[go: up one dir, main page]

JPH04138621A - Superconducting member - Google Patents

Superconducting member

Info

Publication number
JPH04138621A
JPH04138621A JP2261197A JP26119790A JPH04138621A JP H04138621 A JPH04138621 A JP H04138621A JP 2261197 A JP2261197 A JP 2261197A JP 26119790 A JP26119790 A JP 26119790A JP H04138621 A JPH04138621 A JP H04138621A
Authority
JP
Japan
Prior art keywords
critical current
tape
superconducting
magnetic field
units
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2261197A
Other languages
Japanese (ja)
Other versions
JP3099891B2 (en
Inventor
Mutsuki Yamazaki
六月 山崎
Hiroyuki Fukuya
浩之 福家
Manabu Kato
学 加藤
Hisashi Yoshino
芳野 久士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP02261197A priority Critical patent/JP3099891B2/en
Publication of JPH04138621A publication Critical patent/JPH04138621A/en
Application granted granted Critical
Publication of JP3099891B2 publication Critical patent/JP3099891B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To eliminate anisotropy of a critical current or the like relating to a magnetic field by orienting a crystal axis of the longest lattice constant of all so as to be almost vertical relating to a base body, and further providing a part with a different direction of the crystal axis. CONSTITUTION:A tape-shaped base body 11, in which rolling work is applied in a fixed direction relating to a silver material, is recrystalized by heat treatment. Next, an orientation surface by a (100) surface of this silver tape is set up in a filming device so as to be opposed to a spatter source, and yttrium, barium, copper are respectively spattered and continuously accumulated on the orientation surface of the tape. Then, a plurality of sheets of this unit wire rod 13 are piled and pressed to prepare a plurality of units 14. Successively, this plurality of these units 14a, 14b, 14c, 14d are piled together so that molded units 12 of the adjacent units 14 are vertical to each other and further pressed. In this way, extreme reduction of a critical current can be prevented by suppressing anisotropy relating to a magnetic field of the critical current.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、超電導部材に関する。[Detailed description of the invention] [Purpose of the invention] (Industrial application field) The present invention relates to a superconducting member.

(従来の技術) 19g6年にBa−La−Cu−0系の層状ペロブスカ
イト型の酸化物か4(IK以上の高い臨界温度を有する
ことか発表されて以来、酸化物系の超電導体が注目を集
め、新材料探索の研究が活発に行われている。
(Prior art) Oxide-based superconductors have attracted attention since it was announced in 2019 that Ba-La-Cu-0 layered perovskite oxides had a high critical temperature higher than IK. Research is being actively conducted to collect and search for new materials.

その中でも、液体窒素温度以上の高い臨界温度を何する
 Y−Ba−Cu−0系て代表される欠陥ペロブスカイ
ト型の酸化物超電導体や、B1−9r−Ca−Cu−0
系およびT l−Ba−Ca−Cu−0系の酸化物超電
導体は、冷媒として高価な液体ヘリウムに代えて、安価
な液体窒素を利用できるため、工業的にも重要な価値を
有している。
Among them, defective perovskite-type oxide superconductors represented by the Y-Ba-Cu-0 system and B1-9r-Ca-Cu-0
The oxide superconductors of the T l-Ba-Ca-Cu-0 system have important industrial value because they can use inexpensive liquid nitrogen as a refrigerant instead of expensive liquid helium. There is.

このような酸化物超電導体のエネルギー分野への応用を
考えた場合、まず線材化することが必要となる。そこで
、各種方法を用いて酸化物超電導体を線材化する試みが
なされている。
When considering the application of such oxide superconductors to the energy field, it is first necessary to make them into wires. Therefore, attempts have been made to produce wires from oxide superconductors using various methods.

酸化物超電導体を用いた超電導線材の作製方法としては
、 (^) 金属管内に酸化物超電導体を封入し、これを線
引き加工することによって線材化する方法。
Methods for producing superconducting wire using oxide superconductors include: (^) A method of sealing an oxide superconductor in a metal tube and drawing it into a wire.

(B)  酸化物超電導体粉末と有機バインダとを混合
し、ノズルから押し出して線材化する方法。
(B) A method in which oxide superconductor powder and organic binder are mixed and extruded from a nozzle to form a wire rod.

(C)  金属テープ上に溶射法や各種膜形成方法によ
って酸化物超電導体層を形成し、線材化する方法。
(C) A method of forming an oxide superconductor layer on a metal tape by thermal spraying or various film forming methods, and forming it into a wire.

等が知られている。etc. are known.

これら酸化物超電導体を用いた超電導線材の臨界電流密
度は徐々に向上する傾向にあり、上記した方法の中でも
、特に (C)の方法が配向性に優れた酸化物超電導体
層が得られやすく、臨界電流密度等の超電導特性の向上
が期待できることから注目を集めている。ただし、超電
導線材として実用化するためには、十分に大きな臨界電
流が必要となるため、いずれの方法で作製した場合にお
いても、それらを複数本束ねて一体化して使用する必要
がある。
The critical current density of superconducting wires using these oxide superconductors tends to gradually improve, and among the above methods, method (C) is particularly easy to obtain an oxide superconductor layer with excellent orientation. , is attracting attention because it is expected to improve superconducting properties such as critical current density. However, in order to put it into practical use as a superconducting wire, a sufficiently large critical current is required, so no matter which method is used to produce it, it is necessary to bundle and integrate multiple wires for use.

ところで、酸化物超電導体は、一般に格子定数の最も長
い結晶軸(C軸)の方向に磁場が印加されると、大幅に
臨界電流が小さくなるため、テープ状の基体上にC軸が
成膜面に対して垂直となるように超電導体層を形成する
と、その方向の磁場に対して臨界電流の低下が著しくな
ってしまう。
By the way, in general, in oxide superconductors, when a magnetic field is applied in the direction of the crystal axis (C axis) with the longest lattice constant, the critical current decreases significantly, so it is difficult to form a film with the C axis on the tape-shaped substrate. If the superconductor layer is formed perpendicular to the plane, the critical current will drop significantly with respect to the magnetic field in that direction.

そして、このような線材を束ねて用いる際に、第3図に
示すように、基板1上の酸化物超電導体層2の結晶軸か
一方向に揃っていると、この線材は特定の方向の磁場に
対して極端に弱くなり、異方性を有することになる。
When such wires are used in a bundle, if the crystal axes of the oxide superconductor layer 2 on the substrate 1 are aligned in one direction as shown in FIG. It becomes extremely weak against the magnetic field and has anisotropy.

一方、基板に対して酸化物超電導体層をC軸配向させな
いで形成した場合には、上述したような問題は起こらな
いものの、超電導線材1本当たりの臨界電流が小さくな
るため、磁場に対する異方性はなくとも実用上充分な電
流を流すことは困難となってしまう。
On the other hand, if the oxide superconductor layer is formed without C-axis orientation on the substrate, the above-mentioned problem does not occur, but the critical current per superconducting wire becomes small, resulting in anisotropy with respect to the magnetic field. However, it becomes difficult to flow a sufficient current for practical purposes.

(発明が解決しようとする課題) 上述したように、臨界電流等の超電導特性を向上させる
ために、C軸配向させた酸化物超電導体層を有する線材
を同一方向に束ねた場合、磁場に対して臨界電流の異方
性が生ずるという難点があった。
(Problems to be Solved by the Invention) As mentioned above, in order to improve superconducting properties such as critical current, when wires having C-axis oriented oxide superconductor layers are bundled in the same direction, However, the problem is that anisotropy of the critical current occurs.

本発明は、このような従来技術の課題に対処するために
なされたもので、磁場に対する臨界電流等の超電導特性
の異方性を解消した超電導部材を提供することを目的と
するものである。
The present invention has been made to address the problems of the prior art, and aims to provide a superconducting member that eliminates anisotropy in superconducting properties such as critical current with respect to a magnetic field.

[発明の構成] (課題を解決するための手段) すなわち本発明の超電導部材は、超電導転移を示す物質
を基体と複合化した単位部材を複数−体化してなる超電
導部材において、前記複数の単位部材における超電導転
移を示す物質を、該物質の結晶軸の中で最も格子定数の
長い結晶軸が前記基体に対してほぼ垂直となるように配
向させると共に、前記結晶軸の方向が異なる部分を有す
るように前記複数の単位部材が一体化されていることを
特徴としている。
[Structure of the Invention] (Means for Solving the Problems) In other words, the superconducting member of the present invention is a superconducting member formed by integrating a plurality of unit members in which a substance exhibiting superconducting transition is composited with a substrate, in which the plurality of units A substance exhibiting superconducting transition in the member is oriented such that the crystal axis having the longest lattice constant among the crystal axes of the substance is substantially perpendicular to the substrate, and the crystal axis has a portion in which the direction of the crystal axis differs. It is characterized in that the plurality of unit members are integrated.

本発明における超電導転移を示す物質としては、例えば
希土類元素含有のペロブスカイト型の酸化物超電導体や
、B1−8r−Ca−Cu−0系酸化物超電導体、Tl
−Ba−Ca−Cu−0系酸化物超電導体等が例示され
る。
Substances exhibiting superconducting transition in the present invention include, for example, rare-earth element-containing perovskite-type oxide superconductors, B1-8r-Ca-Cu-0-based oxide superconductors, and Tl
-Ba-Ca-Cu-0-based oxide superconductors are exemplified.

上記希土類元素を含有しペロブスカイト型構造を有する
酸化物超電導体としては、超電導状態を実現できるもの
であればよく、例えばRE M2 Cu30フー  系
 (REは、Y 、 La、 Sc、 Nd、 Ss、
Eu、 Gd。
The oxide superconductor containing a rare earth element and having a perovskite structure may be one that can realize a superconducting state, for example, RE M2 Cu30 Fu system (RE is Y, La, Sc, Nd, Ss,
Eu, Gd.

Dy、 Ho、 Er、 TII、 Yb、 Lu等の
希土類元素かう選ハれた少なくとも 1種の元素を、X
はBa、 5rSCaがら選ばれた少なくとも 1種の
元素を、δは酸素欠陥を表し通常1以下の数、Cuの一
部はTrSV 、Crs訃、Fe%Co、 Ni、 Z
n等で置換可能)の酸化物等が例示される。なお、希土
類元素は広義の定義とし、Sc、 YおよびLa系を含
むものとする。
At least one element selected from rare earth elements such as Dy, Ho, Er, TII, Yb, Lu, etc.
is at least one element selected from Ba and 5rSCa, δ represents an oxygen defect and is usually a number of 1 or less, and a part of Cu is TrSV, Crs, Fe%Co, Ni, Z
Examples include oxides of (substitutable with n, etc.). Note that rare earth elements are defined in a broad sense and include Sc, Y, and La elements.

また、B1−3r−Ca−Cu−0系の酸化物超電導体
は、化学式: Bi25r2Ca2Cu30x    
−−−(1): 812  (Sr、Ca)3Cu20
x   −−−−−−−(II )(式中、Biの一部
はpb等で置換可能。)等で表されるものであり、T 
l−Ba−Ca−Cu−0系酸化物超電導体は、 化学式: Tl2 Ba2Ca2Cu30x    −
−−−−−(I[I): T12(Ba、Ca)3Cu
20x   ・=−・−(IV)等で表されるものある
In addition, the B1-3r-Ca-Cu-0-based oxide superconductor has the chemical formula: Bi25r2Ca2Cu30x
---(1): 812 (Sr, Ca)3Cu20
x -------(II) (In the formula, a part of Bi can be replaced with pb etc.), etc., and T
The l-Ba-Ca-Cu-0 based oxide superconductor has the chemical formula: Tl2 Ba2Ca2Cu30x -
-----(I[I): T12(Ba, Ca)3Cu
There are some expressions such as 20x ・=−・−(IV).

本発明の超電導部材において使用する単位部材としては
、例えば以下に示すような形態のものが例示され、いず
れも超電導体の結晶軸の中で最も格子定数の長い結晶軸
が基体に対してほぼ垂直となるように配向させたものを
使用する。
Examples of the unit member used in the superconducting member of the present invention include those in the form shown below, in which the crystal axis with the longest lattice constant among the crystal axes of the superconductor is approximately perpendicular to the substrate. Use one oriented so that

(a)  テープ状やワイヤ状の基体上に超電導体層を
積層形成して複合化したもの。
(a) A composite material in which superconductor layers are laminated on a tape-shaped or wire-shaped substrate.

(b)  管状の基体内に超電導体を充填して複合化し
たもの。
(b) A compound made by filling a tubular base with a superconductor.

上記(a)における基体としては、少なくとも超電導体
層の形成面か銀により構成されているものが好ましく、
基体全体を銀で構成してもよいし、また銀と固溶しにく
い鉄、ニッケル、クロムおよびこれらの合金からなる芯
材上に銀層を形成したものを用いることも可能である。
The substrate in (a) above is preferably one in which at least the surface on which the superconductor layer is formed is made of silver,
The entire substrate may be made of silver, or it is also possible to use a material in which a silver layer is formed on a core material made of iron, nickel, chromium, or an alloy thereof, which is difficult to form a solid solution with silver.

また、上記基体における超電導体層の形成面は、銀の 
(100)結晶面または (110)結晶面の配向面、
もしくはこれらの混在した配向面により構成することが
好ましい。このように、超電導体層の形成面を銀の (
100)結晶面や (110)結晶面とすることによっ
て、この形成面に対して超電導体の結晶軸の中で最も格
子定数の長い結晶軸を配向させた、例えば酸化物超電導
体であればC軸配向させた超電導体層を得ることか可能
となり、特に (100)結晶面か超電導体層を配向さ
せるのに適している。
In addition, the surface of the above substrate on which the superconductor layer is formed is made of silver.
(100) crystal plane or (110) crystal plane orientation plane,
Alternatively, it is preferable to use a mixture of these orientation surfaces. In this way, the surface on which the superconductor layer will be formed is coated with silver (
For example, in the case of an oxide superconductor, C It is possible to obtain an axially oriented superconductor layer, and is particularly suitable for oriented a superconductor layer in the (100) crystal plane.

これら銀の結晶面の配向度は、 (100)結晶面もし
くは (110)結晶面、あるいはこれらか混在した状
態で、超電導体層の形成面に対して60%以上平行に配
向させることか好ましく、特に銀の (100)結晶面
か80%以上となるように配向させることか好ましい。
The degree of orientation of these silver crystal planes is preferably 60% or more parallel to the formation plane of the superconductor layer, with the (100) crystal plane, the (110) crystal plane, or a mixture of these. In particular, it is preferable to orient 80% or more of the (100) crystal plane of silver.

このような銀の (+00)結晶面や (110)結晶
面による配向面は、配向面方向に対して銀に圧延加工を
施し、すべり面によって結晶方位を揃えることによって
得ることかできる。そして、圧延加工によって得られる
結晶面は、 (110)結晶面が揃いやすいため、この
後、熱処理を施すことによって再結晶させることか好ま
しい。この再結晶化によって、銀の結晶粒が粗大化する
と共に (100)結晶面の配向度か向上し、より超電
導体の結晶方位を配向しやすくなる。
Such a (+00) crystal plane or (110) crystal plane of silver can be obtained by rolling silver in the direction of the oriented plane and aligning the crystal orientation by a slip plane. Since the (110) crystal planes obtained by rolling are likely to be aligned, it is preferable to recrystallize by heat treatment thereafter. This recrystallization coarsens the silver crystal grains and improves the degree of orientation of the (100) crystal plane, making it easier to orient the crystal orientation of the superconductor.

上記したような基体を用いた本発明における単位部材は
、物理的蒸着法であるスパッタ法、反応性蒸着法、レー
ザ蒸着法、あるいは化学的蒸着法であるCVD法、MO
CVD法等、各種の薄膜形成方法を用いて、基体上に超
電導体層を形成することにより得られる。また、超電導
体層は、ドクターブレード法等の厚膜法により形成して
もよく、この場合は塗布した後に酸素雰囲気中で700
℃〜1000℃程度の温度で焼結させる。なお、焼結し
たものを一体化してもよいが、先に一体化してから焼結
してもよい。
The unit member in the present invention using the above-mentioned substrate can be produced by physical vapor deposition such as sputtering, reactive vapor deposition, laser vapor deposition, chemical vapor deposition such as CVD, or MO.
It can be obtained by forming a superconductor layer on a substrate using various thin film forming methods such as CVD method. Further, the superconductor layer may be formed by a thick film method such as a doctor blade method, and in this case, after coating, the superconductor layer is
Sintering is carried out at a temperature of about 1000°C to 1000°C. Note that the sintered materials may be integrated, or they may be integrated first and then sintered.

また、上記(b)で示した単位部材は、同様な素材から
なる管状の基体内に超電導体粉末を充填し、スウエージ
ング加工、圧延加工、線引き加工等を施すことにより得
られる。このような単位部材における超電導体の配向は
、圧延加工時に一方向から力を加えたり、磁場を印加す
る等によって行うことかできる。
The unit member shown in (b) above can be obtained by filling a tubular base made of the same material with superconductor powder and subjecting it to swaging, rolling, wire drawing, etc. The superconductor in such a unit member can be oriented by applying force from one direction during rolling or by applying a magnetic field.

そして、本発明の超電導部材は、上記したような単位部
材を複数一体化する際に、それぞれの単位部材中の配向
された結晶軸の方向が異なる部分を有するようにしたも
のであり、例えば結晶軸の配向方向を揃えて複数の単位
部材を一体化し、これらをさらに束ねる際に、結晶軸の
配向方向か直角となるように一体化しtこり、さらには
結晶軸の配向方向の向きを多数の方位として一体化した
もの等が例示される。
The superconducting member of the present invention is such that when a plurality of unit members as described above are integrated, each unit member has a portion in which the oriented crystal axes of the unit members differ in direction. When uniting multiple unit members with their axes aligned, and then bundling them together, it is difficult to integrate them so that they are perpendicular to the orientation of the crystal axes. An example is one in which the direction is integrated.

(作 用) 本発明の超電導部材においては、単位部材中の超電導体
の配向された結晶軸の方向が異なる部分を有するように
、複数の単位部材を一体化しているため、ある方向から
磁場が印加された際に、その磁場方向に配向された結晶
軸か存在している単位部材は超電導特性が低下するが、
その他の単位部材では超電導特性の低下が少ないため、
電流はそちらを主に流れ、極端に臨界電流が少なくなる
ことはない。
(Function) In the superconducting member of the present invention, a plurality of unit members are integrated so that the directions of the oriented crystal axes of the superconductors in the unit members are different, so that a magnetic field is applied from a certain direction. When a magnetic field is applied, the superconducting properties of unit members whose crystal axes are oriented in the direction of the magnetic field deteriorate;
In other unit parts, the deterioration of superconducting properties is small, so
The current mainly flows there, and the critical current does not become extremely low.

(実施例) 次に、本発明の実施例について説明する。(Example) Next, examples of the present invention will be described.

実施例1 まず、Ag素材に対して一定方向に圧延加工を施しつつ
線引き加工を行い、幅10I×厚さ 1II11の長尺
なテープ状基体を作製した。このようにして得たAgテ
ープの主面(圧力印加面)の結晶方位をX線回折により
解析したところ、主面長手方向に対してほぼ平行となる
ように (110)面か配向していた。次いて、このA
gテープに対して700℃×60分の条件で再結晶化の
ための熱処理を施した。熱処理後の同一面の結晶方位を
X線回折により調べたところ、 (100)面か配向し
ており、その配向度は80%であり、他は(110)面
であった。
Example 1 First, an Ag material was rolled in a certain direction and drawn to produce a long tape-like substrate with a width of 10I and a thickness of 1II11. When the crystal orientation of the main surface (pressure application surface) of the Ag tape thus obtained was analyzed by X-ray diffraction, it was found that the (110) plane was oriented almost parallel to the longitudinal direction of the main surface. . Next, this A
The g tape was subjected to heat treatment for recrystallization at 700° C. for 60 minutes. When the crystal orientation of the same plane after the heat treatment was examined by X-ray diffraction, it was found that the (100) plane was oriented, and the degree of orientation was 80%, and the rest were (110) planes.

次に、上記Agテープの (100)面による配向面が
スパッタ源と対向するように成膜装置内に設置しこのA
gテープに対してYSBaXCuをそれぞれスパッタし
、膜厚モニタで膜厚を1μIに制御しなからAgテープ
の配向面上にYBa2Cu30□−6膜を連続して堆積
させて、単位線材を作製した。
Next, the Ag tape is installed in a film forming apparatus so that the (100) oriented surface faces the sputtering source.
YSBaXCu was sputtered onto each of the Ag tapes, and after controlling the film thickness to 1 μI using a film thickness monitor, a YBa2Cu30□-6 film was continuously deposited on the oriented surface of the Ag tape to produce a unit wire.

このようにして得たYBa2Cu307−、l膜の結晶
方位をX線回折により解析したところ、上記酸化物超電
導体のC軸かAgテープの (100)面に対して垂直
に配向していることを確認した。また超電導特性は、臨
界温度か85にで、77Kにおける臨界電流密度はIX
 10’ A/cシであった。
Analysis of the crystal orientation of the thus obtained YBa2Cu307-,l film by X-ray diffraction revealed that the C axis of the oxide superconductor was oriented perpendicular to the (100) plane of the Ag tape. confirmed. In addition, the superconducting property has a critical temperature of 85K, and the critical current density at 77K is IX
It was 10' A/c.

次に、第1図に示すように、Agテープ11上にYBa
2Cu30□−6膜12を配向させて形成した単位線材
13を10枚から1000枚程度重ね、lO〜5000
kg/c−の圧力でプレスして1つのユニット14とし
たものを複数作製した。この後、上記複数のユニット1
4a、14b・・・を、隣接するユニット14のYBa
2Cu307−6膜12か互いに垂直となるように重ね
合せてさらにプレスし、目的とする超電導線材を得た。
Next, as shown in FIG. 1, YBa is placed on the Ag tape 11.
Approximately 10 to 1000 unit wire rods 13 formed by orienting the 2Cu30□-6 film 12 are stacked, and
A plurality of units 14 were produced by pressing at a pressure of kg/c-. After this, the plurality of units 1
4a, 14b..., YBa of the adjacent unit 14
The 2Cu307-6 films 12 were stacked perpendicularly to each other and further pressed to obtain the desired superconducting wire.

このようにして作製した線材の臨界電流は、無磁場中で
は 100OA以上を示した。また磁場を印加した場合
、どの方向から印加してもほぼ異方性は認められず、ま
た臨界電流の低下の程度も少な(,10Tの磁場中でも
100八以上の臨界電流が得られた。
The critical current of the wire produced in this way was 100 OA or more in the absence of a magnetic field. Furthermore, when a magnetic field was applied, almost no anisotropy was observed no matter which direction it was applied, and the degree of decrease in the critical current was small (a critical current of 1008 or more was obtained even in a magnetic field of 10 T).

なお、上記超電導線材においては、X方向に磁場か印加
されると、C軸かX軸方向に配向したユニット14a、
14dは超電導特性が低下するが、その他のユニット1
4b、14Cは超電導特性の低下か少ないため、電流は
そちらを主に流れ、極端に臨界電流が少なくなることは
ない。2方向についても同様である。
In addition, in the above-mentioned superconducting wire, when a magnetic field is applied in the X direction, the units 14a oriented in the C-axis or the X-axis direction,
14d has lower superconducting properties, but other units 1
4b and 14C have little or no deterioration in superconducting properties, so current mainly flows through them, and the critical current does not become extremely low. The same applies to the two directions.

実施例2 実施例1て用いたAgテープ上に、蒸着法によって厚さ
 1μmのYBa2Cu30□6膜を形成して単位線材
を作製し、これを実施例1と同様に一体化して超電導線
材を得た。
Example 2 A YBa2Cu30□6 film with a thickness of 1 μm was formed by vapor deposition on the Ag tape used in Example 1 to produce a unit wire, and this was integrated in the same manner as in Example 1 to obtain a superconducting wire. Ta.

この超電導線材も実施例1と同様に、磁場に対する臨界
電流の異方性は認められず、また磁場を印加した際の臨
界電流の低下の程度も少なかったまた、上記蒸着法によ
れば、酸化物超電導体膜形成時に蒸着粒子の少なくとも
一部をクラスター化やイオン化するため、より大きな臨
界電流が得られた。したかって、同じ電流を流すために
必要な超電導線材は、より細くすることが可能となった
Similar to Example 1, this superconducting wire also showed no anisotropy in the critical current with respect to the magnetic field, and the degree of decrease in the critical current when a magnetic field was applied was small. A larger critical current was obtained because at least a portion of the deposited particles were clustered or ionized during the formation of the superconductor film. Therefore, it has become possible to make the superconducting wire necessary to pass the same current even thinner.

実施例3 実施例1て用いたAgテープ上に、ドクターブレード法
によってY、 Ba5Cuの組成比かほぼ1:2:3で
含まれた膜を20μDの厚さでコーティングした。
Example 3 On the Ag tape used in Example 1, a film containing Y and Ba5Cu in a composition ratio of approximately 1:2:3 was coated to a thickness of 20 μD by a doctor blade method.

次いてこれを焼結して単位線材を作製し、実施例1と同
様に一体化した。
Next, this was sintered to produce a unit wire rod, which was integrated in the same manner as in Example 1.

この方法では、容易に厚い膜が得られるので重ねる枚数
は少なくてすむ。たたし臨界電流密度は、他と比較する
と小さいため、その効果はさほど大きくない場合もある
With this method, a thick film can be easily obtained, so the number of layers to be stacked can be small. However, since the critical current density is small compared to others, the effect may not be so great.

実施例4 基体として幅1mm、厚さ [1、1+amのCuテー
プを用い、その上にAuやAgを1000人〜llll
11程度の厚さて成膜した後、スパッタリング法、蒸着
法、ドクターブレード法等により YBa2Cu307
−J膜を成膜した。それを実施例1と同様に一体化した
Example 4 A Cu tape with a width of 1 mm and a thickness of 1.
After forming a film with a thickness of about 11 mm, YBa2Cu307 is formed by sputtering, vapor deposition, doctor blade method, etc.
-J film was formed. It was integrated in the same manner as in Example 1.

上記複合テープの場合には、Agテープと比較すると、
その上に形成した超電導体の結晶性や配向性がやや劣る
ため、臨界電流は小さくなるものの、基体そのものの価
格は安くなるため、用途に応して使い分けることかでき
る。
In the case of the above composite tape, compared to Ag tape,
The crystallinity and orientation of the superconductor formed on it are slightly inferior, so the critical current is small, but the price of the substrate itself is low, so it can be used depending on the purpose.

実施例5 第2図に示すように、上記実施例1〜4と同様にして作
製した単位線材13を複数重ねてプレスし、台形に加工
してユニット15を作製した。このユニット15の作製
方法は、幅か少しづつ異なるテープ上に成膜し、それら
を重ねてプレスしてもよい。次いて、これらのユニット
15.15・・・を断面が多角形となるように束ねて一
体化した。
Example 5 As shown in FIG. 2, a plurality of unit wire rods 13 produced in the same manner as in Examples 1 to 4 were stacked and pressed, and processed into a trapezoid to produce a unit 15. This unit 15 may be manufactured by forming films on tapes having slightly different widths, overlapping them, and pressing them. Next, these units 15, 15... were bundled and integrated so that the cross section had a polygonal shape.

このような構造にすることにより、磁場に対する臨界電
流の異方性はさらに解消される。また多角形の角が多い
はと異方性か改善される。
By adopting such a structure, the anisotropy of the critical current with respect to the magnetic field is further eliminated. Also, if the polygon has many corners, the anisotropy will be improved.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明の超電導部材によれば、配向
させた超電導体膜のC軸か一方向に揃わないよう一体化
しているため、臨界電流の磁場に対する異方性か抑制さ
れた超電導部材を提供することが可能となる。
As explained above, according to the superconducting member of the present invention, since the C-axes of the oriented superconductor films are integrated so that they are not aligned in one direction, the superconducting member has suppressed anisotropy with respect to the magnetic field of the critical current. It becomes possible to provide

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の超電導部材の構成を示す図
、第2図は本発明の他の実施例の超電導部材の構成を示
す図、第3図は本発明に対する比較例の超電導部材の構
成を示す図である。 11・・・・・・テープ状基体、12・・・・・・酸化
物超電導体層、13・・・・・単位線材、14.15・
・・−ユニット。
FIG. 1 is a diagram showing the configuration of a superconducting member according to one embodiment of the present invention, FIG. 2 is a diagram showing the configuration of a superconducting member according to another embodiment of the present invention, and FIG. 3 is a diagram showing the configuration of a superconducting member according to another embodiment of the present invention. It is a figure showing the composition of a member. 11... Tape-shaped substrate, 12... Oxide superconductor layer, 13... Unit wire, 14.15.
...-Unit.

Claims (1)

【特許請求の範囲】[Claims]  超電導転移を示す物質を基体と複合化した単位部材を
複数一体化してなる超電導部材において、前記複数の単
位部材における超電導転移を示す物質を、該物質の結晶
軸の中で最も格子定数の長い結晶軸が前記基体に対して
ほぼ垂直となるように配向させると共に、前記結晶軸の
方向が異なる部分を有するように前記複数の単位部材が
一体化されていることを特徴とする超電導部材。
In a superconducting member formed by integrating a plurality of unit members in which a substance exhibiting superconducting transition is composited with a substrate, the substance exhibiting superconducting transition in the plurality of unit members is a crystal with the longest lattice constant among the crystal axes of the substance. A superconducting member, characterized in that the plurality of unit members are oriented so that their axes are substantially perpendicular to the base, and are integrated so that the crystal axes have different directions.
JP02261197A 1990-09-29 1990-09-29 Superconducting material Expired - Lifetime JP3099891B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02261197A JP3099891B2 (en) 1990-09-29 1990-09-29 Superconducting material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02261197A JP3099891B2 (en) 1990-09-29 1990-09-29 Superconducting material

Publications (2)

Publication Number Publication Date
JPH04138621A true JPH04138621A (en) 1992-05-13
JP3099891B2 JP3099891B2 (en) 2000-10-16

Family

ID=17358495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02261197A Expired - Lifetime JP3099891B2 (en) 1990-09-29 1990-09-29 Superconducting material

Country Status (1)

Country Link
JP (1) JP3099891B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06251644A (en) * 1993-02-24 1994-09-09 Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai Superconducting wire and magnetic field generation device
JP2010135295A (en) * 2008-12-03 2010-06-17 Korea Electrotechnology Research Inst Manufacturing method of round-shaped wire using superconducting thin film wire rod, and the round-shaped wire using superconducting thin film wire rod
WO2015083291A1 (en) * 2013-12-06 2015-06-11 株式会社日立製作所 Super-conducting wire material, production method therefor, and super-conducting coil using same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06251644A (en) * 1993-02-24 1994-09-09 Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai Superconducting wire and magnetic field generation device
JP2010135295A (en) * 2008-12-03 2010-06-17 Korea Electrotechnology Research Inst Manufacturing method of round-shaped wire using superconducting thin film wire rod, and the round-shaped wire using superconducting thin film wire rod
WO2015083291A1 (en) * 2013-12-06 2015-06-11 株式会社日立製作所 Super-conducting wire material, production method therefor, and super-conducting coil using same

Also Published As

Publication number Publication date
JP3099891B2 (en) 2000-10-16

Similar Documents

Publication Publication Date Title
US6291402B1 (en) Method of making a superconductive oxide body
US6027826A (en) Method for making ceramic-metal composites and the resulting composites
EP0884787B1 (en) Oxide superconductor wire and method of manufacturing the same
US8142881B2 (en) Mesh-type stabilizer for filamentary coated superconductors
EP0467237B1 (en) Method of preparing oxide superconducting wire
JP4200843B2 (en) Thin film superconducting wire and manufacturing method thereof
EP2565879B1 (en) Oxide superconducting conductor and production method therefor
DE60031784T2 (en) IMPROVED HIGH TEMPERATURE SUPER PLATE COATED ELEMENTS
JPH04138621A (en) Superconducting member
US20020013231A1 (en) Mg-doped high-temperature superconductor having low superconducting anisotropy and method for producing the superconductor
US5874027A (en) Boron-carbon system superconductive substance
WO2013015328A1 (en) Base material for superconducting thin film, superconducting thin film, and method for manufacturing superconducting thin film
JP2889286B2 (en) Superconducting body and superconducting coil formed using the superconducting body
JP2813287B2 (en) Superconducting wire
JP2835069B2 (en) Superconducting coil
JPH04132611A (en) Superconductor
JPH0393110A (en) superconducting wire
JPH02273418A (en) Method for manufacturing oxide superconducting conductor
US6240620B1 (en) Making of bismuth 2212 superconducting wire or tape
JP2809895B2 (en) Superconducting material
JP3090709B2 (en) Oxide superconducting wire and method of manufacturing the same
JP2563411B2 (en) Manufacturing method of oxide superconducting wire
JP2919955B2 (en) Superconducting member manufacturing method
JPH05310421A (en) Oxide superconductor thick film laminate and method for producing the same
JPH01258832A (en) Superconductor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070818

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080818

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 11