| US8771539B2 (en) | 2011-02-22 | 2014-07-08 | Applied Materials, Inc. | Remotely-excited fluorine and water vapor etch |
| US8999856B2 (en) | 2011-03-14 | 2015-04-07 | Applied Materials, Inc. | Methods for etch of sin films |
| US9064815B2 (en) | 2011-03-14 | 2015-06-23 | Applied Materials, Inc. | Methods for etch of metal and metal-oxide films |
| US9236266B2 (en) | 2011-08-01 | 2016-01-12 | Applied Materials, Inc. | Dry-etch for silicon-and-carbon-containing films |
| US8679982B2 (en) | 2011-08-26 | 2014-03-25 | Applied Materials, Inc. | Selective suppression of dry-etch rate of materials containing both silicon and oxygen |
| US8679983B2 (en) | 2011-09-01 | 2014-03-25 | Applied Materials, Inc. | Selective suppression of dry-etch rate of materials containing both silicon and nitrogen |
| US9012302B2 (en) | 2011-09-26 | 2015-04-21 | Applied Materials, Inc. | Intrench profile |
| US8927390B2 (en) | 2011-09-26 | 2015-01-06 | Applied Materials, Inc. | Intrench profile |
| US8975152B2 (en) | 2011-11-08 | 2015-03-10 | Applied Materials, Inc. | Methods of reducing substrate dislocation during gapfill processing |
| US9373517B2 (en) | 2012-08-02 | 2016-06-21 | Applied Materials, Inc. | Semiconductor processing with DC assisted RF power for improved control |
| US9887096B2 (en) | 2012-09-17 | 2018-02-06 | Applied Materials, Inc. | Differential silicon oxide etch |
| US9034770B2 (en) | 2012-09-17 | 2015-05-19 | Applied Materials, Inc. | Differential silicon oxide etch |
| US9023734B2 (en) | 2012-09-18 | 2015-05-05 | Applied Materials, Inc. | Radical-component oxide etch |
| US9390937B2 (en) | 2012-09-20 | 2016-07-12 | Applied Materials, Inc. | Silicon-carbon-nitride selective etch |
| US9132436B2 (en) | 2012-09-21 | 2015-09-15 | Applied Materials, Inc. | Chemical control features in wafer process equipment |
| US8765574B2 (en) | 2012-11-09 | 2014-07-01 | Applied Materials, Inc. | Dry etch process |
| US8969212B2 (en) | 2012-11-20 | 2015-03-03 | Applied Materials, Inc. | Dry-etch selectivity |
| US9064816B2 (en) | 2012-11-30 | 2015-06-23 | Applied Materials, Inc. | Dry-etch for selective oxidation removal |
| US8980763B2 (en) | 2012-11-30 | 2015-03-17 | Applied Materials, Inc. | Dry-etch for selective tungsten removal |
| US9111877B2 (en) | 2012-12-18 | 2015-08-18 | Applied Materials, Inc. | Non-local plasma oxide etch |
| US8921234B2 (en) | 2012-12-21 | 2014-12-30 | Applied Materials, Inc. | Selective titanium nitride etching |
| US10256079B2 (en) | 2013-02-08 | 2019-04-09 | Applied Materials, Inc. | Semiconductor processing systems having multiple plasma configurations |
| US9362130B2 (en) | 2013-03-01 | 2016-06-07 | Applied Materials, Inc. | Enhanced etching processes using remote plasma sources |
| US9040422B2 (en) | 2013-03-05 | 2015-05-26 | Applied Materials, Inc. | Selective titanium nitride removal |
| US9607856B2 (en) | 2013-03-05 | 2017-03-28 | Applied Materials, Inc. | Selective titanium nitride removal |
| US9093390B2 (en) | 2013-03-07 | 2015-07-28 | Applied Materials, Inc. | Conformal oxide dry etch |
| US8801952B1 (en) | 2013-03-07 | 2014-08-12 | Applied Materials, Inc. | Conformal oxide dry etch |
| US9023732B2 (en) | 2013-03-15 | 2015-05-05 | Applied Materials, Inc. | Processing systems and methods for halide scavenging |
| US9184055B2 (en) | 2013-03-15 | 2015-11-10 | Applied Materials, Inc. | Processing systems and methods for halide scavenging |
| US9153442B2 (en) | 2013-03-15 | 2015-10-06 | Applied Materials, Inc. | Processing systems and methods for halide scavenging |
| US9991134B2 (en) | 2013-03-15 | 2018-06-05 | Applied Materials, Inc. | Processing systems and methods for halide scavenging |
| US9093371B2 (en) | 2013-03-15 | 2015-07-28 | Applied Materials, Inc. | Processing systems and methods for halide scavenging |
| US8895449B1 (en) | 2013-05-16 | 2014-11-25 | Applied Materials, Inc. | Delicate dry clean |
| US9114438B2 (en) | 2013-05-21 | 2015-08-25 | Applied Materials, Inc. | Copper residue chamber clean |
| US9493879B2 (en) | 2013-07-12 | 2016-11-15 | Applied Materials, Inc. | Selective sputtering for pattern transfer |
| US9773648B2 (en) | 2013-08-30 | 2017-09-26 | Applied Materials, Inc. | Dual discharge modes operation for remote plasma |
| US9209012B2 (en) | 2013-09-16 | 2015-12-08 | Applied Materials, Inc. | Selective etch of silicon nitride |
| US8956980B1 (en) | 2013-09-16 | 2015-02-17 | Applied Materials, Inc. | Selective etch of silicon nitride |
| US8951429B1 (en) | 2013-10-29 | 2015-02-10 | Applied Materials, Inc. | Tungsten oxide processing |
| US9236265B2 (en) | 2013-11-04 | 2016-01-12 | Applied Materials, Inc. | Silicon germanium processing |
| US9576809B2 (en) | 2013-11-04 | 2017-02-21 | Applied Materials, Inc. | Etch suppression with germanium |
| US9711366B2 (en) | 2013-11-12 | 2017-07-18 | Applied Materials, Inc. | Selective etch for metal-containing materials |
| US9299582B2 (en) | 2013-11-12 | 2016-03-29 | Applied Materials, Inc. | Selective etch for metal-containing materials |
| US9520303B2 (en) | 2013-11-12 | 2016-12-13 | Applied Materials, Inc. | Aluminum selective etch |
| US9245762B2 (en) | 2013-12-02 | 2016-01-26 | Applied Materials, Inc. | Procedure for etch rate consistency |
| US9117855B2 (en) | 2013-12-04 | 2015-08-25 | Applied Materials, Inc. | Polarity control for remote plasma |
| US9287095B2 (en) | 2013-12-17 | 2016-03-15 | Applied Materials, Inc. | Semiconductor system assemblies and methods of operation |
| US9263278B2 (en) | 2013-12-17 | 2016-02-16 | Applied Materials, Inc. | Dopant etch selectivity control |
| US9190293B2 (en) | 2013-12-18 | 2015-11-17 | Applied Materials, Inc. | Even tungsten etch for high aspect ratio trenches |
| US9287134B2 (en) | 2014-01-17 | 2016-03-15 | Applied Materials, Inc. | Titanium oxide etch |
| US9293568B2 (en) | 2014-01-27 | 2016-03-22 | Applied Materials, Inc. | Method of fin patterning |
| US9396989B2 (en) | 2014-01-27 | 2016-07-19 | Applied Materials, Inc. | Air gaps between copper lines |
| US9385028B2 (en) | 2014-02-03 | 2016-07-05 | Applied Materials, Inc. | Air gap process |
| US9299575B2 (en) | 2014-03-17 | 2016-03-29 | Applied Materials, Inc. | Gas-phase tungsten etch |
| US9299538B2 (en) | 2014-03-20 | 2016-03-29 | Applied Materials, Inc. | Radial waveguide systems and methods for post-match control of microwaves |
| US9299537B2 (en) | 2014-03-20 | 2016-03-29 | Applied Materials, Inc. | Radial waveguide systems and methods for post-match control of microwaves |
| US9136273B1 (en) | 2014-03-21 | 2015-09-15 | Applied Materials, Inc. | Flash gate air gap |
| US9903020B2 (en) | 2014-03-31 | 2018-02-27 | Applied Materials, Inc. | Generation of compact alumina passivation layers on aluminum plasma equipment components |
| US9309598B2 (en) | 2014-05-28 | 2016-04-12 | Applied Materials, Inc. | Oxide and metal removal |
| US9847289B2 (en) | 2014-05-30 | 2017-12-19 | Applied Materials, Inc. | Protective via cap for improved interconnect performance |
| US9378969B2 (en) | 2014-06-19 | 2016-06-28 | Applied Materials, Inc. | Low temperature gas-phase carbon removal |
| US9406523B2 (en) | 2014-06-19 | 2016-08-02 | Applied Materials, Inc. | Highly selective doped oxide removal method |
| US9425058B2 (en) | 2014-07-24 | 2016-08-23 | Applied Materials, Inc. | Simplified litho-etch-litho-etch process |
| US9496167B2 (en) | 2014-07-31 | 2016-11-15 | Applied Materials, Inc. | Integrated bit-line airgap formation and gate stack post clean |
| US9378978B2 (en) | 2014-07-31 | 2016-06-28 | Applied Materials, Inc. | Integrated oxide recess and floating gate fin trimming |
| US9159606B1 (en) | 2014-07-31 | 2015-10-13 | Applied Materials, Inc. | Metal air gap |
| US9165786B1 (en) | 2014-08-05 | 2015-10-20 | Applied Materials, Inc. | Integrated oxide and nitride recess for better channel contact in 3D architectures |
| US9659753B2 (en) | 2014-08-07 | 2017-05-23 | Applied Materials, Inc. | Grooved insulator to reduce leakage current |
| US9553102B2 (en) | 2014-08-19 | 2017-01-24 | Applied Materials, Inc. | Tungsten separation |
| US9355856B2 (en) | 2014-09-12 | 2016-05-31 | Applied Materials, Inc. | V trench dry etch |
| JP2016072258A (en) * | 2014-09-26 | 2016-05-09 | 株式会社Screenホールディングス | Etching device |
| KR101959676B1 (en) * | 2018-06-18 | 2019-07-04 | 주식회사 코비플라텍 | Atmospheric Pressure Bulk Plasma System |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP2003217898A (en) | Discharge plasma processing device | |
| JP3823037B2 (en) | Discharge plasma processing equipment | |
| JP5021877B2 (en) | Discharge plasma processing equipment | |
| JP2003019433A (en) | Discharge plasma treating apparatus and treating method using the same | |
| JP3962280B2 (en) | Discharge plasma processing equipment | |
| JP2003218099A (en) | Method and system for discharge plasma processing | |
| JP2003318000A (en) | Discharge plasma treatment apparatus | |
| JP3782708B2 (en) | Discharge plasma processing apparatus and discharge plasma processing method using the same | |
| JP2003338398A (en) | Discharge plasma processing method and apparatus therefor | |
| JP2004134671A (en) | Apparatus and method for plasma treatment | |
| JP2003317998A (en) | Discharge plasma treatment method and apparatus therefor | |
| JP2002151480A (en) | Processing method for semiconductor element and device therefor | |
| KR20020071694A (en) | Method and apparatus for removing contaminants from the surface of a substrate with atmospheric-pressure plasma | |
| JP2004207145A (en) | Discharge plasma processing device | |
| JP2003059909A (en) | Discharge plasma treatment apparatus and processing method using the same | |
| JP3722733B2 (en) | Discharge plasma processing equipment | |
| JP2002320845A (en) | Normal pressure plasma treatment device | |
| JP3793451B2 (en) | Discharge plasma processing equipment | |
| JP2003142298A (en) | Glow discharge plasma processing device | |
| JP2003163207A (en) | Removing treatment method for remaining photo-resist | |
| JP2004115896A (en) | Discharge plasma treatment device, and discharge plasma treatment method | |
| JP2003049276A (en) | Discharge plasma treatment device and treatment method using the same | |
| JP2002176050A (en) | Method of forming silicon oxide film and system thereof | |
| JP2002151476A (en) | Method and apparatus for removing resist | |
| JP3984514B2 (en) | Plasma processing apparatus and plasma processing method |