[go: up one dir, main page]

JPH0584862B2 - - Google Patents

Info

Publication number
JPH0584862B2
JPH0584862B2 JP61191125A JP19112586A JPH0584862B2 JP H0584862 B2 JPH0584862 B2 JP H0584862B2 JP 61191125 A JP61191125 A JP 61191125A JP 19112586 A JP19112586 A JP 19112586A JP H0584862 B2 JPH0584862 B2 JP H0584862B2
Authority
JP
Japan
Prior art keywords
wire
flaw detection
break
detection frequency
detecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61191125A
Other languages
Japanese (ja)
Other versions
JPS6347653A (en
Inventor
Hiroyuki Takamatsu
Sadao Kawashima
Kenichi Sugii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP61191125A priority Critical patent/JPS6347653A/en
Publication of JPS6347653A publication Critical patent/JPS6347653A/en
Publication of JPH0584862B2 publication Critical patent/JPH0584862B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/12Analysing solids by measuring frequency or resonance of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/07Analysing solids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/11Analysing solids by measuring attenuation of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02854Length, thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、斜張橋等の長大橋において引張り部
材として使用されるパラレルワイヤーストランド
を構成する素線の断線を非破壊的に検出すること
を可能とする方法に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention is directed to non-destructively detecting disconnection of wires constituting parallel wire strands used as tension members in long bridges such as cable-stayed bridges. Regarding the method that makes it possible.

(従来の技術とその問題点) 長大橋等に使用される引張り部材としては、例
えば第6図で示すようなパラレルワイヤーストラ
ンド1がある。パラレルワイヤーストランド1
は、ワイヤロープの中でも直径5〜7mm程度の比
較的太径の鋼線からなる素線2を束ね、締結部3
において亜鉛合金等で素線2間を鋳込んでいる引
張り部材である。このようなパラレルワイヤース
トランド形式の引張り部材が近年好んで使用され
ており、その使用期間中に素線2に起る断線部
(第6図においては2a,2bとして例示的に示
してある)の存在を非破壊的に検出することは安
全確認上重要で、その技術の確率が強く要望され
ている。
(Prior Art and its Problems) As a tension member used in long bridges and the like, there is, for example, a parallel wire strand 1 as shown in FIG. Parallel wire strand 1
In this method, wire ropes 2 made of relatively large steel wires with a diameter of about 5 to 7 mm are bundled together, and a fastening portion 3 is assembled.
This is a tension member in which a zinc alloy or the like is cast between two wires. Such a parallel wire strand type tension member has been used favorably in recent years, and the breakage portions (illustratively shown as 2a and 2b in FIG. 6) that occur in the strand 2 during its use can be avoided. Detecting the presence non-destructively is important for safety confirmation, and the reliability of this technology is strongly desired.

従来、ワイヤーの断線を検出する方法として
は、ワイヤーを磁化し欠陥によるもれ磁束を検出
する磁気探傷法が主流である。しかし長大橋等に
用いられる線径、束径の大きいケーブルでは、磁
気探傷による欠陥の検出はこれらの寸法の増大と
ともに困難とり、センサー部は大形となり、セン
サー部をケーブルの長軸方向に移行させて走査す
ることは極めて困難となる。
Conventionally, the mainstream method for detecting wire breaks has been magnetic flaw detection, which magnetizes the wire and detects leakage magnetic flux due to defects. However, in cables with large wire diameters and bundle diameters used for long bridges, etc., it becomes difficult to detect defects by magnetic flaw detection as these dimensions increase, and the sensor part becomes large and the sensor part is moved in the longitudinal direction of the cable. It becomes extremely difficult to scan the image.

他方、超音波探傷法は、鋼材のみならず非磁性
体においても適用可能であり、欠陥検出対象の形
態に応じて種々の適用技法が提案されており、パ
ラレルワイヤーストランドの素線の断線部の存在
を超音波により次のように検出している。以下第
6図を用いて超音波探傷法の一例である一探法
(反射法)を説明する。同図に示すように超音波
探触子4より一定周波数の超音波を入射する。し
かる後入射した超音波が断線部2aにおいて反射
され、その結果、反射エコーが再び超音波探触子
4を介して、例えば第7図で示すような波形で検
出される。この反射エコーを調べることにより、
断線部の存在及び位置を検出するのである。
On the other hand, the ultrasonic flaw detection method can be applied not only to steel materials but also to non-magnetic materials, and various application techniques have been proposed depending on the form of defects to be detected. Its presence is detected using ultrasound as follows. A detection method (reflection method), which is an example of an ultrasonic flaw detection method, will be explained below with reference to FIG. As shown in the figure, ultrasonic waves of a constant frequency are incident from an ultrasonic probe 4. Thereafter, the incident ultrasonic wave is reflected at the disconnection part 2a, and as a result, a reflected echo is detected again via the ultrasonic probe 4 in a waveform as shown in FIG. 7, for example. By examining this reflected echo,
It detects the presence and position of a disconnection.

このような超音波探傷法は、相当の有効性を発
揮するものである。しかしその適用にはある種の
制約があることが知見された。
Such an ultrasonic flaw detection method exhibits considerable effectiveness. However, it was found that there are certain restrictions on its application.

すなわち、パラレルワイヤーストランドの締結
部には、亜鉛合金等を素線間に鋳込んでいるの
で、超音波の締結部(鋳込み部分)伝播時におけ
る減衰量は超音波が低周波であるほど大きく、一
方、締結部でない(鋳込みの無い)部分(非締結
部)において、超音波が伝播する場合の減衰量は
超音波が高周波であるほど大きいという制約であ
る。締結部に例えば4MHz以下の低周波の探傷周
波数の超音波を入射すれば、超音波が素線を伝播
する間に亜鉛合金等に散逸し、ワイヤーの長さ方
向に効率よく伝播させることができず、その結果
として断線があつても断線部からの反射エコーが
受信されず、非断線と誤認する可能性がある。一
方、締結部でない(鋳込みの無い)部分において
は、高周波の探傷周波数で超音波探傷を行えば、
超音波の減衰量が大きいため、反射エコーが検出
できない場合がある。上述したように、従来の方
法においては、超音波の周波数を一定にして超音
波探傷を行うので、断線箇所によつては、断線部
が存在するにもかかわらず断線を検出できないと
いう問題点があつた。
In other words, since a zinc alloy or the like is cast between the strands of the parallel wire strand at the fastening section, the amount of attenuation when the ultrasonic wave propagates through the fastening section (casting section) is larger as the frequency of the ultrasonic wave becomes lower. On the other hand, the restriction is that the higher the frequency of the ultrasonic wave, the greater the amount of attenuation when the ultrasonic wave propagates in a portion that is not a fastened portion (no casting) (non-fastened portion). If ultrasonic waves with a low flaw detection frequency of, for example, 4 MHz or less are incident on the fastening part, the ultrasonic waves will be dissipated into the zinc alloy etc. while propagating through the wire, and can be efficiently propagated in the length direction of the wire. As a result, even if there is a disconnection, the reflected echo from the disconnection part is not received, and there is a possibility that it may be mistaken as a non-disconnection. On the other hand, in parts that are not fastened parts (no casting), if ultrasonic flaw detection is performed at a high frequency,
Because the amount of attenuation of the ultrasonic wave is large, reflected echoes may not be detected. As mentioned above, in the conventional method, ultrasonic flaw detection is carried out by keeping the ultrasonic frequency constant, so there is a problem that some breaks may not be detected even though they exist. It was hot.

(発明の目的) この発明の目的は、上記従来技術の問題点を解
消し、断線箇所にかかわらず、正確なパラレルワ
イヤーストランドの素線の断線部の検出を簡単な
構成で実現する方法を提供することである。
(Objective of the Invention) The object of the present invention is to solve the problems of the prior art described above and to provide a method for accurately detecting a broken part of a parallel wire strand, regardless of the broken part, with a simple configuration. It is to be.

(目的を達成するための手段) 上記目的を達成するため、この発明によるパラ
レルワイヤーストランドの素線の断線検出方法で
は、推定される断線部の位置に応じて、最小減衰
量を与える最適な探傷周波数を素線を伝播する超
音波の減衰定数を基に算出し、その周波数の超音
波で探傷するようにしている。
(Means for Achieving the Object) In order to achieve the above object, the method for detecting a wire break in a parallel wire strand according to the present invention provides an optimal flaw detection method that provides the minimum amount of attenuation, depending on the position of the estimated break. The frequency is calculated based on the attenuation constant of the ultrasonic waves propagating through the wire, and flaws are detected using the ultrasonic waves at that frequency.

(実施例) 第1図は、この発明によるパラレルワイヤース
トランド1の素線の断線検出方法を一探法(反射
法)による探傷に適用した一実施例を示す概略構
成図である。第1図で示すようにこの実施例で
は、励振させる超音波の波形を発生するフアンク
シヨンジエネレータ5を設けている。フアンクシ
ヨンジエネレータ5は推定される断線部までの長
さl0と締結部3の長さl1より、後述するように減
衰量を最低にするような周波数の波形を発生す
る。増幅器6はフアンクシヨンジエネレータ5よ
り発生された波形を増幅し、超音波探触子4に出
力する。超音波探触子4は、増幅器6の出力波形
に応じて超音波を励振させ、その超音波をパラレ
ルワイヤーストランド1を構成する素線2の端面
より入射する。しかる後、再び素線2の端面より
得た素線2からの反射された超音波の波形をレシ
ーバ7に出力するものである。レシーバ7は超音
波探触子4を通じて得た波形を観測し断線の検出
を行う。
(Embodiment) FIG. 1 is a schematic configuration diagram showing an embodiment in which the method for detecting breakage of a wire in a parallel wire strand 1 according to the present invention is applied to flaw detection using a single detection method (reflection method). As shown in FIG. 1, this embodiment is provided with a function generator 5 that generates an ultrasonic waveform to be excited. The function generator 5 generates a waveform of a frequency that minimizes the amount of attenuation, as will be described later, based on the estimated length l 0 to the disconnection part and the length l 1 of the fastening part 3. The amplifier 6 amplifies the waveform generated by the function generator 5 and outputs it to the ultrasound probe 4. The ultrasonic probe 4 excites ultrasonic waves according to the output waveform of the amplifier 6, and makes the ultrasonic waves incident on the end face of the wire 2 constituting the parallel wire strand 1. Thereafter, the waveform of the ultrasonic wave reflected from the strand 2 obtained from the end face of the strand 2 is outputted to the receiver 7 again. The receiver 7 observes the waveform obtained through the ultrasonic probe 4 and detects a disconnection.

さて、フアンクシヨンジエネレータ5にて発生
させる波形の周波数(すなわち超音波探触子4に
て励振される超音波の周波数)の決定方法である
が、一探法(反射法)で探傷した場合、超音波入
射端である素線2の端面からl0(m)の位置に断
線部が存在すると推定するとき、減衰量α(dB)
は、次式で近似できる。
Now, the method for determining the frequency of the waveform generated by the function generator 5 (that is, the frequency of the ultrasonic waves excited by the ultrasonic probe 4) is as follows. In this case, when it is estimated that there is a disconnection at a position l 0 (m) from the end face of the wire 2, which is the ultrasonic input end, the attenuation amount α (dB)
can be approximated by the following equation.

α=C0l0+C1l1/ ……(1) (1)式でl1(m)は上記したように締結部3(鋳
込み部分)の長さ、(MHz)は探傷周波数、
C0,C1はパラレルワイヤーストランド1の構成
によつて決まる定数である(減衰定数)。
α=C 0 l 0 + C 1 l 1 / ...(1) In formula (1), l 1 (m) is the length of the fastening part 3 (cast part) as described above, (MHz) is the flaw detection frequency,
C 0 and C 1 are constants determined by the configuration of the parallel wire strand 1 (attenuation constants).

(1)式よりが変化するとき =0=√1 1 0 0 =C√1 0 ……(2) (C=√1 0) で減衰量αは最小となり、この時の最小減衰量を
α0とすると α0=2√0 1 0 1 ……(3) となる。
When the equation (1) changes, = 0 = √ 1 1 0 0 = C√ 1 0 ... (2) (C = √ 1 0 ), the attenuation amount α becomes minimum, and the minimum attenuation amount at this time is α If it is set to 0 , α 0 =2√ 0 1 0 1 ...(3).

したがつて0の探傷周波数を採用することによ
り、減衰量は α−α0=(√0 0−√1 12 ……(4) だけ抑えられ、結果としてS/Nは向上し、断線
検出精度及び探傷可能範囲は拡張されることにな
る。
Therefore, by adopting a flaw detection frequency of 0 , the attenuation amount is suppressed by α−α 0 = (√ 0 0 −√ 1 1 ) 2 ...(4), and as a result, the S/N improves and there is no disconnection. Detection accuracy and flaw detection range will be expanded.

上記した原理に従つて本実施例では、超音波探
触子4のつながつた素線2の端面より例えば1m
ごとに、推定される断線部位置を変化させながら
検出を行なう。つまり、例えば第4図に示すよう
に締結部3における素線2の端面から1m区間ず
つ、探傷区間を区切り、区間1、区間2、区間
3、……という順に推定される断線部位置を変え
ながら探傷を行なう。
In accordance with the above-mentioned principle, in this embodiment, for example, 1 m from the end face of the connected strands 2 of the ultrasonic probe 4.
Detection is performed while changing the estimated position of the disconnection. In other words, as shown in FIG. 4, for example, the flaw detection section is divided into 1m sections from the end face of the wire 2 in the fastening section 3, and the estimated position of the broken wire is changed in the order of section 1, section 2, section 3, etc. Perform flaw detection while doing so.

以上のように推定される断線部位置を変化させ
ながら、フアンクシヨンジエネレータ5にて前記
推定される断線部位置の変化に応じて上記(2)式の
関係にしたがつて、減衰量を最低にするような周
波数の波形を発生させる。そしてこの波形を増幅
器6により増幅し、超音波探触子4にて増幅器6
の出力波形に応じた超音波を励振させて、パラレ
ルワイヤーストランド1の素線2に端面から入射
する。しかる後素線2からの反射波が超音波探触
子4を通してレシーバ7に伝えられ、反射エコー
の存在及び到達時刻からその素線2の断線部の存
在及びその正確な位置を検出する。このようにし
て検出される断線部の存在及び断線位置は、1m
間隔と予め定められた区間に断線部が存在すると
いう推定に基づいて、(2)式により減衰量が最低に
なるように周波数を変化させながら探傷するよう
にしているので、確実でかつ精度の高い検出結果
を得ることができる。
While changing the estimated position of the disconnection as described above, the function generator 5 calculates the amount of attenuation according to the relationship of equation (2) above according to the change in the estimated position of the disconnection. Generate a waveform with the lowest frequency. This waveform is then amplified by the amplifier 6, and the ultrasonic probe 4
An ultrasonic wave corresponding to the output waveform of is excited and is incident on the strand 2 of the parallel wire strand 1 from the end face. Thereafter, the reflected wave from the strand 2 is transmitted to the receiver 7 through the ultrasonic probe 4, and the existence and exact position of the broken part of the strand 2 are detected from the presence of the reflected echo and the arrival time. The existence and position of the disconnection detected in this way is 1 m
Based on the assumption that there is a disconnection in a predetermined interval and a predetermined section, flaw detection is performed while changing the frequency so that the amount of attenuation is minimized using equation (2), so it is reliable and accurate. High detection results can be obtained.

第2図及び第3図は、C0=1.24(dB/m・M
Hz),C1=300(dB・MHz/m),l1=0.4(m)のパ
ラレルワイヤーストランドを探傷した場合の断線
部での反射波の波形を示す図である。即ち、両図
は、素線中、締結部3付近の非締結部の部分に断
線部が存在するものと推定される場合の反射波の
受信波形を示している。この内、第2図はl0
2.7mの場合であり、このとき上記(2)式から算出
される最適探傷周波数0は約6MHzとなる。第2
図aはこの最適探傷周波数0からはずれた探傷周
波数=4MHzでの探傷結果を示し、このとき減
衰量α=約43dBである。一方、第2図bはこの
発明による場合で、最適探傷周波数0=6MHzで
の探傷結果を示し、このとき上記(3)式からもわか
るように減衰量α0=約40dBである。この発明に
よる第2図bの場合、第2図aの場合と比較して
減衰量は約3dB改善されており、その結果S/N
が向上して、断線部からの反射エコーと雑音との
差が明瞭になつている。
In Figures 2 and 3, C 0 = 1.24 (dB/m・M
Hz), C 1 = 300 (dB・MHz/m), and l 1 = 0.4 (m) when a parallel wire strand is tested for flaws, and it is a diagram showing the waveform of the reflected wave at the disconnected part. That is, both figures show the received waveform of the reflected wave when it is estimated that a disconnection exists in the non-fastened part near the fastened part 3 in the strand. Among these, in Figure 2, l 0 =
This is the case of 2.7 m, and in this case, the optimal flaw detection frequency 0 calculated from the above equation (2) is approximately 6 MHz. Second
Figure a shows the flaw detection results at a flaw detection frequency of 4 MHz, which is deviated from the optimum flaw detection frequency of 0 , and at this time, the attenuation amount α is approximately 43 dB. On the other hand, FIG. 2b shows the case according to the present invention, showing the flaw detection results at the optimum flaw detection frequency 0 = 6 MHz, and at this time, as can be seen from the above equation (3), the attenuation amount α 0 = approximately 40 dB. In the case of Fig. 2b according to this invention, the attenuation is improved by about 3 dB compared to the case of Fig. 2a, and as a result, the S/N
The difference between the reflected echo from the disconnected part and the noise has become clearer.

また第3図はl0=6.0mの場合であり、このとき
上記(2)式から算出される最適探傷周波数0は約
4MHzとなる。第3図aはこの最適探傷周波数0
からはずれた探傷周波数=6MHzでの探傷結果
を示し、このとき減衰量α=約65dBである。一
方、第3図bはこの発明による場合で、最適探傷
周波数0=6MHzでの探傷結果を示し、このとき
上記(3)式からのわかるように減衰量α0=約60dB
である。この発明による第3図bの場合、第3図
aの場合と比較して減衰量は約5dB改善されてお
り、その結果S/Nが向上して、断線部からの反
射エコーと雑音との差が非常に明瞭になつてい
る。
Also, Figure 3 shows the case where l 0 = 6.0m, and in this case, the optimum flaw detection frequency 0 calculated from the above equation (2) is approximately
It becomes 4MHz. Figure 3 a shows this optimal flaw detection frequency 0
The flaw detection results are shown at a flaw detection frequency of 6 MHz, which deviates from the above, and at this time, the attenuation amount α is approximately 65 dB. On the other hand, Fig. 3b shows the case according to the present invention, showing the flaw detection results at the optimum flaw detection frequency 0 = 6 MHz, and at this time, as can be seen from the above equation (3), the attenuation amount α 0 = approximately 60 dB.
It is. In the case of FIG. 3b according to this invention, the attenuation is improved by about 5 dB compared to the case of FIG. The difference is becoming very clear.

第5図はこの発明の他の実施例を示した概略構
成図であるが、同図において超音波探触子は2つ
設けられている。一方の超音波探触子4aは入射
端側に設けてあり、送信用であり、他方の超音波
探触子4bは入射端と反対側の素線端に設けら
れ、受信用である。この場合、超音波探触子4a
から超音波探触子4bに超音波が到達されたか否
かの検出によつて断線部の検出を行い、探傷され
る素線2の全長に応じて探傷周波数を変化させる
ことにより超音波探触子4bに到達する超音波の
減衰量を最小にしている。これにより上記実施例
と同様に、S/N良く断線部の存在を検出するこ
とができる。上記構成によれば、第1図で示した
実施例に比べ、一方の超音波探触子4aから入射
した超音波が他方の超音波探触子4bにとどくか
どうかという単純な現象で断線部の検出を行うこ
とができるという利点がある。
FIG. 5 is a schematic configuration diagram showing another embodiment of the present invention, in which two ultrasonic probes are provided. One ultrasonic probe 4a is provided on the incident end side and is used for transmission, and the other ultrasonic probe 4b is provided on the strand end opposite to the incident end and is used for reception. In this case, the ultrasonic probe 4a
The broken wire is detected by detecting whether or not the ultrasonic wave reaches the ultrasonic probe 4b, and the ultrasonic detection is performed by changing the flaw detection frequency according to the total length of the strand 2 to be flawed. The amount of attenuation of the ultrasonic waves reaching the child 4b is minimized. As a result, the presence of a disconnection can be detected with a good S/N ratio, similarly to the above embodiment. According to the above configuration, compared to the embodiment shown in FIG. It has the advantage of being able to perform detection.

(発明の効果) この発明によれば、素線の断線箇所が締結部内
にある場合と非締結部内にある場合とのいずれに
おいても、正確かつ高精度で素線の断線の存在と
その位置を検出することができる。特に、締結部
とその近辺の非締結部においては、従来、超音波
の周波数が最適化されていなかつたことに起因し
て非断線と誤認するケースが生じていたが、本発
明ではその様な断線の存在を高S/Nで確実に検
出することを可能としている。また、推定される
段線部の位置を所定の間隔で変化させながら、な
いしは各区間毎に、最適探傷周波数の超音波を入
射して順次に検出しているため、S/Nよく最短
の時間で断線を検出できる効果もある。この効果
により、効率の良い断線検出を実現できる。
(Effects of the Invention) According to the present invention, the existence and position of a wire breakage can be detected accurately and with high precision, whether the wire breakage point is in a fastened part or in a non-fastened part. can be detected. In particular, in the past, the frequency of the ultrasonic waves was not optimized in the fastened part and the unfastened part in the vicinity, so there were cases where the wire was mistakenly recognized as non-broken. This makes it possible to reliably detect the presence of a disconnection with a high S/N ratio. In addition, since the position of the estimated dashed line part is changed at predetermined intervals or for each section, ultrasonic waves at the optimal flaw detection frequency are applied and detected sequentially, resulting in a good S/N ratio and the shortest time possible. It also has the effect of being able to detect wire breaks. With this effect, efficient disconnection detection can be realized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を示す概略構成
図、第2図、第3図は従来の方法とこの発明の一
実施例による方法との反射波の比較を示す波形
図、第4図はこの発明の一実施例の推定される断
線部位置の変化を示す図、第5図はこの発明の他
の実施例を示す概略構成図、第6図はパラレルワ
イヤーストランドの締結部付近を示す構成図、第
7図は断線部を有する素線の反射波形図である。 1……パラレルワイヤーストランド、2……素
線、2a,2b……断線部、3……締結部、4…
…超音波探触子、5……フアンクシヨンジエネレ
ータ、7……レシーバ。
FIG. 1 is a schematic configuration diagram showing an embodiment of the present invention, FIGS. 2 and 3 are waveform diagrams showing a comparison of reflected waves between a conventional method and a method according to an embodiment of the present invention, and FIG. 4 FIG. 5 is a schematic configuration diagram showing another embodiment of the invention, and FIG. 6 shows the vicinity of the fastening portion of the parallel wire strand. The configuration diagram and FIG. 7 are reflection waveform diagrams of a wire having a disconnection portion. DESCRIPTION OF SYMBOLS 1... Parallel wire strand, 2... Element wire, 2a, 2b... Disconnection part, 3... Fastening part, 4...
...Ultrasonic probe, 5...Function generator, 7...Receiver.

Claims (1)

【特許請求の範囲】 1 複数の素線間を鋳込んだ締結部と非締結部を
有するパラレルワイヤーストランドの前記素線の
断線を検出するため、超音波を前記素線の端面か
ら入射して前記締結部から前記非締結部へと前記
素線内を伝搬させ、前記断線の存在によつて生じ
る前記超音波の反射波を受信することにより前記
素線の断線を検出する方法において、 推定される断線部の位置に応じて、前記素線内
を伝搬する超音波の減衰定数を基に、当該位置に
於いて最小減衰量を与える最適探傷周波数を算出
し、 前記最適探傷周波数の超音波を前記素線の端面
から入射し、その反射波の受信波形の観測により
前記素線の断線を検出すること、 を特徴とするパラレルワイヤーストランドの素線
の断線検出方法。 2 前記最適探傷周波数は、前記推定される断線
部の前記端面からの長さの逆数と前記締結部の前
記端面からの長さと前記減衰定数との積の平方根
によつて与えられることを特徴とする特許請求の
範囲第1項記載のパラレルワイヤーストランドの
素線の断線検出方法。 3 前記素線の端面から前記締結部及び非締結部
へ向けて前記推定される断線部の位置を所定の間
隔で変化させながら、各推定される断線部の位置
毎に前記最適探傷周波数を算出してその最適探傷
周波数の超音波を入射することを特徴とする特許
請求の範囲第2項記載のパラレルワイヤーストラ
ンドの素線の断線検出方法。 4 前記締結部と非締結部とを含む素線の探傷範
囲を前記素線の端面側から所定の間隔で複数の区
間に区切り、 当該区間に前記断線部が存在するという推定に
基づき、各区間毎に前記最適探傷周波数を算出し
てその最適探傷周波数の超音波を入射することを
特徴とする特許請求の範囲第3項記載のパラレル
ワイヤーストランドの素線の断線検出方法。
[Scope of Claims] 1. In order to detect a break in the strands of a parallel wire strand having a fastened part and a non-fastened part in which a plurality of strands are cast, ultrasonic waves are applied from the end faces of the strands. A method for detecting a break in the wire by propagating the ultrasonic wave within the wire from the fastening portion to the non-fastening portion and receiving a reflected wave of the ultrasonic wave caused by the presence of the break, the method comprising: Based on the attenuation constant of the ultrasonic wave propagating in the wire, depending on the position of the broken wire, calculate the optimum flaw detection frequency that provides the minimum attenuation at that position, and use the ultrasonic wave at the optimum flaw detection frequency. A method for detecting a break in a wire of a parallel wire strand, comprising: detecting a break in the wire by observing a received waveform of a reflected wave that enters the wire from an end surface of the wire. 2. The optimum flaw detection frequency is given by the square root of the product of the reciprocal of the length of the estimated broken line from the end face, the length of the fastening part from the end face, and the attenuation constant. A method for detecting wire breakage in a parallel wire strand according to claim 1. 3. Calculating the optimum flaw detection frequency for each position of each estimated disconnection while changing the position of the estimated disconnection at a predetermined interval from the end face of the wire toward the fastened portion and the non-fastened portion. 3. The method for detecting a break in a parallel wire strand according to claim 2, wherein ultrasonic waves having an optimum flaw detection frequency are applied. 4 Divide the flaw detection range of the wire including the fastened portion and the non-fastened portion into a plurality of sections at predetermined intervals from the end face side of the wire, and divide each section based on the assumption that the broken wire exists in the section. 4. The method for detecting a break in a wire of a parallel wire strand according to claim 3, wherein the optimum flaw detection frequency is calculated for each time, and the ultrasonic wave having the optimum flaw detection frequency is applied.
JP61191125A 1986-08-13 1986-08-13 Method for detecting disconnection of strand of parallel wire strand Granted JPS6347653A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61191125A JPS6347653A (en) 1986-08-13 1986-08-13 Method for detecting disconnection of strand of parallel wire strand

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61191125A JPS6347653A (en) 1986-08-13 1986-08-13 Method for detecting disconnection of strand of parallel wire strand

Publications (2)

Publication Number Publication Date
JPS6347653A JPS6347653A (en) 1988-02-29
JPH0584862B2 true JPH0584862B2 (en) 1993-12-03

Family

ID=16269283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61191125A Granted JPS6347653A (en) 1986-08-13 1986-08-13 Method for detecting disconnection of strand of parallel wire strand

Country Status (1)

Country Link
JP (1) JPS6347653A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0637140B2 (en) * 1990-10-30 1994-05-18 井関農機株式会社 Front wheel drive device for traveling vehicle
JP6902447B2 (en) * 2017-09-29 2021-07-14 タツタ電線株式会社 Inspection device and cable with inspection device
CN118169246B (en) * 2024-05-15 2024-09-17 昆山市建设工程质量检测中心 Rapid detection method and detection system for damage of bridge inhaul cable anchoring area

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61111460A (en) * 1984-11-05 1986-05-29 Nippon Steel Corp Method for detecting broken strands of parallel cables for bridges

Also Published As

Publication number Publication date
JPS6347653A (en) 1988-02-29

Similar Documents

Publication Publication Date Title
KR890000607B1 (en) Defect detection method and apparatus of metal
JP6317708B2 (en) Ultrasonic flaw detection system, ultrasonic flaw detection method, and aircraft structure
JP6189892B2 (en) Ultrasonic nondestructive inspection method
JP7216884B2 (en) Reflected wave evaluation method
JPH01229962A (en) Method and apparatus for measuring distribution of crystal grain orientation in directional silicon steel plate
JPH0584862B2 (en)
JP4144703B2 (en) Tube inspection method using SH waves
US6474163B1 (en) Ultrasonic flaw detection method and instrument therefor
JP4241529B2 (en) Ultrasonic inspection method and ultrasonic inspection apparatus
JP3729686B2 (en) Defect detection method for piping
JP2001305112A (en) Ultrasonic flaw detection method
RU2117941C1 (en) Process of ultrasonic inspection od pipes and pipe-lines
JP2002202116A (en) Method of measuring thickness of locally thinned portion of plate
US6766693B1 (en) Averaged guided wave inspection technology for ribbon cable
JPH0584863B2 (en)
JPH05288723A (en) Pitch-catch type ultrasonic flaw examination
JP2007263956A (en) Ultrasonic flaw detection method and apparatus
JPH1151909A (en) Ultrasonic flaw detection method
KR102727365B1 (en) Ultrasonic sensor for residual stress measurement
RU2032171C1 (en) Ultrasonic test method for cylindrical parts
JPH1151910A (en) Crack detection and method of measuring crack initiation plate thickness
JPS6347655A (en) Method for detecting disconnection of strands of parallel wire strand
RU2188415C1 (en) Ultrasonic piezoelectric transducer
JP5430533B2 (en) Subsurface defect detection method and apparatus
JP3843642B2 (en) Edge detection method for metal plate