JP4127664B2 - Method for adjusting development processing apparatus - Google Patents
Method for adjusting development processing apparatus Download PDFInfo
- Publication number
- JP4127664B2 JP4127664B2 JP2003188496A JP2003188496A JP4127664B2 JP 4127664 B2 JP4127664 B2 JP 4127664B2 JP 2003188496 A JP2003188496 A JP 2003188496A JP 2003188496 A JP2003188496 A JP 2003188496A JP 4127664 B2 JP4127664 B2 JP 4127664B2
- Authority
- JP
- Japan
- Prior art keywords
- exposure amount
- exposure
- development processing
- monitor pattern
- amount monitor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/26—Processing photosensitive materials; Apparatus therefor
- G03F7/40—Treatment after imagewise removal, e.g. baking
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70483—Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
- G03F7/70491—Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
- G03F7/70516—Calibration of components of the microlithographic apparatus, e.g. light sources, addressable masks or detectors
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70483—Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
- G03F7/70605—Workpiece metrology
- G03F7/70681—Metrology strategies
- G03F7/70683—Mark designs
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70483—Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
- G03F7/70605—Workpiece metrology
- G03F7/706843—Metrology apparatus
- G03F7/706851—Detection branch, e.g. detector arrangements, polarisation control, wavelength control or dark/bright field detection
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/708—Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
- G03F7/70858—Environment aspects, e.g. pressure of beam-path gas, temperature
- G03F7/70866—Environment aspects, e.g. pressure of beam-path gas, temperature of mask or workpiece
- G03F7/70875—Temperature, e.g. temperature control of masks or workpieces via control of stage temperature
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67098—Apparatus for thermal treatment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67242—Apparatus for monitoring, sorting or marking
- H01L21/67248—Temperature monitoring
Landscapes
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Health & Medical Sciences (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Atmospheric Sciences (AREA)
- Public Health (AREA)
- Epidemiology (AREA)
- Environmental & Geological Engineering (AREA)
- Toxicology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Photosensitive Polymer And Photoresist Processing (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、感光性樹脂膜の現像処理に用いられる現像処理装置の調整方法に関する。
【0002】
【従来の技術】
半導体集積回路の製造におけるフォトリソグラフィー工程では、パターン露光を行うため、露光装置にて所望パターンの形成されたマスクを介して、ウェハ上に形成されたレジスト膜に前記所望パターンを転写して行われる。
【0003】
パターンの微細化の要求から、露光波長の短波長化、及び、投影レンズの高NA化がなされており、それと同時にプロセスの改善が同時に行われてきた。しかしながら、近年のデバイスパターンの微細化要求はさらに厳しく、露光量裕度や焦点深度のプロセスマージンを十分に得ることが難しく、歩留まりの減少を引き起こしていた。
【0004】
少ないプロセスマージンで光リソグラフィを行うためには、プロセスマージンを消費する誤差の精密な分析と誤差配分(エラーバジェット)が重要視されてきている。例えば、ウェハ上に多数のチップを同じ設定露光量で露光したつもりでも、レジストの感度変化、PEB(Post Exposure Bake)、現像のウェハ面内の不均一性、レジストのウェハ面内膜厚変動などが原因となって、実効的な適正露光量がばらつき、そのために歩留まりの低下を引き起こしていた。そのために、少ないプロセスマージンを有効に使用し、歩留まりの低下を防ぐために、より高精度の露光量、及び、フォーカスをモニタしてフィードバック、または、フィードフォワードする露光量、及び、フォーカスの制御方法が求められると同時に、各プロセスユニット毎に、プロセスマージンを消費する誤差要因の精密な分析を行い、その分析結果を基に、主要な誤差要因の改善を施す必要もある。
【0005】
フォーカスに依存しない実効的な露光量を測定し、測定された露光量に基づいてロット間の露光量変動を抑制する技術が開示されている(特許文献1)。
【0006】
【特許文献1】
特開2002−299205
【0007】
【発明が解決しようとする課題】
現在、装置の稼働効率を向上させるために、複数の加熱処理装置を用いて露光処理後の加熱処理が行われる。設定温度と実際の加熱温度とは装置毎に異なる。加熱処理装置毎に加熱温度が異なるので、一つの装置を校正しただけでは、全体の歩留まりを向上させることができないという問題があった。
【0008】
また、面内の温度均一性を向上させるために複数の熱源を有する加熱処理装置がある。この加熱処理装置では、設定温度と実際の加熱温度とは熱源毎に異なる。熱源処理装置毎に加熱温度が異なるので、一つの熱源を校正しただけでは、全体の歩留まりを向上させることができないという問題があった。
【0009】
また、露光後加熱処理の温度ムラ、現像処理時の現像ムラにより、パターンが変動する。パターンの変動を抑制するためには、温度ムラ及び現像ムラの両方を抑制すればよい。しかし、二つの制御を行うパラメータを求めるには時間がかかるという問題があった。
【0012】
本発明の目的は、露光後加熱処理の温度分布、現像処理時の現像ムラを現像処理で一括して補正し、調整時間の短縮化を得る現像処理装置の調整方法を提供することにある。
【0013】
【課題を解決するための手段】
本発明は、上記目的を達成するために以下のように構成されている。
【0016】
本発明の一例に係わる現像処理装置の調整方法は、基板上に感光性樹脂膜を形成する工程と、前記感光性樹脂膜に転写された露光量モニタパターンの状態により前記感光性樹脂膜が得た実効的な露光量をモニタするための露光量モニタマークが配置された露光マスクを用意する工程と、所定の設定露光量で前記露光量モニタマークを前記感光性樹脂膜の複数の位置に転写し、複数の露光量モニタパターンを形成する工程と、前記露光量モニタパターンが形成された基板を複数の設定温度で加熱処理を行う工程と、加熱処理された基板に冷却処理を行う工程と、前記冷却処理後に各露光量モニタパターンの状態を測定する工程と、現像処理条件としての制御パラメータを可変可能な現像処理装置を用いて、前記感光性樹脂膜の現像処理を前記制御パラメータを変えて行う工程と、前記現像処理後に各露光量モニタパターンの状態を測定する工程と、前記加熱処理後の各露光量モニタパターンの状態、現像処理後の各露光量モニタパターンの状態から前記現像処理装置の制御パラメータを算出する工程と、算出された制御パラメータに応じて前記現像処理装置の制御パラメータを変更する工程と、を含む現像処理装置の調整方法であって、前記制御パラメータを変更する工程として、予め加熱処理時の加熱温度と前記冷却処理後で前記現像処理前の露光量モニタパターンの寸法との第1の関係を求め、予め加熱処理時の加熱温度と、前記現像処理装置の制御パラメータと、前記現像処理後の露光量モニタパターンの寸法との第2の関係を求め、前記制御パラメータの算出時、前記冷却処理後で前記現像処理前に測定された各露光量モニタパターンの寸法と前記第1の関係から加熱温度の分布を求め、前記求められた加熱温度の分布と、前記現像処理後に測定された各露光量モニタパターンの寸法と、前記第2の関係とから前記基板の1枚当たりの複数の制御パラメータの分布を求め、求められた制御パラメータの分布が均一となるようにすることを特徴とする。
【0020】
【発明の実施の形態】
本発明の実施の形態を以下に図面を参照して説明する。
【0021】
(第1の実施形態)
図1は、本発明の第1の実施形態に係わる加熱処理装置の校正方法の手順を示すフローチャートである。
まず、基板上にフォトレジスト膜を塗布形成した後(S101)、露光前加熱を行う(S102)。次に、図2に示すフォトマスクを用意する。フォトマスク100には、実効的なレジスト感度をモニタするための露光量モニタマーク200が形成されている。露光量モニタマーク200は、フォーカス位置に依存せず露光量のみに依存してレジストにパターンを形成するマークである。露光量モニタマークは、デバイスパターンが形成されたデバイス領域の周囲のダイシング領域に形成されている。
【0022】
図3に示すように、露光量モニタマーク200は、透光部201と遮光部202とが露光装置で解像しない幅pのブロック内に配列されている。複数のブロックが、ブロック内の透光部201と遮光部202との配列方向に、連続的に配列されている。そして、前記配列方向では、ブロック内の透光部201と遮光部202とのデューティー比が単調に変化している。なお、複数のブロックが断続的に配列されていても良い。
【0023】
実効的な露光量をモニタしたいマスクが、開口数NA、コヒーレントファクターσ、露光波長λの露光装置にセットされた場合を考える。この装置で解像しないブロックの幅p(ウェハ上寸法)の条件は、回折理論より、
λ/p≧(1+σ)NA (1)
となる。
【0024】
上記モニタマークの周期を式(1)の条件に設定することにより、露光量モニタマークにおける回折光(1次以上の回折光)は投影レンズの瞳に入らず、直進光(0次回折光)のみが瞳に入るようになる。上記条件を満たすことによって、モニタマークのパターンは解像限界以下となる。そして、露光量モニタマークのパターンが解像限界以下のピッチであると、そのパターンは解像されず、開口比に応じてウェハ面上に到達する露光量が異なったフラット露光となる。このため、露光装置の設定露光量が同じでも開口比に応じて実効的な露光量が変化する。この場合の露光量は、露光量モニタマークのパターンが解像しないため、フォーカス変動の影響を完全に取り除くことができる。
【0025】
使用する露光条件が、露光波長λ=248nm,NA=0.68,σ=0.75であることを考慮して、モニタマークの周期をマスクパターンにおける回折光(1次以上の回折光)は投影レンズの瞳に入らず、直進光(0次回折光)のみが瞳に入る条件である式(1)を満たすよう、ウェハ換算寸法で0.2μmを用いた。
【0026】
図4には図3に示した露光量モニタマークをフォトレジスト膜に転写した際に得られるウェハ面上での強度分布を示した。ウェハ面上には、モニタマークで回折された0次回折光のみが照射されるため、像強度分布は透過部の面積の2乗に比例した分布となる。従って、このマスクを用いて、露光後の加熱、冷却を行うと、フォトレジスト膜には露光量モニタマークの潜像(露光量モニタパターン)が形成され、図5に示すような膜厚分布となる。このパターンを光学式の線幅測長装置で測定することにより、加熱処理後の実効的な露光量を得ることができる。また、現像処理後には、フォトレジスト膜は図6に示すような膜厚分布となる。このパターンを光学式の線幅測長装置で測定することにより、現像処理後の実効的な露光量を得ることができる。
【0027】
図2に示したフォトマスクを用いて、所定の露光量で基板上に形成されたフォトレジスト膜に露光量モニタマークを転写し、露光量モニタパターンを形成する(ステップS103)。
【0028】
上記条件で、各加熱処理装置毎に、図1のフローチャートを用いてPEB設定温度を振ったサンプルを作成する(ステップS104)。冷却した後(ステップS105)、現像を行う(ステップS106)。加熱処理後の、冷却処理及び現像処理の条件は各サンプルで同一とする。
【0029】
各サンプルの露光量モニタパターンの長さを測定する(ステップS107)。そして、各加熱処理装置のPEB設定温度とパターンの長さ(実効露光量)D.M(μm)との関係を求める(ステップS108)。図7には各加熱処理装置A〜Eの設定温度とパターン長D.Mの相関グラフを示した。このグラフから近似式を求め、それに基づき実効露光量が同一(パターン長D.Mが同一)になる最適な温度を算出し、各装置の最適な設定温度を求める(ステップS109)。算出された設定温度から各加熱処理装置の設定温度の校正を行う(ステップS110)。
【0030】
表1には校正前と校正後の露光量モニタパターンの長さ“D.M”、クリティカルディメンジョン“CD”、並びに校正前の予想温度を示す。
【0031】
【表1】
【0032】
表2に、露光量モニタパターンの長さの最大値と最小値の差“ΔD.M”、クリティカルディメンジョンの最大値と最小値の差“ΔCD”、予想温度の最大値と最小値の差“Δ予想温度”を示す。
【0033】
【表2】
【0034】
表2に示すように、実効露光量(D.M)、クリティカルディメンジョン共に加熱処理装置間差が校正されている事を確認した。
【0035】
本実施形態によれば、加熱処理装置間の温度が異なることにより感光性樹脂膜が得た実効的な露光量が装置間で変動することを抑制することができる。そして、校正後の装置を用いて半導体装置を製造することにより歩留まりの向上を得ることができる。
【0036】
露光量モニタマークを用いた適用例を一例示したが、露光後の上記パターンの測長手段は光学顕微鏡や光学式の線幅測長装置だけに限定されるものではなく、合わせずれ検査装置やSEMやAFMなど、また、光学式の線幅測長の手段においても、位相差法や微分干渉法、多波長の光源で計測する方法など、種々適用可能である。また、露光装置自体に内蔵された合わせ位置ずれ検査機能や線幅測長機能等を用いることも可能である。
【0037】
(第2の実施形態)
本実施形態では、加熱処理装置に熱源が複数存在する場合の、基板面内バラツキの校正評価方法の一例を示す。
【0038】
本実施形態では、図8に示す複数の熱源301,302,303を有する加熱処理装置を用いた場合に、基板面内の実効露光量のバラツキを校正する方法を説明する。図9は、本発明の第2の実施形態に係わる加熱処理装置の校正方法の手順を示すフローチャートである。
【0039】
第1の実施形態と同様に、レジスト塗布(ステップS101)、露光前加熱(ステップS102)、露光(ステップS103)を行う。図10に示すように、露光時、各熱源301,302,303に位置に対応する位置のレジスト膜に露光量モニタパターンを含む311,312,313を形成する。
【0040】
図9のフローを用いてPEB設定温度を振った複数のサンプルを作成する(ステップS204)。その後、冷却処理(ステップS105)、現像処理(ステップS106)を行う。各パターン311,312,313に含まれる露光量モニタパターンの長さを測定する(ステップS107)。
【0041】
そして、各熱源のPEB設定温度とパターンの長さ(実効露光量)との関係を求める(ステップS208)。各熱源について、求められた関係に基づいて実効露光量が同一(パターン長が同一)になる最適な温度を算出し、各熱源の最適な設定温度を求める(ステップS209)、算出された値から各熱源の設定温度の校正を行う(ステップS210)。
【0042】
表3には校正前と校正後の露光量モニタパターンの長さ“D.M”、クリティカルディメンジョン“CD”、並びに校正前の予想温度を示す。
【0043】
【表3】
【0044】
表4に、露光量モニタパターンの長さの最大値と最小値の差ΔD.M、クリティカルディメンジョンの最大値と最小値の差ΔCD、予想温度の最大値と最小値の差“Δ予想温度”を示す。
【0045】
【表4】
【0046】
表4に示すように、実効露光量(D.M)、クリティカルディメンジョンと共に熱源間差が校正されている事を確認した。
【0047】
本実施形態によれば、加熱処理装置の各熱源間の温度が異なることにより感光性樹脂膜が得た実効的な露光量が各熱源間で変動することを抑制することができる。そして、校正後の装置を用いて半導体装置を製造することにより歩留まりの向上を得ることができる。
【0048】
露光量モニタマークを用いた適用例を一例示したが、露光後の上記パターンの測長手段は光学顕微鏡や光学式の線幅測長装置だけに限定されるものではなく、合わせずれ検査装置やSEMやAFMなど、また、光学式の線幅測長の手段においても、位相差法や微分干渉法、多波長の光源で計測する方法など、種々適用可能である。また、露光装置自体に内蔵された合わせ位置ずれ検査機能や線幅測長機能等を用いることも可能である。
【0049】
(第3の実施形態)
本実施形態では、現像処理装置の調整を行う方法を説明する。
フォトレジスト膜塗布、露光前加熱処理、露光、PEB処理、冷却処理を行ったサンプルを用意する。PEB処理時設定温度を振って複数のサンプルを測定する。冷却処理後に露光量モニタパターンの寸法(DMPEB:実効露光量)を光学式の線幅測長装置で測定する。測定結果を図11に示す。これより、PEB温度T(℃)とパターンの寸法DMPEB(μm)の関係は、下記の式で表されることがわかった。
【0050】
DMPEB=−0.125T+41.2 (2)
図12に示した現像処理装置を用意する。図12は、本発明の第3の実施形態に係わる現像処理装置の構成を示す図である。図12(a)は平面図、図12(b)は断面図である。現像装置は、基板400に対して現像液402を吐出するノズル401を有する。ノズル401の長手方向の長さは基板の直径以上の長さである。現像液402を吐出している状態でノズル401を塗布開始位置Psから塗布終了位置Peにかけて移動させて、基板400上に現像液402を供給する。PEB温度が振られたサンプルに対してノズル401と基板400との距離Dgapを振る。
【0051】
現像処理後に露光量モニタマークの寸法(DMDEV:実効露光量)を光学式の線幅測長装置で測定する。測定結果を図13に示す。これより、PEB温度(T)、現像ノズルと基板との距離(Dgap)と実効露光量(DMPEB)の関係は、下記の式で表されることがわかった。
【0052】
DMDEV=−0.125T+0.5Dgap+30.7 (3)
図14のフローチャートを用いて本願の現像処理装置の調整方法を説明する。図14は、本発明の第3の実施形態に係わ現像処理装置の調整方法の手順を示すフローチャートである。
先ず、レジスト膜の塗布(ステップS301)、露光前の加熱処理(ステップS302)を行う。図2に示したマスクに形成された露光量モニタマークを、露光量モニタパターンをx、y方向とも30mmピッチでレジスト膜に転写し、露光量モニタパターンの潜像を形成する(ステップS303)。PEB設定温度を振ってPEB処理を行った複数のサンプルを作成する(ステップS304)。PEB処理後、基板の冷却処理を行う(ステップS305)
冷却処理後に露光量モニタパターンの寸法を計測する(ステップS306)。したところ、冷却処理後の露光量モニタパターン寸法は、図15のようになり、分布をプロットすると、図16に示すように同心円の分布となった。式(2)により、面内の温度分布は図17のように算出された。
【0053】
さらに、この基板に対して、現像処理を行い(ステップS307)、各露光量モニタパターンの寸法を計測する(ステップS308)。現像処理後の露光量モニタパターン寸法は、図18に示すようになり、分布をプロットすると図19の平面図に示すようになった。図17と図18の値を式(3)に代入して現像ノズルと基板との距離(gap)を求めたところ、図20に示すようになった。これより、面内の分布が図21に示すようになった。このような分布になったのは、ここで用いた現像方法が、直線状の現像ノズルを基板の−x方向から+x方向に走査させながら現像液を供給する方法で、ノズルと基板との距離が同じに調整できていなかったためであると判定し、距離が1mmとなるように調整した(ステップS309,S310)。
【0054】
本実施例では、加熱処理後と現像処理後の露光量モニタマークの測定結果から現像処理装置の調整を行ったが、図22のフローチャートに示すように、現像処理後の測定結果だけから調整することも可能である。例えば直線状のノズルから現像液を吐出しながらをウェハの一端から他端に走査させ、現像液を供給するような現像方法では、実効露光量分布を、ノズルの同一位置における走査線上の算出した実効露光量を平均することで求めることが望ましい。図19に示したパターン長DMDEV(露光量)分布を、ノズルのある位置が走査した線上の露光量モニタパターン長DMDEVの平均値を求めると、図23に示すようになる。この露光量分布がなるべく一定になるように、ノズルからの吐出量分布を調整するか、ギャップを調整すればよい。
【0055】
また、図24に示すように直線状のノズルから現像液を吐出しながらウェハを回転させることで現像液を供給するような現像方法でも、実効露光量分布を、ノズルの同一位置における走査線上(同心円上)の算出した実効露光量を平均することで求めることが望ましい。図19に示した露光量分布を、走査線上(同心円上)で平均すると、図25に示すようになる。この露光量分布がなるべく一定になるように、ノズルからの吐出量分布を調整するか、ギャップを調整すればよい。
【0056】
これら手法はノズル長手方向の流量分布を均一であるかを調べるノズルの評価方法にも適用可能である。
【0057】
図13、図24で示した現像処理装置の調整は、複数の装置の装置間差の調整にも適用可能である。この場合は、実効露光量の分布を求めるのではなく、それぞれの処理装置の実効露光量の平均値を求めておいて、各処理装置の実効露光量の平均値が等しくなるように、ノズルからの吐出量、ギャップ、現像液温度、雰囲気温度等を調整すればよい。
本実施形態によれば、露光後加熱処理の温度分布、現像処理時の現像ムラを現像処理で一括して補正し、調整時間の短縮化を得る。
【0058】
なお、本発明は、上記各実施形態に限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で種々に変形することが可能である。更に、上記実施形態には種々の段階の発明が含まれており、開示される複数の構成要件における適宜な組み合わせにより種々の発明が抽出され得る。例えば、実施形態に示される全構成要件から幾つかの構成要件が削除されても、発明が解決しようとする課題の欄で述べた課題の少なくとも1つが解決でき、発明の効果の欄で述べられている効果の少なくとも1つが得られる場合には、この構成要件が削除された構成が発明として抽出され得る。
【0059】
【発明の効果】
以上説明したように本発明によれば、装置間の温度が異なることにより感光性樹脂膜が得た実効的な露光量が装置間で変動することを抑制し、歩留まりの向上を図り得る。
熱源間の温度が異なることにより感光性樹脂膜が得た実効的な露光量が熱源間で変動することを抑制し、歩留まりの向上を図り得る。
露光後加熱処理の温度分布、現像処理時の現像ムラを現像処理で一括して補正し得る。
【図面の簡単な説明】
【図1】 第1の実施形態に係わる加熱処理装置の校正方法の手順を示すフローチャート。
【図2】 第1の実施形態に係わるフォトマスクの構成を示す平面図。
【図3】 第1の実施形態に係わる露光量モニタマークの構成を示す平面図。
【図4】 図3に示した露光量モニタマークをフォトレジスト膜に転写した際に得られるウェハ面上での強度分布を示す図。
【図5】 加熱、冷却処理後のフォトレジスト膜の膜厚分布を示す図。
【図6】 現像処理後のフォトレジスト膜の膜厚分布を示す図。
【図7】 各加熱処理装置A〜Eの設定温度とパターン長D.Mの相関グラフを示す図。
【図8】 第2の実施形態に係わるか熱処理装置の構成を示す図。
【図9】 第2の実施形態に係わる加熱処理装置の校正方法の手順を示すフローチャート。
【図10】 熱源と露光量モニタパターンの位置の関係を示す図。
【図11】 冷却処理後の露光量モニタパターンの寸法DMPEBとPEB温度の関係を示す図。
【図12】 第3の実施形態に係わる現像処理装置の構成を示す図。
【図13】 現像処理後のPEB温度と露光量モニタパターンの寸法DMDEVとの関係のギャップ依存性を示す図。
【図14】 第3の実施形態に係わる現像処理装置の調整方法の手順を示すフローチャート。
【図15】 加熱処理後の露光量モニタパターンの寸法DMPEBの分布を示す図。
【図16】 加熱処理後の露光量モニタパターンの寸法DMPEBの分布を示す平面図。
【図17】 加熱処理後の温度の分布を示す平面図。
【図18】 現像処理後の露光量モニタパターンの寸法DMDEVの分布を示す図。
【図19】 現像処理後の露光量モニタパターンの寸法DMDEVの分布を示す平面図。
【図20】 基板表面とノズルとのギャップの分布を示す図。
【図21】 基板表面とノズルとのギャップの分布を示す平面図。
【図22】 第3の実施形態に係わる校正方法の手順を示すフローチャート。
【図23】 ノズルのある位置が走査した線上の露光量モニタパターン長DMDEVの平均値の分布を示す図。
【図24】 第3の実施形態に係わる現像処理装置の構成を示す図。
【図25】 ノズルのある位置が走査した線上の露光量モニタパターン長DMDEVの平均値の分布を示す図。
【符号の説明】
100…マスク,200…露光量モニタマーク,201…透光部,202…遮光部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of adjusting the development processing apparatus used in development of the photosensitive resin film.
[0002]
[Prior art]
In a photolithography process in manufacturing a semiconductor integrated circuit, pattern exposure is performed by transferring the desired pattern to a resist film formed on a wafer through a mask on which a desired pattern is formed by an exposure apparatus. .
[0003]
Due to the demand for pattern miniaturization, the exposure wavelength has been shortened and the NA of the projection lens has been increased. At the same time, the process has been improved at the same time. However, demands for miniaturization of device patterns in recent years have become more severe, and it has been difficult to obtain a sufficient process margin for exposure latitude and depth of focus, causing a reduction in yield.
[0004]
In order to perform optical lithography with a small process margin, accurate analysis and error distribution (error budget) of errors that consume the process margin have been regarded as important. For example, even if a large number of chips are exposed on the wafer with the same set exposure amount, resist sensitivity change, PEB (Post Exposure Bake), development non-uniformity in wafer surface, resist film thickness variation in wafer surface, etc. As a result, the effective appropriate exposure amount varies, which causes a decrease in yield. Therefore, in order to effectively use a small process margin and prevent a decrease in yield, a more accurate exposure amount and an exposure amount to be fed back and fed forward by monitoring the focus and a focus control method are provided. At the same time, for each process unit, it is necessary to perform a precise analysis of the error factor that consumes the process margin, and to improve the main error factor based on the analysis result.
[0005]
A technique is disclosed in which an effective exposure amount that does not depend on focus is measured, and variation in exposure amount between lots is suppressed based on the measured exposure amount (Patent Document 1).
[0006]
[Patent Document 1]
JP2002-299205
[0007]
[Problems to be solved by the invention]
Currently, heat treatment after exposure processing is performed using a plurality of heat treatment apparatuses in order to improve the operating efficiency of the apparatus. The set temperature and the actual heating temperature are different for each apparatus. Since the heating temperature is different for each heat treatment apparatus, there is a problem that the overall yield cannot be improved only by calibrating one apparatus.
[0008]
In addition, there is a heat treatment apparatus having a plurality of heat sources in order to improve in-plane temperature uniformity. In this heat treatment apparatus, the set temperature and the actual heating temperature are different for each heat source. Since the heating temperature is different for each heat source processing apparatus, there is a problem that the overall yield cannot be improved only by calibrating one heat source.
[0009]
Further, the pattern fluctuates due to temperature unevenness in post-exposure heat treatment and development unevenness in the development process. In order to suppress variations in the pattern, both temperature unevenness and development unevenness may be suppressed. However, there is a problem that it takes time to obtain parameters for performing the two controls.
[0012]
An object of the present invention is to provide a method for adjusting a development processing apparatus that collectively corrects the temperature distribution of the post-exposure heat treatment and the development unevenness during the development processing by the development processing to shorten the adjustment time.
[0013]
[Means for Solving the Problems]
The present invention is configured as follows to achieve the above object.
[0016]
The method for adjusting a development processing apparatus according to an example of the present invention includes a step of forming a photosensitive resin film on a substrate and a state of an exposure amount monitor pattern transferred to the photosensitive resin film to obtain the photosensitive resin film. A step of preparing an exposure mask having an exposure amount monitor mark for monitoring the effective exposure amount, and transferring the exposure amount monitor mark to a plurality of positions of the photosensitive resin film at a predetermined set exposure amount. A step of forming a plurality of exposure dose monitor patterns, a step of heating the substrate on which the exposure dose monitor patterns are formed at a plurality of set temperatures, and a step of cooling the heated substrate. the used measuring a state of each dose monitor pattern after cooling process, the variable developable processor control parameters as a developing condition, the system development process of the photosensitive resin film And performing by changing the parameters, the measuring a state of each dose monitor pattern after development, the state of each dose monitor pattern after the heat treatment, the state of each dose monitor pattern after development A development processing apparatus adjustment method comprising: calculating a control parameter of the development processing apparatus from: and changing a control parameter of the development processing apparatus in accordance with the calculated control parameter, wherein the control parameter The first relationship between the heating temperature during the heat treatment and the dimension of the exposure monitor pattern after the cooling treatment and before the development processing is obtained in advance, and the heating temperature during the heat treatment and the development are obtained in advance. A second relationship between a control parameter of the processing apparatus and a dimension of the exposure monitor pattern after the development processing is obtained, and when the control parameter is calculated, the cooling process is performed. The distribution of the heating temperature is obtained from the first relationship and the dimension of each exposure amount monitor pattern measured before the development processing later, and the exposure distribution measured after the development processing is obtained. A distribution of a plurality of control parameters per one substrate is obtained from the dimension of the quantity monitor pattern and the second relationship, and the obtained distribution of control parameters is made uniform.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
[0021]
(First embodiment)
FIG. 1 is a flowchart showing a procedure of a calibration method for a heat treatment apparatus according to the first embodiment of the present invention.
First, after a photoresist film is applied and formed on a substrate (S101), pre-exposure heating is performed (S102). Next, a photomask shown in FIG. 2 is prepared. On the
[0022]
As shown in FIG. 3, the
[0023]
Consider a case where a mask whose effective exposure amount is to be monitored is set in an exposure apparatus having a numerical aperture NA, a coherent factor σ, and an exposure wavelength λ. The condition of the width p (wafer dimension) of the block that is not resolved by this apparatus is based on diffraction theory.
λ / p ≧ (1 + σ) NA (1)
It becomes.
[0024]
By setting the period of the monitor mark to the condition of the expression (1), the diffracted light (first-order or higher-order diffracted light) at the exposure monitor mark does not enter the pupil of the projection lens, but only the straight light (0th-order diffracted light). Comes into the eyes. By satisfying the above conditions, the monitor mark pattern is below the resolution limit. If the exposure dose monitor mark pattern has a pitch less than or equal to the resolution limit, the pattern is not resolved, resulting in flat exposure with different exposure amounts reaching the wafer surface according to the aperture ratio. For this reason, even if the set exposure amount of the exposure apparatus is the same, the effective exposure amount changes according to the aperture ratio. In this case, since the exposure amount monitor mark pattern is not resolved, the influence of the focus fluctuation can be completely eliminated.
[0025]
Considering that the exposure conditions used are exposure wavelength λ = 248 nm, NA = 0.68, and σ = 0.75, the period of the monitor mark is diffracted light (first-order or higher order diffracted light) in the mask pattern. 0.2 μm in terms of wafer was used so as to satisfy Expression (1), which is a condition that only the straight light (0th order diffracted light) enters the pupil without entering the pupil of the projection lens.
[0026]
FIG. 4 shows the intensity distribution on the wafer surface obtained when the exposure amount monitor mark shown in FIG. 3 is transferred to the photoresist film. Since only the 0th-order diffracted light diffracted by the monitor mark is irradiated on the wafer surface, the image intensity distribution is a distribution proportional to the square of the area of the transmission part. Therefore, when heating and cooling after exposure are performed using this mask, a latent image (exposure monitor pattern) of the exposure monitor mark is formed on the photoresist film, and the film thickness distribution as shown in FIG. Become. By measuring this pattern with an optical line width measuring device, an effective exposure amount after the heat treatment can be obtained. Further, after the development processing, the photoresist film has a film thickness distribution as shown in FIG. By measuring this pattern with an optical line width measuring device, an effective exposure amount after development processing can be obtained.
[0027]
Using the photomask shown in FIG. 2, the exposure amount monitor mark is transferred to a photoresist film formed on the substrate with a predetermined exposure amount to form an exposure amount monitor pattern (step S103).
[0028]
Under the above-described conditions, a sample in which the PEB set temperature is varied is created for each heat treatment apparatus using the flowchart of FIG. 1 (step S104). After cooling (step S105), development is performed (step S106). The conditions for the cooling treatment and the development treatment after the heat treatment are the same for each sample.
[0029]
The length of the exposure amount monitor pattern of each sample is measured (step S107). The PEB set temperature and the pattern length (effective exposure amount) of each heat treatment apparatus D.E. A relationship with M (μm) is obtained (step S108). 7 shows the set temperature and pattern length D.E. A correlation graph of M is shown. An approximate expression is obtained from this graph, based on which an optimum temperature at which the effective exposure amount is the same (the pattern length DM is the same) is calculated, and the optimum set temperature of each apparatus is obtained (step S109). Calibration of the set temperature of each heat treatment apparatus is performed from the calculated set temperature (step S110).
[0030]
Table 1 shows the exposure dose monitor pattern length “DM”, critical dimension “CD”, and expected temperature before calibration before and after calibration.
[0031]
[Table 1]
[0032]
Table 2 shows the difference between the maximum value and the minimum value of the exposure amount monitor pattern “ΔD.M”, the difference between the maximum value and the minimum value of the critical dimension “ΔCD”, and the difference between the maximum value and the minimum value of the expected temperature. “Δ Expected Temperature”.
[0033]
[Table 2]
[0034]
As shown in Table 2, it was confirmed that the difference between the heat treatment apparatuses was calibrated for both the effective exposure dose (DM) and the critical dimension.
[0035]
According to the present embodiment, it is possible to prevent the effective exposure amount obtained by the photosensitive resin film from varying between the heat treatment apparatuses from varying between apparatuses. Then, the yield can be improved by manufacturing the semiconductor device using the calibrated apparatus.
[0036]
Although an example of application using the exposure monitor mark is illustrated, the length measuring means for the pattern after the exposure is not limited to an optical microscope or an optical line width measuring device, but a misalignment inspection device, Various methods such as a phase difference method, a differential interference method, a measurement method using a multi-wavelength light source, and the like can be applied to SEM, AFM, and the like as well as optical line width measurement means. It is also possible to use an alignment misalignment inspection function, a line width measurement function, or the like built in the exposure apparatus itself.
[0037]
(Second Embodiment)
In the present embodiment, an example of a calibration evaluation method for in-plane variation when a plurality of heat sources exist in the heat treatment apparatus will be described.
[0038]
In the present embodiment, a method for calibrating variations in the effective exposure amount in the substrate surface when a heat treatment apparatus having a plurality of
[0039]
As in the first embodiment, resist coating (step S101), pre-exposure heating (step S102), and exposure (step S103) are performed. As shown in FIG. 10, at the time of exposure, 311, 312, 313 including an exposure amount monitor pattern are formed on a resist film at a position corresponding to the position of each
[0040]
Using the flow of FIG. 9 , a plurality of samples with varying PEB set temperatures are created (step S204). Thereafter, cooling processing (step S105) and development processing (step S106) are performed. The length of the exposure amount monitor pattern included in each
[0041]
Then, the relationship between the PEB set temperature of each heat source and the pattern length (effective exposure amount) is obtained (step S208). For each heat source, an optimum temperature at which the effective exposure amount is the same (the pattern length is the same) is calculated based on the obtained relationship, and an optimum set temperature for each heat source is obtained (step S209). Calibration of the set temperature of each heat source is performed (step S210).
[0042]
Table 3 shows the exposure dose monitor pattern length “DM”, critical dimension “CD”, and expected temperature before calibration before and after calibration.
[0043]
[Table 3]
[0044]
Table 4 shows the difference ΔD. Between the maximum value and the minimum value of the length of the exposure monitor pattern. M, the difference ΔCD between the maximum value and the minimum value of the critical dimension, and the difference “Δ expected temperature” between the maximum value and the minimum value of the expected temperature.
[0045]
[Table 4]
[0046]
As shown in Table 4, it was confirmed that the difference between the heat sources was calibrated together with the effective exposure (DM) and the critical dimension.
[0047]
According to this embodiment, it can suppress that the effective exposure amount which the photosensitive resin film obtained because the temperature between each heat source of a heat processing apparatus differs differs between each heat source . Then, the yield can be improved by manufacturing the semiconductor device using the calibrated apparatus.
[0048]
Although an example of application using the exposure monitor mark is illustrated, the length measuring means for the pattern after the exposure is not limited to an optical microscope or an optical line width measuring device, but a misalignment inspection device, Various methods such as a phase difference method, a differential interference method, a measurement method using a multi-wavelength light source, and the like can be applied to SEM, AFM, and the like as well as optical line width measurement means. It is also possible to use an alignment misalignment inspection function, a line width measurement function, or the like built in the exposure apparatus itself.
[0049]
(Third embodiment)
In this embodiment, a method for adjusting the development processing apparatus will be described.
Samples that have been subjected to photoresist film coating, pre-exposure heat treatment, exposure, PEB treatment, and cooling treatment are prepared. A plurality of samples are measured by shaking the set temperature during PEB processing. After the cooling treatment, the exposure monitor pattern dimension (DM PEB : effective exposure dose) is measured with an optical line width measuring device. The measurement results are shown in FIG. From this, it was found that the relationship between the PEB temperature T (° C.) and the pattern dimension DM PEB (μm) is expressed by the following equation.
[0050]
DM PEB = −0.125T + 41.2 (2)
The development processing apparatus shown in FIG. 12 is prepared. FIG. 12 is a diagram showing a configuration of a development processing apparatus according to the third embodiment of the present invention. 12A is a plan view, and FIG. 12B is a cross-sectional view. The developing device includes a
[0051]
After the development processing, the dimension of the exposure amount monitor mark (DM DEV : effective exposure amount) is measured with an optical line width measuring device. The measurement results are shown in FIG. From this, it was found that the relationship between the PEB temperature (T), the distance between the developing nozzle and the substrate (D gap ), and the effective exposure amount (DM PEB ) is expressed by the following equation.
[0052]
DM DEV = −0.125T + 0.5D gap + 30.7 (3)
A method for adjusting the development processing apparatus of the present application will be described with reference to the flowchart of FIG. FIG. 14 is a flowchart showing the procedure of the adjustment method of the development processing apparatus according to the third embodiment of the present invention.
First, application of a resist film (step S301) and heat treatment before exposure (step S302) are performed. The exposure amount monitor mark formed on the mask shown in FIG. 2 is transferred onto the resist film at a 30 mm pitch in both the x and y directions to form a latent image of the exposure amount monitor pattern (step S303). A plurality of samples subjected to the PEB process by varying the PEB set temperature are created (step S304). After the PEB process, the substrate is cooled (step S305).
After the cooling process, the dimension of the exposure amount monitor pattern is measured (step S306). As a result, the exposure monitor pattern size after the cooling process is as shown in FIG. 15, and when the distribution is plotted, it becomes a concentric distribution as shown in FIG. The in-plane temperature distribution was calculated as shown in FIG.
[0053]
Further, development processing is performed on the substrate (step S307), and the dimensions of each exposure amount monitor pattern are measured (step S308). The exposure monitor pattern dimensions after the development processing are as shown in FIG. 18, and the distribution is plotted as shown in the plan view of FIG. 17 and 18 were substituted into equation (3) to determine the distance (gap) between the developing nozzle and the substrate, the result was as shown in FIG. As a result, the in-plane distribution is as shown in FIG. This is because the development method used here is a method of supplying the developer while scanning the linear development nozzle from the −x direction to the + x direction of the substrate, and the distance between the nozzle and the substrate. Are not adjusted to the same value, and the distance is adjusted to 1 mm (steps S309 and S310).
[0054]
In this embodiment, the development processing apparatus is adjusted based on the measurement results of the exposure monitor marks after the heat treatment and after the development processing. However, as shown in the flowchart of FIG. It is also possible. For example, in a developing method in which a developer is supplied from a linear nozzle while discharging the developer from one end to the other, the effective exposure distribution is calculated on the scanning line at the same position of the nozzle. It is desirable to obtain it by averaging the effective exposure amount. The pattern length DM DEV (exposure amount) distribution shown in FIG. 19 is obtained as shown in FIG. 23 when the average value of the exposure amount monitor pattern length DM DEV on the line scanned by the position of the nozzle is obtained. The discharge amount distribution from the nozzle or the gap may be adjusted so that the exposure amount distribution is as constant as possible.
[0055]
Also, as shown in FIG. 24, even in a developing method in which the developer is supplied by rotating the wafer while discharging the developer from a linear nozzle, the effective exposure distribution is shown on the scanning line at the same position of the nozzle ( It is desirable to obtain the average effective exposure amount calculated on the concentric circles). When the exposure amount distribution shown in FIG. 19 is averaged on the scanning line (concentric circle), it is as shown in FIG. The discharge amount distribution from the nozzle or the gap may be adjusted so that the exposure amount distribution is as constant as possible.
[0056]
These methods can also be applied to a nozzle evaluation method for checking whether the flow rate distribution in the nozzle longitudinal direction is uniform.
[0057]
The adjustment of the development processing apparatus shown in FIGS. 13 and 24 can also be applied to the adjustment of the difference between apparatuses of a plurality of apparatuses. In this case, instead of obtaining the distribution of effective exposure amounts, the average value of the effective exposure amounts of the respective processing apparatuses is obtained, and the average value of the effective exposure amounts of the respective processing apparatuses is equalized from the nozzles. The discharge amount, gap, developer temperature, ambient temperature, and the like may be adjusted.
According to this embodiment, the temperature distribution of the post-exposure heat treatment and the development unevenness during the development treatment are collectively corrected by the development treatment, and the adjustment time is shortened.
[0058]
The present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the invention at the stage of implementation. Further, the above embodiments include inventions at various stages, and various inventions can be extracted by appropriately combining a plurality of disclosed constituent elements. For example, even if some constituent elements are deleted from all the constituent elements shown in the embodiment, at least one of the problems described in the column of problems to be solved by the invention can be solved and described in the column of effect of the invention. When at least one of the effects is obtained, a configuration in which this configuration requirement is deleted can be extracted as an invention.
[0059]
【The invention's effect】
As described above, according to the present invention, the effective exposure amount obtained by the photosensitive resin film due to the difference in temperature between apparatuses can be suppressed from varying between apparatuses, and the yield can be improved.
By varying the temperature between the heat sources, the effective exposure amount obtained by the photosensitive resin film can be suppressed from fluctuating between the heat sources, and the yield can be improved.
The temperature distribution of the post-exposure heat treatment and the development unevenness during the development treatment can be collectively corrected by the development treatment.
[Brief description of the drawings]
FIG. 1 is a flowchart showing a procedure of a calibration method for a heat treatment apparatus according to a first embodiment.
FIG. 2 is a plan view showing a configuration of a photomask according to the first embodiment.
FIG. 3 is a plan view showing a configuration of an exposure amount monitor mark according to the first embodiment.
4 is a diagram showing an intensity distribution on a wafer surface obtained when the exposure amount monitor mark shown in FIG. 3 is transferred to a photoresist film. FIG.
FIG. 5 is a view showing a film thickness distribution of a photoresist film after a heating and cooling process.
FIG. 6 is a view showing a film thickness distribution of a photoresist film after development processing.
FIG. 7 shows a set temperature and pattern length D. of each heat treatment apparatus A to E. The figure which shows the correlation graph of M.
FIG. 8 is a diagram showing a configuration of a heat treatment apparatus according to the second embodiment.
FIG. 9 is a flowchart showing a procedure of a calibration method for the heat treatment apparatus according to the second embodiment.
FIG. 10 is a diagram showing the relationship between the position of a heat source and an exposure amount monitor pattern.
FIG. 11 is a diagram showing the relationship between the dimension DM PEB and the PEB temperature of the exposure amount monitor pattern after the cooling process;
FIG. 12 is a diagram illustrating a configuration of a development processing apparatus according to a third embodiment.
FIG. 13 is a diagram showing the gap dependence of the relationship between the PEB temperature after the development process and the dimension DM DEV of the exposure amount monitor pattern.
FIG. 14 is a flowchart illustrating a procedure of an adjustment method for a development processing apparatus according to a third embodiment.
FIG. 15 is a view showing a distribution of dimension DM PEB of an exposure amount monitor pattern after heat treatment;
FIG. 16 is a plan view showing the distribution of the dimension DM PEB of the exposure amount monitor pattern after the heat treatment;
FIG. 17 is a plan view showing a temperature distribution after heat treatment.
FIG. 18 is a view showing a distribution of a dimension DM DEV of an exposure amount monitor pattern after development processing.
FIG. 19 is a plan view showing a distribution of an exposure amount monitor pattern dimension DM DEV after development processing;
FIG. 20 is a diagram showing a distribution of a gap between a substrate surface and a nozzle.
FIG. 21 is a plan view showing a distribution of a gap between a substrate surface and a nozzle.
FIG. 22 is a flowchart showing the procedure of a calibration method according to the third embodiment.
FIG. 23 is a view showing the distribution of the average value of the exposure amount monitor pattern length DM DEV on the line scanned by a certain nozzle position;
FIG. 24 is a diagram showing a configuration of a development processing apparatus according to a third embodiment.
FIG. 25 is a view showing the distribution of the average value of the exposure amount monitor pattern length DM DEV on the line scanned by a certain nozzle position;
[Explanation of symbols]
DESCRIPTION OF
Claims (2)
前記制御パラメータを変更する工程として、
予め加熱処理時の加熱温度と前記冷却処理後で前記現像処理前の露光量モニタパターンの寸法との第1の関係を求め、
予め加熱処理時の加熱温度と、前記現像処理装置の制御パラメータと、前記現像処理後の露光量モニタパターンの寸法との第2の関係を求め、
前記制御パラメータの算出時、前記冷却処理後で前記現像処理前に測定された各露光量モニタパターンの寸法と前記第1の関係から加熱温度の分布を求め、
前記求められた加熱温度の分布と、前記現像処理後に測定された各露光量モニタパターンの寸法と、前記第2の関係とから前記基板表面の各位置に対する制御パラメータの分布を求め、
求められた制御パラメータの分布が均一となるようにすることを特徴とする現像処理装置の調整方法。An exposure amount monitor for monitoring the effective exposure amount obtained by the photosensitive resin film according to the step of forming a photosensitive resin film on the substrate and the state of the exposure amount monitor pattern transferred to the photosensitive resin film A step of preparing an exposure mask on which marks are arranged; a step of transferring the exposure amount monitor marks to a plurality of positions of the photosensitive resin film at a predetermined set exposure amount; and forming a plurality of exposure amount monitor patterns; A step of heat-treating the substrate on which the exposure monitor pattern is formed at a plurality of set temperatures; a step of cooling the heat-treated substrate; and measuring the state of each exposure monitor pattern after the cooling treatment a step, using a variable developable processor control parameters as a developing condition, and performing development processing of the photosensitive resin layer by changing the control parameter, after the developing treatment A step of measuring the state of each exposure amount monitor pattern, a step of calculating control parameters of the development processing device from the state of each exposure amount monitor pattern after the heat treatment, and the state of each exposure amount monitor pattern after the development processing, A method of adjusting the development processing apparatus, including a step of changing the control parameter of the development processing apparatus according to the calculated control parameter,
As a step of changing the control parameter,
First, a first relationship between a heating temperature at the time of the heat treatment and a dimension of the exposure amount monitor pattern after the cooling treatment and before the development treatment is obtained,
Obtain a second relationship between the heating temperature at the time of the heat treatment in advance, the control parameter of the development processing device, and the dimension of the exposure amount monitor pattern after the development processing,
When calculating the control parameter, the distribution of the heating temperature is obtained from the first relationship and the dimension of each exposure amount monitor pattern measured after the cooling process and before the development process,
The distribution of control parameters for each position on the substrate surface is determined from the distribution of the obtained heating temperature, the dimension of each exposure amount monitor pattern measured after the development processing, and the second relationship,
A method for adjusting a development processing apparatus, characterized in that a distribution of calculated control parameters is uniform.
前記制御パラメータを変更する工程として、
予め加熱処理時の加熱温度と前記冷却処理後で前記現像処理前の露光量モニタパターンの寸法との第1の関係を求め、
予め加熱処理時の加熱温度と、前記ノズルと前記感光性樹脂膜表面との距離と、前記現像処理後の露光量モニタパターンの寸法との第2の関係を求め、
前記制御パラメータの算出時、前記冷却処理後で前記現像処理前に測定された各露光量モニタパターンの寸法と前記第1の関係から加熱温度の分布を求め、
前記求められた加熱温度の分布と、前記現像処理後に測定された各露光量モニタパターンの寸法と、前記第2の関係とから前記基板の表面の各位置に対する前記距離の分布を求め、
求められた距離の分布が均一となるようにすることを特徴とする現像処理装置の調整方法。An exposure amount monitor for monitoring the effective exposure amount obtained by the photosensitive resin film according to the step of forming a photosensitive resin film on the substrate and the state of the exposure amount monitor pattern transferred to the photosensitive resin film A step of preparing an exposure mask on which marks are arranged; a step of transferring the exposure amount monitor marks to a plurality of positions of the photosensitive resin film at a predetermined set exposure amount; and forming a plurality of exposure amount monitor patterns; A step of heat-treating the substrate on which the exposure monitor pattern is formed at a plurality of set temperatures; a step of cooling the heat-treated substrate; and measuring the state of each exposure monitor pattern after the cooling treatment a step, ejecting the developing solution to the photosensitive resin layer, a developing unit for relatively scanning the nozzle length in the longitudinal direction is larger than the maximum width of the substrate relative to the substrate, developing The distance between the nozzle and the photosensitive resin film surface as a control parameter of matter using a variable capable developing apparatus, and performing a development process of the photosensitive resin film by changing the control parameter, the developing process A step of measuring the state of each exposure amount monitor pattern later, and a step of calculating control parameters of the development processing apparatus from the state of each exposure amount monitor pattern after the heat treatment and the state of each exposure amount monitor pattern after the development processing And a method for adjusting the development processing apparatus according to the calculated control parameter, and a method for adjusting the development processing apparatus,
As a step of changing the control parameter,
First, a first relationship between a heating temperature at the time of the heat treatment and a dimension of the exposure amount monitor pattern after the cooling treatment and before the development treatment is obtained,
Obtain a second relationship between the heating temperature during the heat treatment in advance, the distance between the nozzle and the surface of the photosensitive resin film, and the dimension of the exposure monitor pattern after the development treatment,
When calculating the control parameter, the distribution of the heating temperature is obtained from the first relationship and the dimension of each exposure amount monitor pattern measured after the cooling process and before the development process,
Obtaining the distribution of the distance to each position on the surface of the substrate from the distribution of the obtained heating temperature, the size of each exposure amount monitor pattern measured after the development processing, and the second relationship,
A method for adjusting a development processing apparatus, characterized in that a distribution of obtained distances is uniform.
Priority Applications (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2003188496A JP4127664B2 (en) | 2003-06-30 | 2003-06-30 | Method for adjusting development processing apparatus |
| TW093118891A TWI241633B (en) | 2003-06-30 | 2004-06-28 | Temperature correcting method of heating processing apparatus, adjusting method of development processing apparatus, and manufacturing method semiconductor device |
| US10/878,310 US7510341B2 (en) | 2003-06-30 | 2004-06-29 | Temperature calibration method for baking processing apparatus, adjustment method for development processing apparatus, and method of manufacturing semiconductor apparatus |
| KR1020040049375A KR100572949B1 (en) | 2003-06-30 | 2004-06-29 | Temperature correction method for heat treatment equipment, adjustment method for development equipment, and manufacturing method of semiconductor device |
| CNB2004100625697A CN1292457C (en) | 2003-06-30 | 2004-06-30 | Temperature correction method of heat treatment device, adjustment method of development treatment device, and manufacturing method of semiconductor device |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2003188496A JP4127664B2 (en) | 2003-06-30 | 2003-06-30 | Method for adjusting development processing apparatus |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2007220236A Division JP2007318181A (en) | 2007-08-27 | 2007-08-27 | Method for adjusting development processing apparatus and method for manufacturing semiconductor device |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2005026362A JP2005026362A (en) | 2005-01-27 |
| JP4127664B2 true JP4127664B2 (en) | 2008-07-30 |
Family
ID=33562272
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2003188496A Expired - Fee Related JP4127664B2 (en) | 2003-06-30 | 2003-06-30 | Method for adjusting development processing apparatus |
Country Status (5)
| Country | Link |
|---|---|
| US (1) | US7510341B2 (en) |
| JP (1) | JP4127664B2 (en) |
| KR (1) | KR100572949B1 (en) |
| CN (1) | CN1292457C (en) |
| TW (1) | TWI241633B (en) |
Families Citing this family (20)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP4212421B2 (en) * | 2003-06-26 | 2009-01-21 | 株式会社東芝 | Mask, exposure amount adjusting method, and semiconductor device manufacturing method |
| US7071124B1 (en) * | 2003-09-26 | 2006-07-04 | Cypress Semiconductor Corporation | Method to reduce PEB sensitivity of resist |
| JP4373877B2 (en) * | 2004-08-09 | 2009-11-25 | 株式会社東芝 | Process management method, monitor mark forming method, and mask for process management |
| US7738075B2 (en) * | 2005-05-23 | 2010-06-15 | Asml Netherlands B.V. | Lithographic attribute enhancement |
| JP4636555B2 (en) * | 2005-09-13 | 2011-02-23 | 東京エレクトロン株式会社 | Substrate processing apparatus, substrate processing method, substrate processing program, and computer-readable recording medium recording the program |
| JP4570164B2 (en) * | 2005-09-15 | 2010-10-27 | 東京エレクトロン株式会社 | Substrate processing apparatus, substrate processing method, substrate processing program, and computer-readable recording medium recording the program |
| JP4666380B2 (en) * | 2005-09-15 | 2011-04-06 | 東京エレクトロン株式会社 | Substrate processing apparatus, substrate processing method, substrate processing program, and computer-readable recording medium recording the program |
| JP5128065B2 (en) * | 2005-12-06 | 2013-01-23 | 株式会社ニコン | Information processing apparatus, device manufacturing processing system, device manufacturing processing method, program |
| JP2007227570A (en) * | 2006-02-22 | 2007-09-06 | Toshiba Corp | Manufacturing apparatus adjustment system and manufacturing apparatus adjustment method |
| JP4758829B2 (en) * | 2006-06-06 | 2011-08-31 | 株式会社ニューフレアテクノロジー | Charged beam drawing apparatus and drawing method |
| JP4747112B2 (en) * | 2007-02-01 | 2011-08-17 | 株式会社ニューフレアテクノロジー | Pattern forming method and charged particle beam drawing apparatus |
| US7829249B2 (en) | 2007-03-05 | 2010-11-09 | Asml Netherlands B.V. | Device manufacturing method, computer program and lithographic apparatus |
| JP2009239029A (en) * | 2008-03-27 | 2009-10-15 | Toshiba Corp | Method for evaluating lithography apparatus and method for controlling lithography apparatus |
| NL2004716A (en) | 2009-06-17 | 2010-12-20 | Asml Netherlands Bv | Lithographic method and arrangement. |
| JP2011082369A (en) * | 2009-10-08 | 2011-04-21 | Toshiba Corp | Method and system for manufacturing semiconductor device |
| KR101829308B1 (en) * | 2011-04-22 | 2018-02-20 | 동우 화인켐 주식회사 | Controlling device for preventing snaking of patterns of patterned flims |
| US9646898B2 (en) * | 2013-11-27 | 2017-05-09 | Tokyo Electron Limited | Methods for treating a substrate by optical projection of a correction pattern based on a detected spatial heat signature of the substrate |
| JP6541618B2 (en) * | 2016-05-25 | 2019-07-10 | 東京エレクトロン株式会社 | Method of processing an object |
| WO2018142840A1 (en) * | 2017-02-01 | 2018-08-09 | 東京エレクトロン株式会社 | Substrate treatment method, computer storage medium, and substrate treatment system |
| JP7450358B2 (en) * | 2019-09-25 | 2024-03-15 | 東京エレクトロン株式会社 | Substrate processing control method, substrate processing apparatus, and storage medium |
Family Cites Families (20)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH0729873A (en) | 1993-07-13 | 1995-01-31 | Dainippon Screen Mfg Co Ltd | Surface treatment apparatus |
| JPH09258455A (en) * | 1996-03-25 | 1997-10-03 | Toshiba Corp | Exposure pattern plate |
| SG71082A1 (en) * | 1997-01-30 | 2000-03-21 | Tokyo Electron Ltd | Method and apparatus for coating resist and developing the coated resist |
| JP4327266B2 (en) * | 1997-02-26 | 2009-09-09 | 株式会社東芝 | Pattern dimension evaluation method and pattern formation method |
| JPH118180A (en) | 1997-06-17 | 1999-01-12 | Sony Corp | Backing device |
| JPH1167619A (en) | 1997-08-08 | 1999-03-09 | Yuasa Seisakusho:Kk | Substrate-heating device |
| JP3556472B2 (en) * | 1998-06-18 | 2004-08-18 | 株式会社東芝 | Exposure amount measurement method and exposure amount measurement mask |
| JP2000082661A (en) * | 1998-07-02 | 2000-03-21 | Toshiba Corp | Heating device, heating device evaluation method and pattern forming method |
| JP3949853B2 (en) * | 1999-09-28 | 2007-07-25 | 株式会社東芝 | Control method for exposure apparatus and control method for semiconductor manufacturing apparatus |
| KR20010046791A (en) * | 1999-11-15 | 2001-06-15 | 윤종용 | Apparatus and method for controlling a temperature of a sensor of a semiconductor fabrication equipment |
| JP2001272922A (en) | 2000-03-23 | 2001-10-05 | Seiko Epson Corp | Electro-optical device manufacturing method and electro-optical device manufacturing device |
| JP2001284246A (en) | 2000-03-31 | 2001-10-12 | Toshiba Corp | Rotary developer device |
| JP4380039B2 (en) | 2000-08-22 | 2009-12-09 | ソニー株式会社 | Semiconductor device manufacturing method and semiconductor manufacturing apparatus |
| KR20020017629A (en) * | 2000-08-31 | 2002-03-07 | 윤종용 | Exposure equipment having a means for thermostatic control of reticle case |
| JP3721320B2 (en) | 2000-11-01 | 2005-11-30 | 東京エレクトロン株式会社 | Substrate processing apparatus and substrate processing method |
| JP2002177840A (en) | 2000-12-07 | 2002-06-25 | Sumitomo Precision Prod Co Ltd | Substrate treatment method and substrate treatment apparatus |
| JP3906035B2 (en) | 2001-03-29 | 2007-04-18 | 株式会社東芝 | Method for controlling semiconductor manufacturing apparatus |
| JP3946974B2 (en) | 2001-09-21 | 2007-07-18 | 株式会社東芝 | Chemical solution processing method and semiconductor device manufacturing method |
| JP2003158056A (en) | 2001-11-21 | 2003-05-30 | Tokyo Electron Ltd | Pattern forming system |
| JP2004207385A (en) * | 2002-12-24 | 2004-07-22 | Rohm Co Ltd | Mask, method of manufacturing the same, and method of manufacturing semiconductor device using the same |
-
2003
- 2003-06-30 JP JP2003188496A patent/JP4127664B2/en not_active Expired - Fee Related
-
2004
- 2004-06-28 TW TW093118891A patent/TWI241633B/en not_active IP Right Cessation
- 2004-06-29 US US10/878,310 patent/US7510341B2/en not_active Expired - Fee Related
- 2004-06-29 KR KR1020040049375A patent/KR100572949B1/en not_active Expired - Fee Related
- 2004-06-30 CN CNB2004100625697A patent/CN1292457C/en not_active Expired - Fee Related
Also Published As
| Publication number | Publication date |
|---|---|
| JP2005026362A (en) | 2005-01-27 |
| US7510341B2 (en) | 2009-03-31 |
| US20050008979A1 (en) | 2005-01-13 |
| CN1577082A (en) | 2005-02-09 |
| KR100572949B1 (en) | 2006-04-28 |
| TWI241633B (en) | 2005-10-11 |
| CN1292457C (en) | 2006-12-27 |
| KR20050002609A (en) | 2005-01-07 |
| TW200504833A (en) | 2005-02-01 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP4127664B2 (en) | Method for adjusting development processing apparatus | |
| JP3949853B2 (en) | Control method for exposure apparatus and control method for semiconductor manufacturing apparatus | |
| JP3906035B2 (en) | Method for controlling semiconductor manufacturing apparatus | |
| KR102128577B1 (en) | Patterning process control method, lithographic apparatus, metrology apparatus lithography cells and associated computer programs | |
| JP3761357B2 (en) | Exposure amount monitor mask, exposure amount adjustment method, and semiconductor device manufacturing method | |
| KR100844809B1 (en) | Manufacturing Method of Semiconductor Device and Manufacturing System of Semiconductor Device | |
| JP4443632B2 (en) | Reticle for correcting lens errors in photolithographic systems | |
| US7396621B2 (en) | Exposure control method and method of manufacturing a semiconductor device | |
| US7972765B2 (en) | Pattern forming method and a semiconductor device manufacturing method | |
| JP5610664B2 (en) | Method for in-line monitoring and control of heat treatment of resist-coated wafers | |
| US7732109B2 (en) | Method and system for improving critical dimension uniformity | |
| CN101312120B (en) | Manufacturing method of semiconductor integrated circuit device | |
| US7566181B2 (en) | Controlling critical dimensions of structures formed on a wafer in semiconductor processing | |
| CN114616523B (en) | Method for inferring processing parameters such as focal length and associated apparatus and manufacturing method | |
| KR20180119503A (en) | Method of monitoring and device manufacturing method | |
| TWI225972B (en) | Regulation system for photolithographic process | |
| JP2004354906A (en) | Method for evaluating resist sensitivity and method for manufacturing resist | |
| JP2007318181A (en) | Method for adjusting development processing apparatus and method for manufacturing semiconductor device | |
| JP2008219055A (en) | Heating device evaluation method, pattern formation method, and heating device control method | |
| US6744492B2 (en) | Exposure apparatus | |
| JP2003318092A (en) | Aligner and method for manufacturing semiconductor device | |
| KR100685895B1 (en) | Semiconductor device manufacturing apparatus and manufacturing method | |
| KR20060136074A (en) | Apparatus and Method for Fabrication Semiconductor Device |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060404 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070306 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070501 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070626 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070827 |
|
| A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20071120 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080121 |
|
| A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20080131 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080318 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080327 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080507 |
|
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080509 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110523 Year of fee payment: 3 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110523 Year of fee payment: 3 |
|
| LAPS | Cancellation because of no payment of annual fees |