[go: up one dir, main page]

JP2853838B2 - Manufacturing method of rare earth permanent magnet - Google Patents

Manufacturing method of rare earth permanent magnet

Info

Publication number
JP2853838B2
JP2853838B2 JP3159765A JP15976591A JP2853838B2 JP 2853838 B2 JP2853838 B2 JP 2853838B2 JP 3159765 A JP3159765 A JP 3159765A JP 15976591 A JP15976591 A JP 15976591A JP 2853838 B2 JP2853838 B2 JP 2853838B2
Authority
JP
Japan
Prior art keywords
phase
alloy
rare earth
mixed
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3159765A
Other languages
Japanese (ja)
Other versions
JPH06207203A (en
Inventor
的生 楠
武久 美濃輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP3159765A priority Critical patent/JP2853838B2/en
Priority to DE1992602515 priority patent/DE69202515T2/en
Priority to EP92109366A priority patent/EP0517179B1/en
Priority to US08/119,641 priority patent/US5405455A/en
Publication of JPH06207203A publication Critical patent/JPH06207203A/en
Application granted granted Critical
Publication of JP2853838B2 publication Critical patent/JP2853838B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、各種電気、電子機器に
用いられる、磁気特性に優れた希土類永久磁石の製造方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing rare earth permanent magnets having excellent magnetic properties and used for various electric and electronic devices.

【0002】[0002]

【従来の技術】希土類磁石の中でもNd-Fe-B系磁石は、
主成分であるNdが資源的に豊富でコストが安く、磁気特
性に優れているために、近年益々その利用が広がりつつ
ある。磁気特性向上のための開発研究も、Nd系磁石の発
明以来精力的に行われてきており、数多くの研究や発明
が提案されている。Nd系焼結磁石の製造方法の1つであ
る2種類の組成の異なった合金粉体を混合、焼結して高
性能Nd磁石を製造する方法(以下、2合金法という)に
関しても数々の発明考案が提案されている。
2. Description of the Related Art Among rare earth magnets, Nd-Fe-B magnets are:
In recent years, Nd, which is a main component, is abundant in resources, low in cost, and excellent in magnetic properties, and its use has been increasing in recent years. Research and development for improving magnetic properties has been energetically conducted since the invention of the Nd-based magnet, and many studies and inventions have been proposed. There are many methods for producing high-performance Nd magnets by mixing and sintering two types of alloy powders having different compositions, which is one of the methods for producing Nd-based sintered magnets (hereinafter referred to as the two-alloy method). Inventions have been proposed.

【0003】これまでに提案されている2合金法を大き
く分けると、3種類に分類することができる。第1の方
法は、混合する原料合金粉体の一方を液体急冷法によっ
て非晶質あるいは微細結晶合金を作製し、それに通常の
希土類合金粉末を混合するか、あるいは両方の原料合金
粉体を共に液体急冷法で作製混合する方法[特開昭63-9
3841、 特開昭63-115307、特開昭63-252403、特開昭63-278
208、特開平1-108707、特開平1-146310、 特開平1-146309、
特開平1-155603各号公報参照]である。この液体急冷
法による合金を使用する2合金法については、最近50MG
Oeを越える磁気特性が得られたと報告[E.Otuki,T.Otuka
and T.Imai;11th.Int.Workshop on Rare Earth Magnet
s,Pittsburgh,Pennsylvania,USA,October(1990),p.328
参照 ]されている。
The two alloy methods proposed so far can be roughly classified into three types. In the first method, one of the raw material alloy powders to be mixed is made into an amorphous or microcrystalline alloy by a liquid quenching method, and a normal rare earth alloy powder is mixed therewith, or both raw material alloy powders are mixed together. A method of producing and mixing by a liquid quenching method [JP-A-63-9
3841, JP 63-115307, JP 63-252403, JP Akira 63 -278
208, JP-A-1-108707, JP-A-1-46310, JP-A-1-146309,
Japanese Patent Application Laid-Open No. 1-155603]. Recently, a 50MG alloy using this liquid quenching alloy has been
Reported that magnetic properties exceeding Oe were obtained [E. Otuki, T. Otuka
and T.Imai; 11th.Int.Workshop on Rare Earth Magnet
s, Pittsburgh, Pennsylvania, USA, October (1990), p. 328
See].

【0004】第2の方法は、混合する2種類の原料合金
粉体を共に主としてR2 Fe14B化合物とし含有される希
土類元素の種類、含有量を変えた合金を作製して混合焼
結する方法である。即ち、含有するNdリッチ相の量比あ
るいは希土類元素の種類を変えた合金を2種類混合する
方法[特開昭61-81603、 特開昭61-81604、 特開昭61-816
05、 特開昭61-81606、 特開昭61-81607、 特開昭61-11900
7、特開昭61-207546、特開昭63-245903、特開平1-177335各
号公報参照]である。
A second method is to prepare an alloy in which the two kinds of raw material alloy powders to be mixed are changed mainly as R 2 Fe 14 B compounds and the kinds and contents of the rare earth elements contained therein are mixed and sintered. Is the way. That is, a method of mixing two kinds of alloys in which the amount ratio of the contained Nd-rich phase or the kind of the rare earth element is changed [Japanese Patent Application Laid-Open Nos. 61-81603, 61-81604 and 61-816]
05, JP-A-61-81606, JP-A-61-81607, JP-A-61-11900
7, JP 61-207546, JP 63-245 90 3, Hei 1-177335 is the JP reference.

【0005】第3の方法は、一方の合金を主としてR2
Fe14B化合物からなる合金粉末とし、これに各種低融点
元素、低融点合金、希土類合金、炭化物、硼化物、水素
化物等の粉末を混合焼結して、Nd系希土類磁石を製造す
る方法 [特開昭60-230959、特開昭61-263201、特開昭62-1
81402、特開昭62-182249、特開昭62-206802、特開昭62-270
746、特開昭63-6808、特開昭63-104406、特開昭63-114939、
特開昭63-272006、特開平1-111843、 特開平1-146308各号
公報参照] である。
The third method is to use one of the alloys mainly as R 2
A method of producing an Nd-based rare earth magnet by mixing and sintering powders of various low-melting elements, low-melting alloys, rare-earth alloys, carbides, borides, hydrides and the like into an alloy powder composed of an Fe 14 B compound [ JP-A-60-230959, JP-A-61-263201, JP-A-62-1
81402, JP-A-62-182249, JP-A-62-206802, JP-A-62-270
746, JP-A-63-6808, JP-A-63-104406, JP-A-63-114939,
JP-A-63-272006, JP-A-1-111843, and JP-A-1-146308.

【0006】[0006]

【発明が解決しようとする課題】従来技術による2合金
法ではNd系磁石合金の真に優れた磁気特性を実現させ
るのに適切でなかったり不充分だったりする点が多く存
在する。即ち、前述した第1の方法では磁石合金のエネ
ルギー積は高いが保磁力は約9程度で、温度上昇
によって保磁力が低下するというNd磁石特有の欠点の
ために、実用的には不充分な磁石特性である。最も大き
な問題点は、磁場配向性である。第1の方法でも組成を
適当に選ぶことによって、室温で磁性を示す合金を得る
ことができるが、液体急冷法によって得られる合金は非
晶質アモルファス相あるいは微細結晶となるため、微粉
にして磁場中で配向させても特定の結晶方位を磁場方向
に配向させることができない。従って、混合した原料合
金粉体を磁場中成形しても得られる成形体の配向性は悪
く、焼結後充分な磁石特性が得られないことになる。
There are many points that the two-alloy method according to the prior art is not suitable or insufficient for realizing the truly excellent magnetic properties of the Nd-based magnet alloy. That is, the first energy product is high coercivity of the magnet alloy in the method about 9 k 0 e described above, the Nd magnet specific drawbacks that the coercive force is lowered by the temperature rise
Therefore, the magnet properties are insufficient in practical use. The biggest problem is the magnetic field orientation. In the first method, an alloy exhibiting magnetism at room temperature can be obtained by appropriately selecting the composition. However, since the alloy obtained by the liquid quenching method becomes an amorphous amorphous phase or a fine crystal, the alloy is formed into a fine powder and a magnetic field. A specific crystal orientation cannot be oriented in the direction of the magnetic field even if it is oriented in a magnetic field. Therefore, even if the mixed raw material alloy powder is compacted in a magnetic field, the orientation of the compact obtained is poor, and sufficient magnet properties cannot be obtained after sintering.

【0007】第2の方法においては、磁石合金中のR
Fe14B化合物と共存する相はNdリッチ相あるいは
Nd1+XFe相であり、この両相とも室温では
磁性を示さない。従って、磁性を持たない化合物を混合
しても非磁性粒子が配向性を乱して、磁気特性の優れた
磁石は得られない。また、混合する粉体として各種元素
や種々の化合物を用いる第3の方法においてもこれらの
化合物は磁性をもたないために、磁場中配向時に反磁場
が大きくなって有効磁場強度が減少し、そのため磁場方
向への磁性粒子の回転が不充分となって配向が乱れる。
In the second method, R 2 in the magnet alloy is
The phase coexisting with the Fe 14 B compound is the Nd-rich phase or the Nd 1+ XFe 4 B 4 phase, and both phases do not show magnetism at room temperature. Therefore, compounds with no magnetism are mixed
Even disturbs the orientation of the non-magnetic particles child by not obtained excellent magnet magnetic properties. Also, in the third method using various elements and various compounds as powders to be mixed, since these compounds do not have magnetism, the demagnetizing field increases during orientation in a magnetic field, and the effective magnetic field strength decreases. Therefore, the rotation of the magnetic particles in the direction of the magnetic field becomes insufficient, and the orientation is disturbed.

【0008】第3の方法において、混合する粉体に低融
点の元素あるいは合金を利用して磁気特性を向上させよ
うとする提案があるが、これは焼結中に混合した低融点
相が、R2 Fe14B化合物の粒界に存在する格子欠陥や酸
化物相などのニュークリエーションサイトを除去し、粒
界をクリーニングして保磁力を向上させるという考え方
によるものである。しかし、低融点相の存在は次に述べ
るような理由から、実際には磁気特性の向上に対して逆
に不利な条件となっている。低融点相が例えば660 ℃付
近から融液となっていると、実際の焼結温度1,100 ℃で
は低融点相の粘度はかなり小さくなってしまう。その結
果、成形体は液相焼結によって収縮しながら同時に粒の
周囲を囲む融液の粘度が小さいために磁性粒子の回転が
容易に起り、配向が乱れて磁気特性が劣化する。つま
り、Nd磁石の液相焼結における望ましい液相成分は、適
当な粘度を保って粒子の配向を乱さず、かつまた成形体
を緻密化し、粒界を十分にクリーニングアップできるこ
とが必要なのである。従来の2合金法においては、液相
成分が関与する磁場配向性と保磁力向上の両方の役割を
充分に考慮し、これらが最適な条件となるよう液相合金
成分の磁性と融点を適切に調整してはいなかった。本発
明は2合金法における前述したような欠点を改良し、バ
ランスのとれた磁気特性に優れた希土類永久磁石の製造
方法を提供しようとするものである。
In the third method, there is a proposal to improve the magnetic properties by using a low melting point element or alloy in the powder to be mixed. This is based on the idea that nucleation sites such as lattice defects and oxide phases existing at the grain boundaries of the R 2 Fe 14 B compound are removed and the grain boundaries are cleaned to improve the coercive force. However, the presence of the low melting point phase is actually a disadvantageous condition for improving the magnetic properties for the following reasons. If the low-melting phase is melted from, for example, around 660 ° C., the viscosity of the low-melting phase becomes considerably small at an actual sintering temperature of 1,100 ° C. As a result, the compact shrinks due to liquid phase sintering, and at the same time, the viscosity of the melt surrounding the grains is low, so that the rotation of the magnetic particles easily occurs, the orientation is disturbed, and the magnetic properties deteriorate. In other words, a desirable liquid phase component in the liquid phase sintering of the Nd magnet needs to maintain an appropriate viscosity without disturbing the orientation of the particles, and also to densify the compact and sufficiently clean up the grain boundaries. In the conventional two-alloy method, the roles of the magnetic field orientation and the coercive force improvement involving the liquid phase component are both sufficiently taken into consideration, and the magnetism and melting point of the liquid phase alloy component are appropriately adjusted so that these become the optimum conditions. I didn't adjust it. An object of the present invention is to improve the above-mentioned drawbacks of the two-alloy method and to provide a method for producing a rare-earth permanent magnet having excellent balanced magnetic properties.

【0009】[0009]

【課題を解決するための手段】本発明者等は、かかる課
題を解決するために2合金法を基本的に見直し、磁性体
構成相の種類、特性等を適切に選択し組合せることによ
り充分満足できるバランスのとれた磁気特性が得られる
ことを見出し、製造条件を詳細に検討して本発明を完成
させた。 本発明の要旨は、A合金を主としてR2 Fe14
B相(ここにRは、Nd、Pr、Dyを主体とする少なくとも1
種以上の希土類元素を表す)から成る合金とし、B合金
をR、Co、Fe、 B、Gaを含有し、かつ合金中の構成相とし
てR21 14 B相および/またはRリッチ相(ここにR
は上記に同じ、T1 はFe、Co を主体とする遷移金属元素
を表す)並びにRT2 4L相、RT2 3相、RT2 2相、R2
2 7相およびRT2 5相(ここにRは上記に同じ、T2
Fe、Co を主体とする遷移金属元素、同遷移金属およびGa
とBの内1種または2種、LはBまたはBとGaを表す)
の5相の内1種または2種以上の相との混合相から成る
合金とし、A合金粉末99〜70重量%に対してB合金粉末
を1〜30重量%混合し、該混合合金粉末を磁場中加圧成
形し、該成形体を真空または不活性ガス雰囲気中で焼結
し、さらに焼結温度以下の低温で時効熱処理することを
特徴とする希土類永久磁石の製造方法であり、更に詳し
くは、B合金に含まれるRT2 4L相、RT2 3相、RT2 2
相、R22 7相およびRT2 5相の5つの構成相の内少な
くとも1種以上の相の融点が700 ℃以上1,155 ℃以下の
金属間化合物であり、少なくとも1種以上の相が室温以
上のキューリー温度を有する磁性体であり、少なくとも
1種以上の相が室温以上のキューリー温度ならびに結晶
磁気異方性を有する磁性体であることを特徴とする希土
類磁石の製造方法である。
Means for Solving the Problems In order to solve the above problems, the present inventors have basically reviewed the two-alloy method, and it is sufficient to properly select and combine the types and characteristics of the constituent phases of the magnetic material. The present inventors have found that satisfactory and well-balanced magnetic properties can be obtained, and have studied the manufacturing conditions in detail to complete the present invention. The gist of the present invention is that A alloy is mainly composed of R 2 Fe 14
B phase (where R is at least 1 mainly composed of Nd, Pr, Dy)
And alloys composed of representative species more rare earth elements), the B alloy R, Co, Fe, B, contains Ga, and as a phase in the alloy R 2 T 1 14 B phase and / or the R-rich phase ( Where R
Same as above, T 1 represents a transition metal element mainly Fe, a Co) and RT 2 4 L-phase, RT 2 3-phase, RT 2 2 phase, R 2
T 2 7 phase and RT 2 5 phase (wherein R is as defined above, T 2 is
Transition metal elements mainly composed of Fe and Co, the same transition metals and Ga
And B, one or two of which L represents B or B and Ga)
An alloy consisting of a mixed phase with one or two or more of the five phases described above is mixed. B alloy powder is mixed in an amount of 99 to 70% by weight with A alloy powder in an amount of 1 to 30% by weight. A method for producing a rare earth permanent magnet, which is performed by press-forming in a magnetic field, sintering the formed body in a vacuum or an inert gas atmosphere, and further performing aging heat treatment at a low temperature equal to or lower than the sintering temperature. is, RT 2 4 L phase contained in the B alloy, RT 2 3-phase, RT 2 2
Phase, an R 2 T 2 7 phase and RT 2 5 Phase five least one of a melting point of 1,155 ° C. or less of the intermetallic compound 700 ° C. or more phases of the constituent phases of at least one or more phases at room temperature A method for producing a rare earth magnet, wherein the magnetic material has a Curie temperature as described above, and at least one phase is a magnetic material having a Curie temperature and a crystal magnetic anisotropy of room temperature or higher.

【0010】以下本発明を詳細に説明する。本発明は所
謂2合金法と称する希土類永久磁石(以下、磁石合金C
という)の製造方法であり、原料となるA合金は主とし
てRFe14B化台物相からなり、RはYを含むL
a,Ce,Pr,Nd,Pm,Sm,Eu,Gd,T
b,Dy,Ho,Er,Tm,YbおよびLuから選択
されるNd,Pr,Dyを主体とする少なくとも1種類
以上の希土類元素である。A合金は原料金属を真空また
は不活性ガス、好ましくはAr雰囲気中で溶解し鋳造す
る。原料金属は純希土類元素および希土類合金、純鉄、
フェロボロン、さらにはこれらの合金等を使用するが、
一般的な工業生産において不可避な微量不純物は含まれ
るものとする。得られたインゴットは、RFe14
相がаFeと希土類リッチ相との包晶反応によって形成
されるため、鋳造後も凝固偏析によってаFe相、Rリ
ッチ相、あるいはBリッチ相等が残留する場合がある。
本発明においてはA合金中のRFe14B相が多いほ
うが望ましいので、必要に応じて溶体化処理を行う。そ
の条件は真空またはAr雰囲気下、700〜1,200
℃の温度領域で1時間以上熱処理すれば良い。
Hereinafter, the present invention will be described in detail. The present invention relates to a rare-earth permanent magnet (hereinafter referred to as a magnet alloy C) called a so-called two-alloy method.
A) as a raw material, the A alloy serving as a raw material is mainly composed of a R 2 Fe 14 B-former phase, and R is L containing Y.
a, Ce, Pr, Nd, Pm, Sm, Eu, Gd, T
At least one or more rare earth elements mainly composed of Nd, Pr, and Dy selected from b, Dy, Ho, Er, Tm, Yb, and Lu. The alloy A is cast by melting the raw material metal in a vacuum or an inert gas, preferably an Ar atmosphere. The raw materials are pure rare earth elements and rare earth alloys , pure iron,
Ferroboron, and further use these alloys ,
Trace impurities inevitable in general industrial production shall be included. The obtained ingot is made of R 2 Fe 14 B
Since the phase is formed by the peritectic reaction between аFe and the rare earth-rich phase, the аFe phase, the R-rich phase, the B-rich phase and the like may remain even after casting due to solidification segregation.
In the present invention, since it is desirable that the R 2 Fe 14 B phase in the A alloy is large, a solution treatment is performed if necessary. The conditions are 700 to 1,200 under vacuum or Ar atmosphere.
Heat treatment may be performed in a temperature range of ° C. for 1 hour or more.

【0011】B合金は主としてR、Co、Fe、 BおよびGaか
ら成る合金で、組成式RaFebCocd Gae (ここにR
は、Yを含む La,Ce,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,T
m,YbおよびLuから選択されるNd、Pr、Dyを主体とする少な
くとも1種以上の希土類元素、15≦a ≦40、 0≦b ≦8
0、 5≦c ≦85、 0≦d ≦20、0.1≦e ≦20、a+b+c+d+e=10
0(各原子%) )で表わされ、A合金と同様に原料金属を
真空または不活性ガス、好ましくはAr雰囲気中で溶解し
鋳造する。原料金属としては純希土類元素、純鉄、純コ
バルト、純ガリウム、フェロボロン等を使用するが、一
般的な工業生産において不可避な微量不純物は含まれる
ものとする。希土類元素Rの量a が15原子%未満ではR
が少な過ぎるために焼結工程において十分な量の液相が
得られず、焼結体の密度が上がらなくなり、40原子%を
越えると合金の融点が低くなり過ぎて磁気特性の向上効
果がなくなる。Coの量c が5原子%未満ではRT2 4
相、RT2 3相、RT2 2相、R22 7相およびRT2 5相等
の各相が出現しなくなり、磁気特性の向上効果が得られ
ない。Gaの量が20原子%を越えると合金の飽和磁束密
度が小さくなり高い磁気特性が得られない。また、液体
急冷法によって得られた薄帯を熱処理してもB合金を作
製することができる。即ち、液体急冷法において、急冷
後のB合金はアモルファス相或は微細結晶相となってお
り、これを結晶化温度以上の温度で一定時間以上加熱す
ることにより、結晶化或は再結晶成長させて、本発明の
所定の構成相を析出させることが出来る。
[0011] B alloy mainly R, Co, Fe, an alloy consisting of B and Ga, the composition formula R a Fe b Co c B d Ga e ( here R
Is La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, T
at least one or more rare earth elements mainly composed of Nd, Pr and Dy selected from m, Yb and Lu, 15 ≦ a ≦ 40, 0 ≦ b ≦ 8
0, 5 ≦ c ≦ 85, 0 ≦ d ≦ 20, 0.1 ≦ e ≦ 20, a + b + c + d + e = 10
0 (each atomic%)), and the raw material metal is melted and cast in a vacuum or an inert gas, preferably an Ar atmosphere, like the A alloy. As a raw material metal, a pure rare earth element, pure iron, pure cobalt, pure gallium, ferroboron, or the like is used, and it is assumed that trace impurities that are inevitable in general industrial production are included. If the amount a of the rare earth element R is less than 15 atomic%, R
Is too small to obtain a sufficient amount of liquid phase in the sintering process, the density of the sintered body does not increase, and if it exceeds 40 atomic%, the melting point of the alloy becomes too low and the effect of improving the magnetic properties is lost . RT 2 The amount c of Co is less than 5 atomic% 4 L
Phase, RT 2 3-phase, RT 2 2 phase, no longer phase of R 2 T 2 7 phase and RT 2 5 equality appeared not effect of improving magnetic characteristics. When the amount e of Ga exceeds 20 atomic%, the saturation magnetic flux density of the alloy becomes small and high magnetic properties cannot be obtained. Further, a B alloy can be produced by heat-treating a ribbon obtained by the liquid quenching method. That is, in the liquid quenching method, the quenched B alloy is in an amorphous phase or a fine crystalline phase, and is heated at a temperature higher than the crystallization temperature for a certain time to cause crystallization or recrystallization growth. Thus, the predetermined constituent phase of the present invention can be precipitated.

【0012】この組成範囲においてB合金中に主に出現
する相は、R21 14 B相(主としてR2 Fe14B相)、
Rリッチ相(ここにRは上記に同じ、T1 はFe、Co を主
体とする遷移金属元素を表す)並びにRT2 4L相、RT
2 3相、RT2 2相、R22 7相およびRT2 5相(ここにR
は上記に同じ、T2 はFe、Co を主体とする遷移金属元
素、同遷移金属およびGaとBの内1種または2種、Lは
BまたはBとGaを表す)等であり、本発明では前2相お
よび後5相の内少なくとも1種または2種以上の相を含
むB合金を使用することに特徴がある。なおRリッチ相
と表記した相は、R成分が35原子%以上となるRに富ん
だ各種の相全てを表すものとする。これら7種類の相の
うち、R2 Fe14B相、Rリッチ相の2相は、従来公知の
2合金法や、通常の希土類鉄ボロン系磁石合金の製造法
によっても出現していた相である。残りのRT2 4L相、
RT2 3相、RT2 2相、R22 7相、RT2 5相の5種類の
相は、B合金に5原子%以上のCoを添加することにより
出現し、本発明の2合金法において特有のものである。
これら5相はCoを5原子%以上添加することによって初
めてB合金中に平衡相として出現したものである。図1
は本発明のB合金の鋳造組織写真を走査電子顕微鏡によ
り撮影し、組成をEPMA( 電子プローブX線マイクロアナ
ライザー )およびX線解析により求めた1例でRT2 4
L相、RT2 3相、RT2 2相、Rリッチ相の存在が
明確に表されている。本発明による2合金法は、B合金
中にこれら5相のうち、少なくとも1種以上含むことを
特徴とし、これらの相の存在によって2合金法で作製さ
れた磁石合金に高い磁気特性を実現することができた。
[0012] Phase mainly appears in B alloy in this composition range, R 2 T 1 14 B phase (mainly R 2 Fe 14 B phase)
R-rich phase (wherein R is as defined above, T 1 represents a transition metal element Fe, a Co mainly) and RT 2 4 L-phase, RT
2 3-phase, RT 2 2-phase, R 2 T 2 7 phase and RT 2 5 phase (here R
Is the same as above, T 2 is a transition metal element mainly composed of Fe and Co, one or two of the same transition metal and Ga and B, and L represents B or B and Ga. Is characterized by using a B alloy containing at least one or two or more phases out of two phases before and five phases after. Note that the phase described as the R-rich phase represents all the various R-rich phases in which the R component is 35 atomic% or more. Of these seven types of phases, the R 2 Fe 14 B phase and the R-rich phase are phases that have also appeared by a conventionally known two-alloy method or a normal rare-earth iron-boron-based magnet alloy manufacturing method. is there. The rest of the RT 2 4 L-phase,
RT 2 3-phase, RT 2 2-phase, R 2 T 2 7 phase, five phase RT 2 5 phase emerges by adding 5 atomic% or more Co in B alloy, 2 alloy of the present invention It is unique in the law.
These five phases first appeared as an equilibrium phase in the B alloy by adding 5 atomic% or more of Co. FIG.
RT 2 4 in one example the cast structure photograph taken by a scanning electron microscope of B alloy, as determined by the composition EPMA (electron probe X-ray microanalyzer) and X-ray analysis of the present invention
The presence of the L phase, RT 2 3 phase, RT 2 2 phase and R rich phase is clearly shown. The two-alloy method according to the present invention is characterized in that at least one of these five phases is contained in the B alloy, and the presence of these phases realizes high magnetic properties in a magnet alloy produced by the two-alloy method. I was able to.

【0013】本発明では以上述べたA合金、B合金を特
定割合に混合し、所謂2合金法によって磁石合金Cを作
製し、高い磁気特性を発現させることができた。以下、
B合金におけるこれら混合相の存在が磁石合金の高い磁
気特性をもたらした理由について述べる。まず第1の理
由として、これら混合相が室温以上のキューリー温度を
持つことが挙げられ、これは添加元素Coによって達成さ
れた。さらに、これらの相は特定の結晶方向に結晶磁気
異方性を持つ。従って、主な構成相としてこれらの相の
1種以上を含有するB合金粉末を主にR2Fe14 B相から
成るA合金粉末に混合して磁場中配向させると、B合金
も強磁性体で磁気異方性を持つため、加えた磁場方向に
ほぼ全ての粒子が結晶方向を揃えて配向し、高い磁気特
性が得られることになる。
In the present invention, the above alloys A and B are mixed at a specific ratio, and a magnet alloy C is produced by a so-called two-alloy method, whereby high magnetic properties can be exhibited. Less than,
The reason why the presence of these mixed phases in the B alloy resulted in the high magnetic properties of the magnet alloy will be described. The first reason is that these mixed phases have a Curie temperature above room temperature, which was achieved by the additive element Co. Further, these phases have magnetocrystalline anisotropy in a specific crystal direction. Therefore, when a B alloy powder containing one or more of these phases as a main constituent phase is mixed with an A alloy powder mainly composed of R 2 Fe 14 B phase and oriented in a magnetic field, the B alloy also becomes a ferromagnetic material. , Almost all the grains are oriented with the crystal direction aligned in the direction of the applied magnetic field, and high magnetic properties can be obtained.

【0014】第2の理由は、これらの相の融点がNd系希
土類磁石の液相焼結にとって適当な温度範囲、即ち700
℃以上1,155 ℃以下の範囲となることである。この温度
範囲はNdリッチ相の融点(500 〜 650℃)よりは高く、
しかもR2Fe14 B相の融点(1,155 ℃)以下の温度であ
る。従って、通常の焼結温度においてNdリッチ相のみが
存在していて融液の粘度が下がり過ぎてしまい、その結
果粒子の配向を乱してしまうようなことがなく、かつま
た液相となって粒界をクリーニングしながら密度を上
げ、焼結後高い磁石特性を実現することになる。Co添加
によるもう1つの効果として、耐食性の向上が挙げられ
る。B合金はA合金より希土類元素を多く含有するため
酸化劣化しやすくなるが、Coを添加することにより酸化
劣化を防止することができ、安定した磁気特性が得られ
る。B合金に添加されるDyとGaは、両者共焼結後も粒界
近傍に多く存在し、磁石合金Cの保磁力を向上させる効
果がある。
The second reason is that the melting points of these phases are in a temperature range suitable for liquid phase sintering of Nd-based rare earth magnets, ie, 700 ° C.
It should be in the range of not less than 1,155 ° C. This temperature range is higher than the melting point of the Nd-rich phase (500-650 ° C),
In addition, the temperature is lower than the melting point of the R 2 Fe 14 B phase (1,155 ° C.). Therefore, at the normal sintering temperature, only the Nd-rich phase is present and the viscosity of the melt does not decrease too much, so that the orientation of the particles is not disturbed, and the liquid phase is formed. The density is increased while cleaning the grain boundaries, and high magnet properties are realized after sintering. Another effect of the addition of Co is an improvement in corrosion resistance. The B alloy contains more rare earth elements than the A alloy and thus is easily oxidized and deteriorated. However, by adding Co, the oxidized deterioration can be prevented and stable magnetic properties can be obtained. Dy and Ga added to the B alloy are present in large amounts near the grain boundaries even after co-sintering, and have the effect of improving the coercive force of the magnet alloy C.

【0015】次に2合金法による磁石合金Cの製造方法
を述べる。上記のようにして得られたA合金およびB合
金は、各インゴットを別々に粉砕した後、所定割合に混
合される。粉砕は、湿式又は乾式粉砕にて行われる。希
土類合金は非常に活性であり、粉砕中の酸化を防ぐこと
を目的に、乾式粉砕の場合はAr又は窒素などの雰囲気中
で、湿式粉砕の場合はフロンなどの非反応性の有機溶媒
中で行われる。混合工程も必要に応じて不活性雰囲気又
は溶媒中で行われる。粉砕は一般に粗粉砕、微粉砕と段
階的に行われるが、混合はどの段階で行われても良い。
即ち粗粉砕後に所定量混合し引続いて微粉砕を行っても
よいし、全ての粉砕を完了した後に所定の割合に混合し
てもよい。A、B両合金がほぼ同じ平均粒径で均一に混
合されることが必要で、平均粒径は0.5 〜20μmの範囲
が良く、0.5 μm未満では酸化され劣化し易く、20μm
を越えると焼結性が悪くなる。
Next, a method for producing the magnet alloy C by the two-alloy method will be described. The A alloy and the B alloy obtained as described above are separately mixed and then mixed at a predetermined ratio. The pulverization is performed by wet or dry pulverization. Rare earth alloys are very active, and are used in an atmosphere such as Ar or nitrogen in the case of dry grinding and in a non-reactive organic solvent such as Freon in the case of wet grinding in order to prevent oxidation during grinding. Done. The mixing step is also performed in an inert atmosphere or a solvent as necessary. The pulverization is generally performed stepwise as coarse pulverization and fine pulverization, but mixing may be performed at any stage.
That is, a predetermined amount may be mixed after coarse pulverization and then finely pulverized, or may be mixed at a predetermined ratio after all pulverization is completed. It is necessary that both the A and B alloys are uniformly mixed with substantially the same average particle size. The average particle size is preferably in the range of 0.5 to 20 μm, and if it is less than 0.5 μm, it is easily oxidized and deteriorated.
If it exceeds sinterability, the sinterability deteriorates.

【0016】A合金粉末とB合金粉末の混合割合は、A
合金粉末99〜70重量%に対してB合金粉末を1〜30重量
%の範囲で混合するのが良く、B合金粉末が1重量%未
満では焼結密度が上がらなくなり保磁力が得られない
し、30重量%を越えると焼結後の非磁性相の割合が大き
くなり過ぎて、残留磁束密度が小さくなってしまう。得
られたA合金とB合金の混合微粉は、次に磁場中成型プ
レスによって所望の寸法に成型され、さらに焼結熱処理
する。焼結は900 〜1,200 ℃の温度範囲で真空又はアル
ゴン雰囲気中にて30分以上行ない、続いて焼結温度以下
の低温で30分以上時効熱処理する。焼結後、磁石合金C
の成形体の密度は対真密度比で95%以上に緻密化してお
り高い残留磁束密度が得られる。
The mixing ratio of the A alloy powder and the B alloy powder is
It is preferable to mix the B alloy powder in the range of 1 to 30% by weight with respect to 99 to 70% by weight of the alloy powder. If the B alloy powder is less than 1% by weight, the sintering density does not increase and no coercive force is obtained, If it exceeds 30% by weight, the proportion of the nonmagnetic phase after sintering becomes too large, and the residual magnetic flux density becomes small. The obtained mixed powder of the alloy A and the alloy B is molded into a desired size by a molding press in a magnetic field, and further subjected to a sintering heat treatment. Sintering is performed in a vacuum or argon atmosphere at a temperature in the range of 900 to 1200 ° C. for 30 minutes or more, followed by aging heat treatment at a temperature lower than the sintering temperature for 30 minutes or more. After sintering, magnet alloy C
The compact has a density of 95% or more in terms of true density, and a high residual magnetic flux density can be obtained.

【0017】[0017]

【実施例】以下、本発明の具体的な実施態様を実施例を
挙げて説明するが、本発明はこれらに限定されるもので
はない。(実施例1、比較例1)純度99.9重量%のNd、
Feメタルとフェロボロンを用いて組成式12.5Nd-6B-81.5
Fe(各原子%)の合金を、高周波溶解炉のAr雰囲気中に
て溶解鋳造した後、このインゴットを1,070 ℃、Ar雰囲
気中にて20時間溶体化した。これをA1合金とする。次
に同じく純度99.9重量%のNd、Dy、Fe、Ga、Coメタルとフェ
ロボロンを用いて組成式20Nd-10Dy-20Fe-6B-4Ga-40Coの
合金を高周波溶解炉を用いAr雰囲気にて溶解鋳造し、こ
れをB1合金とした。A1合金インゴットとB1合金イ
ンゴットをそれぞれ別々に窒素雰囲気中にて粗粉砕して
30メッシュ以下とし、次にA1合金粗粉90重量%にB1
合金粗粉を10重量%秤量して、窒素置換したVブレンダ
ー中で30分間混合した。この混合粗粉を高圧窒素ガスを
用いたジェットミルにて、平均粒径約5μmに微粉砕し
た。得られた混合微粉末を15kOe の磁場中で配向させな
がら、約1Ton/cm2 の圧力でプレス成型した。次いで、
この成形体はAr雰囲気の焼結炉内で1,070 ℃で1時間焼
結され、さらに530 ℃で1時間時効熱処理して急冷し、
磁石合金C1を作製した。
EXAMPLES Hereinafter, specific embodiments of the present invention will be described with reference to examples, but the present invention is not limited thereto. (Example 1, Comparative Example 1) Nd having a purity of 99.9% by weight,
Composition formula 12.5Nd-6B-81.5 using Fe metal and ferroboron
After an alloy of Fe (atomic%) was melt-cast in an Ar atmosphere of a high-frequency melting furnace, the ingot was solution-solutioned at 1,070 ° C. in an Ar atmosphere for 20 hours. This is an A1 alloy. Next, an alloy of the composition formula 20Nd-10Dy-20Fe-6B-4Ga-40Co is melt-cast in an Ar atmosphere using a high-frequency melting furnace using Nd, Dy, Fe, Ga, Co metal and ferroboron having a purity of 99.9% by weight. This was used as a B1 alloy. A1 alloy ingot and B1 alloy ingot are each roughly crushed in a nitrogen atmosphere.
30 mesh or less, then B1 90% by weight of A1 alloy coarse powder
The alloy coarse powder was weighed at 10% by weight and mixed in a nitrogen-purged V blender for 30 minutes. This mixed coarse powder was finely pulverized with a jet mill using high-pressure nitrogen gas to an average particle size of about 5 μm. The obtained mixed fine powder was press-molded at a pressure of about 1 Ton / cm 2 while being oriented in a magnetic field of 15 kOe. Then
This compact was sintered at 1,070 ° C for 1 hour in a sintering furnace in an Ar atmosphere, and further quenched by aging heat treatment at 530 ° C for 1 hour.
Magnet alloy C1 was produced.

【0018】比較のため実施例1と同じ組成となる合金
を従来の1合金法にて製造し、比較例1とした。即ち、
A1、B1両合金混合後と同じ組成(磁石合金C1)を
最初から秤量し、溶解、粉砕、焼結、時効熱処理して2
合金法による磁石(実施例1の磁石組成C1)と磁気特
性を比較した。この磁石合金C1の組成は、2合金法に
よる実施例1、1合金法による比較例1共に、13.1Nd-
0.8Dy-3.5Co-6.0B--0.3Ga-76.6Fe である。表1に実施
例1と比較例1の両焼結体磁石において得られた磁気特
性の値と焼結体密度を示す。実施例1の磁気特性は比較
例1に比較して、焼結体密度は殆ど同じであるが、残留
磁束密度、保磁力、最大エネルギ−積等、全ての値にお
いて実施例1が大きく勝っている。このように磁石合金
Cの組成が全く同一でも磁気特性にはかなりの差が生じ
ており、2合金法がNd磁石の磁気特性向上のために極め
て有効な方法であることを示している。B1合金の鋳造
状態での金属組織を、図1に走査電子顕微鏡の反射電子
像写真によって示した。写真の明暗から判る通りB1合
金中の主な構成相は4つある。各相は、EPMA(電子プロ
ーブX線マイクロアナライザー)およびX線解析によっ
て、図中に示したようにRT2 4L相、RT2 3相、RT2 2
相、Rリッチ相であることが判明した。
For comparison, an alloy having the same composition as in Example 1 was produced by a conventional one-alloy method, and Comparative Example 1 was obtained. That is,
The same composition (magnet alloy C1) as after mixing both alloys A1 and B1 was weighed from the beginning, melted, pulverized, sintered, and subjected to aging heat treatment.
The magnet characteristics were compared with the magnet by the alloy method (magnet composition C1 of Example 1). The composition of this magnet alloy C1 was 13.1 Nd- in both Example 1 by the two-alloy method and Comparative Example 1 by the one-alloy method.
0.8Dy-3.5Co-6.0B--0.3Ga-76.6Fe. Table 1 shows the values of the magnetic properties and the sintered body densities obtained for both sintered body magnets of Example 1 and Comparative Example 1. The magnetic properties of Example 1 are almost the same as those of Comparative Example 1, but the density of the sintered body is almost the same. However, Example 1 is far superior in all values such as residual magnetic flux density, coercive force, and maximum energy product. I have. As described above, even if the composition of the magnet alloy C is exactly the same, there is a considerable difference in the magnetic properties, indicating that the two-alloy method is a very effective method for improving the magnetic properties of the Nd magnet. The metal structure of the B1 alloy in the cast state is shown in FIG. 1 by a backscattered electron image photograph of a scanning electron microscope. As can be seen from the light and dark of the photograph, there are four main constituent phases in the B1 alloy. Each phase, EPMA by (electron probe X-ray microanalyzer) and X-ray analysis, RT 2 4 L-phase as shown in FIG, RT 2 3-phase, RT 2 2
Phase, an R-rich phase.

【0019】(実施例2〜11、比較例2〜11)表1に示
したように実施例2〜11の合金組成に対応して、A合金
としてA1、A2の組成合金をを作り、B合金としてB
2〜B9の組成合金を作製し、以下実施例1と同様の方
法で粉砕、所定の比率に混合、磁場中成形、焼結(1,05
0 〜1,120 ℃×1時間)、時効処理(500 〜600 ℃×1
〜10時間)を行い2合金法磁石合金C2〜C11を製造
し、その磁気特性を測定して表1、2に示した。比較の
ため実施例2〜11と同じ組成となる合金を1合金法によ
り作製した以外は実施例2〜11と同条件により磁石合金
C2〜C11を製造し、磁気特性を測定して比較例2〜11
とし、表1、表2に示した。
(Examples 2 to 11 and Comparative Examples 2 to 11) As shown in Table 1, corresponding to the alloy compositions of Examples 2 to 11, a composition alloy of A1 and A2 was prepared as an A alloy. B as alloy
A composition alloy of Nos. 2 to B9 was prepared, pulverized in the same manner as in Example 1, mixed at a predetermined ratio, molded in a magnetic field, and sintered (1,05).
0 to 1,120 ° C x 1 hour), Aging treatment (500 to 600 ° C x 1)
To 10 hours) to produce 2-alloy magnet alloys C2 to C11, and their magnetic properties were measured and are shown in Tables 1 and 2. For comparison, magnet alloys C2 to C11 were manufactured under the same conditions as in Examples 2 to 11 except that an alloy having the same composition as in Examples 2 to 11 was prepared by the one alloy method, and the magnetic properties were measured. ~ 11
The results are shown in Tables 1 and 2.

【0020】[0020]

【表1】 [Table 1]

【表2】 [Table 2]

【0021】[0021]

【発明の効果】本発明により作製した希土類永久磁石
は、高価な添加元素を有効に活用して、従来法の同一組
成の希土類磁石と比べて磁気特性が数段優れており、高
保磁力、高残留磁束密度、さらには高エネルギー積のバ
ランスのとれた高性能磁石を提供することが可能となっ
た。従って今後、各種電気、電子機器用の高性能磁石と
して広汎に利用されることが期待される。
The rare-earth permanent magnet produced according to the present invention has several steps more excellent magnetic properties than conventional rare-earth magnets having the same composition by effectively utilizing expensive additional elements, and has a high coercive force and high coercive force. It has become possible to provide a high-performance magnet with a good balance of residual magnetic flux density and high energy product. Therefore, it is expected that it will be widely used as a high-performance magnet for various electric and electronic devices in the future.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1のB1合金の鋳造状態での金属組織を
示す走査電子顕微鏡写真である。
FIG. 1 is a scanning electron micrograph showing a metal structure of a B1 alloy of Example 1 in a cast state.

【符号の説明】 RT2 4L相 RT2 3相 RT2 2相 Rリッチ相[EXPLANATION OF SYMBOLS] RT 2 4 L-phase RT 2 3-phase RT 2 2 phase R-rich phase

フロントページの続き (58)調査した分野(Int.Cl.6,DB名) C22C 33/02 B22F 3/00 - 3/26 H01F 1/057,1/08 H01F 41/02Continuation of the front page (58) Field surveyed (Int.Cl. 6 , DB name) C22C 33/02 B22F 3/00-3/26 H01F 1 / 057,1 / 08 H01F 41/02

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】A合金を主としてR2 Fe14B相(ここにR
は、Nd、Pr、Dyを主体とする少なくとも1種以上の希土類
元素を表す)から成る合金とし、B合金をR、Co、Fe、
B、Ga を含有し、かつ合金中の構成相としてR21 14
B相および/またはRリッチ相(ここにRは上記に同
じ、T1 はFe、Co を主体とする遷移金属元素を表す)並
びにRT2 4L相、RT2 3相、RT2 2相、R22 7相およ
びRT2 5相(ここにRは上記に同じ、T2 はFe、Co を主
体とする遷移金属元素、同遷移金属およびGaとBの内1
種または2種、LはBまたはBとGaを表す)の5相の内
1種または2種以上の相との混合相から成る合金とし、
A合金粉末99〜70重量%に対してB合金粉末を1〜30重
量%混合し、該混合合金粉末を磁場中加圧成形し、該成
形体を真空または不活性ガス雰囲気中で焼結し、さらに
焼結温度以下の低温で時効熱処理することを特徴とする
希土類永久磁石の製造方法。
An alloy A is mainly composed of R 2 Fe 14 B phase (here, R
Represents at least one or more rare earth elements mainly composed of Nd, Pr and Dy), and the B alloy is composed of R, Co, Fe,
R 2 T 1 14 containing B, Ga and as a constituent phase in the alloy
B-phase and / or R-rich phase (wherein R is as defined above, T 1 represents a transition metal element mainly Fe, a Co) and RT 2 4 L-phase, RT 2 3-phase, RT 2 2 phase, R 2 T 2 7 phase and RT 2 5 phase (wherein R is as defined above, T 2 is a transition metal element mainly Fe, and Co, among the transition metals and Ga and B 1
Or two or more, and L represents B or B and Ga), and an alloy comprising a mixed phase of one or more of the five phases;
B alloy powder is mixed in an amount of 1 to 30% by weight with respect to 99 to 70% by weight of the A alloy powder, and the mixed alloy powder is compacted under pressure in a magnetic field, and the compact is sintered in a vacuum or an inert gas atmosphere. And a aging heat treatment at a low temperature not higher than the sintering temperature.
【請求項2】請求項1に記載のB合金に含まれるRT2 4
L相、RT2 3相、RT2 2相、R22 7相およびRT2 5
の5つの構成相の内少なくとも1種以上の相の融点が70
0 ℃以上1,155 ℃以下の金属間化合物であることを特徴
とする希土類永久磁石の製造方法。
Wherein RT 2 4 contained in B alloy according to claim 1
L-phase, RT 2 3-phase, RT 2 2 phase, a melting point of at least one or more phases of the five constituent phases of R 2 T 2 7 phase and RT 2 5 phase 70
A method for producing a rare earth permanent magnet, which is an intermetallic compound having a temperature of 0 ° C. or more and 1,155 ° C. or less.
【請求項3】請求項1または2に記載のB合金に含まれ
る5つの構成相の内、少なくとも1種以上の相が室温以
上のキューリー温度を有する磁性体であることを特徴と
する希土類磁石の製造方法。
3. A rare-earth magnet wherein at least one of the five constituent phases contained in the B alloy according to claim 1 or 2 is a magnetic material having a Curie temperature of room temperature or higher. Manufacturing method.
【請求項4】請求項1または2または3に記載のB合金
に含まれる5つの構成相の内、少なくとも1種以上の相
が室温以上のキューリー温度ならびに結晶磁気異方性を
有する磁性体であることを特徴とする希土類磁石の製造
方法。
4. A magnetic material in which at least one of the five constituent phases contained in the B alloy according to claim 1 or 2 or 3 has a Curie temperature of room temperature or higher and a magnetocrystalline anisotropy. A method for producing a rare earth magnet, comprising:
【請求項5】請求項1に記載のA合金、B合金およびA
B混合合金粉末の平均粒径が、0.5 〜20μmの範囲内で
あることを特徴とする希土類磁石の製造方法。
5. The alloy A, B alloy and A according to claim 1.
A method for producing a rare earth magnet, characterized in that the average particle size of the B mixed alloy powder is in the range of 0.5 to 20 μm.
JP3159765A 1991-06-04 1991-06-04 Manufacturing method of rare earth permanent magnet Expired - Lifetime JP2853838B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP3159765A JP2853838B2 (en) 1991-06-04 1991-06-04 Manufacturing method of rare earth permanent magnet
DE1992602515 DE69202515T2 (en) 1991-06-04 1992-06-03 Process for the production of two-phase permanent magnets based on rare earths.
EP92109366A EP0517179B1 (en) 1991-06-04 1992-06-03 Method of making two phase Rare Earth permanent magnets
US08/119,641 US5405455A (en) 1991-06-04 1993-09-13 Rare earth-based permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3159765A JP2853838B2 (en) 1991-06-04 1991-06-04 Manufacturing method of rare earth permanent magnet

Publications (2)

Publication Number Publication Date
JPH06207203A JPH06207203A (en) 1994-07-26
JP2853838B2 true JP2853838B2 (en) 1999-02-03

Family

ID=15700782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3159765A Expired - Lifetime JP2853838B2 (en) 1991-06-04 1991-06-04 Manufacturing method of rare earth permanent magnet

Country Status (1)

Country Link
JP (1) JP2853838B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6777097B2 (en) 2001-06-14 2004-08-17 Shin-Etsu Chemical Co., Ltd. Corrosion resistant rare earth magnet and its preparation
US7156928B2 (en) 2001-11-20 2007-01-02 Shin-Etsu Chemical Co., Ltd. Corrosion-resistant rare earth element magnet
EP2650887A2 (en) 2012-04-11 2013-10-16 Shin-Etsu Chemical Co., Ltd. Rare earth sintered magnet and making method

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19636284C2 (en) * 1996-09-06 1998-07-16 Vacuumschmelze Gmbh SE-Fe-B permanent magnet and process for its manufacture
WO2010146680A1 (en) 2009-06-18 2010-12-23 トヨタ自動車株式会社 Method and apparatus for producing magnetic powder
EP2444985B1 (en) 2010-10-25 2018-07-11 Toyota Jidosha Kabushiki Kaisha Production method of rare earth magnet
JP5472236B2 (en) 2011-08-23 2014-04-16 トヨタ自動車株式会社 Rare earth magnet manufacturing method and rare earth magnet
JP5915637B2 (en) 2013-12-19 2016-05-11 トヨタ自動車株式会社 Rare earth magnet manufacturing method
JP5924335B2 (en) 2013-12-26 2016-05-25 トヨタ自動車株式会社 Rare earth magnet and manufacturing method thereof
JP7196514B2 (en) 2018-10-04 2022-12-27 信越化学工業株式会社 rare earth sintered magnet
CN111636035B (en) * 2020-06-11 2022-03-01 福建省长汀金龙稀土有限公司 Heavy rare earth alloy, NdFeB permanent magnet material, raw material and preparation method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6777097B2 (en) 2001-06-14 2004-08-17 Shin-Etsu Chemical Co., Ltd. Corrosion resistant rare earth magnet and its preparation
US7156928B2 (en) 2001-11-20 2007-01-02 Shin-Etsu Chemical Co., Ltd. Corrosion-resistant rare earth element magnet
EP2650887A2 (en) 2012-04-11 2013-10-16 Shin-Etsu Chemical Co., Ltd. Rare earth sintered magnet and making method
US10074477B2 (en) 2012-04-11 2018-09-11 Shin-Etsu Chemical Co., Ltd. Rare earth sintered magnet and making method

Also Published As

Publication number Publication date
JPH06207203A (en) 1994-07-26

Similar Documents

Publication Publication Date Title
JP3143156B2 (en) Manufacturing method of rare earth permanent magnet
EP0197712A1 (en) Rare earth-iron-boron-based permanent magnet
JPH0510806B2 (en)
JP2746818B2 (en) Manufacturing method of rare earth sintered permanent magnet
JP3254229B2 (en) Manufacturing method of rare earth permanent magnet
JPWO2002103719A1 (en) Rare earth permanent magnet material
JP3715573B2 (en) Magnet material and manufacturing method thereof
JP2853838B2 (en) Manufacturing method of rare earth permanent magnet
JPH0696928A (en) Rare-earth sintered magnet and its manufacture
JP2853839B2 (en) Manufacturing method of rare earth permanent magnet
JPH01219143A (en) Sintered permanent magnet material and its production
JPH04268051A (en) R-fe-co-b-c permanent magnet alloy reduced in irreversible demagnetization and excellent in heat stability
JP2747236B2 (en) Rare earth iron permanent magnet
JPH045740B2 (en)
JP3143157B2 (en) Manufacturing method of rare earth permanent magnet
JP3151265B2 (en) Manufacturing method of rare earth permanent magnet
JP3126199B2 (en) Manufacturing method of rare earth permanent magnet
JPH0461042B2 (en)
JPH061726B2 (en) Method of manufacturing permanent magnet material
JPH045739B2 (en)
JPH0536495B2 (en)
JPH10130796A (en) Production of fine crystal permanent magnet alloy and isotropic permanent magnet powder
JP3254232B2 (en) Manufacturing method of rare earth permanent magnet
JPH045738B2 (en)
JPH045737B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071120

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081120

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091120

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101120

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101120

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111120

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111120

Year of fee payment: 13