[go: up one dir, main page]

JPH0696928A - Rare-earth sintered magnet and its manufacture - Google Patents

Rare-earth sintered magnet and its manufacture

Info

Publication number
JPH0696928A
JPH0696928A JP5187070A JP18707093A JPH0696928A JP H0696928 A JPH0696928 A JP H0696928A JP 5187070 A JP5187070 A JP 5187070A JP 18707093 A JP18707093 A JP 18707093A JP H0696928 A JPH0696928 A JP H0696928A
Authority
JP
Japan
Prior art keywords
phase
rare earth
intermetallic compound
magnet
sintered magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5187070A
Other languages
Japanese (ja)
Inventor
Koji Fukui
康二 福井
Yukiko Ito
由紀子 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Steel Corp
Original Assignee
Aichi Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Steel Corp filed Critical Aichi Steel Corp
Priority to JP5187070A priority Critical patent/JPH0696928A/en
Publication of JPH0696928A publication Critical patent/JPH0696928A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To reduce the irreversible demagnetization of an Nd-Fe-B magnet and, at the same time, to minimize the deterioration of the maximum energy product of the magnet. CONSTITUTION:This magnet is manufactured in such a way that a first component powder composed mainly of an Nd2Fe14B (where, the Nd and B contents are respectively controlled to 11.8-20.0at.% and 5.9-20.0at.%) intermetallic compound is mixed with a second compound powder composed mainly of one or two kinds of R(Cu1-XTX) and R(Cu1-XTX)2 (where, R, T, and x respectively represent rare-earth elements containing Dy and Tb by >=30%, one kind or a mixture of two or more kinds of transition metals or metalloid (such as Fe, Co, Ni, Al, Ga, Ti, Mo, V, Sn, B, P, Si, etc., and 0.3-0.7) and the mixture is molded in a magnetic field, and then, the molded product is subjected to liquid-phase sintering. Therefore, part of the Nd near the surface of the main phase, namely, the Nd2Fe14B intermetallic compound is replaced with Dy and Tb and the occurrence of an inverse magnetic domain in the vicinity of the surface can be suppressed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、R−Fe−B系(Rは
希土類元素)希土類磁石に関し、特に、高エネルギ積を
有し、なおかつ耐熱特性にも優れた希土類焼結磁石及び
その製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an R-Fe-B system (R is a rare earth element) rare earth magnet, and more particularly to a rare earth sintered magnet having a high energy product and excellent heat resistance and its production. Regarding the method.

【0002】[0002]

【従来の技術】エネルギ積の高い永久磁石としては、S
m−Co系磁石、R−Fe−B系希土類磁石等が知られ
ている。このうち、Nd−Fe−Bで代表されるR−F
e−B系希土類磁石は、資源的に豊富なNd及びFeを
主成分とするため、資源的に乏しいSmを使用するSm
−Co系磁石よりも低コストであり、また、最大エネル
ギ積もSm−Co系磁石の約30MGOeに対して最大
40MGOeという高い値を有することから、モータの
回転子又は固定子として広く用いられている。
2. Description of the Related Art As a permanent magnet having a high energy product, S
Known are m-Co based magnets and R-Fe-B based rare earth magnets. Of these, R-F represented by Nd-Fe-B
Since the e-B rare earth magnet is mainly composed of resource-rich Nd and Fe, Sm that uses resource-poor Sm.
It is lower in cost than the -Co magnet and has a high maximum energy product of 40 MGOe at the maximum with respect to about 30 MGOe of the Sm-Co magnet. Therefore, it is widely used as a rotor or a stator of a motor. There is.

【0003】近年の自動車は各種自動化装置のアクチュ
エータとして多数のモータを使用しているが、自動車の
各部で用いられるモータは180℃以上の高温環境に置
かれることを想定しなければならない。通常、磁石材料
はこのような高温において保磁力及び残留磁束密度が常
温よりも低下するのみならず、更に、一旦高温の履歴を
受けると常温に戻されても保磁力及び残留磁束密度が元
に戻らないという現象(不可逆減磁)を生じる。従っ
て、自動車用等の高温履歴を受ける磁石材料では、不可
逆減磁が小さいことが採用の必要条件となる。通常、許
容される不可逆減磁の値(高温に加熱する前の磁束に対
する、高温に加熱した後の磁束の減少分の比)は3%以
下と考えられている。
Recently, automobiles use a large number of motors as actuators for various automation devices, but it must be assumed that the motors used in various parts of the automobile are placed in a high temperature environment of 180 ° C. or higher. In general, a magnet material not only has a lower coercive force and residual magnetic flux density than normal temperature at such a high temperature, but also has a high coercive force and residual magnetic flux density even if it is returned to normal temperature once it is exposed to a high temperature history. The phenomenon of not returning (irreversible demagnetization) occurs. Therefore, it is a necessary condition for a magnet material for automobiles, etc. that is subjected to a high temperature history that the irreversible demagnetization is small. It is generally considered that the allowable value of irreversible demagnetization (the ratio of the decrease in the magnetic flux after heating to high temperature to the magnetic flux before heating to high temperature) is 3% or less.

【0004】不可逆減磁の値を小さくするためには高温
における保磁力を高くすることが有効であるが、Nd−
Fe−B系磁石材料の場合には、(1)Ndの一部をD
y(ディスプロシウム)又はTb(テルビウム)で置換
する、(2)Al,Ga,Mo,V等を添加する、等の
方法が高温における保磁力を増加し、不可逆減磁を少な
くするのに有効であることが知られている。
In order to reduce the value of irreversible demagnetization, it is effective to increase the coercive force at high temperature, but Nd-
In the case of Fe-B based magnet material, (1) part of Nd is D
Methods such as substituting with y (dysprosium) or Tb (terbium), (2) adding Al, Ga, Mo, V, etc. increase coercive force at high temperature and reduce irreversible demagnetization. It is known to be effective.

【0005】[0005]

【発明が解決しようとする課題】しかし、Nd−Fe−
B系磁石材料の不可逆減磁を少なくするためのこれらの
方策は、いずれも最大エネルギ積を低下させるという問
題を有している。磁石をモータに使用する場合、最大エ
ネルギ積の低下はトルク減少等の性能の低下に直接結び
つく。また、DyやTbは希少資源であるため、その添
加はコストの上昇を招くという問題もある。
However, Nd-Fe-
Each of these measures for reducing the irreversible demagnetization of the B-based magnet material has a problem of reducing the maximum energy product. When a magnet is used in a motor, a reduction in the maximum energy product directly leads to a reduction in performance such as torque reduction. Further, since Dy and Tb are rare resources, there is a problem that their addition causes an increase in cost.

【0006】また、R−Fe−B系永久磁石では、特に
結晶粒の表面近傍の希土類元素の種類及びその含有量に
より磁気特性(特に固有保磁力)が強く影響され、ひい
ては耐熱特性(不可逆減磁)が大きく影響されるため、
表面部における組成制御が重要である。表面近傍の希土
類組成を制御する方法として、R−Fe−B系合金粉末
とRの酸化物粉末との混合物を焼結する方法が提案され
ている(特開昭61−253805号公報)。しかし酸
化物を添加した場合、磁石中の酸素量が増加し、磁気特
性、特に残留磁束密度が低下してしまうため、十分な最
大エネルギ積を得ることができない。また、R−Fe−
B系合金粉末と希土類水素化物又は希土類金属の粉末の
混合物を焼結する方法も提案されている(特開平4−1
20238号公報)が、希土類水素化物及び希土類金属
粉末は融点が高いため、焼結の際の液相化が困難であ
り、焼結性が損われるという欠点がある。
Further, in the R-Fe-B system permanent magnet, the magnetic characteristics (in particular, the intrinsic coercive force) are strongly influenced by the kind and the content of the rare earth element near the surface of the crystal grains, and the heat resistance (irreversible reduction). (Magnetism) is greatly affected,
It is important to control the composition of the surface part. As a method of controlling the rare earth composition near the surface, a method of sintering a mixture of an R—Fe—B based alloy powder and an R oxide powder has been proposed (Japanese Patent Laid-Open No. 61-253805). However, when an oxide is added, the amount of oxygen in the magnet increases and the magnetic properties, especially the residual magnetic flux density, decrease, so a sufficient maximum energy product cannot be obtained. In addition, R-Fe-
A method of sintering a mixture of a B-based alloy powder and a rare earth hydride or rare earth metal powder has also been proposed (JP-A-4-1).
However, since rare earth hydrides and rare earth metal powders have high melting points, it is difficult to form a liquid phase during sintering, and the sinterability is impaired.

【0007】本発明はこのような課題を解決するために
成されたものであり、Nd−Fe−B系磁石の不可逆減
磁を少なくし、しかも、最大エネルギ積の低下を最小限
に止めた希土類焼結磁石を提供し、更に、高温履歴によ
る不可逆減磁を小さくするために、従来の方策の欠点で
ある酸素量の増加をもたらすことなく、磁石全体にわた
って結晶粒表面近傍の組成を制御することのできる希土
類焼結磁石の製造方法を提供することにある。
The present invention has been made to solve such a problem, and reduces the irreversible demagnetization of the Nd-Fe-B system magnet, and further, minimizes the decrease of the maximum energy product. Providing a rare earth sintered magnet and further controlling the composition near the grain surface throughout the magnet without reducing the irreversible demagnetization due to high temperature history without increasing the oxygen content, which is a drawback of the conventional measures. An object of the present invention is to provide a method for producing a rare earth sintered magnet that can be used.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に成された本発明に係る希土類焼結磁石は、Nd2Fe
14B金属間化合物相のコアと、該相のNdの一部がDy
及び/又はTbで置換された相の外殻とを有する結晶粒
から成ることを特徴とする。
The rare earth sintered magnet according to the present invention made to solve the above problems is Nd 2 Fe.
The core of the 14 B intermetallic compound phase and a part of Nd of the phase are Dy
And / or a Tb-substituted outer shell of the phase.

【0009】このような希土類焼結磁石を得るには、ま
ず、Nd2Fe14B金属間化合物を主成分とする第1成
分粉末と、R(Cu1-XX)及びR(Cu1-XX2
うちの1種又は2種を主成分とする第2成分粉末とを混
合した後、混合物を磁場中で成形し、液相焼結を行な
う。ここで、RはDy+Tbを30%以上含有する希土
類元素(Dy、Tb以外には例えば、Nd、Pr、Ce
等)であり、Tは遷移金属又は亜金属(例えば、Fe、
Co、Ni、Al、Ga、Ti、Mo、V、Sn、B、
P、Si等)のうちの1種又は2種以上の混合であり、
Xは0.3〜0.7である。
In order to obtain such a rare earth sintered magnet, first, a first component powder containing Nd 2 Fe 14 B intermetallic compound as a main component and R (Cu 1-X T X ) and R (Cu 1 -X T X) after mixing the second component powder based on one or two of the 2, the mixture was molded in a magnetic field, it performs liquid-phase sintering. Here, R is a rare earth element containing 30% or more of Dy + Tb (for example, Nd, Pr, Ce other than Dy and Tb).
Etc., and T is a transition metal or submetal (eg, Fe,
Co, Ni, Al, Ga, Ti, Mo, V, Sn, B,
P, Si, etc.), or a mixture of two or more thereof,
X is 0.3 to 0.7.

【0010】Nd2Fe14B金属間化合物を主成分とす
る第1成分粉末は、その原子組成比がNd:11.8〜
20.0at%、B:5.9〜20.0at%(残部F
e)であることが好ましく、更には、Nd:11.8〜
13.0at%、B:5.9〜7.5at%(残部F
e)であることが好ましい。また、このNd2Fe14
金属間化合物のNdは、その原子数比で10%以下の部
分においてPr,Ce及びDy等の他の希土類元素の1
種又は2種以上で置換されていてもよいし、それに加
え、又はそれに代わり、Nd2Fe14B金属間化合物の
Feの(原子数比)10%以下の部分がCoで置換され
ていてもよい。
The first component powder containing Nd 2 Fe 14 B intermetallic compound as a main component has an atomic composition ratio of Nd: 11.8 to.
20.0 at%, B: 5.9 to 20.0 at% (balance F
e), more preferably Nd: 11.8 to
13.0 at%, B: 5.9 to 7.5 at% (remainder F
e) is preferred. In addition, this Nd 2 Fe 14 B
Nd of the intermetallic compound is 1% of other rare earth elements such as Pr, Ce and Dy in the portion where the atomic ratio is 10% or less.
May be substituted with one or two or more, or in addition to or in place thereof, 10% or less of Fe (atomic ratio) of Fe in the Nd 2 Fe 14 B intermetallic compound may be substituted with Co. Good.

【0011】[0011]

【作用】Nd−Fe−B系焼結磁石等の核生成型と呼ば
れる磁石においては、ある方向に磁化された磁石の内部
に逆磁区(逆磁場により他の部分とは逆の方向に磁化さ
れた磁区)が発生(磁化反転)すると、以降は逆磁区領
域が地滑り的に急激に拡大してゆくため、逆磁区の発生
により保磁力が決定される。従って、保磁力を大きくす
るためには、最初の逆磁区の発生(磁化反転)をできる
限り阻止することが重要である。
In a magnet called a nucleation type magnet such as a Nd-Fe-B system sintered magnet, a reverse magnetic domain (a reverse magnetic field magnetizes in a direction opposite to other parts) inside a magnet magnetized in a certain direction. Magnetic domain) is generated (magnetization reversal), the reverse magnetic domain region rapidly expands like a landslide thereafter, so that the coercive force is determined by the generation of the reverse magnetic domain. Therefore, in order to increase the coercive force, it is important to prevent the occurrence of the first reverse magnetic domain (magnetization reversal) as much as possible.

【0012】本発明が対象とするNd−Fe−B系希土
類焼結磁石のような焼結体磁石では、逆磁区は主相であ
る結晶粒の表面近傍において最も発生しやすい。従っ
て、本発明ではNd2Fe14B金属間化合物の結晶粒の
表面部分(外殻)において、Ndの一部をDy及び/又
はTbで置換した相を生成し、磁化反転を生じにくくす
る。なお、Nd2Fe14B金属間化合物の保磁力を高め
る(磁化反転を阻止する)という効果の点において、D
yとTbはいずれも有効な元素である。一方、Dy、T
b置換領域は外殻部分のみであり、結晶粒全体としては
(すなわち、焼結磁石全体としては)、コアのNd2
14B金属間化合物相が高い体積割合を占め、高い飽和
磁束密度が保持されるため、結果的に高いエネルギ積が
維持される。なお、コアのNd2Fe14B金属間化合物
相では、Ndの10%以下の部分においてPr,Ce及
びDy等の他の希土類元素の1種又は2種以上で置換さ
れていても、また、Feの10%以下の部分がCoで置
換されていても、上記高エネルギ積特性は純粋なNd2
Fe14B金属間化合物と大差ない。また、各結晶粒の表
面近傍の置換相部分では、Dy、Tb以外にも、Pr、
Ce等の希土類元素により置換してもよい。
In a sintered magnet such as the Nd-Fe-B rare earth sintered magnet targeted by the present invention, the reverse magnetic domain is most likely to occur in the vicinity of the surface of the crystal grain which is the main phase. Therefore, in the present invention, in the surface part (outer shell) of the crystal grains of the Nd 2 Fe 14 B intermetallic compound, a phase in which a part of Nd is replaced with Dy and / or Tb is generated, and the magnetization reversal is less likely to occur. Incidentally, in terms of the effect of increasing the coercive force of the Nd 2 Fe 14 B intermetallic compound (preventing magnetization reversal), D
Both y and Tb are effective elements. On the other hand, Dy, T
The b substitution region is only the outer shell portion, and as a whole crystal grain (that is, as a whole sintered magnet), Nd 2 F of the core is
Since the e 14 B intermetallic compound phase occupies a high volume ratio and maintains a high saturation magnetic flux density, a high energy product is consequently maintained. In the Nd 2 Fe 14 B intermetallic compound phase of the core, even if it is substituted with one or more kinds of other rare earth elements such as Pr, Ce and Dy in a portion of 10% or less of Nd, Even if 10% or less of Fe is replaced by Co, the above high energy product characteristic is pure Nd 2
It is not much different from the Fe 14 B intermetallic compound. In addition, in the substitution phase portion near the surface of each crystal grain, Pr,
It may be replaced by a rare earth element such as Ce.

【0013】各結晶粒の表面近傍におけるNdの一部の
Dy、Tbによる置換は、液相焼結と同時に行なうのが
最も適当である。すなわち、液相中にDy、Tbを含ま
せておき、コアであるNd2Fe14B金属間化合物相の
結晶粒成長及び液相中のDy、Tbの該成長領域への拡
散侵入により、表面近傍においてのみ置換を行なう。
The replacement of part of Nd in the vicinity of the surface of each crystal grain with Dy and Tb is most suitable at the same time as liquid phase sintering. That is, Dy and Tb are included in the liquid phase, and crystal growth of the Nd 2 Fe 14 B intermetallic compound phase, which is the core, and diffusion and penetration of Dy and Tb in the liquid phase into the growth region Substitute only in the neighborhood.

【0014】しかし、DyやTbだけでは粉末化が難し
く(粉砕が難しい)、また融点も比較的高いため、その
ままでは液相中への拡散が困難である。そこで、本発明
に係る希土類焼結磁石の製造方法では、それらの粉末化
を容易にし、かつ、融点を下げるためにCuを加え、更
に、このCuの一部を遷移金属又は亜金属で置換するこ
とにより、磁気特性を向上させている。Cuの使用は、
粉末化の際の耐酸化性を向上させるねらいもある。これ
により、粉末化及び液相焼結が容易となり、また、磁気
特性も向上する。このように粉末化が容易となることに
より、主相であるNd2Fe14B金属間化合物の粉末と
の分散性が良好となり、本発明の上記効果が安定して得
られるようになる。また、R(Cu1-XX)、R(Cu
1-XX2の使用により低温又は/及び短時間の液相焼
結が可能となるため、結晶粒の外殻(置換相)の厚さを
薄く制御することができるようになり、Dy、Tb投入
量を増加することなく置換相におけるDy、Tbの濃度
を高めることができる。また、Dy、Tbが液相中に存
在するため、これらが磁石全体に均一にゆきわたり、均
質な磁石を製造することができる。
However, it is difficult to pulverize (difficult to grind) only with Dy or Tb, and the melting point is relatively high, so that it is difficult to diffuse into the liquid phase as it is. Therefore, in the method for producing a rare earth sintered magnet according to the present invention, Cu is added in order to facilitate pulverization thereof and lower the melting point, and further, a part of this Cu is replaced with a transition metal or a submetal. As a result, the magnetic characteristics are improved. The use of Cu is
There is also the aim of improving the oxidation resistance during pulverization. This facilitates pulverization and liquid phase sintering, and also improves magnetic properties. By facilitating the pulverization in this way, the dispersibility with the powder of the Nd 2 Fe 14 B intermetallic compound, which is the main phase, becomes good, and the above effects of the present invention can be stably obtained. In addition, R (Cu 1-X T X ), R (Cu
The use of 1-X T X ) 2 enables liquid phase sintering at low temperature and / or for a short time, so that the thickness of the outer shell (substitution phase) of crystal grains can be controlled to be small, The concentrations of Dy and Tb in the substitution phase can be increased without increasing the amounts of Dy and Tb added. Further, since Dy and Tb are present in the liquid phase, they are uniformly spread over the entire magnet, and a homogeneous magnet can be manufactured.

【0015】なお、第2成分粉末におけるDy+Tbの
含有量を30%以上としたのは、それ以下では焼結後の
外殻相におけるDy及び/又はTbの置換量が不十分と
なり、上記のような磁化反転阻止の作用が不十分となる
からである。また、T(遷移金属又は亜金属)の原子組
成比Xを0.3〜0.7に限定したのは次のような理由
からである。まず、下限を0.3としたのは、それ以下
では焼結後にCuが遊離し、有害な非磁性部分を形成す
るおそれがあるためである。また、上限を0.7とした
のは、これ以上ではR(Cu1-XX)及びR(Cu1-X
X2の均一な相を形成することができず、粉末化のた
めの粉砕性が悪化する。そのため、微粉化に長時間を要
するようになり、酸素含有量が増加して焼結材の保磁力
低下をもたらすためである。
The content of Dy + Tb in the second component powder is set to 30% or more. Below that, the amount of Dy and / or Tb substituted in the outer shell phase after sintering becomes insufficient, so This is because the effect of preventing the magnetization reversal becomes insufficient. Further, the atomic composition ratio X of T (transition metal or submetal) is limited to 0.3 to 0.7 for the following reason. First, the lower limit is set to 0.3 because below that, Cu may be liberated after sintering and a harmful non-magnetic portion may be formed. Further, the upper limit is set to 0.7 because R (Cu 1-X T x ) and R (Cu 1-x
A uniform phase of T x ) 2 cannot be formed, and the pulverizability for pulverization deteriorates. Therefore, it takes a long time to pulverize, the oxygen content increases, and the coercive force of the sintered material decreases.

【0016】第1成分(主相)粉末と第2成分粉末との
混合割合は、全体に対する第2成分粉末の重量比が5〜
25%となるようにすることが好ましい。これ以下では
Dy、Tbの置換量が不十分となり、焼結性向上の効果
も少ない。また、これ以上の混合割合ではコア相の体積
比が過小となり、十分な磁気特性(特に最大エネルギ
積)を得ることが困難となる。なお、更に推奨される範
囲は5〜16%である。
As for the mixing ratio of the first component (main phase) powder and the second component powder, the weight ratio of the second component powder to the whole is 5 to 5.
It is preferably 25%. Below this, the amount of Dy and Tb substituted becomes insufficient, and the effect of improving sinterability is small. Further, if the mixing ratio is higher than this, the volume ratio of the core phase becomes too small, and it becomes difficult to obtain sufficient magnetic characteristics (especially maximum energy product). The recommended range is 5 to 16%.

【0017】なお、両粉末の平均粒径は、通常、0.1
〜50μm程度とすることが好ましい。平均粒径がこれ
よりも小さくなると、表面積が増大し過ぎて酸化が問題
となり、また、成形時の型の摩耗や配向性の点でも不利
となる。逆にこの範囲よりも大きくなると、第1粉末の
場合は保磁力の低下が問題となる。第2粉末の場合は、
焼結の際の分散が不十分となり、組織の均質性が阻害さ
れる恐れがでてくる。なお、更に推奨される平均粒径範
囲は0.5〜10μmである。
The average particle size of both powders is usually 0.1.
It is preferably about 50 μm. If the average particle size is smaller than this, the surface area becomes too large and oxidation becomes a problem, and it is also disadvantageous in terms of wear and orientation of the mold during molding. On the other hand, if it is larger than this range, in the case of the first powder, the decrease of coercive force becomes a problem. For the second powder,
Dispersion during sintering becomes insufficient, and the homogeneity of the structure may be impaired. The recommended average particle size range is 0.5 to 10 μm.

【0018】混合した粉末は、真空(又は不活性ガス)
中にて、温度900〜1200℃程度、圧力0.5〜5
t/cm2程度で0.1〜10時間掛けて液相焼結を行
なう。この焼結成形は、5kOe以上の磁場中で行な
う。これにより、焼結体は印加磁場の方向に大きな磁化
を有する永久磁石となる。その後、好ましくは真空中又
は不活性ガス雰囲気下で、450〜900℃×1〜5時
間、熱処理を行なう。
The mixed powder is vacuum (or inert gas)
Inside, temperature 900 ~ 1200 ℃, pressure 0.5 ~ 5
Liquid phase sintering is performed at about t / cm 2 for 0.1 to 10 hours. This sinter molding is performed in a magnetic field of 5 kOe or more. As a result, the sintered body becomes a permanent magnet having large magnetization in the direction of the applied magnetic field. Then, heat treatment is preferably performed in vacuum or in an inert gas atmosphere at 450 to 900 ° C. for 1 to 5 hours.

【0019】[0019]

【実施例】本発明の効果を明らかにするために、表1に
示すように、本発明の方法に従って作成した供試材(発
明材)12種(No.1〜12)と、本発明が規定する
条件のいずれかを満たさない方法で作成した供試材(比
較材)6種(No.13〜18)とを準備して、その磁
気特性を調査した。各供試材はいずれも、第1成分粉末
と第2成分粉末とを混合し(比較材の場合は、1成分の
みの場合もある)、液相焼結を行なうことにより作成し
たものである。各成分粉末の原子組成比及び各成分粉末
の混合比(第2成分粉末のwt%)を表1に示す。な
お、両粉末は共に、インゴットをジョークラッシャー、
ディスクミルにより粒径10〜100μmとなるまで粗
粉砕を行なった後、ボールミルにより微粉砕を行ない
(ジェットミルを用いてもよい)、平均粒径3μm程度
の粉末としたものである。両粉末の混合は粗粉末の段階
で行なってもよいし、微粉末まで粉砕した状態で行なっ
てもよい。
EXAMPLES In order to clarify the effects of the present invention, as shown in Table 1, 12 types of test materials (invention materials) (No. 1 to 12) prepared according to the method of the present invention and Six types of test materials (comparative materials) (Nos. 13 to 18) prepared by a method that did not satisfy any of the specified conditions were prepared, and their magnetic properties were investigated. Each of the test materials was prepared by mixing the first component powder and the second component powder (in the case of the comparative material, there may be only one component) and performing liquid phase sintering. . Table 1 shows the atomic composition ratio of each component powder and the mixing ratio of each component powder (wt% of the second component powder). For both powders, the ingot is a jaw crusher,
After roughly pulverizing with a disc mill to a particle size of 10 to 100 μm, finely pulverizing with a ball mill (a jet mill may be used) to obtain a powder having an average particle size of about 3 μm. The two powders may be mixed at the stage of coarse powder or may be finely pulverized.

【0020】 [0020]

【0021】各供試材は、表1に記載の第1及び第2成
分粉末を混合した後、10kOeの磁界中にて1.5t
/cm2の圧力にてプレス成形し、真空中にて、温度1
100℃で1時間かけて焼結を行なった。その後、真空
中で450〜900℃×1時間の熱処理を施した。この
熱処理温度は、第2成分粉末の組成に応じて磁気特性の
最も優れた温度を設定したものである。
Each test material was mixed with the first and second component powders shown in Table 1 and then 1.5 t in a magnetic field of 10 kOe.
Press-molded at a pressure of / cm 2 and at a temperature of 1 in vacuum.
Sintering was performed at 100 ° C. for 1 hour. Then, it heat-processed at 450-900 degreeC x 1 hour in vacuum. This heat treatment temperature is set to a temperature at which the magnetic properties are most excellent according to the composition of the second component powder.

【0022】各供試材の残留磁束密度Br、保磁力iH
c、最大エネルギ積(BH)max及び耐熱温度を測定した
結果を表2に示す。ここで、耐熱温度としては、Pc=
−0.5の形状を有する焼結体磁石において不可逆減磁
が3%となる温度を採用した。表2から明らかなよう
に、本発明材はいずれも30MGOe以上の最大エネル
ギ積と180℃以上の耐熱性の双方を満たしている。こ
れに対し、比較材は最大エネルギ積、耐熱性共に低い
か、又はどちらか片方が高くても一方が低くなり、高エ
ネルギ積と高耐熱性とが両立しない。
Residual magnetic flux density Br and coercive force iH of each test material
Table 2 shows the results of measurement of c, maximum energy product (BH) max and heat resistant temperature. Here, the heat resistant temperature is Pc =
The temperature at which the irreversible demagnetization is 3% in the sintered magnet having the shape of −0.5 is adopted. As is clear from Table 2, all the materials of the present invention satisfy both the maximum energy product of 30 MGOe or more and the heat resistance of 180 ° C. or more. On the other hand, the comparative material has a low maximum energy product and a low heat resistance, or one of them has a high energy product, but one of them has a low energy product.

【0023】比較材No.16、17、18はそれぞれ発
明材No.1、6、11と同組成になるようにインゴット
を溶解し、作製したものである。これらを比較すると、
本発明が特に保磁力を向上させる効果を有することがわ
かる。
Comparative materials Nos. 16, 17, and 18 were prepared by melting ingots so as to have the same composition as invention materials Nos. 1, 6, and 11, respectively. Comparing these,
It can be seen that the present invention has an effect of particularly improving the coercive force.

【0024】 [0024]

【0025】[0025]

【発明の効果】Nd−Fe−B系の焼結磁石において保
磁力低下の主原因となるのは、各結晶粒の表面近傍にお
ける逆磁区の発生である。本発明に係るNd2Fe14
金属間化合物を主体とする焼結磁石では、逆磁区の発生
サイトである結晶粒の表面近傍(外殻)において、Nd
の一部を保磁力を高める効果を有するDy、Tbで置換
しているため、高温においても高い保磁力を有するよう
になる。このため、不可逆減磁が低く抑えられ、高温履
歴を受ける特に自動車登載用磁石として適したものとな
る。また、Dy、Tbの置換相は結晶粒の表面近傍(外
殻)に限られ、内部(コア)においては飽和磁化の高い
Nd2Fe14Bが主体となっているため、エネルギ積の
低下は最小限に抑えられ、しかも、資源的に希有なD
y、Tbを使用することによるコスト上昇も最小限に抑
えられる。
The main cause of the decrease in coercive force in the Nd-Fe-B system sintered magnet is the occurrence of reverse magnetic domains in the vicinity of the surface of each crystal grain. Nd 2 Fe 14 B according to the present invention
In a sintered magnet mainly composed of an intermetallic compound, Nd is formed in the vicinity of the surface (outer shell) of the crystal grain, which is a site where reverse magnetic domains are generated.
Since a part of is replaced by Dy and Tb, which have the effect of increasing the coercive force, a high coercive force is obtained even at high temperatures. For this reason, the irreversible demagnetization is suppressed to a low level, which makes the magnet particularly suitable as a vehicle mounting magnet that is subjected to a high temperature history. Further, the substitution phase of Dy and Tb is limited to the vicinity of the surface (outer shell) of the crystal grain, and Nd 2 Fe 14 B having a high saturation magnetization is mainly contained in the inside (core), so that the energy product is not lowered. D, which is kept to a minimum and is rare in terms of resources
The cost increase due to the use of y and Tb is also minimized.

【0026】次に、通常、Nd−Fe−B系焼結磁石で
は、結晶粒径が大きくなると保磁力が下がるため、保磁
力を高くするためにはできるだけ粉砕粒径を小さくする
必要がある。しかし、粉砕粒径を小さくすると、上述の
通り、酸化や型摩耗等の問題が生じる。しかし、本発明
に係る磁石では、結晶粒径が多少大きくなっても、それ
により結晶粒全体に対するDy、Tb置換領域(外殻)
の体積が相対的に減少し、(同量のDy、Tbを用いた
場合には)置換領域におけるDy、Tb濃度が高くなる
ため、保磁力が増加する。従って、結晶粒径の大きさを
あまり厳しく管理する必要がないという利点もある。
Next, in a Nd-Fe-B system sintered magnet, the coercive force generally decreases as the crystal grain size increases. Therefore, in order to increase the coercive force, it is necessary to make the crushed grain size as small as possible. However, if the crushed particle size is reduced, problems such as oxidation and mold wear occur as described above. However, in the magnet according to the present invention, even if the crystal grain size becomes slightly larger, the Dy, Tb substitution region (outer shell) with respect to the entire crystal grain is thereby increased.
Is relatively decreased, and the Dy and Tb concentrations in the replacement region are increased (when the same amounts of Dy and Tb are used), so that the coercive force is increased. Therefore, there is also an advantage that it is not necessary to control the crystal grain size very strictly.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 Nd2Fe14B金属間化合物相のコア
と、該相のNdの一部がDy及び/又はTbで置換され
た相の外殻とを有する結晶粒から成ることを特徴とする
希土類焼結磁石。
1. A crystal grain having a core of an Nd 2 Fe 14 B intermetallic compound phase and a shell of the phase in which a part of Nd of the phase is substituted with Dy and / or Tb. Sintered rare earth magnet.
【請求項2】 Nd2Fe14B金属間化合物を主成分と
する第1成分粉末と、R(Cu1-XX)及びR(Cu
1-XX2のうちの1種又は2種を主成分とする第2成
分粉末とを混合した後、混合物を磁場中で成形し、液相
焼結することにより形成される、Nd2Fe14B金属間
化合物相のコアと、該相のNdの一部がDy及び/又は
Tbで置換された相の外殻とを有する結晶粒から成る希
土類焼結磁石。ここで、RはDy+Tbを30%以上含
有する希土類元素であり、Tは遷移金属又は亜金属のう
ちの1種又は2種以上の混合であり、Xは0.3〜0.
7である。
2. A first component powder containing Nd 2 Fe 14 B intermetallic compound as a main component, and R (Cu 1-X T X ) and R (Cu
Nd formed by mixing a second component powder containing 1 or 2 of 1-X T X ) 2 as a main component, molding the mixture in a magnetic field, and performing liquid phase sintering. A rare earth sintered magnet composed of crystal grains having a core of a 2 Fe 14 B intermetallic compound phase and an outer shell of a phase in which a part of Nd of the phase is substituted with Dy and / or Tb. Here, R is a rare earth element containing 30% or more of Dy + Tb, T is one kind or a mixture of two or more kinds of transition metals or submetals, and X is 0.3 to 0.
7
【請求項3】 Nd2Fe14B金属間化合物を主成分と
する第1成分粉末の組成が、Nd:11.8〜20.0
at%、B:5.9〜20.0at%、残部Feである
請求項2記載の希土類焼結磁石。
3. The composition of the first component powder containing Nd 2 Fe 14 B intermetallic compound as a main component is Nd: 11.8 to 20.0.
The rare earth sintered magnet according to claim 2, wherein at%, B: 5.9 to 20.0 at% and the balance Fe.
【請求項4】 Nd2Fe14B金属間化合物のNdの1
0%以下が他の希土類元素の1種又は2種以上で置換さ
れており、及び/又は、Feの10%以下がCoで置換
されている請求項2又は3記載の希土類焼結磁石。
4. Nd 1 of Nd 2 Fe 14 B intermetallic compound
The rare earth sintered magnet according to claim 2 or 3, wherein 0% or less is substituted with one kind or two or more kinds of other rare earth elements, and / or 10% or less of Fe is replaced with Co.
【請求項5】 R(Cu1-XX)及びR(Cu1-XX
2のうちの1種又は2種を主成分とする第2成分粉末の
第1、第2成分粉末の和に対する重量比が5〜25%で
ある請求項2〜4のいずれかに記載の希土類焼結磁石。
5. R (Cu 1-X T X ) and R (Cu 1-X T X )
First second-component powder based on one or two of the two rare earth according to any one of claims 2 to 4 weight ratio to the sum of the second component powder is 5-25% Sintered magnet.
【請求項6】 Nd2Fe14B金属間化合物を主成分と
する第1成分粉末と、R(Cu1-XX)及びR(Cu
1-XX2のうちの1種又は2種を主成分とする第2成
分粉末とを混合した後、混合物を磁場中で成形し、液相
焼結することにより、Nd2Fe14B金属間化合物相の
コアと、該相のNdの一部がDy及び/又はTbで置換
された相の外殻とを有する結晶粒から成る希土類焼結磁
石を製造する方法。ここで、RはDy+Tbを30%以
上含有する希土類元素であり、Tは遷移金属又は亜金属
のうちの1種又は2種以上の混合であり、Xは0.3〜
0.7である。
6. A first component powder containing an Nd 2 Fe 14 B intermetallic compound as a main component, and R (Cu 1-X T X ) and R (Cu
Nd 2 Fe 14 is obtained by mixing the second component powder containing 1 or 2 of 1-X T X ) 2 as a main component, and then molding the mixture in a magnetic field and performing liquid phase sintering. A method for producing a rare earth sintered magnet comprising crystal grains having a core of a B intermetallic compound phase and an outer shell of a phase in which a part of Nd of the phase is substituted with Dy and / or Tb. Here, R is a rare earth element containing 30% or more of Dy + Tb, T is one kind or a mixture of two or more kinds of transition metals or submetals, and X is 0.3 to 0.3.
It is 0.7.
JP5187070A 1992-06-30 1993-06-29 Rare-earth sintered magnet and its manufacture Pending JPH0696928A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5187070A JPH0696928A (en) 1992-06-30 1993-06-29 Rare-earth sintered magnet and its manufacture

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP19764292 1992-06-30
JP4-197642 1992-06-30
JP5187070A JPH0696928A (en) 1992-06-30 1993-06-29 Rare-earth sintered magnet and its manufacture

Publications (1)

Publication Number Publication Date
JPH0696928A true JPH0696928A (en) 1994-04-08

Family

ID=26504127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5187070A Pending JPH0696928A (en) 1992-06-30 1993-06-29 Rare-earth sintered magnet and its manufacture

Country Status (1)

Country Link
JP (1) JPH0696928A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6319336B1 (en) 1998-07-29 2001-11-20 Dowa Mining Co., Ltd. Permanent magnet alloy having improved heat resistance and process for production thereof
WO2003001541A1 (en) * 2001-06-22 2003-01-03 Sumitomo Special Metals Co., Ltd. Rare earth magnet and method for production thereof
EP1462531A3 (en) * 2003-03-27 2005-03-30 TDK Corporation R-T-B system rare earth permanent magnet
US7056393B2 (en) * 2001-05-30 2006-06-06 Neomax, Co., Ltd. Method of making sintered compact for rare earth magnet
WO2006098204A1 (en) * 2005-03-14 2006-09-21 Tdk Corporation R-t-b based sintered magnet
US7201810B2 (en) 2001-03-30 2007-04-10 Neomax Co., Ltd. Rare earth alloy sintered compact and method of making the same
US7244318B2 (en) 2001-01-30 2007-07-17 Neomax Co., Ltd. Method for preparation of permanent magnet
JPWO2006112403A1 (en) * 2005-04-15 2008-12-11 日立金属株式会社 Rare earth sintered magnet and manufacturing method thereof
JP2009010305A (en) * 2007-06-29 2009-01-15 Tdk Corp Rare earth magnet manufacturing method
JP2009032742A (en) * 2007-07-24 2009-02-12 Tdk Corp Method for producing rare earth permanent sintered magnet
WO2010082492A1 (en) 2009-01-16 2010-07-22 日立金属株式会社 Method for producing r-t-b sintered magnet
WO2011152581A1 (en) * 2010-06-03 2011-12-08 노틸러스효성 주식회사 Door locking device
US20130169394A1 (en) * 2008-01-11 2013-07-04 Intermetallics Co., Ltd. NdFeB Sintered Magnet and Method for Producing the Same
JP2014057075A (en) * 2009-12-09 2014-03-27 Aichi Steel Works Ltd Rare earth anisotropic magnet and method for manufacturing the same
KR20140133552A (en) * 2012-02-23 2014-11-19 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Neodymium-based rare-earth permanent magnet and process for producing same

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6319336B1 (en) 1998-07-29 2001-11-20 Dowa Mining Co., Ltd. Permanent magnet alloy having improved heat resistance and process for production thereof
EP1365422A4 (en) * 2001-01-30 2008-12-31 Hitachi Metals Ltd PROCESS FOR PREPARING A PERMANENT MAGNET
US7244318B2 (en) 2001-01-30 2007-07-17 Neomax Co., Ltd. Method for preparation of permanent magnet
US7201810B2 (en) 2001-03-30 2007-04-10 Neomax Co., Ltd. Rare earth alloy sintered compact and method of making the same
US7056393B2 (en) * 2001-05-30 2006-06-06 Neomax, Co., Ltd. Method of making sintered compact for rare earth magnet
WO2003001541A1 (en) * 2001-06-22 2003-01-03 Sumitomo Special Metals Co., Ltd. Rare earth magnet and method for production thereof
US7867343B2 (en) 2001-06-22 2011-01-11 Hitachi Metals, Ltd. Rare earth magnet and method for production thereof
US7258751B2 (en) 2001-06-22 2007-08-21 Neomax Co., Ltd. Rare earth magnet and method for production thereof
EP1860203A1 (en) * 2003-03-27 2007-11-28 TDK Corporation R-T-B system rare earth permanent magnet
EP1462531A3 (en) * 2003-03-27 2005-03-30 TDK Corporation R-T-B system rare earth permanent magnet
JPWO2006098204A1 (en) * 2005-03-14 2008-08-21 Tdk株式会社 R-T-B sintered magnet
JP4645855B2 (en) * 2005-03-14 2011-03-09 Tdk株式会社 R-T-B sintered magnet
WO2006098204A1 (en) * 2005-03-14 2006-09-21 Tdk Corporation R-t-b based sintered magnet
US8123832B2 (en) 2005-03-14 2012-02-28 Tdk Corporation R-T-B system sintered magnet
JPWO2006112403A1 (en) * 2005-04-15 2008-12-11 日立金属株式会社 Rare earth sintered magnet and manufacturing method thereof
JP4748163B2 (en) * 2005-04-15 2011-08-17 日立金属株式会社 Rare earth sintered magnet and manufacturing method thereof
JP2009010305A (en) * 2007-06-29 2009-01-15 Tdk Corp Rare earth magnet manufacturing method
JP2009032742A (en) * 2007-07-24 2009-02-12 Tdk Corp Method for producing rare earth permanent sintered magnet
US20130169394A1 (en) * 2008-01-11 2013-07-04 Intermetallics Co., Ltd. NdFeB Sintered Magnet and Method for Producing the Same
US10854380B2 (en) * 2008-01-11 2020-12-01 Daido Steel Co., Ltd. NdFeB sintered magnet and method for producing the same
WO2010082492A1 (en) 2009-01-16 2010-07-22 日立金属株式会社 Method for producing r-t-b sintered magnet
US8287661B2 (en) 2009-01-16 2012-10-16 Hitachi Metals, Ltd. Method for producing R-T-B sintered magnet
JP2014057075A (en) * 2009-12-09 2014-03-27 Aichi Steel Works Ltd Rare earth anisotropic magnet and method for manufacturing the same
WO2011152581A1 (en) * 2010-06-03 2011-12-08 노틸러스효성 주식회사 Door locking device
KR20140133552A (en) * 2012-02-23 2014-11-19 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Neodymium-based rare-earth permanent magnet and process for producing same
US9972428B2 (en) 2012-02-23 2018-05-15 Jx Nippon Mining & Metals Corporation Neodymium-based rare earth permanent magnet and process for producing same

Similar Documents

Publication Publication Date Title
JP3143156B2 (en) Manufacturing method of rare earth permanent magnet
EP0197712A1 (en) Rare earth-iron-boron-based permanent magnet
JP2751109B2 (en) Sintered permanent magnet with good thermal stability
JPH0531807B2 (en)
JPH0510806B2 (en)
EP1365422A1 (en) Method for preparation of permanent magnet
JPH0696928A (en) Rare-earth sintered magnet and its manufacture
JPH07105289B2 (en) Rare earth permanent magnet manufacturing method
JP2002038245A (en) Rare earth alloy powder for rermanent magnet and method for manufacturing rare earth permanent magnet
JPH07122413A (en) Rare earth permanent magnet and manufacture thereof
JP2853838B2 (en) Manufacturing method of rare earth permanent magnet
JP2787580B2 (en) Nd-Fe-B based sintered magnet with excellent heat treatment
JPH10289813A (en) Rare-earth magnet
JP3118740B2 (en) Rare earth magnet materials and rare earth bonded magnets
JP2853839B2 (en) Manufacturing method of rare earth permanent magnet
JP2739525B2 (en) R-Fe-BC permanent magnet alloy with low irreversible demagnetization and excellent thermal stability
JP3143157B2 (en) Manufacturing method of rare earth permanent magnet
JP2003217918A (en) Alloy powder for rare earth sintered magnet superior in magnetization, the rare earth sintered magnet and its manufacturing method
JPH0547533A (en) Sintered permanent magnet and manufacture thereof
JP3623564B2 (en) Anisotropic bonded magnet
JP3652752B2 (en) Anisotropic bonded magnet
JP3652751B2 (en) Anisotropic bonded magnet
JPH0757913A (en) Production of rare earth permanent magnet
JP3703903B2 (en) Anisotropic bonded magnet
JP5235264B2 (en) Rare earth sintered magnet and manufacturing method thereof