[go: up one dir, main page]

JP3517506B2 - Optical displacement measuring device - Google Patents

Optical displacement measuring device

Info

Publication number
JP3517506B2
JP3517506B2 JP01838496A JP1838496A JP3517506B2 JP 3517506 B2 JP3517506 B2 JP 3517506B2 JP 01838496 A JP01838496 A JP 01838496A JP 1838496 A JP1838496 A JP 1838496A JP 3517506 B2 JP3517506 B2 JP 3517506B2
Authority
JP
Japan
Prior art keywords
light
point
light flux
diffracted
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01838496A
Other languages
Japanese (ja)
Other versions
JPH09189516A (en
Inventor
勝 乳井
箕吉 伴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP01838496A priority Critical patent/JP3517506B2/en
Publication of JPH09189516A publication Critical patent/JPH09189516A/en
Application granted granted Critical
Publication of JP3517506B2 publication Critical patent/JP3517506B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Optical Transform (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は光学式変位測定装置
に関し、特に変位物体に設けた回折格子等の微細格子列
にレーザ光等の可干渉性光束を入射させ、回折格子から
の特定次数の回折光を互いに干渉させて干渉信号を生成
し、その干渉信号の明暗を計数することによって変位物
体の変位量を測定する場合に好適なものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical displacement measuring apparatus, and in particular, a coherent light beam such as a laser beam is made incident on a fine grating array such as a diffraction grating provided on a displacement object to obtain a specific order from the diffraction grating. This is suitable for measuring the displacement amount of the displacement object by causing the diffracted lights to interfere with each other to generate an interference signal and counting the brightness of the interference signal.

【0002】[0002]

【従来の技術】従来よりNC工作機械等における回転物体
の回転量や回転方向等の回転情報を高精度に、例えばサ
ブミクロンの単位で測定することのできる変位測定装置
としてロータリーエンコーダがあり、各方面で使用され
ている。
2. Description of the Related Art Conventionally, there has been a rotary encoder as a displacement measuring device capable of highly accurately measuring rotation information such as a rotation amount and a rotation direction of a rotating object in an NC machine tool or the like, for example, in a submicron unit. It is used in the field.

【0003】特に、高精度で且つ高分解能のロータリー
エンコーダとして、レーザ等の可干渉性光束を回転物体
に設けられた回折格子に入射させ、その回折格子から生
ずる特定次数の回折光を互いに干渉させ、その干渉縞の
明暗を計数することにより、その移動物体の移動量や移
動方向等の移動状態を測定する回折光干渉方式のロータ
リーエンコーダが良く知られている。
In particular, as a high-precision and high-resolution rotary encoder, a coherent light beam such as a laser beam is made incident on a diffraction grating provided on a rotating object, and diffracted lights of a specific order generated from the diffraction grating interfere with each other. A well-known rotary encoder of the diffracted light interference system, which measures the moving state such as the moving amount and the moving direction of the moving object by counting the brightness of the interference fringes.

【0004】図4は、特公平4-62002 号公報に開示され
る光学式変位測定装置の要部概略図である。本装置は回
折光干渉方式のロータリーエンコーダである。
FIG. 4 is a schematic view of a main part of an optical displacement measuring device disclosed in Japanese Patent Publication No. 4-62002. This device is a diffracted light interference type rotary encoder.

【0005】同図において、31はレーザー等の光源、
32はコリメーターレンズ、33〜35、36〜38は
シリンドリカルレンズ、39〜42は反射ミラー、43
は放射回折格子44を有するディスク、45、46は1/
4 波長板でレーザー31の直線偏光に対して、その軸が
±45°方向になるように配置されている。47はビーム
スプリッター、48、49は偏光方位が互いに45°とな
るように配置された偏光板である。50、51は受光素
子である。
In the figure, 31 is a light source such as a laser,
32 is a collimator lens, 33-35, 36-38 are cylindrical lenses, 39-42 are reflection mirrors, 43
Is a disk having a radiation diffraction grating 44, and 45 and 46 are 1 /
The four-wave plate is arranged so that its axis is ± 45 ° with respect to the linearly polarized light of the laser 31. Reference numeral 47 is a beam splitter, and 48 and 49 are polarizing plates arranged so that the polarization directions thereof are 45 ° to each other. Reference numerals 50 and 51 are light receiving elements.

【0006】この従来例の作用を説明する。レーザー3
1より射出した光束は、コリメーターレンズ32、シリ
ンドリカルレンズ33を介してディスク43の放射回折
格子44上を線状に照射する。その照射位置M1におけ
る回折格子のピッチをP、光束の波長をλとすると、±
m次の反射回折光L1、L2の回折角度θm は、sinθm
=±mλ/Pと表わされる。このm次の回折光束は夫
々シリンドリカルレンズ34、35によって略平行光束
に変換され、次いで反射ミラー39、40によって偏向
されて反射ミラー41、42に向かい、該ミラーで偏向
されてディスク43の方向へ向かう。
The operation of this conventional example will be described. Laser 3
The light flux emitted from the beam No. 1 linearly irradiates the radiation diffraction grating 44 of the disk 43 via the collimator lens 32 and the cylindrical lens 33. When the pitch of the diffraction grating at the irradiation position M1 is P and the wavelength of the light flux is λ, ±
The diffraction angle θ m of the reflected diffracted lights L1 and L2 of m-th order is sin θ m
= ± mλ / P The m-th order diffracted light beams are converted into substantially parallel light beams by the cylindrical lenses 34 and 35, respectively, and then are deflected by the reflection mirrors 39 and 40 toward the reflection mirrors 41 and 42, and are deflected by the mirrors toward the disk 43. Go to

【0007】次いで2つの回折光束は1/4 波長板45、
46を透過して互いに逆回りの円偏光となり、シリンド
リカルレンズ36、37を介して、放射回折格子44上
で照射位置M1のディスク回転中心に対して略対称な位
置M2を再度線状に照射する。
Next, the two diffracted light beams are divided into a quarter wave plate 45,
After passing through 46, they become circularly polarized lights having mutually opposite rotations, and linearly irradiate a position M2, which is substantially symmetrical with respect to the disk rotation center of the irradiation position M1 on the radiation diffraction grating 44, through the cylindrical lenses 36 and 37. .

【0008】照射位置M2への各回折光の入射角は、そ
のm次反射回折角θm と等しくなるように反射ミラー4
1、42、シリンドリカルレンズ36、37を配置して
おり、2つの回折光は照射位置M2で反射回折すると互
いに重なり合ってシリンドリカルレンズ38へ向かう。
この時2つの回折光は再び直線偏光となるが、その偏光
方位は放射回折格子44の回転に伴って変化する。
The incidence angle of each diffracted light on the irradiation position M2 is equal to the m-th order reflection diffraction angle θ m thereof.
1, 42 and cylindrical lenses 36 and 37 are arranged. When the two diffracted lights are reflected and diffracted at the irradiation position M2, they are overlapped with each other and travel toward the cylindrical lens 38.
At this time, the two diffracted lights become linearly polarized light again, but their polarization directions change with the rotation of the radiation diffraction grating 44.

【0009】シリンドリカルレンズ38へ向かう光束
は、これを透過して再び略平行な光束となり、次いでビ
ームスプリッター47で2光束に分割され、偏光板4
8、49を透過して受光素子50、51に入射する。
The light beam traveling to the cylindrical lens 38 passes through it and becomes a substantially parallel light beam again. Then, it is split into two light beams by the beam splitter 47, and the polarizing plate 4
The light passes through 8 and 49 and enters the light receiving elements 50 and 51.

【0010】この時、ディスク43上の放射回折格子4
4の1周の本数をN、ディスク43の回転角度をθとす
ると、照射位置M1、M2で夫々2回回折した±m次の
回折光の位相は、0次光の位相に対して±2mNθのず
れが生ずるもので、照射位置M2で反射回折して重なり
合った光束は、2m−(−2m)=4mNθの位相変化
を有することになる。従って、放射回折格子44の1ピ
ッチ分(θ=2π/N)だけディスク43が回転する間
に4m回の明暗変化を検出することができる。また、偏
光板48、49は、偏光方位が互いに45°異なるように
配置されているので、受光素子50、51の出力信号間
に90°の位相差を与えることができ、これによってデ
ィスクの回転方向を判別することができる。
At this time, the radiation diffraction grating 4 on the disk 43
Assuming that the number of four rotations of 4 is N and the rotation angle of the disc 43 is θ, the phase of the ± m-order diffracted light diffracted twice at the irradiation positions M1 and M2 is ± 2 mNθ with respect to the phase of the 0-order light. Is generated, and the light beams reflected and diffracted at the irradiation position M2 and overlapped with each other have a phase change of 2m − (− 2m) = 4mNθ. Therefore, it is possible to detect a change in brightness of 4 m times while the disk 43 rotates by one pitch (θ = 2π / N) of the radiation diffraction grating 44. Further, since the polarization plates 48 and 49 are arranged so that the polarization directions thereof are different from each other by 45 °, it is possible to give a phase difference of 90 ° between the output signals of the light receiving elements 50 and 51, thereby rotating the disc. The direction can be determined.

【0011】[0011]

【発明が解決しようとする課題】従来の光学式変位測定
装置においては環境温度の変動による光源からの光束の
波長変動やディスクとその他の要素の間に取り付け誤差
に起因する偏心が存在すると照射位置M1,M2におけ
る回折角θm が変化し、この回折角θm の誤差が2つの
回折光の重なりによって形成される干渉信号のコントラ
スト低下をまねく。
In the conventional optical displacement measuring apparatus, if the eccentricity due to the wavelength variation of the light flux from the light source due to the variation of the ambient temperature and the mounting error between the disc and the other elements exists, the irradiation position is increased. The diffraction angle θ m at M1 and M2 changes, and the error of this diffraction angle θ m causes a reduction in the contrast of the interference signal formed by the overlap of the two diffracted lights.

【0012】又、従来の光学式変位測定装置は放射回折
格子の1ピッチ分の変位に対して4m回の明暗変化を発
生しているが、さらに高分解能の光学式変位測定装置の
出現が望まれている。
Further, the conventional optical displacement measuring device produces a light-dark change of 4 m times with respect to the displacement of one pitch of the radiation diffraction grating, but it is hoped that an optical displacement measuring device with higher resolution will appear. It is rare.

【0013】本発明は、可干渉性光束を変位物体に設け
た回折格子に照射し、それによって得られる干渉信号か
ら変位物体の変位量を検出する「検出ユニット」と「デ
ィスク」を分離して構成する組み込みタイプの光学式変
位測定装置において、環境温度の変動による光源からの
光束の波長変動があってもまた検出ユニットとディスク
の相対位置関係に誤差があっても、良好なる干渉状態及
び測定精度が得られ、変位物体の変位量を高分解能で測
定する光学式変位測定装置の提供を目的とする。
The present invention separates a "detection unit" and a "disk" for irradiating a diffraction grating provided on a displacement object with a coherent light beam and detecting the displacement amount of the displacement object from the interference signal obtained thereby. In built-in type optical displacement measuring device, good interference condition and measurement even if wavelength of light flux from light source fluctuates due to fluctuation of environmental temperature or error in relative positional relationship between detection unit and disk. It is an object of the present invention to provide an optical displacement measuring device which is highly accurate and can measure the amount of displacement of a displaced object with high resolution.

【0014】[0014]

【課題を解決するための手段】請求項1の発明の光学式
変位測定装置は、光源手段からの光束を第1光束分割手
段で第1、第2光束の2つに分離して回転しているディ
スク上の放射回折格子上の点D1に入射させ、該点D1
からの第1、第2光束に基づく所定次数の2つの回折光
を夫々集光光学系とその焦点面近傍に反射面を有し入射
方向と同一の方向に入射光束を反射する作用を持つ第1
反射手段を介して再度点D1に入射させ、該点D1から
の第1、第2光束に基づく所定次数の2つの回折光を該
第1光束分割手段で重ね合わせた後、中継光学系を介し
て第2光束分割手段に入射させて第1、第2光束に基づ
く2つの回折光に分離して該放射回折格子上の該点D1
前記ディスクの回転中心に対して略点対称の位置で且
つ前記中継光学系に対して共役関係にある点D2に入射
させ、該点D2で回折した第1、第2光束に基づく所定
次数の2つの回折光を夫々集光光学系とその焦点面近傍
に反射面を有し入射方向と同一の方向に入射光束を反射
する作用を持つ第2反射手段を介して再度点D2に入射
させ、該点D2からの第1、第2光束に基づく所定次数
の2つの回折光を該第2光束分割手段で重ね合わせた
後、干渉手段により該第1光束と第2光束を干渉させて
干渉光束を形成し、該干渉光束を受光手段が受光するこ
とにより該ディスクの回転情報を検出していることを特
徴としている。
An optical system according to the invention of claim 1
The displacement measuring device separates the light beam from the light source means into the first and second light fluxes by the first light beam splitting means and makes them incident on a point D1 on the rotating diffraction grating on the rotating disk, and the point D1
Two diffracted light beams of a predetermined order based on the first and second light beams from the light condensing optical system and a reflecting surface in the vicinity of their focal planes are incident respectively.
First, which has the effect of reflecting the incident light beam in the same direction as the first direction
The light is made incident again on the point D1 via the reflecting means, and two diffracted lights of a predetermined order based on the first and second light fluxes from the point D1 are superposed by the first light flux splitting means, and then through the relay optical system. Is made incident on the second light beam splitting means to be separated into two diffracted lights based on the first and second light beams, and the point D1 on the radiation diffraction grating.
And at a position approximately point-symmetric with respect to the center of rotation of the disk,
The two diffracted lights of a predetermined order based on the first and second light beams which are incident on a point D2 having a conjugate relationship with the relay optical system and diffracted at the point D2 are respectively in the vicinity of the focusing optical system and its focal plane.
Reflects incident light in the same direction as it has a reflecting surface
After being made incident again on the point D2 via the second reflecting means having the action of , the two diffracted lights of a predetermined order based on the first and second luminous fluxes from the point D2 are superposed by the second luminous flux splitting means. The interfering means causes the first light flux and the second light flux to interfere with each other to form an interfering light flux, and the light receiving means receives the interfering light flux to detect rotation information of the disk.

【0015】請求項2の発明は、請求項1の発明におい
前記光源手段、前記第1及び第2光束分割手段、前記
第1及び第2反射手段、前記中継光学系、前記干渉手
段、前記受光手段を1つの筐体内に収納してユニットを
構成していることを特徴としている。
The invention of claim 2 is the same as the invention of claim 1.
The light source means, the first and second light beam splitting means, the first and second reflecting means, the relay optical system, the interfering means, and the light receiving means are housed in one housing to form a unit. It is characterized by being.

【0016】請求項3の発明は、請求項1又は2の発明
において前記第1光束分割手段は偏光ビームスプリッテ
ィング膜を有し、前記偏光ビームスプリッティング膜に
対して第1の光束は透過、第2の光束は反射することを
特徴としている。
The invention of claim 3 is the invention of claim 1 or 2.
In the first luminous flux splitting means, the polarized light beam splitting means
A polarizing film splitting film
On the other hand, the first light flux is transmitted and the second light flux is reflected.
It has a feature.

【0017】請求項4の発明は、請求項1又は2の発明
において前記第2光束分割手段は偏光ビームスプリッテ
ィング膜を有し、前記偏光ビームスプリッティング膜に
対して第1の光束は透過、第2の光束は反射することを
特徴としている。
The invention of claim 4 is the invention of claim 1 or 2.
In the second beam splitting means, the polarized beam splitter
A polarizing film splitting film
On the other hand, the first light flux is transmitted and the second light flux is reflected.
It has a feature.

【0018】[0018]

【発明の実施の形態】図1、図2は本発明の光学式変位
測定装置の実施形態の要部概略図である。本実施形態は
回折光干渉方式のロータリーエンコーダである。図1は
光学系の平面図であり、図2はその側面図である。
1 and 2 are schematic views of the essential parts of an embodiment of an optical displacement measuring apparatus of the present invention. The present embodiment is a diffracted light interference type rotary encoder. FIG. 1 is a plan view of the optical system, and FIG. 2 is a side view thereof.

【0019】図中、1は光源であり、可干渉性光束を放
射する半導体レーザで構成している。2はコリメータレ
ンズであり、半導体レーザ1からの光束を略平行光に変
換する。光源1、コリメータレンズ2等は光源手段の一
要素を構成している。
In the figure, 1 is a light source, which is composed of a semiconductor laser that emits a coherent light beam. A collimator lens 2 converts the light flux from the semiconductor laser 1 into substantially parallel light. The light source 1, the collimator lens 2 and the like constitute one element of the light source means.

【0020】3、3’は夫々第1、第2光束分割手段で
あり、ケスタープリズムで構成しており、その内部分割
面に偏光ビームスプリッティング膜5、5’を備えてい
る。7、7’はミラー、9、9’、10、10’は1/4
波長板、15、16は夫々第1反射手段、15’、1
6’は夫々第2反射手段である。第1、第2反射手段は
集光光学系とその焦点面近傍に反射面を有していて、入
射方向と同じ方向に光束を反射させる作用を持つ。
Reference numerals 3 and 3'indicate first and second light beam splitting means, respectively, which are composed of Kester prisms, and are provided with polarization beam splitting films 5 and 5'on their inner split surfaces. 7 and 7'are mirrors, 9 and 9'and 10 and 10 'are 1/4
Wave plates, 15 and 16 are first reflecting means, 15 'and 1 respectively.
Reference numerals 6'denotes second reflecting means, respectively. The first and second reflecting means have a condensing optical system and a reflecting surface in the vicinity of the focal plane thereof, and have a function of reflecting the light beam in the same direction as the incident direction.

【0021】以上の各要素の内ケスタープリズム3、ミ
ラー7、1/4 波長板9、10、第1反射手段15、16
等は第1の照射手段の一要素であり、ケスタープリズム
3’、ミラー7’、1/4 波長板9’、10’、第2反射
手段15’、16’等は第2の照射手段の一要素であ
る。なお、第1の照射手段と第2の照射手段とは同じ構
成である。
Among the above elements, the Kester prism 3, the mirror 7, the quarter wave plates 9 and 10, the first reflecting means 15 and 16
Etc. are elements of the first irradiation means, and the Kester prism 3 ', the mirror 7', the quarter wave plates 9 ', 10', the second reflection means 15 ', 16', etc. are the elements of the second irradiation means. It is an element. The first irradiation means and the second irradiation means have the same configuration.

【0022】17はディスク18の表面に設けられた放
射回折格子であり、そのピッチはPである。19、1
9’はミラー、20は1/2 波長板、21、21’はレン
ズである。なお、ミラー19、19’、1/2 波長板2
0、レンズ21、21’等は中継光学系の一要素を構成
している。
Reference numeral 17 is a radiation diffraction grating provided on the surface of the disk 18, and its pitch is P. 19, 1
9'is a mirror, 20 is a half-wave plate, and 21 and 21 'are lenses. The mirrors 19 and 19 ', the half-wave plate 2
0, the lenses 21 and 21 ', etc. form one element of the relay optical system.

【0023】24は1/4波長板(干渉手段)、25は
非偏光ビームスプリッターである。26、27は夫々偏
光板であるが、夫々の偏光軸は互いに45°傾いてい
る。28、29はセンサーである。1/4波長板24、
非偏光ビームスプリッター25、偏光板26、27、セ
ンサー28、29等は夫々光学系23の一要素を構成し
ている。又、非偏光ビームスプリッター25、偏光板2
6、27、センサー28、29等は受光手段の一要素を
構成している。この受光手段は互いに90°位相がずれ
た2相の干渉信号を生成する。
Reference numeral 24 is a quarter wavelength plate (interference means), and 25 is a non-polarizing beam splitter. Reference numerals 26 and 27 denote polarizing plates, respectively, but their polarization axes are inclined by 45 ° with respect to each other. 28 and 29 are sensors. Quarter-wave plate 24,
The non-polarizing beam splitter 25, the polarizing plates 26 and 27, the sensors 28 and 29, etc., each constitute one element of the optical system 23. In addition, the non-polarizing beam splitter 25 and the polarizing plate 2
6, 27, sensors 28, 29, etc. constitute one element of the light receiving means. This light receiving means generates two-phase interference signals that are 90 ° out of phase with each other.

【0024】又、本実施形態において、ディスク18は
不図示の回転物体に取り付け、その他の構成要素は1つ
の筐体中に配置して検出ユニットを構成している。
Further, in this embodiment, the disk 18 is attached to a rotating object (not shown), and the other components are arranged in one housing to form a detection unit.

【0025】本実施形態の作用を説明する。光源(半導
体レーザ)1から放射する波長λの直線偏光の光束はコ
リメータレンズ2で略平行光に変換し、ケスタープリズ
ム(第1光束分割手段)3に入射させる。この光束は偏
光ビームスプリッティング膜5でP、S偏光の強度比が
1:1になるように45°に設定されて2光束に分割さ
れ、P偏光光束(第1光束)は透過し、S偏光光束(第
2光束)は反射される。この2光束に分割されたP、S
偏光光束の内、P偏光光束(第1光束)は、光路11を
とって1/4 波長板9を通過後円偏光となり放射回折格子
17の点D1 に入射角度θi で入射し、反射回折する。
ここで発生する複数の回折光のうち次数−1の回折光
(これを第1の光束とする)は予め決められた角度θm
の方向に進んで光路13に進行する。
The operation of this embodiment will be described. A linearly polarized light beam having a wavelength λ emitted from a light source (semiconductor laser) 1 is converted into substantially parallel light by a collimator lens 2 and is incident on a Kester prism (first light beam splitting means) 3. This light beam is split by a polarized beam splitting film 5 into two light beams set at 45 ° so that the intensity ratio of P and S polarized light is 1: 1, and the P polarized light beam (first light beam) is transmitted, and the S polarized light beam is transmitted. The light flux (second light flux) is reflected. P and S split into these two beams
Of the polarized light flux, the P-polarized light flux (first light flux) becomes circularly polarized light after passing through the optical path 11 and passing through the quarter-wave plate 9 and becomes circularly polarized light at the point D 1 of the radiation diffraction grating 17 at the incident angle θ i and is reflected. Diffract.
Of the plurality of diffracted lights generated here, the diffracted light of order −1 (this is the first light flux) is a predetermined angle θ m
And proceeds to the optical path 13.

【0026】この入射角度θi と回折角度θm との間の
関係は、放射回折格子17の回転方向がa方向の時、法
線方向nを基準にθi が左回りの時を正、θm が右回り
の時を正として、sin θm −sin θi =λ/Pである。
The relationship between the incident angle θ i and the diffraction angle θ m is positive when the rotation direction of the radiation diffraction grating 17 is the direction a and when θ i is counterclockwise with respect to the normal direction n, When θ m is clockwise, sin θ m −sin θ i = λ / P.

【0027】光路13を進んだ第1光束は第1反射手段
15で反射して光路13を逆進し、再び放射回折格子1
7上の点D1 に入射し、2回目の反射回折をする。そし
て、ここで発生する複数の回折光のうち次数−1の回折
光(これを第1光束とする)は光路11に進行し、 1/4
波長板9を通過後S偏光となりケスタープリズム3の偏
光ビームスプリッティング膜5で反射して所定の光路1
Cに進行する。
The first light flux that has traveled along the optical path 13 is reflected by the first reflecting means 15 and travels backward through the optical path 13, and again the radiation diffraction grating 1
It is incident on the point D 1 on 7 and the second reflection diffraction is performed. Then, of the plurality of diffracted lights generated here, the diffracted light of order −1 (this is the first light flux) travels to the optical path 11,
After passing through the wave plate 9, it becomes S-polarized light, which is reflected by the polarized beam splitting film 5 of the Kester prism 3 and is reflected in a predetermined optical path 1.
Proceed to C.

【0028】他方のS偏光光束(第2光束)は、光路1
2をとって1/4 波長板10を通過後円偏光となり放射回
折格子17の点D1 に入射角度−θi で入射し、反射回
折する。ここで発生する複数の回折光のうち次数+1の
回折光(これを第2光束とする)は予め決められた角度
−θm の方向に進んで光路14に進行する。
The other S-polarized light beam (second light beam) has an optical path 1
After passing through 2 and passing through the quarter-wave plate 10, it becomes circularly polarized light and enters the point D 1 of the radiation diffraction grating 17 at an incident angle of −θ i , and is reflected and diffracted. Of the plurality of diffracted lights generated here, the diffracted light of the order +1 (this is the second light flux) advances in the direction of a predetermined angle −θ m and advances to the optical path 14.

【0029】光路14を進んだ第2光束は第1反射手段
16で反射して光路14を逆進し、再び放射回折格子1
7上の点D1 に入射し、2回目の反射回折をする。そし
て、またここで発生する複数の回折光のうち次数+1の
回折光(これを第2光束とする)は光路12に進行し、
1/4波長板10を通過後P偏光となりケスタープリズム
3の偏光ビームスプリッティング膜5を透過して所定の
光路1Cに進行する。このようにして、第1光束は次数
−1の2回回折を受けたS偏光光束として、又第2光束
は次数+1次の2回回折を受けたP偏光光束として所定
の光路1Cに沿って重なって進行する。この第1、第2
光束は、1/2 波長板20により各々偏光方位がP、S偏
光に変換された後、第2の照射手段に入射する。
The second light flux that has traveled along the optical path 14 is reflected by the first reflecting means 16 and travels backward through the optical path 14, and again the radiation diffraction grating 1
It is incident on the point D 1 on 7 and the second reflection diffraction is performed. Then, of the plurality of diffracted lights generated here, the diffracted light of the order +1 (this is the second light flux) travels to the optical path 12,
After passing through the quarter-wave plate 10, it becomes P-polarized light, passes through the polarized beam splitting film 5 of the Kester prism 3, and advances to a predetermined optical path 1C. In this way, the first light flux is an S-polarized light flux that has been diffracted twice with the order −1, and the second light flux is a P-polarized light flux that has been diffracted twice with the order + 1st order along the predetermined optical path 1C. Overlap and proceed. This first, second
The luminous flux is converted into P-polarized light and S-polarized light by the half-wave plate 20, and then enters the second irradiation means.

【0030】第2の照射手段ではこれらの光束は第1の
照射手段の場合と同じく、ケスタープリズム(第2光束
分割手段)3’の偏光ビームスプリッティング膜5’で
P、S偏光の2光束に分割され、P偏光光束(第1光
束)は透過し、S偏光光束(第2光束)は反射される。
In the second irradiating means, these light fluxes are converted into two light fluxes of P and S polarization by the polarized beam splitting film 5'of the Kester prism (second light flux splitting means) 3'as in the case of the first irradiating means. The P-polarized light flux (first light flux) is transmitted and the S-polarized light flux (second light flux) is reflected.

【0031】この分割された2光束の内、P偏光光束
(第1光束)は光路11’をとって1/4 波長板9’を通
過後円偏光となり放射回折格子17の点D1 のディスク
回転中心に対して略対称の点D2 に入射角度θi で入射
し、3回目の反射回折をする。ここで発生する複数の回
折光のうち次数−1の回折光(これを第1光束とする)
は予め決められた角度θm の方向に進んで光路13’に
進行する。この時の入射角度θi と回折角度θm の関係
は前述の場合と同じである。
[0031] Among the divided two light beams, P polarized (first light flux) point D 1 of the radiation diffraction grating 17 becomes a passage after yen polarize 'quarter-wave plate 9 by taking the' optical path 11 disk The light is incident on a point D 2 that is substantially symmetrical with respect to the rotation center at an incident angle θ i , and the third diffraction is performed. Diffracted light of order -1 among a plurality of diffracted lights generated here (this is referred to as a first light flux)
Travels in the direction of a predetermined angle θ m and travels to the optical path 13 ′. The relationship between the incident angle θ i and the diffraction angle θ m at this time is the same as in the above case.

【0032】光路13’を進んだ第1光束は第2反射手
段15’で反射して光路13’を逆進し、再び放射回折
格子17上の点D2 に入射し、4回目の反射回折をす
る。そして、またここで発生する複数の回折光のうち次
数−1の回折光(これを第1光束とする)は光路11’
に進行し、 1/4波長板9’を通過後S偏光となりケスタ
ープリズム3’の偏光ビームスプリッティング膜5’で
反射して所定の光路1Mに進行する。
The first light beam traveling through the optical path 13 'is reflected by the second reflecting means 15', travels backward through the optical path 13 ', enters the point D 2 on the radiation diffraction grating 17 again, and is reflected and diffracted for the fourth time. do. Then, of the plurality of diffracted lights generated here, the diffracted light of the order −1 (this is the first light flux) is the optical path 11 ′.
After passing through the quarter-wave plate 9 ', it becomes S-polarized light and is reflected by the polarization beam splitting film 5'of the Kester prism 3'and travels to a predetermined optical path 1M.

【0033】他方のS偏光光束(第2光束)は、光路1
2’をとって1/4 波長板10’を通過後円偏光となり放
射回折格子17上の点D2 に入射角度−θi で入射し、
3回目の反射回折をする。ここで発生する複数の回折光
のうち次数+1の回折光(これを第2光束とする)は予
め決められた角度−θm の方向に進んで光路14’に進
行する。
The other S-polarized light beam (second light beam) has an optical path 1
After taking 2 ′ and passing through the 1/4 wavelength plate 10 ′, it becomes circularly polarized light and is incident on a point D 2 on the radiation diffraction grating 17 at an incident angle −θ i ,
Do the third reflection diffraction. Of the plurality of diffracted lights generated here, the diffracted light of order +1 (this is the second light flux) advances in the direction of a predetermined angle −θ m and advances to the optical path 14 ′.

【0034】光路14’を進んだ第2光束は第2反射手
段16’で反射して光路14’を逆進し、再び放射回折
格子17上の点D2 に入射し、4回目の反射回折をす
る。そして、またここで発生する複数の回折光のうち次
数+1の回折光(これを第2光束とする)は光路12’
に進行し、 1/4波長板10’を通過後P偏光となりケス
タープリズム3’の偏光ビームスプリッティング膜5’
を透過して所定の光路1Mに進行する。
The second light flux traveling along the optical path 14 'is reflected by the second reflecting means 16', travels backward through the optical path 14 ', enters the point D 2 on the radiation diffraction grating 17 again, and is reflected and diffracted for the fourth time. do. Then, of the plurality of diffracted light generated here, the diffracted light of order +1 (this is the second light flux) is the optical path 12 '.
The polarized beam splitting film 5'of the Kester prism 3'becomes P-polarized after passing through the 1/4 wavelength plate 10 '.
And travels to a predetermined optical path 1M.

【0035】このようにして、第1光束は次数−1の4
回回折を受けたS偏光光束として、又第2光束は次数+
1次の4回回折を受けたP偏光光束として所定の光路1
Mに沿って重なって進行し、光学系23へ入射する。
In this way, the first luminous flux is 4 of the order -1.
As the S-polarized light beam that has undergone the diffraction, the second light beam has an order +
Predetermined optical path 1 as a P-polarized light beam that has been diffracted four times in the first order
The light beams travel along the line M, and enter the optical system 23.

【0036】そしてこれらの回折光束は1/4 波長板24
を通過することにより、互いに反対方向に回転する円偏
光となるが、この2つの円偏光が重ね合わされて干渉光
束となり或る偏光方位の直線偏光となる。この直線偏光
の光束は非偏光ビームスプリッター25により2つの光
束に分割され、各々の光束は互いの偏光軸を45°傾けて
配置した偏光板26、27を通過した後、夫々センサー
28、29で受光し互いに90°位相がずれた2相の信号
出力を発生させる。
Then, these diffracted light beams are converted into a quarter wave plate 24.
The circularly polarized light beams that rotate in opposite directions by passing through the two circularly polarized light beams are overlapped with each other to form an interference light beam, which becomes linearly polarized light having a certain polarization direction. This linearly polarized light beam is split into two light beams by the non-polarizing beam splitter 25, and each light beam passes through polarizing plates 26 and 27 which are arranged with their polarization axes inclined by 45 °, and then are respectively detected by sensors 28 and 29. It receives light and generates two-phase signal outputs that are 90 ° out of phase with each other.

【0037】そして、ディスク18の回転に応じて1/4
波長板24を通過して形成される直線偏光の偏光方位は
変化し、これによってセンサー28、29には明暗が検
出されてディスク18の回転角が検出できる。又、セン
サー28からの出力とセンサー29からの出力とは互い
に90°位相がずれているので、2相の信号出力からディ
スク18の回転方向を検出することができる。
Then, according to the rotation of the disk 18, it becomes 1/4.
The polarization azimuth of the linearly polarized light formed by passing through the wave plate 24 changes, so that the sensors 28 and 29 detect the brightness and the rotation angle of the disk 18 can be detected. Further, since the output from the sensor 28 and the output from the sensor 29 are out of phase with each other by 90 °, the rotation direction of the disk 18 can be detected from the two-phase signal output.

【0038】図3は、前記の第1光束と第2光束が第1
の照射手段を通過する際に発生する不要回折光の遮断作
用の説明図である。図3(A) において、P偏光光束(第
1光束)が光路11をとって放射回折格子17上の点D
1 に入射して回折する際、次数0の不要回折光が発生し
光路12に進行するが、この不要回折光は1/4 波長板1
0によりS偏光に変換され、ケスタープリズム3の偏光
ビームスプリッティング膜5で反射されるので、所定の
光路1Cに混入することはない。
In FIG. 3, the first light flux and the second light flux are the first light flux.
FIG. 7 is an explanatory diagram of an action of blocking unnecessary diffracted light that occurs when passing through the irradiation means of FIG. In FIG. 3 (A), the P-polarized light beam (first light beam) takes the optical path 11 and passes through the point D on the radiation diffraction grating 17.
When incident on 1 and diffracted, unnecessary diffracted light of order 0 is generated and travels to the optical path 12. This unnecessary diffracted light is generated by the 1/4 wavelength plate 1.
Since it is converted into S-polarized light by 0 and reflected by the polarized beam splitting film 5 of the Kester prism 3, it is not mixed in the predetermined optical path 1C.

【0039】また、P偏光の光束が光路11より点D1
に入射して発生する次数−1の回折光が光路13を往復
し、再び点D1 に入射して回折する際、次数0の不要回
折光が発生する。この不要回折光の方向は光路14と重
なるので、この不要回折光は光路14を往復して、再び
点D1 に入射して複数の反射回折光を発生する。そのう
ち次数+1の不要回折光の方向は光路12と重なるの
で、この不要回折光は光路12を進行するが、これは1/
4 波長板10によりS偏光に変換されケスタープリズム
3の偏光ビームスプリッティング膜5で反射するので、
所定の光路1Cに混入することはない。
Further, the P-polarized light beam passes from the optical path 11 to a point D 1
When the diffracted light of the order −1 generated upon incidence on the optical disk reciprocates in the optical path 13 and is incident on the point D 1 again and is diffracted, unnecessary diffracted light of the order 0 is generated. Since the direction of the unnecessary diffracted light overlaps the optical path 14, the unnecessary diffracted light reciprocates in the optical path 14 and is incident on the point D 1 again to generate a plurality of reflected diffracted lights. Since the direction of the unnecessary diffracted light of order +1 overlaps with the optical path 12, the unnecessary diffracted light travels along the optical path 12, but this is 1 /
4 Since it is converted into S-polarized light by the wavelength plate 10 and reflected by the polarized beam splitting film 5 of the Kester prism 3,
It does not enter the predetermined optical path 1C.

【0040】しかし、図3(B) に示すように、1/4 波長
板30が予め決められた方向の光路上にある場合、前述
した不要回折光はS偏光に変換されず所定の光路1Cに
混入するので、この構成では不要回折光を遮断すること
はできない。
However, as shown in FIG. 3B, when the 1/4 wavelength plate 30 is on the optical path in a predetermined direction, the above-mentioned unnecessary diffracted light is not converted into S-polarized light and the predetermined optical path 1C is obtained. Therefore, it is impossible to block unnecessary diffracted light with this configuration.

【0041】以上のように本実施形態は不要回折光を効
果的に遮断し、夫々4回の回折を受けた第1、第2光束
によって放射回折格子の変位を検出するので、放射回折
格子の1ピッチの変位に対して8回の明暗変化を発生す
ることになり、極めて高精度で変位物体の変位情報を検
出することが出来る。
As described above, in this embodiment, unnecessary diffracted light is effectively blocked, and the displacement of the radiation diffraction grating is detected by the first and second light beams that have been diffracted four times, respectively. Since the light and dark changes are generated eight times with respect to the displacement of one pitch, the displacement information of the displaced object can be detected with extremely high accuracy.

【0042】本実施形態では前記の第1の照射手段で2
回回折した回折光束を光路1Cに沿って中継光学系によ
り第2の照射手段へ導光しているが、その際該中継光学
系は第1の照射手段で照射する点D1 を第2の照射手段
が照射する点D2 へ結像するようにしている(点D1
点D2 が中継光学系に対して共役関係にある)ので、こ
れにより放射回折格子17の外周寄りと内周寄りの光束
同志の波面が一致し、前述の2光束の重ね合わせ状態を
良好にしている。
In this embodiment, the first irradiation means 2 is used.
The diffracted light beam diffracted once is guided along the optical path 1C to the second irradiating means by the relay optical system. At this time, the relay optical system irradiates the point D 1 irradiated by the first irradiating means to the second irradiation means. Since an image is formed on the point D 2 irradiated by the irradiation means (the points D 1 and D 2 are in a conjugate relationship with the relay optical system), the outer peripheral portion and the inner peripheral portion of the radiation diffraction grating 17 are thereby set. The wavefronts of the light beams closer to each other coincide with each other, and the above-mentioned superposed state of the two light beams is improved.

【0043】また、集光光学系の焦点面近傍に反射面を
設けた第1反射手段15、16、第2反射手段15’、
16’を用いているので、環境温度変化による波長変動
やディスクの取り付け偏心による回折方向の変化が生じ
ても、前述の光路1C、光路1Mで2光束を略一致させ
て進行させることができるので、これにより干渉信号の
コントラストが低下するのを防ぎ、良好な干渉信号を得
ることができる。
Further, the first reflecting means 15 and 16 and the second reflecting means 15 ', which are provided with reflecting surfaces near the focal plane of the condensing optical system,
Since 16 'is used, even if the wavelength change due to the environmental temperature change or the change in the diffraction direction due to the eccentricity of the mounting of the disk occurs, the two light fluxes can be made to substantially match in the optical paths 1C and 1M and proceed. As a result, it is possible to prevent the contrast of the interference signal from decreasing and obtain a good interference signal.

【0044】そしてまた、前述の第1反射手段,第2反
射手段を第1光束及び第2光束の各々に対して独立に設
けているので、2光束の光路長差を補正して干渉信号の
コントラストが低下するのを防ぎ、良好な干渉信号を得
ることができる。
Further, since the above-mentioned first reflecting means and second reflecting means are provided independently for each of the first light flux and the second light flux, the difference in optical path length between the two light fluxes is corrected and the interference signal It is possible to prevent a decrease in contrast and obtain a good interference signal.

【0045】なお、以上の実施形態はロータリーエンコ
ーダの実施形態であったが、リニアエンコーダにおいて
も移動物体上に直線状の回折格子を設け、1つの筐体中
に基本的に実施形態1と同じ要素を設置して第1の照射
手段と第2の照射手段によって該回折格子上で所定距離
隔たった点D1 と点D2 を照射して夫々4回の回折を受
けた第1光束と第2光束を得、この2つの光束を干渉手
段で干渉させて受光手段で受光することにより該移動物
体の変位情報を高精度に検出することができる。
Although the above embodiment is the embodiment of the rotary encoder, the linear encoder is also provided with the linear diffraction grating on the moving object and is basically the same as the first embodiment in one housing. An element is installed to irradiate a point D 1 and a point D 2 which are separated by a predetermined distance on the diffraction grating by the first irradiating means and the second irradiating means. The displacement information of the moving object can be detected with high accuracy by obtaining two light fluxes and causing the two light fluxes to interfere with each other by the interference means and received by the light receiving means.

【0046】[0046]

【発明の効果】本発明は以上の構成により、可干渉性光
束を変位物体に設けた回折格子に照射し、それによって
得られる干渉信号から変位物体の変位量を検出する「検
出ユニット」と「ディスク」を分離して構成する組み込
みタイプの光学式変位測定装置において、環境温度の変
動による光源からの光束の波長変動があってもまた検出
ユニットとディスクの相対位置関係に誤差があっても、
良好なる干渉状態及び測定精度が得られ、変位物体の変
位量を高分解能で測定する光学式変位測定装置を達成す
る。
According to the present invention having the above-mentioned structure, a "detection unit" and a "detection unit" for irradiating a diffraction grating provided on a displacement object with a coherent light beam and detecting the displacement amount of the displacement object from an interference signal obtained thereby. In the built-in type optical displacement measuring device that is configured by separating the `` disc '', even if there is a wavelength variation of the light flux from the light source due to a variation of the environmental temperature, or there is an error in the relative positional relationship between the detection unit and the disc,
(EN) An optical displacement measuring device capable of obtaining a good interference state and measuring accuracy and measuring a displacement amount of a displaced object with high resolution.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の光学式変位測定装置の実施形態の要
部概略図(平面図)
FIG. 1 is a schematic view (plan view) of a main part of an embodiment of an optical displacement measuring device of the present invention.

【図2】 本発明の光学式変位測定装置の実施形態の要
部概略図(側面図)
FIG. 2 is a schematic view of a main part (side view) of an embodiment of an optical displacement measuring device of the present invention.

【図3】 実施形態における不要回折光の遮断作用の説
明図
FIG. 3 is an explanatory diagram of an action of blocking unnecessary diffracted light in the embodiment.

【図4】 従来例の光学式変位測定装置の要部概略図FIG. 4 is a schematic view of a main part of a conventional optical displacement measuring device.

【符号の説明】[Explanation of symbols]

1 光源(半導体レーザ) 1C、1M 所定の光路 2 コリメータレンズ 3、3’ 第1、第2光束分割手段(ケスタープリズ
ム) 5、5’ 偏光ビームスプリッティング膜 7、7’ ミラー 9、9’ 1/4 波長板 10、10’ 1/4 波長板 11、12、13、14、11’、12’、13’、1
4’ 光路 15、16 第1反射手段 15’、16’第2反射手段 17 放射回折格子 18 ディスク 19、19’ ミラー 20 1/2 波長板 21、21’ レンズ 23 光学系 24 1/4 波長板(干渉手段) 25 非偏光ビームスプリッター 26、27 偏光板 28、29 センサー 30 1/4 波長板
DESCRIPTION OF SYMBOLS 1 Light source (semiconductor laser) 1C, 1M Predetermined optical path 2 Collimator lens 3, 3 ′ First and second light beam splitting means (Kester prism) 5, 5 ′ Polarized beam splitting film 7, 7 ′ Mirror 9, 9 ′ 1 / 4 wave plates 10, 10 '1/4 wave plates 11, 12, 13, 14, 11', 12 ', 13', 1
4'optical path 15, 16 first reflecting means 15 ', 16' second reflecting means 17 radiation diffraction grating 18 disks 19, 19 'mirror 20 1/2 wave plate 21, 21' lens 23 optical system 24 1/4 wave plate (Interference means) 25 Non-polarizing beam splitter 26, 27 Polarizing plate 28, 29 Sensor 30 1/4 wavelength plate

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01B 11/00 - 11/30 G01D 5/26 - 5/38 Front page continued (58) Fields surveyed (Int.Cl. 7 , DB name) G01B 11/00-11/30 G01D 5/26-5/38

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 光源手段からの光束を第1光束分割手段
で第1、第2光束の2つに分離して回転しているディス
ク上の放射回折格子上の点D1に入射させ、 該点D1からの第1、第2光束に基づく所定次数の2つ
の回折光を夫々集光光学系とその焦点面近傍に反射面を
有し入射方向と同一の方向に入射光束を反射する作用を
持つ第1反射手段を介して再度点D1に入射させ、 該点D1からの第1、第2光束に基づく所定次数の2つ
の回折光を該第1光束分割手段で重ね合わせた後、 中継光学系を介して第2光束分割手段に入射させて第
1、第2光束に基づく2つの回折光に分離して該放射回
折格子上の該点D1と前記ディスクの回転中心に対して
略点対称の位置で且つ前記中継光学系に対して共役関係
にある点D2に入射させ、 該点D2で回折した第1、第2光束に基づく所定次数の
2つの回折光を夫々集光光学系とその焦点面近傍に反射
面を有し入射方向と同一の方向に入射光束を反射する作
用を持つ第2反射手段を介して再度点D2に入射させ、
該点D2からの第1、第2光束に基づく所定次数の2つ
の回折光を該第2光束分割手段で重ね合わせた後、 干渉手段により該第1光束と第2光束を干渉させて干渉
光束を形成し、該干渉光束を受光手段が受光することに
より該ディスクの回転情報を検出していることを特徴と
する光学式変位測定装置。
1. A light flux from a light source means is split into a first light flux and a second light flux by a first light flux splitting means and is made incident on a point D1 on a radiation diffraction grating on a rotating disk, Two diffracted lights of a predetermined order based on the first and second light beams from D1 are respectively provided with a converging optical system and a reflecting surface in the vicinity of its focal plane.
Has the function of reflecting the incident light beam in the same direction as the incident direction.
The first is incident again point D1 through the reflection means having, after superposing the first from the point D1, the two diffracted light of a predetermined order based on the second light flux by the first beam splitter, a relay optical It is incident on the second beam splitting means through the system to be separated into two diffracted beams based on the first and second beams, with respect to the point D1 on the radiation diffraction grating and the rotation center of the disc.
Conjugate relation with respect to the relay optical system at a position of substantially point symmetry
At a point D2, and two diffracted lights of a predetermined order based on the first and second light beams diffracted at the point D2 are reflected to the focusing optical system and the vicinity of its focal plane, respectively.
It has a surface and reflects the incident light beam in the same direction as the incident direction.
Incident again on the point D2 via the second reflecting means having
After the two diffracted lights of a predetermined order based on the first and second light fluxes from the point D2 are superposed by the second light flux splitting means, the interference light flux is caused to interfere with the first light flux and the second light flux. And the rotation information of the disk is detected by the light receiving means receiving the interference light beam.
【請求項2】 前記光源手段、前記第1及び第2光束分
割手段、前記第1及び第2反射手段、前記中継光学系、
前記干渉手段、前記受光手段を1つの筐体内に収納して
ユニットを構成していることを特徴とする請求項1記載
の光学式変位測定装置。
2. The light source means, the first and second light beam splitting means, the first and second reflecting means, the relay optical system,
The optical displacement measuring device according to claim 1 , wherein the interfering means and the light receiving means are housed in one housing to form a unit.
【請求項3】3. 前記第1光束分割手段は偏光ビームスプThe first beam splitting means is a polarized beam sp
リッティング膜を有し、前記偏光ビームスプリッティンA polarizing beam splitting device having a litting film.
グ膜に対して第1の光束は透過、第2の光束は反射するThe first light flux is transmitted and the second light flux is reflected by the coating film.
ことを特徴とする請求項1または2の光学式変位測定装The optical displacement measuring device according to claim 1 or 2, characterized in that
置。Place
【請求項4】4. 前記第2光束分割手段は偏光ビームスプThe second beam splitting means is a polarization beam splitter.
リッティング膜を有し、前記偏光ビームスプリッティンA polarizing beam splitting device having a litting film.
グ膜に対して第1の光束は透過、第2の光束The first light beam is transmitted through the second film and the second light beam は反射するIs reflective
ことを特徴とする請求項1または2の光学式変位測定装The optical displacement measuring device according to claim 1 or 2, characterized in that
置。Place
JP01838496A 1996-01-08 1996-01-08 Optical displacement measuring device Expired - Fee Related JP3517506B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01838496A JP3517506B2 (en) 1996-01-08 1996-01-08 Optical displacement measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01838496A JP3517506B2 (en) 1996-01-08 1996-01-08 Optical displacement measuring device

Publications (2)

Publication Number Publication Date
JPH09189516A JPH09189516A (en) 1997-07-22
JP3517506B2 true JP3517506B2 (en) 2004-04-12

Family

ID=11970230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01838496A Expired - Fee Related JP3517506B2 (en) 1996-01-08 1996-01-08 Optical displacement measuring device

Country Status (1)

Country Link
JP (1) JP3517506B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6285661B2 (en) * 2013-08-09 2018-02-28 キヤノン株式会社 Interference measurement device

Also Published As

Publication number Publication date
JPH09189516A (en) 1997-07-22

Similar Documents

Publication Publication Date Title
US4979826A (en) Displacement measuring apparatus
US4868385A (en) Rotating state detection apparatus using a plurality of light beams
JPH073344B2 (en) Encoder
US5000542A (en) Optical type encoder
JP2004144581A (en) Displacement detecting apparatus
JP3495783B2 (en) Encoder
US5017777A (en) Diffracted beam encoder
JPH046884B2 (en)
JP3517506B2 (en) Optical displacement measuring device
JP2650645B2 (en) Optical device
JPS62200225A (en) rotary encoder
JP2003097975A (en) Rotary encoder origin detection device and rotation information measurement device
JPH07117426B2 (en) Optical encoder
JPH0462003B2 (en)
JPH02298804A (en) Interferometer
JPH0462004B2 (en)
JPH07119626B2 (en) Rotary encoder
JP2683098B2 (en) encoder
JP2600783B2 (en) Optical device
JP2629606B2 (en) encoder
JPH07119623B2 (en) Displacement measuring device
JPS61130816A (en) linear encoder
JPS62200223A (en) encoder
JPH0545164B2 (en)
JPH0478925B2 (en)

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040126

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090130

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090130

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100130

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110130

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees