[go: up one dir, main page]

JPH04284824A - Method for purifying exhaust gas - Google Patents

Method for purifying exhaust gas

Info

Publication number
JPH04284824A
JPH04284824A JP3049725A JP4972591A JPH04284824A JP H04284824 A JPH04284824 A JP H04284824A JP 3049725 A JP3049725 A JP 3049725A JP 4972591 A JP4972591 A JP 4972591A JP H04284824 A JPH04284824 A JP H04284824A
Authority
JP
Japan
Prior art keywords
exhaust gas
catalyst
catalysts
supported
nox
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3049725A
Other languages
Japanese (ja)
Other versions
JP2910278B2 (en
Inventor
Yojiro Iriyama
要次郎 入山
Kazunobu Ishibashi
一伸 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP3049725A priority Critical patent/JP2910278B2/en
Publication of JPH04284824A publication Critical patent/JPH04284824A/en
Application granted granted Critical
Publication of JP2910278B2 publication Critical patent/JP2910278B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、自動車等の内燃機関な
どから排出される排気ガス中の窒素酸化物(NOx) 
を浄化する方法に関し、更に詳しくは酸素過剰雰囲気下
、 300〜 500℃という実用温度域で排気ガス中
の NOxを浄化する排気ガス浄化方法に関する。
[Industrial Application Field] The present invention deals with nitrogen oxides (NOx) in exhaust gas emitted from internal combustion engines of automobiles, etc.
More specifically, the present invention relates to an exhaust gas purification method for purifying NOx in exhaust gas in an oxygen-rich atmosphere at a practical temperature range of 300 to 500°C.

【0002】0002

【従来の技術】自動車等の内燃機関などから排出される
排気ガス中には窒素酸化物等が含まれているため、近年
、排気ガス中の窒素酸化物の浄化について種々の検討が
なされている。
[Prior Art] Exhaust gas emitted from internal combustion engines such as automobiles contains nitrogen oxides, etc., and in recent years, various studies have been conducted on purifying nitrogen oxides from exhaust gas. .

【0003】従来、窒素酸化物の浄化には還元性ガスの
存在下に貴金属や金属の還元性触媒を用いるのが主体で
あったが、近年、窒素酸化物を酸化性ガスの存在下で浄
化する触媒について種々研究されている。そのような触
媒、特に空燃比の大きいリーン側で燃焼させた希薄燃焼
エンジンからの排気のような過剰酸素雰囲気下で NO
xを浄化するリーン NOx触媒として、Cu/ゼオラ
イト触媒、Pt/Al2O3 触媒等が知られている。 しかしながら、これらの触媒のうち、Cu/ゼオライト
触媒は高効率で NOxを浄化できる温度が 450〜
 550℃であり、また、Pt/Al2O3 触媒は 
350〜450 ℃であり、高効率で NOxを浄化で
きる温度幅の広い (例えば、 300〜 500℃)
 触媒は知られていなかった。
[0003] Conventionally, nitrogen oxides have been mainly purified using noble metals or metal reducing catalysts in the presence of reducing gases, but in recent years, nitrogen oxides have been purified in the presence of oxidizing gases. Various researches have been conducted on catalysts for this purpose. Such catalysts, especially in an excess oxygen atmosphere such as the exhaust from a lean-burn engine burning on the lean side with a high air/fuel ratio,
Cu/zeolite catalysts, Pt/Al2O3 catalysts, etc. are known as lean NOx catalysts that purify x. However, among these catalysts, the Cu/zeolite catalyst is highly efficient and the temperature at which it can purify NOx is 450~450℃.
550℃, and the Pt/Al2O3 catalyst is
It has a wide temperature range of 350 to 450 degrees Celsius and can purify NOx with high efficiency (for example, 300 to 500 degrees Celsius).
The catalyst was unknown.

【0004】即ち、ゼオライトは別名分子ふるいとも称
せられるように、種々の分子の大きさに匹敵する細孔を
有し、触媒として多くの反応に利用されており、また、
ゼオライトはその構成成分の一つである Al2O3の
負電荷を中和するために陽イオンを含み、この陽イオン
は水溶液中で他の陽イオンと容易に交換されるため、イ
オン交換体としても利用されていることは周知の通りで
ある。 この様な特徴を生かして、ゼオライトは近年、排気ガス
浄化用触媒への利用も検討されており、例えば特開平1
−135541号公報には、ゼオライトにPt,Pd,
Rh,Ir及びRuから選ばれた貴金属をイオン交換に
より担持させた排気ガス浄化用触媒が開示されており、
この触媒は、燃料に対して酸素が過剰状態で燃焼させた
排気ガスのようなリーン雰囲気下においても優れた N
Ox浄化性能を示す旨記載されている。
[0004] Zeolites, also known as molecular sieves, have pores comparable in size to various molecules, and are used as catalysts in many reactions.
Zeolite contains cations to neutralize the negative charge of Al2O3, one of its constituent components, and this cation is easily exchanged with other cations in an aqueous solution, so it can also be used as an ion exchanger. It is well known that this is the case. Taking advantage of these characteristics, zeolite has recently been considered for use in exhaust gas purification catalysts, for example,
-135541 publication describes that zeolite contains Pt, Pd,
An exhaust gas purifying catalyst is disclosed in which a noble metal selected from Rh, Ir, and Ru is supported by ion exchange,
This catalyst exhibits excellent N even in lean atmospheres such as exhaust gases that are burned with excess oxygen relative to fuel.
It is stated that it exhibits Ox purification performance.

【0005】[0005]

【発明が解決しようとする課題】前記したゼオライトに
陽イオンとしてCuを担持したCu/ゼオライト触媒は
、CuがNOx に対する高い吸着能を有するため、初
期の触媒活性は優れているが、耐久後の劣化が大きく、
高い NOx浄化能を示す温度が 450〜 550℃
付近の狭い範囲に限られるという問題がある。また、貴
金属担持触媒の典型例であるPt/Al2O3 も同様
に高い NOx浄化能を示す温度が350〜 450℃
付近の比較的狭い温度範囲である。
[Problems to be Solved by the Invention] The above-mentioned Cu/zeolite catalyst in which Cu is supported as a cation on zeolite has excellent initial catalytic activity because Cu has a high adsorption capacity for NOx. Significant deterioration;
The temperature that shows high NOx purification ability is 450 to 550℃
The problem is that it is limited to a narrow area nearby. Furthermore, Pt/Al2O3, which is a typical example of a noble metal supported catalyst, exhibits a similarly high NOx purification ability at a temperature of 350 to 450°C.
This is a relatively narrow temperature range in the vicinity.

【0006】従って、本発明は、前記した従来技術の問
題を解決して、酸素過剰雰囲気下、300 〜 500
℃という広い実用温度域で排気ガス中の NOxを効率
良く浄化する方法を開発することを目的とする。
[0006] Therefore, the present invention solves the problems of the prior art described above, and in an oxygen-rich atmosphere,
The purpose of this project is to develop a method to efficiently purify NOx in exhaust gas over a wide practical temperature range of ℃.

【0007】[0007]

【課題を解決するための手段】本発明に従えば、アルミ
ナ担体に、白金とストロンチウムとを担持してなる排気
ガス浄化用触媒を酸素過剰の排気ガス中に配置して排気
ガス中の NOxを浄化する方法が提供される。
[Means for Solving the Problems] According to the present invention, an exhaust gas purifying catalyst comprising platinum and strontium supported on an alumina carrier is disposed in oxygen-excess exhaust gas to eliminate NOx in the exhaust gas. A method of purification is provided.

【0008】本発明に係る排気ガス浄化方法に使用する
触媒は、γ−Al2O3 にPtと、第二成分元素とし
てSrを、例えば含浸法で担持したもので、前記したC
u担持ゼオライト触媒と比較すると、初期の触媒活性に
おいては劣るものの(温度域 400〜 550℃)、
耐久後の劣化が小さく、従って NOx浄化活性の低下
が小さく、また耐久後の450 ℃以下での活性ではC
u/ゼオライト触媒の活性を遙かに上回っている。
The catalyst used in the exhaust gas purification method according to the present invention is one in which γ-Al2O3 is supported with Pt and Sr as a second component element, for example, by an impregnation method.
Although the initial catalytic activity is inferior to that of u-supported zeolite catalysts (temperature range 400 to 550°C),
The deterioration after durability is small, so the decrease in NOx purification activity is small, and the activity below 450℃ after durability is C
The activity far exceeds that of u/zeolite catalyst.

【0009】本発明の最大の特徴は、Ptを担持したγ
−Al2O3 にSrを担持することにより高い NO
x浄化活性を示す温度域が拡大することにある。本発明
者らは、これまでPt担持ゼオライト触媒をはじめとす
るPt担持酸化物触媒の調製を行ってきた。しかしなが
ら、これらの触媒は、高い NOx浄化活性を示す温度
域が狭いという問題があり、かかる問題を如何に解決し
て高い NOx浄化活性を示す温度域をどのようにして
拡大させるかを検討していたが、第二成分元素としてS
rを少量添加することによって温度域の拡大に成功した
The greatest feature of the present invention is that γ supporting Pt
-High NO by supporting Sr on Al2O3
x The temperature range in which purification activity is exhibited is expanded. The present inventors have so far prepared Pt-supported oxide catalysts including Pt-supported zeolite catalysts. However, these catalysts have the problem that the temperature range in which they exhibit high NOx purification activity is narrow, and we are currently investigating how to solve this problem and expand the temperature range in which they exhibit high NOx purification activity. However, S as a second component element
By adding a small amount of r, we succeeded in expanding the temperature range.

【0010】本発明において担体に使用する酸化物はγ
−Al2O3 を主体とするものであり、γ−Al2O
3 のみでも良いが、高温での一層の耐久性を確保する
ためにはLaを添加したLa添加γ−Al2O3 の使
用が好ましい。また、ストロンチウムの添加量は担持P
t量の5〜20重量%程度がよく、担体アルミナに対す
るPtの担持量は 0.5〜2重量%が好ましい。
[0010] The oxide used for the carrier in the present invention is γ
-Al2O3 is the main component, and γ-Al2O
3 may be used alone, but in order to ensure further durability at high temperatures, it is preferable to use La-added γ-Al2O3. In addition, the amount of strontium added is
The amount of Pt supported on the alumina carrier is preferably 0.5 to 2% by weight.

【0011】アルミナに対するPt及びSrの担持は例
えば通常の含浸法で行うことができる。含浸法による担
持の一例を説明すれば、Pt及びSrの担持金属成分を
含有する溶液の中にアルミナ担体を常温で24〜48時
間浸漬し(浸漬工程)、次に例えば温度 100〜 1
10℃で約10時間乾燥し(乾燥工程)、最後に温度 
400〜 800℃で数時間保持して焼成する(焼成工
程)ことからなる。被含浸液に含有させる白金化合物と
しては例えば、ジニトロジアミン白金硝酸塩溶液、塩化
白金酸溶液などを用いることができ、ストロンチウム化
合物としては、硝酸ストロンチウム、酢酸ストロンチウ
ムなどを用いることができる。
[0011] Pt and Sr can be supported on alumina by, for example, a conventional impregnation method. To describe an example of supporting by an impregnation method, an alumina support is immersed in a solution containing supported metal components of Pt and Sr at room temperature for 24 to 48 hours (immersion step), and then the alumina support is then heated to a temperature of, for example, 100 to 1.
Dry at 10℃ for about 10 hours (drying process), and finally
It consists of holding and firing at 400 to 800°C for several hours (firing step). As the platinum compound to be contained in the liquid to be impregnated, for example, dinitrodiamine platinum nitrate solution, chloroplatinic acid solution, etc. can be used, and as the strontium compound, strontium nitrate, strontium acetate, etc. can be used.

【0012】0012

【作用】本発明に従えば、理由は不明であるが、Pt/
アルミナ触媒に第二成分元素としてSrを添加すること
により、表1及び図1に示すように、300〜 500
℃の広い温度範囲で酸素過剰雰囲気下で耐久試験後にお
いて高い浄化率で NOxを浄化することができる。
[Operation] According to the present invention, although the reason is unknown, Pt/
By adding Sr as a second component element to the alumina catalyst, as shown in Table 1 and FIG.
It is possible to purify NOx with a high purification rate after a durability test in an oxygen-rich atmosphere over a wide temperature range of ℃.

【0013】[0013]

【実施例】以下に、本発明にかかる触媒及び比較例触媒
の調製例並びに酸素過剰状態のモデルガスを用いた N
Oxに対する該触媒の浄化活性の評価例を説明するが、
本発明の技術的範囲を以下の実施例に限定するものでは
ないことはいうまでもない。
[Example] Below, preparation examples of catalysts according to the present invention and comparative catalysts, and N
An example of evaluation of the purification activity of the catalyst against Ox will be explained.
It goes without saying that the technical scope of the present invention is not limited to the following examples.

【0014】触媒の調製 市販のγ−アルミナ、ジニトロジアミンPt硝酸塩溶液
及びSr,Ca,KもしくはBaの硝酸塩又はMgの硫
酸塩を出発物質として用いた。先ず、市販のLa添加γ
−アルミナ(W.R. GRACE製MI−386) 
を0.1mol%ジニトロジアミン白金硝酸塩水溶液中
に浸漬し、常温で24時間攪拌下に保持した。次にろ過
及び洗浄を行い、温度 110℃で10時間乾燥し、更
に温度 500℃で3時間焼成した。このようにして得
られた触媒を触媒Aとする。更に触媒Aと同様の手順で
触媒Aに更にSr,Ca,K,Ba又はMgを担持した
触媒B〜Fをそれぞれ調製した。
Preparation of the Catalyst Commercially available γ-alumina, dinitrodiamine Pt nitrate solutions and nitrates of Sr, Ca, K or Ba or sulfates of Mg were used as starting materials. First, commercially available La-added γ
- Alumina (MI-386 manufactured by W.R. GRACE)
was immersed in a 0.1 mol% dinitrodiamine platinum nitrate aqueous solution and kept under stirring at room temperature for 24 hours. Next, it was filtered and washed, dried at a temperature of 110°C for 10 hours, and further baked at a temperature of 500°C for 3 hours. The catalyst thus obtained is referred to as catalyst A. Catalysts B to F, in which Sr, Ca, K, Ba, or Mg was further supported on catalyst A, were prepared in the same manner as catalyst A.

【0015】担持量分析 得られた排気ガス浄化用触媒を原子吸光分析により分析
した。結果は表1に示す。表示値は触媒 100重量部
に対する担持金属の量である。
Supported Amount Analysis The obtained exhaust gas purifying catalyst was analyzed by atomic absorption spectrometry. The results are shown in Table 1. The indicated value is the amount of supported metal relative to 100 parts by weight of catalyst.

【0016】活性評価条件 得られた各触媒について耐久処理後の NOx転化率を
空燃比 (A/F)=18のモデルガスを用い、触媒温
度 300〜 500℃の範囲で50℃ごとに定常評価
を行った。触媒はペレット状のもの 0.5gを使用し
た。なお耐久処理は、空燃比 (A/F)=18相当の
モデルガス(水蒸気10%を含む)雰囲気下で温度 6
00℃に5時間曝すことによって行った。
Conditions for evaluating activity The NOx conversion rate of each of the obtained catalysts after durability treatment was evaluated at regular intervals of 50°C within the catalyst temperature range of 300 to 500°C using a model gas with an air-fuel ratio (A/F) of 18. I did it. The catalyst used was 0.5 g of pellets. The durability treatment was performed at a temperature of 6 in a model gas atmosphere (containing 10% water vapor) equivalent to an air-fuel ratio (A/F) of 18.
This was done by exposing to 00°C for 5 hours.

【0017】実験結果 各触媒の担持量と NOx転化率の結果を表1及び図1
に示す。なおCu担持触媒はゼオライト(ZSM−5)
に 2.6%のCuを常法により担持して調製した。
[0017] Experimental results The supported amount of each catalyst and the NOx conversion rate are shown in Table 1 and Figure 1.
Shown below. Note that the Cu-supported catalyst is zeolite (ZSM-5)
It was prepared by supporting 2.6% Cu on it by a conventional method.

【0018】[0018]

【表1】[Table 1]

【0019】[0019]

【発明の効果】表1及び図1の結果からも明らかなよう
に、Pt担持アルミナ触媒にCa,Mg,K又はBaを
第二成分元素として添加した場合にも低温活性の向上す
るものもあるが、 400℃以上では逆に NOx転化
率が低下するのに対し、第二成分元素としてPtにSr
を添加した触媒では、 300℃での活性が向上するの
みでなく、高温側でもほとんど NOx転化率の低下が
みられない。即ち、Pt/アルミナ触媒にSrを添加す
ることにより酸素過剰雰囲気下において耐久後も NO
x転化率の高い温度域を広げることができる。
[Effects of the Invention] As is clear from the results in Table 1 and Figure 1, low-temperature activity can be improved in some Pt-supported alumina catalysts when Ca, Mg, K, or Ba is added as a second component element. However, at temperatures above 400°C, the NOx conversion rate decreases; however, when Sr is added to Pt as a second component element,
The catalyst containing NOx not only has improved activity at 300°C, but also shows almost no decrease in NOx conversion even at high temperatures. That is, by adding Sr to the Pt/alumina catalyst, NO
x The temperature range where the conversion rate is high can be expanded.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明に従ったPt+Sr/アルミナ触媒並び
にアルミナにPt、Pt+Ca、Pt+Mg、Pt+K
及びPt+Baを担持した触媒並びにCu/ゼオライト
触媒の 300〜 500℃における NOx転化率を
示すグラフ図である。
FIG. 1: Pt+Sr/alumina catalyst according to the invention and alumina containing Pt, Pt+Ca, Pt+Mg, Pt+K
It is a graph diagram showing the NOx conversion rate at 300 to 500°C of a catalyst supporting Pt+Ba and a Cu/zeolite catalyst.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  アルミナ担体に、白金とストロンチウ
ムとを担持してなる排気ガス浄化用触媒を酸素過剰の排
気ガス中に配置して、排気ガス中の窒素酸化物を浄化す
ることを特徴とする排気ガス浄化方法。
Claim 1: An exhaust gas purifying catalyst comprising platinum and strontium supported on an alumina carrier is disposed in oxygen-excess exhaust gas to purify nitrogen oxides in the exhaust gas. Exhaust gas purification method.
JP3049725A 1991-03-14 1991-03-14 Exhaust gas purification method Expired - Fee Related JP2910278B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3049725A JP2910278B2 (en) 1991-03-14 1991-03-14 Exhaust gas purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3049725A JP2910278B2 (en) 1991-03-14 1991-03-14 Exhaust gas purification method

Publications (2)

Publication Number Publication Date
JPH04284824A true JPH04284824A (en) 1992-10-09
JP2910278B2 JP2910278B2 (en) 1999-06-23

Family

ID=12839165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3049725A Expired - Fee Related JP2910278B2 (en) 1991-03-14 1991-03-14 Exhaust gas purification method

Country Status (1)

Country Link
JP (1) JP2910278B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993012863A1 (en) * 1991-12-27 1993-07-08 Toyota Jidosha Kabushiki Kaisha Exhaust emission control device in internal combustion engine
WO1994025143A1 (en) * 1993-04-28 1994-11-10 Nippon Shokubai Co., Ltd. Method of removing nitrogen oxides contained in exhaust gas
JPH10156145A (en) * 1996-11-29 1998-06-16 Ford Global Technol Inc Nitrogen oxides trap using zirconia and sulfate improved in capturing property and sulfur allowance
US6147027A (en) * 1997-09-24 2000-11-14 Toyota Jidosha Kabushiki Kaisha Alloy catalyst and process for producing the same
JPWO2024014407A1 (en) * 2022-07-13 2024-01-18

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993012863A1 (en) * 1991-12-27 1993-07-08 Toyota Jidosha Kabushiki Kaisha Exhaust emission control device in internal combustion engine
WO1994025143A1 (en) * 1993-04-28 1994-11-10 Nippon Shokubai Co., Ltd. Method of removing nitrogen oxides contained in exhaust gas
JPH10156145A (en) * 1996-11-29 1998-06-16 Ford Global Technol Inc Nitrogen oxides trap using zirconia and sulfate improved in capturing property and sulfur allowance
US6147027A (en) * 1997-09-24 2000-11-14 Toyota Jidosha Kabushiki Kaisha Alloy catalyst and process for producing the same
JPWO2024014407A1 (en) * 2022-07-13 2024-01-18
WO2024014407A1 (en) * 2022-07-13 2024-01-18 三井金属鉱業株式会社 Exhaust gas purification catalyst composition, exhaust gas purification catalyst, and exhaust gas purification system

Also Published As

Publication number Publication date
JP2910278B2 (en) 1999-06-23

Similar Documents

Publication Publication Date Title
JP2909553B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JPH0631173A (en) Catalyst for purification of exhaust gas and method for purifying exhaust gas
JPH0910594A (en) Catalyst for purifying exhaust gas
US5906958A (en) Catalyst for purifying automobile exhausts and method of manufacturing the catalyst
JP4901366B2 (en) Catalyst for oxidation removal of methane in exhaust gas and method for oxidation removal of methane in exhaust gas
JPH05220403A (en) Exhaust gas purifying catalyst
JPH11276907A (en) Exhaust gas purification catalyst and method for producing the same
JPH04284824A (en) Method for purifying exhaust gas
JP2005503253A (en) Lean NOx trap / conversion catalyst
US7462338B2 (en) Boron-alumina catalyst support
JP4330666B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JPH05277376A (en) Nox removing catalyst and nox removing method utilizing the catalyst
JP2605956B2 (en) Exhaust gas purification catalyst
JP3956158B2 (en) Nitrogen oxide removal catalyst
JPH0957066A (en) Exhaust gas purification catalyst
JP2921130B2 (en) Exhaust gas purification catalyst
JPH1176819A (en) Exhaust gas purification catalyst
JPH057778A (en) Manufacture of exhaust gas purification catalyst
JPH07213903A (en) Exhaust gas purifying catalyst
JPH10337476A (en) Methane oxidation catalyst
JP2000015104A (en) Exhaust gas purification catalyst and exhaust gas purification method
JP3296848B2 (en) Exhaust gas purification catalyst and method for producing the same
JPH05285391A (en) Exhaust gas purification catalyst
JPH08266900A (en) Exhaust gas purifying catalyst and manufacturing method thereof
JPH04235743A (en) Method for manufacturing exhaust gas purification catalyst

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090409

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees