[go: up one dir, main page]

JP2005104743A - Silicon casting mold - Google Patents

Silicon casting mold Download PDF

Info

Publication number
JP2005104743A
JP2005104743A JP2003336270A JP2003336270A JP2005104743A JP 2005104743 A JP2005104743 A JP 2005104743A JP 2003336270 A JP2003336270 A JP 2003336270A JP 2003336270 A JP2003336270 A JP 2003336270A JP 2005104743 A JP2005104743 A JP 2005104743A
Authority
JP
Japan
Prior art keywords
mold
silicon
release material
material layer
silicon melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003336270A
Other languages
Japanese (ja)
Inventor
Shinko Tsuchida
真弘 土田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003336270A priority Critical patent/JP2005104743A/en
Publication of JP2005104743A publication Critical patent/JP2005104743A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Mold Materials And Core Materials (AREA)
  • Silicon Compounds (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

【課題】 離型材層を鋳型内面に被覆してシリコンを鋳造する際に、シリコン融液と鋳型との接触を避け、シリコン鋳塊の割れを防止する鋳造用鋳型を提供する。
【解決手段】 鋳型の内表面に珪素とニ酸化珪素を混合した離型材を被覆したシリコン鋳造用鋳型であって、この鋳型の内表面の上部における離型材層を下部における離型材層より厚くしたことを特徴とするシリコン鋳造用鋳型。
【選択図】 図1
PROBLEM TO BE SOLVED: To provide a casting mold for avoiding a silicon ingot from cracking by avoiding contact between a silicon melt and a mold when silicon is cast by coating a mold release material layer on an inner surface of the mold.
A mold for silicon casting in which a mold release material in which silicon and silicon dioxide are mixed is coated on the inner surface of the mold, and a mold release material layer at the upper part of the inner surface of the mold is made thicker than a mold release material layer at the lower part. A silicon casting mold characterized by the above.
[Selection] Figure 1

Description

本発明はシリコン鋳造用鋳型とその製造方法に関し、特に太陽電池などを形成するための多結晶シリコン鋳造用鋳型に関する。   The present invention relates to a silicon casting mold and a method for manufacturing the same, and more particularly to a polycrystalline silicon casting mold for forming a solar cell or the like.

従来から太陽電池を形成するための半導体基板の一種として多結晶シリコンが用いられている。このような多結晶シリコンは、高温度で加熱溶融させたシリコン融液を鋳型内に注湯して凝固させることによって形成したり、シリコン原料を鋳型内に入れて一旦溶解した後に再び凝固させることによって形成している。   Conventionally, polycrystalline silicon has been used as a kind of semiconductor substrate for forming solar cells. Such polycrystalline silicon can be formed by pouring and solidifying a silicon melt that has been heated and melted at a high temperature in a mold, or by solidifying the silicon raw material once dissolved in the mold. Is formed by.

このような鋳型としては、通常、分割可能である黒鉛からなる鋳型の内表面に離型材を被覆したものや、一体構造であるシリカからなる鋳型の内表面に離型材を被覆したものが用いられる。一般的に離型材としてはシリコンの窒化物である窒化珪素(Si)、シリコンの炭化物である炭化珪素(SiC)、シリコンの酸化物である二酸化珪素(SiO)等の粉末が用いられ、これらの粉末を適当なバインダーと溶剤とから構成される溶液中に混合して攪拌してスラリーとし、鋳型内壁に被覆若しくはスプレー等の手段でコーティングすることが公知の技術として知られている(例えば、非特許文献1参照)。
15th Photovoltaic Specialists Conf. (1981), P576〜P580, "A NEW DIRECTIONAL SOLIDIFICATION TECHNIQUE FOR POLYCRYSTALLINE SOLAR GRADE SILICON"
As such a mold, those in which a mold release material is coated on the inner surface of a mold made of graphite that is separable or those in which a mold release material is coated on the inner surface of a mold made of silica that is an integral structure are usually used. . In general, as the release material, silicon nitride (Si 3 N 4 ), which is silicon nitride, silicon carbide (SiC), which is silicon carbide, silicon dioxide (SiO 2 ), which is an oxide of silicon, or the like is used. It is known as a known technique that these powders are mixed in a solution composed of an appropriate binder and solvent and stirred to form a slurry, and the inner wall of the mold is coated by means such as coating or spraying. (For example, refer nonpatent literature 1).
15th Photovoltaic Specialists Conf. (1981), P576-P580, "A NEW DIRECTIONAL SOLIDIFICATION TECHNIQUE FOR POLYCRYSTALLINE SOLAR GRADE SILICON"

ところが、窒化珪素を黒鉛製鋳型の内表面に被覆してシリコンを鋳造するような場合、離型材層がポーラスな構造であるため、シリコン融液が離型材層に浸透して鋳型と接触し、脱型する時にシリコン鋳塊が割れるという問題があった。そのため、離型材層を厚く被覆することで、シリコン融液と鋳型との接触を避け、シリコン鋳塊の割れを防止する必要があった。また、黒鉛製鋳型を再利用するためにもシリコン融液と鋳型との接触を避ける必要があり、離型材層を厚くする方法が用いられていた。しかし、離型材層を厚く被覆すると、脆弱である窒化珪素膜が、シリコン融液を注湯する際に、またその後の凝固の際に、窒化珪素膜が破損してシリコン融液内に混入するという問題があった。   However, in the case where silicon nitride is coated on the inner surface of a graphite mold and silicon is cast, the release material layer has a porous structure, so that the silicon melt penetrates the release material layer and comes into contact with the mold. There was a problem that the silicon ingot was broken when demolding. Therefore, it is necessary to prevent the silicon ingot from cracking by covering the release material layer thickly to avoid contact between the silicon melt and the mold. Further, in order to reuse the graphite mold, it is necessary to avoid contact between the silicon melt and the mold, and a method of thickening the release material layer has been used. However, when the release layer is coated thickly, the fragile silicon nitride film is broken into the silicon melt when the silicon melt is poured and when the silicon melt is subsequently solidified. There was a problem.

また、窒化珪素を石英からなる鋳型に被覆してシリコンを鋳造するような場合は、石英製鋳型を割ることによりシリコン鋳塊を脱型するために、再利用を考慮して離型材層を厚く被覆する必要は無いが、黒鉛製鋳型と同様にシリコン融液と鋳型の接触によるシリコン鋳塊の割れが生じ、割れの大きさによっては良品となるシリコン鋳塊が所望寸法より小さくなるような問題が生じていた。そのため、黒鉛製鋳型と同様、離型材層を厚く被覆する対策方法が用いられているが、窒化珪素膜が破損してシリコン融液内に混入するという黒鉛製鋳型と同様の問題が存在した。   In addition, when silicon nitride is coated on a mold made of quartz and silicon is cast, in order to demold the silicon ingot by breaking the quartz mold, the release layer is thickened in consideration of reuse. There is no need to coat, but as with graphite molds, the silicon ingot breaks due to the contact between the silicon melt and the mold, and depending on the size of the crack, the good silicon ingot becomes smaller than the desired size. Has occurred. For this reason, as in the case of the graphite mold, a countermeasure method for covering the release material layer thickly is used, but there is a problem similar to that of the graphite mold in which the silicon nitride film is broken and mixed into the silicon melt.

一般的に鋳型の離型材層とシリコン鋳塊が接触する部分では、接触していない部分と比較してシリコン鋳塊の品質が悪く、高品質な太陽電池を要求されるような場合には利用されていなかったため、切除領域を大きく取ることで良品となるシリコン鋳塊が小さくなるような問題は回避できたが、品質の優れたシリコン鋳塊では、本来切除する必要の無い領域まで切除するという無駄が生じていた。   In general, the part where the mold release material layer and the silicon ingot are in contact with each other is used when the quality of the silicon ingot is poor compared to the part that is not in contact and a high-quality solar cell is required. Because it was not done, it was possible to avoid the problem that a good silicon ingot would be small by taking a large excision area, but in the case of an excellent quality silicon ingot, it was said that the area that does not need to be excised should be excised There was waste.

また、離型材と鋳型基材の接着力を増加するような二酸化珪素(SiO)を混合した離型材を被覆することで、離型材層の破損を防止するような方法もあるが、二酸化珪素(SiO)の重量比率が大きくなると、離型材層と鋳型との付着が生じるため鋳型の再利用ができなくなる問題、二酸化珪素の重量比率が小さくなると、離型材層が破損してシリコン融液内に混入するという同様の問題が生じていた。 In addition, there is a method of preventing the release material layer from being damaged by coating a release material mixed with silicon dioxide (SiO 2 ) that increases the adhesive force between the release material and the mold base material. When the weight ratio of (SiO 2 ) increases, the mold release layer and the mold adhere to each other, so that the mold cannot be reused. When the weight ratio of silicon dioxide decreases, the mold release material layer breaks and the silicon melt The same problem of mixing in occurred.

本発明は、このような従来技術の問題点を鑑みてなされたものであり、離型材層を鋳型内面に被覆してシリコンを鋳造する際に、シリコン融液と鋳型との接触を避け、シリコン鋳塊の割れを防止する鋳造用鋳型を提供することを目的とする。   The present invention has been made in view of such problems of the prior art, and avoids contact between the silicon melt and the mold when casting silicon by coating the mold release material layer on the inner surface of the mold. An object of the present invention is to provide a casting mold that prevents cracking of an ingot.

また、鋳型内にシリコン融液を注湯する際、その後の凝固する際、或いは鋳型に入れたシリコン原料を溶解する際に、破損した離型材のシリコン融液内への落下を抑制したシリコン鋳造用鋳型を提供することを目的とする。   In addition, when casting the silicon melt into the mold, solidifying afterwards, or when melting the silicon raw material put in the mold, the silicon casting that suppresses the fall of the damaged release material into the silicon melt An object is to provide a casting mold.

上記目的を達成するため、本発明のシリコン鋳造用鋳型は、鋳型の内表面に珪素とニ酸化珪素を混合した離型材を被覆したシリコン鋳造用鋳型であって、この鋳型の内表面の上部における離型材層を下部における離型材層より厚くしたことを特徴とする。   In order to achieve the above object, a silicon casting mold according to the present invention is a silicon casting mold in which an inner surface of a mold is coated with a release material in which silicon and silicon dioxide are mixed, and is formed on the upper surface of the inner surface of the mold. The release material layer is thicker than the release material layer in the lower part.

また、本発明のシリコン鋳造用鋳型は、鋳型の内表面に珪素とニ酸化珪素を混合した離型材を被覆したシリコン鋳造用鋳型であって、上部の離型材層と下部の離型材層との間に、これら各離型材層に比べて厚くした中間離型材層を設けたことを特徴とする。   The silicon casting mold of the present invention is a silicon casting mold in which the inner surface of the mold is coated with a release material in which silicon and silicon dioxide are mixed, and includes an upper release material layer and a lower release material layer. An intermediate release material layer that is thicker than these release material layers is provided therebetween.

また、本発明のシリコン鋳造用鋳型は、前記離型材は窒化珪素と二酸化珪素の混合比が10:0〜1:9であることを特徴とする。   In the silicon casting mold of the present invention, the release material has a mixing ratio of silicon nitride and silicon dioxide of 10: 0 to 1: 9.

また、本発明のシリコン鋳造用鋳型は、前記離型材の乾燥後の密度が1〜2g/cmであり、この離型材層の厚くされた部分の厚みを0.5mm以上にしたことを特徴とする。 Further, in the silicon casting mold of the present invention, the density of the release material after drying is 1 to 2 g / cm 3 , and the thickness of the thickened part of the release material layer is 0.5 mm or more. And

また、本発明のシリコン鋳造用鋳型は、前記離型材の乾燥後の密度が2〜3g/cmであり、この離型材層の厚くされた部分の厚みを0.15mm以上にしたことを特徴とする。 Further, in the silicon casting mold of the present invention, the density of the release material after drying is 2 to 3 g / cm 3 , and the thickness of the thickened part of the release material layer is 0.15 mm or more. And

また、本発明のシリコン鋳造用鋳型は、前記鋳型の本体が黒鉛やシリカからなることが望ましい。   In the silicon casting mold of the present invention, it is preferable that the main body of the mold is made of graphite or silica.

さらに前記黒鉛は炭素繊維強化材料であればさらによい。   Further, the graphite is better if it is a carbon fiber reinforced material.

請求項1に係るシリコン鋳造用鋳型によれば、鋳型の内表面に珪素とニ酸化珪素を混合した離型材を被覆したシリコン鋳造用鋳型であって、この鋳型の内表面の上部における離型材層を下部における離型材層より厚くしたことから、鋳型がシリコンの鋳塊に付着することによって発生するシリコンの割れを防止することができる。   The silicon casting mold according to claim 1 is a silicon casting mold in which an inner surface of the mold is coated with a release material in which silicon and silicon dioxide are mixed, and a release material layer on an upper portion of the inner surface of the mold Is made thicker than the release material layer in the lower portion, so that it is possible to prevent the silicon from being cracked by the mold adhering to the silicon ingot.

また、請求項2に係るシリコン鋳造用鋳型によれば、鋳型の内表面に珪素とニ酸化珪素を混合した離型材を被覆したシリコン鋳造用鋳型であって、この鋳型の内表面に上部及び下部の離型材層より離型材層を厚くした部分を設けたことから、鋳型がシリコン鋳塊に付着することによって発生するシリコンの割れを防止することができる。また、シリコン鋳塊への離型材の落下を防止することができ、異物不良枚数を減らすことが可能である。   The silicon casting mold according to claim 2 is a silicon casting mold in which a mold release material in which silicon and silicon dioxide are mixed is coated on the inner surface of the mold. Since the part in which the release material layer is thicker than the release material layer is provided, it is possible to prevent silicon cracking caused by the mold adhering to the silicon ingot. Moreover, it is possible to prevent the release material from dropping into the silicon ingot, and to reduce the number of defective foreign matters.

以下、各請求項に係る発明を添付図面に基づき詳細に説明する。   Hereinafter, the invention according to each claim will be described in detail with reference to the accompanying drawings.

図1は、本発明に係るシリコン鋳造用鋳型に用いられる鋳型を示す模式図、図2は本発明に係るシリコン鋳造用鋳型の一例を示す図、図3は本発明に係る他のシリコン鋳造用鋳型の一例を示す図である。   FIG. 1 is a schematic diagram showing a mold used for a silicon casting mold according to the present invention, FIG. 2 is a diagram showing an example of a silicon casting mold according to the present invention, and FIG. 3 is another silicon casting mold according to the present invention. It is a figure which shows an example of a casting_mold | template.

図1において、鋳型1は例えば黒鉛などから成り、一つの底部材1aと4つの側部材1bを組み合わせた分割、組み立て可能な分割鋳型等で構成される。   In FIG. 1, a mold 1 is made of, for example, graphite, and is composed of a divided mold that can be assembled and assembled by combining one bottom member 1a and four side members 1b.

なお、底部材1aと側部材1bは、ボルト(不図示)などで固定することによって分割可能に組み立てられたり、底部材1aと側部材1bが丁度嵌まる枠部材(不図示)で固定することによって分割可能に組み立てられる。   The bottom member 1a and the side member 1b are assembled so as to be separable by fixing with bolts (not shown) or the like, or fixed with a frame member (not shown) in which the bottom member 1a and the side member 1b just fit. Is assembled in a separable manner.

鋳型1の内表面には、底部材1aや側部材1bを何回も繰り返して使用することができるように離型材2が被覆される。このような離型材2としては、窒化珪素(Si)の粉体とポリビニルアルコール水溶液で混ぜ合わせて鋳型1の内面に被覆する。窒化珪素とポリビニルアルコール水溶液などで混合することによって、粉体である窒化珪素がスラリー状となり、黒鉛製の鋳型1に被覆しやすくなる。 A mold release material 2 is coated on the inner surface of the mold 1 so that the bottom member 1a and the side member 1b can be used repeatedly. As such a mold release material 2, silicon nitride (Si 3 N 4 ) powder and a polyvinyl alcohol aqueous solution are mixed to coat the inner surface of the mold 1. By mixing silicon nitride with an aqueous polyvinyl alcohol solution or the like, the powdered silicon nitride becomes a slurry and can be easily coated on the graphite mold 1.

窒化珪素の粉体としては、0.4〜0.6μm程度の平均粒径を有するものが用いられ、このような窒化珪素と濃度が5〜15重量%程度のポリビニルアルコール水溶液に混合してスラリー状とし、へらや刷毛などで鋳型1の内表面に被覆する。その状態で自然乾燥又はホットプレートに載せて乾燥させて脱脂処理した後、鋳型1内にシリコン融液3を注湯する。   As the silicon nitride powder, one having an average particle diameter of about 0.4 to 0.6 μm is used, and mixed with such silicon nitride and a polyvinyl alcohol aqueous solution having a concentration of about 5 to 15% by weight. The inner surface of the mold 1 is covered with a spatula or a brush. In this state, the silicon melt 3 is poured into the mold 1 after natural drying or drying on a hot plate and drying.

鋳型1の内表面への離型材2の被覆は、窒化珪素と二酸化珪素の粉体を混合したものを、プラズマ溶射機を用いて被覆することも可能である。通常、粉体とポリビニルアルコールなどの有機バインダー水溶液を混合してスラリー状にした離型材を被覆するような場合、その後の加熱で有機バインダーの熱分解性生成物がシリコン融液中に混入することを防止するために脱脂処理が行われる。   The inner surface of the mold 1 can be coated with the release material 2 by mixing a mixture of silicon nitride and silicon dioxide powder using a plasma spraying machine. Normally, when coating a release material that is made by mixing powder and an organic binder aqueous solution such as polyvinyl alcohol into a slurry, the heat decomposable product of the organic binder is mixed into the silicon melt by subsequent heating. A degreasing treatment is performed to prevent this.

プラズマ溶射では、溶射温度は32000°Kに及ぶプラズマ気流中の10000℃前後の温度帯を使用して溶射粒子を噴射させて被覆するため、従来使用していた有機バインダーを除去する工程を省略することができる。   In plasma spraying, since the spraying temperature is about 10000 ° C. in a plasma stream extending to 32000 ° K, the spray particles are sprayed and coated, so that the step of removing the organic binder that has been conventionally used is omitted. be able to.

シリコン融液3の注湯と凝固は、例えば鋳型1の内面に離型材2を被覆して乾燥させた後に、鋳型1を70〜90Torrに減圧したアルゴン(Ar)雰囲気中に置き、鋳型1をシリコン融液3と同程度か若干低い温度で加熱してシリコン融液を注湯する。また鋳型1内にシリコン原料を入れ、直接溶解してもよい。しかる後、鋳型1の底部から徐々に降温させてシリコン融液3を鋳型の底部から徐々に凝固させる。最後に鋳型1を分割してシリコンの鋳塊を取り出すことにより完成する。   For the pouring and solidification of the silicon melt 3, for example, the inner surface of the mold 1 is coated with the release material 2 and dried, and then the mold 1 is placed in an argon (Ar) atmosphere reduced to 70 to 90 Torr. The silicon melt is poured by heating at a temperature that is the same as or slightly lower than that of the silicon melt 3. Alternatively, a silicon raw material may be placed in the mold 1 and dissolved directly. Thereafter, the temperature is gradually lowered from the bottom of the mold 1 to gradually solidify the silicon melt 3 from the bottom of the mold. Finally, the mold 1 is divided to complete the silicon ingot.

しかしながら、窒化珪素とポリビニルアルコールからなるスラリー被覆量が少ないような場合には離型材層2がポーラスな構造であるために、シリコン融液3が離型材層2に浸透して鋳型と接触し、脱型する時にシリコン鋳塊が割れるという問題が生じる。離型材層温度が特に高温になると、シリコン融液3の表面張力が低下し濡れ性が増加するため、離型材層へのシリコン融液3の浸透が起きやすくなる。   However, when the amount of the slurry coating consisting of silicon nitride and polyvinyl alcohol is small, the release material layer 2 has a porous structure, so that the silicon melt 3 penetrates into the release material layer 2 and comes into contact with the mold. There is a problem that the silicon ingot breaks when demolding. When the temperature of the release material layer is particularly high, the surface tension of the silicon melt 3 is reduced and wettability is increased, so that the penetration of the silicon melt 3 into the release material layer is likely to occur.

この問題を解決するため、本発明の請求項1に係るシリコン鋳型では、図2に示すように、鋳型の内表面の上部における離型材層を下部における離型材層より厚くする。このとき、シリコン融液を厚くされた離型材層の最下位部位置7と同じレベルになるように注入する。シリコン融液位置4より下部に当たる位置では離型材層2とシリコン融液3との接触はシリコンの融点である1412℃前後に保たれており、離型材層2が極端に薄くないような場合には問題無く離型することが可能である。   In order to solve this problem, in the silicon mold according to claim 1 of the present invention, as shown in FIG. 2, the release material layer at the upper part of the inner surface of the mold is made thicker than the release material layer at the lower part. At this time, the silicon melt is injected so as to be at the same level as the lowest position 7 of the release material layer that has been thickened. In the position below the silicon melt position 4, the contact between the release material layer 2 and the silicon melt 3 is maintained at around 1412 ° C., which is the melting point of silicon, and the release material layer 2 is not extremely thin. Can be released without any problem.

シリコン融液表面からは抜熱が大きいためにシリコン融液表面が凝固した状態でシリコン融液が内部に取り残されると、取り残されたシリコン融液が凝固した際の膨張によりシリコン鋳塊が噴火した状態となりシリコン鋳塊に割れが生じる。この問題を防止するため、シリコン融液表面を凝固させないように、シリコン融液3の上部に位置するヒータにより加熱された状態で、鋳型の下部から抜熱を行い、シリコン融液3を凝固される方法がとられている。   When the silicon melt is left in the solidified state of the silicon melt surface due to large heat removal from the silicon melt surface, the silicon ingot erupted due to expansion when the remaining silicon melt solidified It will be in a state and a crack will arise in a silicon ingot. In order to prevent this problem, the silicon melt 3 is solidified by removing heat from the lower part of the mold while being heated by a heater located above the silicon melt 3 so as not to solidify the surface of the silicon melt. The method is taken.

そのため、シリコン融液位置4より上部に当たる部分では、上部に位置するヒータにより離型材層2が加熱された状態になる。離型材層が加熱されると、高温、低圧力条件下における昇華分解が進むため、離型材層厚みが薄くなり、シリコン融液と鋳型が接触しやすくなる。また、毛細管現象によりシリコン融液がしみ上がり濡れた部分の融液が加熱された場合、融液の表面張力が減少し濡れ性が増加するため、しみ上がり部分のシリコン融液が離型材層に浸透しやすくなる結果、シリコン融液と鋳型が接触し、融液が離型材層中にしみ込んだ状態になるため、脱型する際、シリコンと鋳型の熱膨張係数の違いから、シリコン鋳塊の割れが生じる結果となる。そのため、本発明の請求項1に係るシリコン鋳造用鋳型では、図2に示すように、鋳型の内表面の上部における離型材層を下部における離型材層より厚くしている。このとき、シリコン融液を厚くされた離型材層の最下位部位置7と同じレベルになるように注入する。上部に当たる部分を厚くするために、全体を厚く被覆した場合と比較して、離型材のコストを削減できるだけでなく、被覆時間を短縮できる効果もある。   Therefore, in the part which hits the upper part from the silicon melt position 4, the release material layer 2 is heated by the heater located at the upper part. When the release material layer is heated, sublimation decomposition proceeds under high temperature and low pressure conditions, so that the release material layer thickness is reduced and the silicon melt and the mold are easily brought into contact with each other. In addition, when the melted silicon melt is heated by capillary action and the wet melt is heated, the surface tension of the melt decreases and the wettability increases. As a result of easy penetration, the silicon melt and the mold come into contact with each other, so that the melt is infiltrated into the release material layer. This results in cracking. Therefore, in the silicon casting mold according to claim 1 of the present invention, as shown in FIG. 2, the release material layer on the upper part of the inner surface of the mold is made thicker than the release material layer on the lower part. At this time, the silicon melt is injected so as to be at the same level as the lowest position 7 of the release material layer that has been thickened. Compared with the case where the whole is thickly coated in order to thicken the portion corresponding to the upper portion, not only the cost of the release material can be reduced, but also the coating time can be shortened.

また、請求項1に係るシリコン鋳造用鋳型において、シリコン融液を厚くされた離型材層の最下位部位置7より高い位置まで注入する場合も、窒化珪素膜が破損してシリコン融液内に混入する問題を避けながら、離型材のコスト削減、被覆時間の短縮の効果が得られる。   Further, in the silicon casting mold according to claim 1, when the silicon melt is injected to a position higher than the lowest position 7 of the release material layer having been thickened, the silicon nitride film is broken and enters the silicon melt. The effect of reducing the cost of the release material and shortening the coating time can be obtained while avoiding the problem of mixing.

さらに、好ましくは、請求項2に係るシリコン鋳造用鋳型のように、鋳型の内表面に上部及び下部の離型材層より離型材層を厚くした部分を設ける(図3)。   Further, preferably, like the silicon casting mold according to claim 2, a part where the release material layer is thicker than the upper and lower release material layers is provided on the inner surface of the mold (FIG. 3).

シリコン融液の密度は約2.55g/cm、シリコン鋳塊の密度は約2.33g/cmであり、液体から固体へ移行するときに約9%の体積膨張が生じる。そのためシリコン融液面は凝固体積に伴い上昇することになる。シリコン融液と鋳型が最も接触しやすいのは、高温、低圧力条件下で離型材層厚みが薄くなった状態で、かつ、毛細管現象によりシリコン融液がしみ上がり濡れた部分が加熱され、融液の表面張力が減少し濡れ性が増加することで、しみ上がり濡れた部分のシリコン融液が離型材層に浸透しやすくなるときである。そのため、この部分に離型材層を厚くしたことが一番好ましく、凝固膨張に伴うシリコン融液の上昇9%としみ上がり濡れる部分の離型材層を厚くすればよいが、しみ上がり濡れる部分は温度、雰囲気、離型材の種類などにより異なるため、凝固前のシリコン融液位置よりシリコン融液高さ10%〜13%程度の領域だけ離型材層を厚くすることが望ましいと考えられる。 The density of the silicon melt is about 2.55 g / cm 3, density of the silicon ingot is about 2.33 g / cm 3, from about 9% volume expansion occurs when the transition from liquid to solid. Therefore, the silicon melt surface rises with the solidification volume. The silicon melt and the mold are most likely to come into contact with each other when the release material layer thickness is reduced under high temperature and low pressure conditions. This is when the surface tension of the liquid is reduced and the wettability is increased, so that the silicon melt at the spotted and wetted portion easily penetrates into the release material layer. Therefore, it is most preferable to thicken the parting material layer in this part, and it is sufficient to thicken the parting material layer where the silicon melt rises by 9% due to solidification expansion, and the part that gets wet and gets wet. Since it differs depending on the atmosphere, the type of release material, etc., it is considered desirable to make the release material layer thicker in the region of the silicon melt height of about 10% to 13% than the silicon melt position before solidification.

本当に離型材層を厚くする必要のある部分のみ離型材層を厚くして被覆するため、請求項1に係るシリコン鋳造用鋳型と比較して離型材コストの削減、被覆時間の短縮ができる。また、離型材の破損によるシリコン融液中への異物の落下を削減できる。   Since only the part that really needs to be thickened is coated by thickening the parting material layer, the cost of the parting material and the coating time can be shortened as compared with the silicon casting mold according to claim 1. Moreover, the fall of the foreign material in the silicon melt due to breakage of the release material can be reduced.

離型材の種類は脱型、シリコン融液への溶け込み、混入を考慮すると、窒化珪素と二酸化珪素の混合比が10:0〜1:9であることが好ましい。混合比が10:0の場合は、離型材が窒化珪素から構成されることを意味する。   In consideration of demolding, melting into the silicon melt, and mixing, it is preferable that the mixing ratio of silicon nitride and silicon dioxide is 10: 0 to 1: 9. When the mixing ratio is 10: 0, it means that the release material is made of silicon nitride.

離型材の密度が小さくなると、離型材がよりポーラスな構造を有するため、シリコン融液が離型材層を浸透しやすくなり、シリコン融液と鋳型が接触することになる。シリコン融液と鋳型との接触を防止するためには、離型材の密度が1〜2g/cmのときは0.3mm以上、離型材の密度が2〜3g/cmのときは0.05mm以上の厚みが下部の離型材層の薄い部分でも最低限必要になる。 When the density of the release material is reduced, the release material has a more porous structure, so that the silicon melt easily penetrates the release material layer, and the silicon melt and the mold come into contact with each other. In order to prevent contact between the silicon melt and the mold, when the density of the release material is 1 to 2 g / cm 3 , 0.3 mm or more, and when the density of the release material is 2 to 3 g / cm 3 , 0. A thickness of 05 mm or more is required at a minimum even in a thin portion of the lower release material layer.

これに対して、上部の離型材層を厚くする必要がある部分では、離型材の密度が1〜2g/cmのときは0.5mm以上、離型材の密度が2〜3g/cmのときは0.15mm以上の離型材を被覆させることが好ましい。被覆量が少ない場合、シリコン融液と鋳型との接触が起こり易くなる。 In contrast, in the portion where it is necessary to increase the upper part of the releasing agent layer, the density of the releasing member is 0.5mm or more when the 1 to 2 g / cm 3, the density of the releasing agent is 2 to 3 g / cm 3 In some cases, it is preferable to cover a release material of 0.15 mm or more. When the coating amount is small, contact between the silicon melt and the mold tends to occur.

凝固開始前のシリコン融液位置より下部で、充分に離型材層が厚いような場合は、鋳型の内表面の上部における離型材層を厚くする必要は無いが、離型材コストの増加に繋がる。また、離型材層が厚くなると、シリコン融液への溶け込みや混入に繋がる結果となる。   If the release material layer is sufficiently thick below the position of the silicon melt before the start of solidification, it is not necessary to increase the thickness of the release material layer at the upper part of the inner surface of the mold, but this leads to an increase in the cost of the release material. Moreover, when the release material layer becomes thick, it results in melting or mixing into the silicon melt.

鋳型の内表面に必要な部分の離型材層の厚みを増加する方法を述べたが、前記した離型材の条件(混合比、密度、必要厚み)を満たしていれば、複数種類の離型材を使うことも可能である。   Although the method for increasing the thickness of the release material layer at the required part on the inner surface of the mold has been described, multiple types of release materials can be used as long as the release material conditions (mixing ratio, density, required thickness) are satisfied. It can also be used.

平均粒径0.5μmの窒化珪素粉末と平均粒径20μmの二酸化珪素粉末を秤量し重量比にして10:0〜1:9の間で混合した後、混合粉末と8.7%のポリビニルアルコール水溶液で攪拌混合してスラリー状にした離型材を3種類得た。その離型材を黒鉛製鋳型の内表面に刷毛で被覆してホットプレートに載せて乾燥した。表1に示すように凝固前のシリコン融液位置を基準に、融液位置より下部に当たる部分、上部に当たる部分、凝固開始前のシリコン融液位置より上部に当たる部分において、シリコンの凝固膨張に伴うシリコン融液面の上昇部分としみ上がり部分を足した部分(凝固開始前のシリコン融液高さから上部にシリコン融液高さの10〜13%の部分)で離型材層の厚みを変えた試料を作製した。   A silicon nitride powder having an average particle size of 0.5 μm and a silicon dioxide powder having an average particle size of 20 μm are weighed and mixed in a weight ratio of 10: 0 to 1: 9, and then the mixed powder and 8.7% polyvinyl alcohol. Three types of release materials that were stirred and mixed with an aqueous solution to form a slurry were obtained. The release material was coated on the inner surface of the graphite mold with a brush, placed on a hot plate and dried. As shown in Table 1, with reference to the position of the silicon melt before solidification, silicon that accompanies the solidification and expansion of silicon in a portion that hits the lower part of the melt position, a part that hits the upper part, and a part that hits the upper part of the silicon melt position before the start of solidification A sample in which the thickness of the release material layer is changed at the part where the melted surface rises and the part that rises (from the silicon melt height before solidification starts to 10-13% of the silicon melt height above) Produced.

乾燥終了後、鋳型を80Torrに減圧したアルゴン雰囲気中に置き、黒鉛ヒータを使って1000℃に加熱した状態で鋳型内にシリコン融液70kgを注湯して8時間かけて徐々に凝固させた。冷却後固化したシリコンの鋳塊を鋳型から取り出し、離型材と鋳型の付着の有無、シリコンの鋳塊と鋳型の付着の有無について調べた。また、脱型したシリコン鋳塊を切断、スライスし、出来上がったウエハの目視検査を行い、異物の有無を確認した。その結果を表1に示す。

Figure 2005104743
After completion of drying, the mold was placed in an argon atmosphere reduced to 80 Torr, and 70 kg of silicon melt was poured into the mold while being heated to 1000 ° C. using a graphite heater, and was gradually solidified over 8 hours. After cooling, the solidified silicon ingot was taken out of the mold, and the presence or absence of adhesion between the release material and the mold and the presence or absence of adhesion between the silicon ingot and the mold were examined. The removed silicon ingot was cut and sliced, and the finished wafer was visually inspected to confirm the presence or absence of foreign matter. The results are shown in Table 1.
Figure 2005104743

表1に示すように、離型材種類Aから、凝固開始前のシリコン融液位置の上部と下部で離型材の厚みが同じ試料(試料1、2)では、離型材層が厚い試料(試料2)はシリコン融液と鋳型との付着が無いが、離型材層が薄い試料(試料1)では付着している。このことから、離型材層が薄い試料では、シリコン融液と鋳型との付着を抑える離型材としての機能が有していないことが分かる。また、離型材層が厚い試料(試料2)ではシリコン融液と鋳型との付着は無いが、離型材層が厚くなると異物不良枚数が多くなっており、離型材が破損してシリコン融液中に落下していることが分かる。これらのことは、離型材種類Cの結果からも分かる。   As shown in Table 1, in the samples (samples 1 and 2) having the same thickness of the mold release material at the upper and lower portions of the silicon melt position before the start of solidification from the mold release material type A, the sample with the thick release material layer (sample 2) ) Does not adhere to the silicon melt and the mold, but adheres to the sample (sample 1) with a thin release material layer. From this, it can be seen that a sample having a thin release material layer does not have a function as a release material that suppresses adhesion between the silicon melt and the mold. In the sample with the thick release material layer (Sample 2), there is no adhesion between the silicon melt and the mold, but when the release material layer becomes thick, the number of defective foreign matters increases, and the release material is damaged and is in the silicon melt. You can see that it is falling. These can also be understood from the result of the mold release material type C.

凝固開始前のシリコン融液位置より上部に当たる部分の離型材層が厚い試料(試料3、4)では、上部に当たる部分の離型材層が薄い試料(試料4)はシリコン融液と鋳型との付着が一部あるが、離型材層が厚い試料(試料3)はシリコン融液と鋳型との付着が無いことが分かる。また、試料3はシリコン融液位置より上部に当たる位置、下部に当たる位置共に同じ厚みで被覆した試料(試料2)と比較して、異物不良枚数が少なくなっていることが分かる。このことは、離型材種類Cの結果からも分かる。   In the sample (samples 3 and 4) where the release material layer in the upper part from the position of the silicon melt before the start of solidification is thick (sample 4), the sample in which the release material layer in the upper part is thin (sample 4) adheres to the silicon melt and the mold. However, it can be seen that the sample with the thick release material layer (sample 3) has no adhesion between the silicon melt and the mold. It can also be seen that Sample 3 has a smaller number of foreign matter defects than the sample (Sample 2) coated with the same thickness at both the upper and lower positions of the silicon melt position. This can also be understood from the result of the mold release material type C.

また、凝固開始前のシリコン融液位置より上部に当たる位置全ての離型材層が厚い試料(試料3)よりも、凝固膨張に伴う融液面上昇部分としみ上がり部分に離型材層が厚い試料(試料5)の方が、異物不良枚数が減少しており、シリコン融液中への離型材の破損落下が減少していることが分かる。このことは、離型材種類B、Cからも分かる。   In addition, a sample (sample 3) where the release material layer is thicker than the sample (sample 3) where the release material layer is thicker than the silicon melt position before the start of solidification. It can be seen that in 5), the number of defective foreign matters is reduced, and the breakage and dropping of the release material into the silicon melt is reduced. This can be seen from the release material types B and C.

以上の結果から、結論として請求項1〜5に記載した条件で使用することが望ましいことが判った。 From the above results, it was found that it is desirable to use the conditions described in claims 1 to 5 as a conclusion.

本発明に係るシリコン鋳造用鋳型を示す模式図である。It is a schematic diagram which shows the casting mold for silicon which concerns on this invention. 本発明に係るシリコン鋳造用鋳型の一例を示す図である。It is a figure which shows an example of the casting mold for silicon which concerns on this invention. 本発明に係る他のシリコン鋳造用鋳型の一例を示す図である。It is a figure which shows an example of the casting_mold | template for another silicon casting which concerns on this invention.

符号の説明Explanation of symbols

1・・・鋳型
2・・・離型材
3・・・シリコン融液
4・・・凝固開始前のシリコン融液位置
5・・・シリコンの凝固膨張に伴うシリコン融液面の上昇部分
6・・・シリコン融液面より上の部分で毛細管現象によりシリコン融液がしみ上がり濡れる部分(しみ上がり部分)
7・・・厚くした離型材層の最下位部位置
8・・・厚くした離型材層の最上位部位置
DESCRIPTION OF SYMBOLS 1 ... Mold 2 ... Release material 3 ... Silicon melt 4 ... Silicon melt position 5 before the start of solidification ... Rising part of silicon melt surface accompanying silicon solidification expansion 6 ... -The part above the silicon melt surface where the silicon melt soaks and gets wet by capillary action
7 ... Position of the lowest part of the thickened release material layer 8 ... Position of the uppermost part of the thickened release material layer

Claims (7)

鋳型の内表面に珪素とニ酸化珪素を混合した離型材を被覆したシリコン鋳造用鋳型であって、この鋳型の内表面の上部における離型材層を下部における離型材層より厚くしたことを特徴とするシリコン鋳造用鋳型。 A mold for silicon casting in which a mold release material mixed with silicon and silicon dioxide is coated on the inner surface of the mold, wherein the mold release material layer at the upper part of the inner surface of the mold is made thicker than the mold release material layer at the lower part. Silicon mold for casting. 鋳型の内表面に珪素とニ酸化珪素を混合した離型材を被覆したシリコン鋳造用鋳型であって、上部の離型材層と下部の離型材層との間に、これら各離型材層に比べて厚くした中間離型材層を設けたことを特徴とするシリコン鋳造用鋳型。 A mold for silicon casting in which the inner surface of a mold is coated with a release material in which silicon and silicon dioxide are mixed, and between the upper release material layer and the lower release material layer, compared to each of these release material layers A silicon casting mold characterized in that a thick intermediate release material layer is provided. 前記離型材の窒化珪素とニ酸化珪素の混合比が10:0〜1:9であることを特徴とする請求項1または2に記載のシリコン鋳造用鋳型。 The silicon casting mold according to claim 1 or 2, wherein a mixing ratio of silicon nitride and silicon dioxide in the release material is 10: 0 to 1: 9. 前記離型材の乾燥後の密度が1〜2g/cmであり、この離型材層の厚くされた部分の厚みを0.5mm以上にしたことを特徴とする請求項1ないし3のいずれかに記載のシリコン鋳造用鋳型。 The density after drying of the mold release material is 1 to 2 g / cm 3 , and the thickness of the thickened part of the mold release material layer is set to 0.5 mm or more. The mold for silicon casting as described. 前記離型材の乾燥後の密度が2〜3g/cmであり、この離型材層の厚くされた部分の厚みを0.15mm以上にしたことを特徴とする請求項1ないし3のいずれかに記載のシリコン鋳造用鋳型。 The density after drying of the mold release material is 2 to 3 g / cm 3 , and the thickness of the thickened part of the mold release material layer is 0.15 mm or more. The mold for silicon casting as described. 前記鋳型の本体が黒鉛、又はシリカからなることを特徴とする請求項1ないし5のいずれかに記載のシリコン鋳造用鋳型。 6. The silicon casting mold according to claim 1, wherein the main body of the mold is made of graphite or silica. 前記黒鉛が炭素繊維強化材料からなることを特徴とする請求項6に記載のシリコン鋳造用鋳型。 The silicon casting mold according to claim 6, wherein the graphite is made of a carbon fiber reinforced material.
JP2003336270A 2003-09-26 2003-09-26 Silicon casting mold Pending JP2005104743A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003336270A JP2005104743A (en) 2003-09-26 2003-09-26 Silicon casting mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003336270A JP2005104743A (en) 2003-09-26 2003-09-26 Silicon casting mold

Publications (1)

Publication Number Publication Date
JP2005104743A true JP2005104743A (en) 2005-04-21

Family

ID=34532455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003336270A Pending JP2005104743A (en) 2003-09-26 2003-09-26 Silicon casting mold

Country Status (1)

Country Link
JP (1) JP2005104743A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007191345A (en) * 2006-01-18 2007-08-02 Nippon Steel Materials Co Ltd Silicone coagulation mold with mold release material
US8048221B2 (en) 2006-01-20 2011-11-01 Stoddard Nathan G Methods and apparatuses for manufacturing monocrystalline cast silicon and monocrystalline cast silicon bodies for photovoltaics
CN102412108A (en) * 2011-10-31 2012-04-11 无锡绿波新能源设备有限公司 High-absorption assembled carbon fiber U-shaped groove
JP2012533507A (en) * 2009-07-16 2012-12-27 エムイーエムシー・シンガポール・プライベイト・リミテッド Coated crucible and method of making and using coated crucible
US8440157B2 (en) 2007-07-20 2013-05-14 Amg Idealcast Solar Corporation Methods and apparatuses for manufacturing cast silicon from seed crystals
US8591649B2 (en) 2007-07-25 2013-11-26 Advanced Metallurgical Group Idealcast Solar Corp. Methods for manufacturing geometric multi-crystalline cast materials
US8709154B2 (en) 2007-07-25 2014-04-29 Amg Idealcast Solar Corporation Methods for manufacturing monocrystalline or near-monocrystalline cast materials
WO2024261652A1 (en) * 2023-06-22 2024-12-26 Dal-Tile, Llc Method for preparing a mold for manufacturing an engineered stone, a mold for manufacturing an engineered stone and a method for manufacturing an engineered stone

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007191345A (en) * 2006-01-18 2007-08-02 Nippon Steel Materials Co Ltd Silicone coagulation mold with mold release material
US8048221B2 (en) 2006-01-20 2011-11-01 Stoddard Nathan G Methods and apparatuses for manufacturing monocrystalline cast silicon and monocrystalline cast silicon bodies for photovoltaics
US8628614B2 (en) 2006-01-20 2014-01-14 Amg Idealcast Solar Corporation Methods and apparatus for manufacturing monocrystalline cast silicon and monocrystalline cast silicon bodies for photovoltaics
US8951344B2 (en) 2006-01-20 2015-02-10 Amg Idealcast Solar Corporation Methods and apparatuses for manufacturing geometric multicrystalline cast silicon and geometric multicrystalline cast silicon bodies for photovoltaics
US8440157B2 (en) 2007-07-20 2013-05-14 Amg Idealcast Solar Corporation Methods and apparatuses for manufacturing cast silicon from seed crystals
US8591649B2 (en) 2007-07-25 2013-11-26 Advanced Metallurgical Group Idealcast Solar Corp. Methods for manufacturing geometric multi-crystalline cast materials
US8709154B2 (en) 2007-07-25 2014-04-29 Amg Idealcast Solar Corporation Methods for manufacturing monocrystalline or near-monocrystalline cast materials
JP2012533507A (en) * 2009-07-16 2012-12-27 エムイーエムシー・シンガポール・プライベイト・リミテッド Coated crucible and method of making and using coated crucible
CN102412108A (en) * 2011-10-31 2012-04-11 无锡绿波新能源设备有限公司 High-absorption assembled carbon fiber U-shaped groove
CN102412108B (en) * 2011-10-31 2013-11-27 无锡绿波新能源设备有限公司 High-absorption assembled carbon fiber U-shaped groove
WO2024261652A1 (en) * 2023-06-22 2024-12-26 Dal-Tile, Llc Method for preparing a mold for manufacturing an engineered stone, a mold for manufacturing an engineered stone and a method for manufacturing an engineered stone

Similar Documents

Publication Publication Date Title
US6334603B1 (en) Mold for producing silicon ingot and method for fabricating the same
EP3458629B1 (en) Silicon ingot growth crucible with patterned protrusion structured layer
JP4328161B2 (en) Silicon casting mold
JP2005104743A (en) Silicon casting mold
JP4081411B2 (en) Silicon casting mold and manufacturing method thereof
JP4192070B2 (en) Silicon casting mold and manufacturing method thereof
JP3450109B2 (en) Silicon casting method
JP3206540B2 (en) Laminated crucible for producing silicon ingot and method for producing the same
JP4884150B2 (en) Manufacturing method of mold for silicon casting
JP4081413B2 (en) Silicon casting mold and manufacturing method thereof
JP2006273666A (en) Silicon melting crucible, silicon casting apparatus using the same, and method for casting polycrystalline silicon ingot
JP4497943B2 (en) Silicon casting mold and silicon casting apparatus using the same
JP4471692B2 (en) Method for manufacturing container for melting silicon having release layer
JP4051181B2 (en) Silicon casting mold and method for forming solar cell using the same
JP4025611B2 (en) Silicon casting mold
JP2005152987A (en) Silicon casting mold and manufacturing method thereof
JP2006327912A (en) Silicon ingot forming mold and silicon ingot manufacturing method
JP4838591B2 (en) Silicone coagulation mold and method for producing the same
JP4340124B2 (en) Silicon casting equipment
JP2013095651A (en) Silica sintered body crucible
JP2004243387A (en) Silicon casting mold
JP2005238275A (en) Polycrystalline silicon ingot casting mold
CN103225105A (en) Mold for casting polysilicon ingot, method of manufacturing mould for casting polysilicon ingot, and method for casting polysilicon ingot
JPS62173055A (en) Strainer for casting and its production
JP2006326670A (en) Release layer forming method and silicon ingot manufacturing method