[go: up one dir, main page]

JP2004140221A - Semiconductor device and method of manufacturing semiconductor device - Google Patents

Semiconductor device and method of manufacturing semiconductor device Download PDF

Info

Publication number
JP2004140221A
JP2004140221A JP2002304313A JP2002304313A JP2004140221A JP 2004140221 A JP2004140221 A JP 2004140221A JP 2002304313 A JP2002304313 A JP 2002304313A JP 2002304313 A JP2002304313 A JP 2002304313A JP 2004140221 A JP2004140221 A JP 2004140221A
Authority
JP
Japan
Prior art keywords
wiring board
printed wiring
electronic component
semiconductor device
joining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002304313A
Other languages
Japanese (ja)
Inventor
Satoru Higuchi
樋口 哲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2002304313A priority Critical patent/JP2004140221A/en
Publication of JP2004140221A publication Critical patent/JP2004140221A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Wire Bonding (AREA)

Abstract

【課題】電子部品をプリント配線板に実装する際に、接合部を鼓状にすることで、接合部近傍への応力集中を緩和させ、接合寿命を向上させること。
【解決手段】プリント配線板3の部品搭載面を反転させ実装面を下向きにした状態で、リフロー加熱を行う。その際に、接合用治具5に付属した電子部品とプリント配線板3の間隔を調整する部品6を用いて間隔を調製することで、はんだ接合部4の形状を鼓状にする。
【選択図】    図1
When mounting an electronic component on a printed wiring board, the joining portion is formed into a drum shape, so that stress concentration near the joining portion is reduced, and the joining life is improved.
A reflow heating is performed in a state where a component mounting surface of a printed wiring board (3) is inverted and a mounting surface faces downward. At this time, the interval is adjusted using the electronic component attached to the joining jig 5 and the component 6 for adjusting the interval between the printed wiring board 3 and the shape of the solder joint 4 is made drum-shaped.
[Selection diagram] Fig. 1

Description

【0001】
【発明の属する技術分野】
本発明は、表面実装型の電子部品の実装技術に関し、特にBGA(Ball Grid Array)などの接続構造を有する半導体装置などの半導体装置及び半導体装置の製造方法に関する。
【0002】
【従来の技術】
従来、電子部品の一例として表面実装型のBGAパッケージがある。ランド7が形成されたプリント配線板3上にBGAパッケージを搭載し、リフロー工程によってはんだバンプを溶融し、電気的に接合する。このような実装した場合に、はんだバンプは、図7に示すようにBGAパッケージの重さによって押しつぶされて、太鼓状に形成される。このような形状では、半導体装置と基板との線膨張係数の差に起因する熱応力が発生した場合に、その応力が接合部近傍に集中することが知られており、はんだ接合信頼性が損なわれるという問題がある。それに対し図8のように、はんだ接合部を鼓状にすることで、接合部近傍への応力集中を緩和させ、接合寿命を向上させることができるということが知られており、実装方法が記載されている。
【0003】
例えば、下記の特許文献1では、ボール状の複数の小型はんだバンプと、そのはんだバンプよりも大きく、かつ配線板の少なくとも3点支持する位置に設けられた大型のはんだバンプとが下面に配置されたBGAパッケージをプリント配線板上に搭載してリフローすると、大型バンプに支持されて、小型バンプは鼓状に形成される実装方法が開示されている。また、特許文献2には、図8に示すようにBGAパッケージとプリント配線板との間にスペーサ−部材を挟み込むことで、高さを調整し、鼓状の接合部を形成する実装方法が記載されている。
【0004】
【特許文献1】
特開平9−199540号公報
【特許文献2】
特開平9−162234号公報
【0005】
【発明が解決しようとする課題】
しかしながら、上記特許文献1の方法では、大きさの異なるはんだバンプをBGAパッケージに付着させなければならず、さらに大型バンプの融点を小型バンプの融点より高くしなければならないという制約がある。上記特許文献2の方法では、スペーサ部材をBGAパッケージとプリント配線板の間に挟み込む必要があるため、高密度実装には、不向きであるといった問題がある。
【0006】
本発明は上記問題点に着目してなされたものであって、電子部品をプリント配線板に実装する際に、接合部を鼓状にすることで、接合部近傍への応力集中を緩和させ、接合寿命を向上させることのできる半導体装置及び半導体装置の製造方法の提供を目的としている。
【0007】
【課題を解決するための手段】
本発明は上記問題を解決するために以下の手段を採用する。
【0008】
接合用治具に電子部品とプリント配線板を逆さまに搭載し、接合用治具に付属した電子部品とプリント配線板の間隔を調整する部品を用いて間隔を調節した状態でリフロー加熱を行うことで、はんだ接合部を応力集中の少ない鼓状に形成することができる。はんだバンプは、同一の組成、寸法のものを使用することができ、電子部品とプリント配線板との間に物体を挟み込む必要がない。
【0009】
上記構成を改めて以下(1)及び(2)に整理して示す。
【0010】
(1)電子部品に設けられたはんだバンプを介して電子部品をプリント配線板に実装する電子部品の製造方法であって、プリント配線板の部品搭載面を反転させ実装面を下向きにし、かつ電子部品とプリント配線板の間隔を調整する部品を備えた接合用治具を用いてプリント配線板を少なくとも3点で支持することで電子部品とプリント配線板の間隔を確保した状態でリフロー加熱を行い、接合する半導体装置の製造方法。
【0011】
(2)上記(1)に記載の半導体装置の製造方法において、はんだバンプの体積、ランド開口径、電子部品とプリント配線板の間隔を調節することにより鼓状のはんだバンプを有する半導体装置。
【0012】
【発明の実施の形態】
本発明の一実施の形態を図面を参照して説明する。
【0013】
【実施例】
本発明の半導体装置は、図1に示すように半導体素子を封止したモールド樹脂部1と、それを搭載する素子搭載基板2からなる半導体パッケージが、はんだバンプ4を介してプリント配線板3と電気的に接続されている構造をもつ。その際に、はんだバンプ4が鼓状を形成している。
【0014】
プリント配線板3は、縦100mm、横100mm、厚さ1.0mmで、ガラスエポキシ樹脂材料で構成されており、ビルドアップ法、インナーバイアホール方式による多層基板である。さらに、半導体チップは、縦10mm、横10mm、厚さ0.2mmのシリコン基板を本体とするものである。また、モールド樹脂部1はトランスファー金型により樹脂成形されたものである。はんだバンプ4は、半径500μmの球状に形成されたものである。はんだバンプ4の間隔は、1.27mmピッチである。
【0015】
本発明の実装構造を達成させるための実装方法について説明する。リフロー工程によって電子部品をプリント配線板3に接合する前に、図2に示すように、接合用治具5上に電子部品、プリント配線板3を搭載した状態にする。図4に示すように、接合用治具5は、プリント配線板3と同等の大きさであり、実装される全ての電子部品が搭載できるように部品の形状に沿った溝が掘られており、部品の位置ずれを防止している。また、搭載部品がプリント配線板3のランドに接触するように、高さを調整している。この電子部品とプリント配線板3の間隔を調整する部品(接合用治具)6は、プリント配線板3の取り付け穴と合わせることで搭載時の位置ずれも防止している。
【0016】
図2の状態を達成するために、まず、プリント配線板3上の電極にソルダーペーストを印刷する。続いて図5に示すように接合用治具5,6の上に電子部品を位置決め搭載し、その上にプリント配線板3を搭載する方法、または図6に示すようにプリント配線板3に電子部品を位置決め搭載し、その上に接合用治具5,6を搭載した後に上下を反転させるという方法を用いる。
【0017】
そして、リフロー工程によってはんだを溶融し、図3に示すように半導体パッケージをプリント配線板3にはんだ接合する。はんだボール4aが溶融すると、プリント配線板3上のランド7に接触した個所では、電極側にはんだが引き寄せられ、バンプ中央部のはんだ量が減少し、はんだ接合部4の形状は、鼓状となる。これにより、熱応力による接合部近傍への応力集中を緩和させ、接合寿命を向上させることができる。
【0018】
以上の図1に示す本発明の半導体装置と一般的な太鼓状のはんだ接合部を有する半導体装置に対して、同時に熱サイクル疲労試験を行った。その結果、一般的な太鼓状のはんだ接合部を有する半導体装置では300サイクルで破断が生じたのに対して、本発明の半導体装置では約5倍の接合寿命を得ることできた。
【0019】
【発明の効果】
本発明の実装基板では、はんだバンプ形状を鼓状にすることにより、最も応力が集中するプリント配線板とはんだバンプの界面付近への負荷を軽減することができる。よって、疲労破壊強度が向上するので、接合寿命が長くなるとともに、接合信頼性を向上させることができる。
【図面の簡単な説明】
【図1】本発明による半導体装置の構造形態の一例を示す部分断面図
【図2】本発明の実施の形態に係るリフロー第1工程を示す部分断面図
【図3】本発明の実施の形態に係るリフロー第2工程を示す部分断面図
【図4】本発明の実施の形態に係るリフロー第2工程を示す断面図
【図5】本発明による半導体装置の製造方法の実施の形態の一例を示す部分断面図
【図6】本発明による半導体装置の製造方法の実施の形態の一例を示す部分断面図
【図7】実装後のはんだバンプの状態を示す説明図
【図8】実装後のはんだバンプの状態を示す説明図
【図9】従来例による半導体装置の構造を示した部分断面図
【符号の説明】
1 モールド樹脂部
2 素子搭載基版(インターポーザ)
3 プリント配線板
4 はんだ接合部(はんだバンプ)
4a はんだボール
5 接合用治具
6 接合用治具(電子部品とプリント配線板間隔の調整部品)
7 ランド
8 チップ部品
9 スペーサ部材
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a technology for mounting surface-mounted electronic components, and more particularly to a semiconductor device such as a semiconductor device having a connection structure such as a BGA (Ball Grid Array) and a method of manufacturing the semiconductor device.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, there is a surface-mounted BGA package as an example of an electronic component. A BGA package is mounted on the printed wiring board 3 on which the lands 7 are formed, and the solder bumps are melted by a reflow process and electrically connected. In such a mounting, the solder bumps are crushed by the weight of the BGA package as shown in FIG. With such a shape, it is known that when thermal stress is generated due to a difference in linear expansion coefficient between the semiconductor device and the substrate, the stress is concentrated near the joint, and solder joint reliability is impaired. Problem. On the other hand, as shown in FIG. 8, it is known that, by making the solder joint portion into a drum shape, stress concentration near the joint portion can be reduced, and the joining life can be improved. Have been.
[0003]
For example, in Patent Document 1 below, a plurality of ball-shaped small solder bumps and large solder bumps larger than the solder bumps and provided at positions supporting at least three points on the wiring board are arranged on the lower surface. A mounting method is disclosed in which when a BGA package is mounted on a printed wiring board and reflowed, the small bumps are supported by large bumps and formed in a drum shape. Patent Document 2 discloses a mounting method in which a spacer member is interposed between a BGA package and a printed wiring board to adjust the height and form a drum-shaped joint as shown in FIG. Have been.
[0004]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 9-199540 [Patent Document 2]
JP-A-9-162234 [0005]
[Problems to be solved by the invention]
However, the method of Patent Document 1 has limitations that solder bumps having different sizes must be attached to the BGA package, and the melting point of the large bumps must be higher than the melting point of the small bumps. The method of Patent Document 2 has a problem that it is not suitable for high-density mounting because the spacer member needs to be sandwiched between the BGA package and the printed wiring board.
[0006]
The present invention has been made in view of the above problems, when mounting the electronic component on a printed wiring board, by making the joints drum-shaped, to reduce stress concentration near the joints, It is an object of the present invention to provide a semiconductor device and a method for manufacturing the semiconductor device, which can improve the bonding life.
[0007]
[Means for Solving the Problems]
The present invention employs the following means to solve the above problems.
[0008]
The electronic component and the printed wiring board are mounted upside down on the joining jig, and the reflow heating is performed with the spacing adjusted using the electronic component attached to the joining jig and the component that adjusts the spacing between the printed wiring board. Thus, the solder joint can be formed in a drum shape with less stress concentration. Solder bumps having the same composition and dimensions can be used, and there is no need to sandwich an object between the electronic component and the printed wiring board.
[0009]
The above configuration is shown again in the following (1) and (2).
[0010]
(1) A method for manufacturing an electronic component in which the electronic component is mounted on a printed wiring board via solder bumps provided on the electronic component, wherein the component mounting surface of the printed wiring board is inverted so that the mounting surface faces downward, and The printed wiring board is supported at at least three points by using a joining jig provided with a component for adjusting the distance between the component and the printed wiring board, and reflow heating is performed with the gap between the electronic component and the printed wiring board secured. And a method of manufacturing a semiconductor device to be joined.
[0011]
(2) The method of manufacturing a semiconductor device according to the above (1), wherein the volume of the solder bump, the land opening diameter, and the distance between the electronic component and the printed wiring board are adjusted to have a drum-shaped solder bump.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described with reference to the drawings.
[0013]
【Example】
As shown in FIG. 1, the semiconductor device according to the present invention comprises a semiconductor package including a mold resin portion 1 in which a semiconductor element is sealed and an element mounting substrate 2 on which the semiconductor element is mounted. It has a structure that is electrically connected. At this time, the solder bumps 4 form a drum shape.
[0014]
The printed wiring board 3 has a length of 100 mm, a width of 100 mm, and a thickness of 1.0 mm, is made of a glass epoxy resin material, and is a multilayer board formed by a build-up method or an inner via hole method. Further, the semiconductor chip has a main body of a silicon substrate having a length of 10 mm, a width of 10 mm, and a thickness of 0.2 mm. The mold resin portion 1 is formed by resin molding using a transfer mold. The solder bump 4 is formed in a spherical shape with a radius of 500 μm. The interval between the solder bumps 4 is 1.27 mm pitch.
[0015]
A mounting method for achieving the mounting structure of the present invention will be described. Before joining the electronic component to the printed wiring board 3 by the reflow process, the electronic component and the printed wiring board 3 are mounted on the joining jig 5 as shown in FIG. As shown in FIG. 4, the joining jig 5 has the same size as the printed wiring board 3, and has a groove along the shape of the component so that all electronic components to be mounted can be mounted. In addition, misalignment of parts is prevented. Further, the height is adjusted so that the mounted components come into contact with the lands of the printed wiring board 3. The component (joining jig) 6 for adjusting the distance between the electronic component and the printed wiring board 3 is also aligned with the mounting hole of the printed wiring board 3 to prevent displacement during mounting.
[0016]
In order to achieve the state shown in FIG. 2, first, a solder paste is printed on the electrodes on the printed wiring board 3. Subsequently, as shown in FIG. 5, the electronic components are positioned and mounted on the joining jigs 5, 6, and the printed wiring board 3 is mounted thereon, or the electronic components are mounted on the printed wiring board 3 as shown in FIG. A method is used in which the components are positioned and mounted, and the jigs 5 and 6 are mounted thereon and then turned upside down.
[0017]
Then, the solder is melted by the reflow process, and the semiconductor package is soldered to the printed wiring board 3 as shown in FIG. When the solder ball 4a is melted, the solder is attracted to the electrode side where the land 7 on the printed wiring board 3 comes into contact, the amount of solder at the center of the bump decreases, and the shape of the solder joint 4 becomes a drum shape. Become. Thus, stress concentration near the joint due to thermal stress can be reduced, and the joining life can be improved.
[0018]
A thermal cycle fatigue test was simultaneously performed on the semiconductor device of the present invention shown in FIG. 1 and a semiconductor device having a general drum-shaped solder joint. As a result, while a semiconductor device having a general drum-shaped solder joint failed in 300 cycles, the semiconductor device of the present invention was able to obtain about five times the joining life.
[0019]
【The invention's effect】
In the mounting board of the present invention, by making the shape of the solder bump into a drum shape, the load on the vicinity of the interface between the printed wiring board and the solder bump where the stress is most concentrated can be reduced. Therefore, the fatigue fracture strength is improved, so that the joining life is prolonged and the joining reliability can be improved.
[Brief description of the drawings]
FIG. 1 is a partial cross-sectional view showing an example of the structure of a semiconductor device according to the present invention; FIG. 2 is a partial cross-sectional view showing a first reflow process according to an embodiment of the present invention; FIG. FIG. 4 is a partial cross-sectional view showing a second reflow process according to the present invention. FIG. 4 is a cross-sectional view showing a second reflow process according to the embodiment of the present invention. FIG. 5 shows an example of an embodiment of a method for manufacturing a semiconductor device according to the present invention. FIG. 6 is a partial sectional view showing an example of an embodiment of a method of manufacturing a semiconductor device according to the present invention. FIG. 7 is an explanatory view showing the state of solder bumps after mounting. FIG. 8 is solder after mounting. FIG. 9 is a partial cross-sectional view showing the structure of a semiconductor device according to a conventional example.
1 Mold resin part 2 Element mounting base plate (interposer)
3 printed wiring board 4 solder joint (solder bump)
4a Solder ball 5 Joining jig 6 Joining jig (adjustment part between electronic component and printed wiring board)
7 Land 8 Chip component 9 Spacer member

Claims (2)

電子部品に設けられたはんだバンプを介して電子部品をプリント配線板に実装する電子部品の製造方法であって、プリント配線板の部品搭載面を反転させ実装面を下向きにし、かつ電子部品とプリント配線板の間隔を調整する部品を備えた接合用治具を用いてプリント配線板を少なくとも3点で支持することで電子部品とプリント配線板の間隔を確保した状態でリフロー加熱を行い、接合することを特徴とする半導体装置の製造方法。A method for manufacturing an electronic component in which an electronic component is mounted on a printed wiring board via solder bumps provided on the electronic component, wherein the component mounting surface of the printed wiring board is inverted so that the mounting surface faces downward, and the electronic component is printed. By supporting the printed wiring board at at least three points using a joining jig provided with components for adjusting the spacing between the wiring boards, reflow heating is performed with the spacing between the electronic component and the printed wiring board secured to perform joining. A method for manufacturing a semiconductor device, comprising: 請求項1に記載の半導体装置の製造方法において、はんだバンプの体積、ランド開口径、電子部品とプリント配線板の間隔を調節することにより鼓状のはんだバンプを有することを特徴とする半導体装置。2. The method for manufacturing a semiconductor device according to claim 1, further comprising a drum-shaped solder bump by adjusting a volume of the solder bump, a land opening diameter, and a distance between the electronic component and the printed wiring board.
JP2002304313A 2002-10-18 2002-10-18 Semiconductor device and method of manufacturing semiconductor device Withdrawn JP2004140221A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002304313A JP2004140221A (en) 2002-10-18 2002-10-18 Semiconductor device and method of manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002304313A JP2004140221A (en) 2002-10-18 2002-10-18 Semiconductor device and method of manufacturing semiconductor device

Publications (1)

Publication Number Publication Date
JP2004140221A true JP2004140221A (en) 2004-05-13

Family

ID=32451768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002304313A Withdrawn JP2004140221A (en) 2002-10-18 2002-10-18 Semiconductor device and method of manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2004140221A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007128982A (en) * 2005-11-01 2007-05-24 Nec Corp Semiconductor bump connection structure and its manufacturing method
JP2008159878A (en) * 2006-12-25 2008-07-10 Nippon Mektron Ltd Flip-chip interconnection method by no-flow underfill equipped with height control function

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007128982A (en) * 2005-11-01 2007-05-24 Nec Corp Semiconductor bump connection structure and its manufacturing method
JP2008159878A (en) * 2006-12-25 2008-07-10 Nippon Mektron Ltd Flip-chip interconnection method by no-flow underfill equipped with height control function

Similar Documents

Publication Publication Date Title
US6281581B1 (en) Substrate structure for improving attachment reliability of semiconductor chips and modules
US5968670A (en) Enhanced ceramic ball grid array using in-situ solder stretch with spring
US6127204A (en) Column grid array or ball grid array pad on via
US20020093104A1 (en) Conductive adhesive interconnection with insulating polymer carrier
JPH09134934A (en) Semiconductor package and semiconductor device
US6182884B1 (en) Method and apparatus for reworking ceramic ball grid array or ceramic column grid array on circuit cards
US6657313B1 (en) Dielectric interposer for chip to substrate soldering
JP2907188B2 (en) Semiconductor device, method of mounting semiconductor device, and method of manufacturing semiconductor device
JP4720438B2 (en) Flip chip connection method
JPH1065056A (en) Method and device for manufacturing bump grid array
TW200947644A (en) Electronic carrier board
JP2004140221A (en) Semiconductor device and method of manufacturing semiconductor device
JP2798011B2 (en) Solder ball
JP3180041B2 (en) Connection terminal and method of forming the same
JP4065264B2 (en) Substrate with relay substrate and method for manufacturing the same
JP2856197B2 (en) BGA connection structure
JPH11214431A (en) Electronic part and its manufacture
US6070782A (en) Socketable bump grid array shaped-solder on copper spheres
JP2006173183A (en) Semiconductor device
JP2002057242A (en) Area array type semiconductor package
KR20030095036A (en) Solder bump interconnection method of flip chip package
JP2001339151A (en) Method for mounting electronic component with bumps
US20100038123A1 (en) Board unit and manufacturing method for the same
JPH11233682A (en) External connection terminal of semiconductor device
JP2002184811A (en) Electronic circuit device and its manufacturing method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060110