JPH07500559A - Method for producing hydrogen peroxide - Google Patents
Method for producing hydrogen peroxideInfo
- Publication number
- JPH07500559A JPH07500559A JP5503299A JP50329993A JPH07500559A JP H07500559 A JPH07500559 A JP H07500559A JP 5503299 A JP5503299 A JP 5503299A JP 50329993 A JP50329993 A JP 50329993A JP H07500559 A JPH07500559 A JP H07500559A
- Authority
- JP
- Japan
- Prior art keywords
- reactor
- hydrogen peroxide
- catalyst
- hydrogen
- liquid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 title claims description 40
- 238000004519 manufacturing process Methods 0.000 title claims description 13
- 239000003054 catalyst Substances 0.000 claims description 56
- 239000007788 liquid Substances 0.000 claims description 34
- 238000005984 hydrogenation reaction Methods 0.000 claims description 28
- 229910052739 hydrogen Inorganic materials 0.000 claims description 27
- 239000001257 hydrogen Substances 0.000 claims description 27
- 239000012530 fluid Substances 0.000 claims description 22
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 21
- 239000007789 gas Substances 0.000 claims description 19
- 238000000034 method Methods 0.000 claims description 19
- 238000002156 mixing Methods 0.000 claims description 15
- 230000003068 static effect Effects 0.000 claims description 7
- 239000007787 solid Substances 0.000 claims description 6
- 230000003197 catalytic effect Effects 0.000 claims description 5
- 239000006185 dispersion Substances 0.000 claims description 4
- 239000011949 solid catalyst Substances 0.000 claims description 3
- 239000011149 active material Substances 0.000 claims description 2
- RHZUVFJBSILHOK-UHFFFAOYSA-N anthracen-1-ylmethanolate Chemical compound C1=CC=C2C=C3C(C[O-])=CC=CC3=CC2=C1 RHZUVFJBSILHOK-UHFFFAOYSA-N 0.000 claims 1
- 239000003830 anthracite Substances 0.000 claims 1
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 22
- 239000000463 material Substances 0.000 description 11
- 229910052763 palladium Inorganic materials 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 9
- 239000000725 suspension Substances 0.000 description 8
- PYKYMHQGRFAEBM-UHFFFAOYSA-N anthraquinone Natural products CCC(=O)c1c(O)c2C(=O)C3C(C=CC=C3O)C(=O)c2cc1CC(=O)OC PYKYMHQGRFAEBM-UHFFFAOYSA-N 0.000 description 7
- 150000004056 anthraquinones Chemical class 0.000 description 7
- 239000003292 glue Substances 0.000 description 6
- 238000009826 distribution Methods 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 5
- 238000001914 filtration Methods 0.000 description 5
- 150000002431 hydrogen Chemical class 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 239000011541 reaction mixture Substances 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 239000012634 fragment Substances 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- PCFMUWBCZZUMRX-UHFFFAOYSA-N 9,10-Dihydroxyanthracene Chemical class C1=CC=C2C(O)=C(C=CC=C3)C3=C(O)C2=C1 PCFMUWBCZZUMRX-UHFFFAOYSA-N 0.000 description 2
- 239000007868 Raney catalyst Substances 0.000 description 2
- 229910000564 Raney nickel Inorganic materials 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- RKMPHYRYSONWOL-UHFFFAOYSA-N 1-ethyl-1,2,3,4-tetrahydroanthracene-9,10-dione Chemical compound O=C1C2=CC=CC=C2C(=O)C2=C1C(CC)CCC2 RKMPHYRYSONWOL-UHFFFAOYSA-N 0.000 description 1
- HSKPJQYAHCKJQC-UHFFFAOYSA-N 1-ethylanthracene-9,10-dione Chemical compound O=C1C2=CC=CC=C2C(=O)C2=C1C=CC=C2CC HSKPJQYAHCKJQC-UHFFFAOYSA-N 0.000 description 1
- 241001503485 Mammuthus Species 0.000 description 1
- 206010027476 Metastases Diseases 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000003610 charcoal Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 230000009401 metastasis Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 150000002903 organophosphorus compounds Chemical class 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 229910052705 radium Inorganic materials 0.000 description 1
- HCWPIIXVSYCSAN-UHFFFAOYSA-N radium atom Chemical compound [Ra] HCWPIIXVSYCSAN-UHFFFAOYSA-N 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 230000010512 thermal transition Effects 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
Landscapes
- Dairy Products (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるため要約のデータは記録されません。 (57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】 過酸化水素の製造方法 本発明はいわゆるアントラキノン法による過酸化水素の製造に関し、より正確に はそのプロセスにおける水素化方法に関する。[Detailed description of the invention] Method for producing hydrogen peroxide The present invention relates to the production of hydrogen peroxide by the so-called anthraquinone method, and more precisely relates to the hydrogenation method in the process.
過酸化水素はいわゆるアントラキノン法によって製造されることが知られている 。この方法では、アントラキノン誘導体は−またはそれ以上の成分を含む溶媒に 溶解される。そうして調整した溶液は作動液と呼ばれる。過酸化水素の製造では 、作動液はまず水素化工程へ送られる。この工程ではアントラキノン誘導体は触 媒存在下で水素化され対応するアントラヒドロキノン誘導体となる。Hydrogen peroxide is known to be produced by the so-called anthraquinone method. . In this method, anthraquinone derivatives are added to a solvent containing - or more components. be dissolved. The solution thus prepared is called a working fluid. In the production of hydrogen peroxide , the working fluid is first sent to a hydrogenation process. In this process, anthraquinone derivatives are It is hydrogenated in the presence of a medium to give the corresponding anthrahydroquinone derivative.
その後、作動液は酸化工程に送られ、そこでアントラヒドロキノン誘導体は空気 または酸素で酸化される。過酸化水素はこうして生成され、アントラヒドロキノ ン誘導体は水素が添加される前の形、すなわちアントラキノン誘導体に変換され る。過酸化水素を含んだ作動液は抽出工程に送られ、そこで過酸化水素は作動液 から抽出され水溶液に移される。抽出されたあとの作動液は余分な水から乾燥さ れ循環工程の最初の工程、水素化工程に戻される。抽出して得られた過酸化水素 水は精製・濃縮される。The working fluid is then sent to an oxidation step where the anthrahydroquinone derivative is or oxidized with oxygen. Hydrogen peroxide is thus produced and anthrahydroquino The anthraquinone derivative is converted to the form before hydrogen is added, i.e., anthraquinone derivative. Ru. The working fluid containing hydrogen peroxide is sent to an extraction process where hydrogen peroxide is added to the working fluid. extracted from and transferred to an aqueous solution. After extraction, the hydraulic fluid is dried from excess water. It is then returned to the first step of the circulation process, the hydrogenation process. Hydrogen peroxide obtained by extraction Water is purified and concentrated.
異なるタイプの懸濁リアクターおよび固定床リアクターが、過酸化水素法の水素 化工程で用いられている。それらのりアクタ−を比較してみると、最も重要な基 準のひとつは反応液の体積に比例して計算される生成量、または触媒単位量であ る。もう一つ重要な基準は水素化の高い選択性すなわち主反応と副反応との間の 変換の所望割合である。さらに、過剰の水素をできるだけ少なくして高収率のア ントラヒドロキノン誘導体を得るということも重要である。比較の際に考慮しな ければならない他の要素には、例えば触媒の濾過における、水素化の補助手段の 違い、および例えば触媒の再生のような水素化を継続するための工程の違いが含 まれる。このように、比較には多くの基準が不可欠である。そして従来のりアク タ−の内、すべての点で最良のものはほとんどない。比較の際の比較的広い観点 として水素化工程の全コストを検討することはもちろんである。Different types of suspension reactors and fixed bed reactors are used for the hydrogen peroxide process. It is used in the oxidation process. Comparing these glue actors, we find that the most important base is One of the criteria is the production amount calculated in proportion to the volume of the reaction solution, or the unit amount of catalyst. Ru. Another important criterion is the high selectivity of the hydrogenation, i.e. the high selectivity between the main and side reactions. is the desired rate of conversion. In addition, high yields can be obtained by minimizing excess hydrogen. It is also important to obtain intrahydroquinone derivatives. Take into account when comparing Other factors that must be included include auxiliary means for hydrogenation, e.g. in catalytic filtration. and differences in the steps to continue the hydrogenation, e.g. regeneration of the catalyst. be caught. Thus, many criteria are essential for comparison. And conventional glue Few of the stars are the best in all respects. Relatively broad perspective for comparison Of course, consider the total cost of the hydrogenation process.
リアクターの収量と選択性は第一に、水素化の気圧と温度、反応物の内容、触媒 の量と活性、混合条件、およびリアクター内の反応混合物の保持時間に依存する 。反応率そのものは、かなりの程度触媒の特性に依存する。反応速度に付は加え て、水素化速度も、物質の転移、特に水素のガスから液体へ、さらには触媒表面 への転移によって影響される。従って、有利な条件が物質の転移には非常に重要 である。水素化の収量と選択性の点では、水素化気圧および温度の最適条件があ る。それらの条件にできるだけ近い状態で水素化を実行するためには、リアクタ ー内の気圧と温度の変動をできるだけ小さい範囲に収めることが好ましい。Reactor yield and selectivity are primarily determined by hydrogenation pressure and temperature, reactant content, catalyst depends on the amount and activity of , mixing conditions, and retention time of the reaction mixture in the reactor. . The reaction rate itself depends to a large extent on the properties of the catalyst. In addition to the reaction rate Therefore, the hydrogenation rate also depends on the transition of materials, especially hydrogen from gas to liquid, and also on the surface of the catalyst. affected by metastasis to. Therefore, favorable conditions are very important for material transfer. It is. In terms of hydrogenation yield and selectivity, there are optimal conditions for hydrogenation pressure and temperature. Ru. In order to perform hydrogenation under conditions as close as possible to those conditions, the reactor It is preferable to keep fluctuations in pressure and temperature within the range as small as possible.
懸濁リアクター用触媒としては、多孔質の、いわゆるパラジウムチャコールまた はラネーニッケル(Raney n1ckel)が用いられ、または担体(活性 チャコール、酸化アルミニウム)に固定したパラジウムも用いられる。懸濁液触 媒を用いる場合は、リアクターは例えば混合容器のような型であってもよい。Porous so-called palladium charcoal or Raney nickel (Raney nickel) is used, or a carrier (active Palladium fixed on charcoal, aluminum oxide) is also used. Suspension contact If a medium is used, the reactor may be of the type, for example a mixing vessel.
また懸濁リアクターはいわゆるマンモスポンプ原理(空気揚水ポンプ airl ift)(英国特許明細書第718.307号)によって作動させることが知ら れている。さらに、パイプリアクターでは、流速が速いために生じる乱流(米国 特許明細書第4.428.923号)や、パイプの直径の差(米国特許明細書第 3,423,176号)、または静的混合機(static m1xer)(フ ィンランド特許出願第864.971号)によっても混合が起きることが知られ ている。In addition, the suspension reactor operates on the so-called mammoth pump principle (air pump). Ift) (UK Patent Specification No. 718.307) It is. Furthermore, in pipe reactors, turbulence (U.S. Patent Specification No. 4.428.923) and pipe diameter differences (U.S. Patent Specification No. No. 3,423,176), or static mixer (static m1xer) It is also known that mixing occurs according to Finland Patent Application No. 864.971). ing.
懸濁リアクターには固定床リアクターに比べて、どうしても不利な点がいくつが ある。先ず第一に、懸濁液触媒を用いる場合は、水素化の後に能率的な濾過が必 要になる。なぜなら触媒が酸化工程に混ざってはならないからである。この濾過 は非常に高価なことがしばしばあり、複雑な流動装置を必要とするので技術的に 問題がある。濾過は触媒の粒子が非常に小さいことによっても妨げられる。There are some disadvantages to suspension reactors compared to fixed bed reactors. be. First of all, when using suspension catalysts, efficient filtration is required after hydrogenation. It becomes important. This is because the catalyst must not be mixed into the oxidation process. This filtration are often very expensive and require complex flow equipment, making them technically difficult to There's a problem. Filtration is also hampered by very small catalyst particles.
懸濁リアクターを用いる場合は、高価な触媒の大部分がりアクタ−内よりもどこ か別の場所、すなわち濾過装置や循環管やパイプ系内に存在することが多い。When using a suspension reactor, most of the expensive catalyst is stored somewhere other than within the reactor. They are often located elsewhere, such as in filtration equipment, circulation pipes, or pipe systems.
触媒の一部は長時間それら装置の固体表面に付着することがあり、結果的に触媒 の一部しか反応空間に存在せず、それだけしか使用されない。すなわち触媒効率 が劣るのである。Some of the catalyst may adhere to the solid surfaces of these devices for long periods of time, resulting in Only a portion of is present in the reaction space and is only used. i.e. catalyst efficiency is inferior.
懸濁リアクターの不利な要素の3つめは、触媒が機械的な磨耗を大いに受けやす いことである。これは、固定床リアクターでは触媒が通常その活性を懸濁液触媒 より長く保つという事実に幾分寄与している可能性がある。A third disadvantage of suspension reactors is that the catalyst is highly susceptible to mechanical wear. That's a good thing. This is because in fixed bed reactors the catalyst usually reduces its activity to a suspension catalyst. This may contribute somewhat to the fact that it lasts longer.
固定床リアクターと呼ばれるように、触媒が固体担体構造物の内部に固定されて いると、これらの3つの不利な要素は存在しない。典型的な固定床リアクターは 、直径が通常0.2〜10mmの粒子でできた層を有する。この粒子内の担体は 、例えば酸化アルミニウム、活性炭やシリカゲルのような広い特殊な表面を有す る多孔質の材料である。担体には貴金属、この場合は通常パラジウムを触媒成分 として含浸させる。水素化では作動液と水素は触媒床の中を流通している。In a fixed bed reactor, the catalyst is fixed inside a solid support structure. If there is, these three disadvantageous factors do not exist. A typical fixed bed reactor is , having a layer of particles with a diameter typically between 0.2 and 10 mm. The carrier within this particle is , with wide special surfaces such as aluminum oxide, activated carbon or silica gel It is a porous material. The support is a precious metal, usually palladium, as the catalyst component. impregnated as In hydrogenation, the working fluid and hydrogen flow through a catalyst bed.
上記の固定床リアクターでは、いくつかの要因によって水素化効率が低下してし まう。まず、水素のガスから液体へ、さらには液体中の触媒表面上への転移はこ の種の装置ではあまり速くない。さらに付は加えると、触媒床は流れの供給が容 易に起きるような構造になっている。すなわちガスと液体はある場所ではそれぞ れの状態を保ったまま分離している。これによりリアクター内の物質の転移はか なり遅くなる。さらにこの種の触媒床では、担体の表面にある触媒だけしか効率 的に使われないという理由から固体粒子の孔への物質の転移は遅いという障害が ある。In the above fixed bed reactor, the hydrogenation efficiency decreases due to several factors. Mau. First, the transition of hydrogen from gas to liquid and then from the liquid to the surface of the catalyst occurs. This type of device is not very fast. As a further addition, the catalyst bed is The structure is such that it can happen easily. In other words, gas and liquid are each They are separated while maintaining their original state. This allows for the transfer of substances within the reactor. It becomes late. Furthermore, in this type of catalyst bed, only the catalyst on the surface of the support is efficient. The problem is that the transfer of substances into the pores of solid particles is slow because they are not used for be.
水素をより容易に溶解するために、米国特許明細書第3.565.581号は触 媒層と不活性担体層とが交互になっている固定床リアクターを記載した。その発 明ではどうしてもリアクターの体積が大きくなってしまうので、高価な作動液の 体積も増えてしまう。To more easily dissolve hydrogen, U.S. Pat. A fixed bed reactor has been described in which media and inert support layers alternate. Its origin In the light, the volume of the reactor inevitably becomes large, so expensive hydraulic fluid is not used. The volume will also increase.
さらに、水素をより効率的に溶解するために、作動液をリアクター前の別の管の 中で水素で飽和する方法が示された(米国特許明細書第2.837.411号) 。この発明を用いても作動液の体積は増加することになる。さらには、予備溶解 の利点は限られてしまう。なぜなら−回に作動液に溶かすことができる量よりも つと多くの水素を、反応で多数回消費してしまうからである。同じ理由で、リア クター前方で静的混合機を使って水素を作動液に溶かすという米国特許明細書第 4,428.922号に示された発明から得られる利益もごく限られたものでし かない。In addition, to more efficiently dissolve the hydrogen, the working fluid is transferred to a separate tube before the reactor. (U.S. Pat. No. 2,837,411). . Even with this invention, the volume of hydraulic fluid will increase. Furthermore, pre-melting benefits are limited. Because – more than the amount that can be dissolved in the hydraulic fluid at a time This is because a large amount of hydrogen is consumed many times in the reaction. For the same reason, rear U.S. Patent No. The benefits derived from the invention disclosed in No. 4,428.922 are also very limited. It's fleeting.
固定床リアクターでは丸い担体粒子の代わりに違う形をした触媒の破片を用いて もよい。一つのやり方はいわゆるハニカム構造体を使うことである。これでは、 触媒の破片は複数の平行な貫通流路が束になってできた固体構造物からなる。そ の流路の直径は例えば0. 5〜10mmである。流路を隔てている壁の厚さは 例えば0.03〜1mmである。触媒例えばパラジウム金属は、流路の壁に固定 される。Fixed bed reactors use differently shaped catalyst fragments instead of round support particles. Good too. One way is to use so-called honeycomb structures. In this case, Catalyst fragments consist of solid structures made up of bundles of parallel through channels. So The diameter of the flow path is, for example, 0. It is 5 to 10 mm. The thickness of the wall separating the channels is For example, it is 0.03 to 1 mm. The catalyst, e.g. palladium metal, is fixed to the wall of the channel be done.
ヨーロッパ特許明細書第41.814号には、上述のハニカム構造体を利用した 方法が示されている。前記方法では、ハニカム構造をした触媒の破片は、反応物 が流れるリアクターの管内に不規則に並んでいる。このようなりアクタ−はどう しても、2つの異なる状態すなわちガス状および液状の触媒を添加する過酸化水 素法の水素化のような場合にはあまり向いていない。管内での混合は効率的な気 液分散を提供するためにも、またガスを液体に溶解するのにも十分でない。この ように用いられたハニカム構造体の流路内では、ガス分子から液体への、さらに 触媒表面への速い転移を起こすほどの流れ条件も提供されない。この種のりアク タ−を気液リアクターとして用いる場合は、供給をコントロールできないおそれ がある。European Patent Specification No. 41.814 discloses a method using the above-mentioned honeycomb structure. A method is shown. In the above method, the honeycomb-structured catalyst fragments are used as reactants. are arranged irregularly in the pipes of the reactor through which they flow. What about actors like this? Even if you add the catalyst in two different states i.e. gaseous and liquid peroxide water It is not very suitable for cases such as elementary method hydrogenation. Mixing inside the pipe is efficient It is not sufficient to provide liquid dispersion or to dissolve the gas in the liquid. this In the flow path of the honeycomb structure used in this way, gas molecules are converted to liquid, and Flow conditions are also not provided to cause rapid transfer to the catalyst surface. This type of paste When using the reactor as a gas-liquid reactor, there is a risk that the supply cannot be controlled. There is.
米国特許明細書第4.552.748号では、ハニカム構造体が過酸化水素法の 水素化リアクターに利用されている。ここでは、リアクター内に−またはそれ以 上のハニカム型触媒破片を並べることによって触媒床が構成されている。その結 果、破片は一体となって、互いに長さが等しく平行でかつ作動液の流れ方向に平 行な複数の流路を形成する。触媒は流路の壁に薄膜として固定されている。作動 液はこのリアクター内を、好ましくは水素と平行に、数回循環する。In U.S. Pat. No. 4,552,748, honeycomb structures are manufactured using a hydrogen peroxide process Used in hydrogenation reactors. Here we have - or more - inside the reactor. A catalyst bed is constructed by arranging the honeycomb-shaped catalyst pieces above. The result As a result, the fragments come together, have equal lengths, are parallel to each other, and are flat in the direction of fluid flow. A plurality of flow channels are formed. The catalyst is fixed as a thin film on the wall of the channel. operation The liquid is circulated several times within this reactor, preferably in parallel with the hydrogen.
上述の特許によるリアクターを製造規模で応用すると、どうしても問題が起きる 。そのうちの第一は熱転移に関する。過酸化水素法の水素化反応は放熱性である ため、リアクター内の温度は上がる傾向にある。温度は特にハニカム構造体の中 央で上がる傾向にある。なぜなら熱はそこから外に向けてゆっくり転移するから である。したがって触媒構造体は余り長くはできない。リアクター内の温度が不 均一だといくつかの理由により好ましくないからである。一方、もし触媒構造体 が余り短く作られると、その直径は、十分なりアクタ一体積を得るために大きく ならざるを得ない。そうすると大きな直径の触媒構造体にはりアクタ−内を循環 する作動液の流れが大き過ぎてしまうという不利な点が生じる。もうひとつの障 害は横断面に比例する液体とガスの均一な分配に関する。上述の公知の特許では 、流路の直径は好ましくは1〜2mmとされている。液体とガスの混合物を横断 面に比例して分布させることは難しいので、そのため液体とガスは各流路をほぼ 同じ比率で流れることになる。これが不均一な水素化を引き起こし、流路によっ ては水素化が長引くところがあり、また別の流路では低いレベルに止まっている ところもある。その結果選択性と平均収量が共に低下する。向流リアクターの問 題だろうと、上から下へもしくは反対方向に作動する並流リアクターの問題だろ うと、液体とガスの泡が均一に分布するのは難しいだろう。Problems inevitably arise when applying the above-mentioned patented reactor on a manufacturing scale. . The first of these concerns thermal transitions. The hydrogenation reaction of the hydrogen peroxide method is exothermic. Therefore, the temperature inside the reactor tends to rise. The temperature is particularly high inside the honeycomb structure. It tends to rise in the middle. Because heat transfers slowly outward from there. It is. Therefore, the catalyst structure cannot be made too long. The temperature inside the reactor is This is because uniformity is not desirable for several reasons. On the other hand, if the catalyst structure If is made too short, its diameter will be large enough to obtain one volume of the actor. I have no choice but to do so. The large diameter catalyst structure then circulates within the actor. A disadvantage arises in that the flow of hydraulic fluid used is too large. Another obstacle The damage concerns the uniform distribution of liquids and gases proportional to the cross section. In the above-mentioned known patent The diameter of the flow path is preferably 1 to 2 mm. Crossing liquid and gas mixtures It is difficult to distribute the liquid and gas proportionally to the surface, so the liquid and gas flow approximately through each flow path. It will flow at the same rate. This causes non-uniform hydrogenation and In some channels, hydrogenation is prolonged, while in other channels it remains at a low level. There are some places. As a result, both selectivity and average yield decrease. Countercurrent reactor question Is it a problem with co-current reactors that operate from top to bottom or in opposite directions? If so, it would be difficult to distribute the liquid and gas bubbles evenly.
リアクターを作動させる米国特許明細書第4.552.748号に述べられた第 三の事実は、流路内のガスと液体の量に関する。流路内の水素化の総量は物質の 転移率および反応率によって決まる。場合によっては、いわゆるスラグ流または 気泡流のような異なる種類の流れが存在し得る。流路内の流れの種類と条件によ って、最高の水素化の総量を得るための、ガスと液体の最も望ましい割合がある 。流路内を動き続けるガスの体積は反応の結果書に減少しているので、ガスと液 体の流量の割合はパイプの長さの関数として変動している。したがって、もし流 路の長さが等しければ、ガスと液体の流量の最も望ましい割合近くで作動させる のは可能でない。No. 4,552,748 to operate the reactor. The third fact concerns the amount of gas and liquid in the flow path. The total amount of hydrogenation in the flow path is Depends on the transfer rate and reaction rate. In some cases, the so-called slug flow or Different types of flow may exist, such as bubble flow. Depending on the type and conditions of flow in the flow path. Therefore, there is a most desirable ratio of gas and liquid to obtain the highest total amount of hydrogenation. . The volume of gas that continues to move in the flow path is decreasing due to the reaction result, so the gas and liquid The body flow rate varies as a function of pipe length. Therefore, if flow If path lengths are equal, operate near the most desirable ratio of gas and liquid flow rates. is not possible.
本発明では、固定床型リアクターを用いているので、上述のような欠点はないか 、その影響は可能な限り小さい。本発明の特徴は添付の特許請求の範囲に記載さ れている。In the present invention, since a fixed bed type reactor is used, there are no drawbacks as mentioned above. , the effect is as small as possible. The features of the invention are set out in the appended claims. It is.
すなわち本発明の過酸化水素の製造方法は、水素または水素を含むガスを用い触 媒作用によって水素化を行うアントラキノン法による過酸化水素の製造方法であ って、水素または水素を含むガス、および作動液が、固体ハニカム部品から組み 立てられた固体触媒層を通じて上から下向きに循環し、前記触媒層が主流または りアクタ−パイプに平行な複数の流路と、この方向に垂直な複数の流路とを有し 、前記複数の流路の壁に触媒作用を有する材料が固定されており、さらに各触媒 層の下方端には混合部、例えば静的混合機(statical m1xer)が あることを特徴とする。That is, the method for producing hydrogen peroxide of the present invention involves using hydrogen or a gas containing hydrogen. This is a method for producing hydrogen peroxide using the anthraquinone method, which performs hydrogenation through mediated action. Therefore, hydrogen or hydrogen-containing gas, and the hydraulic fluid are assembled from solid honeycomb parts. The solid catalyst layer is circulated downward from above through the vertically erected solid catalyst layer. has multiple channels parallel to the actor pipe and multiple channels perpendicular to this direction. , a material having a catalytic action is fixed to the walls of the plurality of channels, and each catalyst At the lower end of the layer there is a mixing section, for example a static mixer (static m1xer). characterized by something.
前記構成においては、触媒層が多くの層に分かれており、異なる層間の液流が例 えば分散板のような適当な液体分配器を用いて横断方向に再分配されることが好 ましい。In the above configuration, the catalyst layer is divided into many layers, and the liquid flow between the different layers is It is preferably redistributed in the transverse direction using a suitable liquid distributor, e.g. a distribution plate. Delicious.
また、前記構成においては、混合部の構成部品全体が触媒活性材料で覆われるこ とが好ましい。Further, in the above configuration, the entire component of the mixing section is covered with the catalytically active material. is preferable.
また、前記構成においては、リアクター内の気圧が1〜15バール、好ましくは 2〜6バールであって、リアクター内の温度が100℃未満、特に40〜60℃ であることが好ましい。Further, in the above configuration, the atmospheric pressure inside the reactor is 1 to 15 bar, preferably 2 to 6 bar and the temperature in the reactor is below 100°C, in particular 40 to 60°C It is preferable that
本発明に係る水素化リアクターの構造を図1に図示する。まず、リアクターは水 素化される作動液9を入れるための循環容器1を備える。水素化される作動液は 水素化サイクル5に直接入れることもできる。循環容器1から作動液は一本また はそれ以上のりアクタ−パイプ2とポンプ3を通じて数回循環する。水素化され た作動液12は循環容器1からさらに酸素処理工程に送られる。The structure of a hydrogenation reactor according to the present invention is illustrated in FIG. First, the reactor is water A circulation container 1 is provided for containing a working fluid 9 to be purified. The hydraulic fluid to be hydrogenated is It can also be fed directly into the hydrogenation cycle 5. One or more hydraulic fluids are supplied from the circulation container 1. is further circulated several times through the actor pipe 2 and pump 3. hydrogenated The working fluid 12 is further sent from the circulation container 1 to an oxygen treatment process.
外壁4に取り囲まれたりアクタ−パイプ2内で、作動液9と水素8は上から下に 向かって平行に流れている。パイプ内の触媒層11は流れに平行、すなわち鉛直 な複数の流路、および流れに対して垂直な複数の流路を有する。前記複数の流路 の壁は層厚5〜300μmの耐久性に富む担体の多孔性層で覆われている。Surrounded by the outer wall 4 or inside the actor pipe 2, the working fluid 9 and hydrogen 8 are distributed from top to bottom. flowing parallel to. The catalyst layer 11 in the pipe is parallel to the flow, that is, vertically The flow path has a plurality of channels perpendicular to the flow. the plurality of channels The walls are covered with a porous layer of a durable carrier with a layer thickness of 5 to 300 μm.
多孔性担体は酸化アルミニウム、シリカ、ケイ酸塩及び/または活性炭であって もよい。触媒層の支持構造体は厚さ20〜1000μmの金属板またはフォイル でできている。同様に、セラミック構造体を用いてもよい。触媒材料、例えばパ ラジウムは前記複数の流路の壁に固定され、すなわち多孔性担体の表面に吸着さ れている。触媒材料としては、パラジウムのほかに、例えばロジウム、ルテニウ ム、ニッケルまたはそれらの混合物を用いてもよい。触媒層は一層、好ましくは 数層である。触媒層が数層である場合は、異なる部分間への液体分配器、例えば 分散板(sieve plate)10がある。分散板10には円柱壁7を連結 してもよく、そこでは液体が分散板上に集められ層状態となる。この液層の液圧 により、液体は分散板の札止に液体のまま分配される。The porous support is aluminum oxide, silica, silicate and/or activated carbon. Good too. The support structure of the catalyst layer is a metal plate or foil with a thickness of 20 to 1000 μm. made of. Similarly, ceramic structures may also be used. Catalytic materials, e.g. The radium is fixed on the walls of the plurality of channels, i.e., it is adsorbed on the surface of the porous carrier. It is. In addition to palladium, examples of catalyst materials include rhodium and ruthenium. aluminum, nickel or mixtures thereof may also be used. The catalyst layer is preferably There are several layers. If the catalyst layer is several layers, liquid distributors between the different parts, e.g. There is a sieve plate 10. A cylindrical wall 7 is connected to the distribution plate 10. The liquid may be collected in layers on a distribution plate. The hydraulic pressure of this liquid layer As a result, the liquid is distributed as a liquid to the tag on the distribution plate.
もし触媒層が数層あるときは、各層の下端に混合部、例えば静的混合機を備えた 装置6を設けてもよい。この混合部は横断面に対して液体を均等に分布させ、特 に横断方向の温度傾斜を均等にする。また、混合部の構造部分は触媒活性のある 材料で覆ってもよい。特に温度上昇によって起きる問題がパイプの中心軸上で著 しいことから、図1のように、混合部は触媒層の中央に位置するのが好ましい。If there are several catalyst layers, a mixing section, e.g. a static mixer, is installed at the bottom of each layer. A device 6 may also be provided. This mixing section distributes the liquid evenly over the cross section and to equalize the transverse temperature gradient. In addition, the structural parts of the mixing section are catalytically active. May be covered with material. Problems caused by temperature rise are especially noticeable along the central axis of the pipe. For this reason, it is preferable that the mixing section be located at the center of the catalyst layer, as shown in FIG.
リアクターパイプ2は冷却用被覆物または他の冷却装置を備えてもよい。The reactor pipe 2 may be provided with a cooling jacket or other cooling device.
水素化時のりアクタ−内の気圧は1〜15バール、好ましくは2〜6バールであ る。温度は100℃未満に保たれ、好ましい水素化温度は40〜60℃である。The pressure in the reactor during hydrogenation is between 1 and 15 bar, preferably between 2 and 6 bar. Ru. The temperature is kept below 100<0>C, the preferred hydrogenation temperature being 40-60<0>C.
上記のりアクタ−構造を用いて実験を行ったところ、驚くべきことに、次の2つ の事実が明らかとなった。When we conducted an experiment using the above glue actor structure, we surprisingly found that the following two things occurred. The fact has become clear.
第一に、触媒層を数層に分割し、その間に例えば分散板のような液体分配器、お よび混合部があると、リアクターの作用がより効率的になる。First, the catalyst layer is divided into several layers, between which liquid distributors, such as dispersion plates, etc. The presence of a mixing section makes the reactor work more efficiently.
第二に、流れに平行(すなわち鉛直)な流路と、流れに対して垂直(すなわち水 平)な流路とを有する触媒層は、流れに平行な流路しか有しない触媒層よりも明 らかに効率的である。Second, there are channels parallel to the flow (i.e. vertical) and channels perpendicular to the flow (i.e. A catalyst layer with flat flow channels has a higher brightness than a catalyst layer with only flow channels parallel to the flow. Clearly efficient.
これらの2つの観察結果は以下の実施例によって明確に立証される。上述の観察 結果は、主に、本発明のりアクタ−において横断面について、及びある程度はパ イプの縦軸について、最も近い類似発明よりも、さらに均一な条件が得られると いう事実に基づく物理的および化学的理由によってもたらされた。These two observations are clearly demonstrated by the following examples. Observation mentioned above The results mainly concern cross-sections and to some extent parameters in the glue actor of the invention. If we can obtain more uniform conditions than the closest similar invention on the vertical axis of brought about by physical and chemical reasons based on the fact that
以下に説明する実施例において、実施例1および2は互いに似ている。それらで は、用いられた支持材料層は厚さが同じ、かつ最適化されており、パラジウム含 有率も同じであった。また、実施例3および4は互いに似ている。なぜならそれ らでは、よく似た支持材料層、かつ同じパラジウム含有率が用いられたからであ る。実施例3および4で用いられた支持材料層とパラジウム含有率は、最適条件 から大きくそれており、実施例1および2より著しかった。In the examples described below, Examples 1 and 2 are similar to each other. with them The support material layers used were of the same thickness and optimized, with palladium content. The prevalence was also the same. Also, Examples 3 and 4 are similar to each other. because that This is because similar support material layers and the same palladium content were used in the Ru. The support material layer and palladium content used in Examples 3 and 4 were adjusted to the optimum conditions. The deviation was significantly greater than that of Examples 1 and 2.
実施例1 小規模に実施した実験では、エチルアントラキノンとテトラヒドロエチルアント ラキノンとの混合物と、また溶媒として芳香族炭化水素と有機リン化合物との混 合物とを含む作動液を用いた。リアクターは本発明のもので、主流と平行(すな わち鉛直)な複数の流路と、主流に対して垂直(すなわち水平)な複数の流路と を有する触媒層を備えたものであった。触媒構造体は表面に多孔性のガンマ酸化 アルミニウム支持材料が固定された薄い壁を持つ金属支持構造体からなっていた 。酸化アルミニウムにはパラジウムを含浸させた。触媒層の高さは2500mm で、3つの部分に分かれていた。その部分間に分散板が液体分配器として用いら れた。各触媒層の下端には静的混合機からなる混合部があった。この実験構成は 連続的に用いた。水素化されなかった作動液は60リットル/時間の速度でリア クターに送られ、同量の生成物が除かれた。リアクター内の循環は、下向き流路 内の液体の速度で0.09m/秒であった。リアクター内の温度は50℃、圧力 は4.0バールであった。リアクターパイプの上端の反応混合物内の水素の体積 パーセントが20%になる量の水素をリアクターに送った。反応せずにリアクタ ーパイプに残った水素は直ちに除去した。この条件下でのりアクタ−の収量は2 06 k g H2O2/ (k g P d 1Ih)であった。Example 1 In experiments conducted on a small scale, ethyl anthraquinone and tetrahydroethyl anthraquinone mixtures with laquinone and also aromatic hydrocarbons and organic phosphorus compounds as solvents. A hydraulic fluid containing a compound was used. The reactor is of the invention, parallel to the main flow (i.e. In other words, there are multiple channels that are vertical (i.e., vertical) and multiple channels that are perpendicular (i.e., horizontal) to the main stream. It was equipped with a catalyst layer having . The catalyst structure has a porous gamma oxidation surface. Consisted of a metal support structure with thin walls to which aluminum support material was fixed . Aluminum oxide was impregnated with palladium. The height of the catalyst layer is 2500mm It was divided into three parts. A distribution plate is used as a liquid distributor between the parts. It was. At the lower end of each catalyst bed was a mixing section consisting of a static mixer. This experimental configuration is Used continuously. The unhydrogenated hydraulic fluid is reared at a rate of 60 liters/hour. the same amount of product was removed. Circulation inside the reactor is a downward flow path The velocity of the liquid inside was 0.09 m/sec. The temperature inside the reactor is 50℃, the pressure was 4.0 bar. Volume of hydrogen in the reaction mixture at the top of the reactor pipe Hydrogen was sent to the reactor in an amount to give a percentage of 20%. reactor without reaction - Hydrogen remaining in the pipe was immediately removed. Under these conditions, the yield of glue actors is 2 06kgH2O2/(kgPd1Ih).
実施例2 この比較実験では、垂直な流路のみを有し水平方向の流路を全く持たない触媒層 を用いた。その他の点では、実験条件、実験リアクターは実施例1と全く同じで ある。特にリアクター内のパラジウム量は、リアクターに送られる水素量と同様 に実施例1と全く同一とした。リアクターの収量は198kg H2O2/(k g Pd−h)であった。反応混合物中の水素の割合が20体積%未満のとき、 実施例2のリアクターの収量は実施例1のリアクターのそれより明らかに劣って いた。Example 2 In this comparative experiment, a catalyst layer with only vertical channels and no horizontal channels was used. was used. In other respects, the experimental conditions and experimental reactor were exactly the same as in Example 1. be. In particular, the amount of palladium in the reactor is similar to the amount of hydrogen sent to the reactor. It was made exactly the same as in Example 1. The yield of the reactor is 198 kg H2O2/(k g Pd-h). When the proportion of hydrogen in the reaction mixture is less than 20% by volume, The yield of the reactor of Example 2 is clearly inferior to that of the reactor of Example 1. there was.
実施例3 この比較実験で用いた実験リアクターは、多孔性支持材料の層厚およびパラジウ ム含浸量が実施例2とは異なり、実際は好ましい条件ではなかったこと以外は実 施例2で用いたものと同じであった。その他の点では、実験条件は実施例2と同 じである。送られた水素が反応混合物の体積の20%のとき、104kgH20 2/ (k g P d−h )の収量が得られた。水素のパーセントが10体 積%のとき、87 k g H2O2/ (k g P d・h)の収量が得ら れた。これらの結果を実施例4の結果と比較した。Example 3 The experimental reactor used in this comparative experiment was characterized by the layer thickness of the porous support material and the The actual conditions were different from those in Example 2 and the conditions were not favorable. It was the same as that used in Example 2. In other respects, the experimental conditions were the same as in Example 2. It is the same. When the hydrogen sent is 20% of the volume of the reaction mixture, 104 kgH20 A yield of 2/(k g P dh) was obtained. Percentage of hydrogen is 10 bodies When the product is %, a yield of 87 k g H2O2/(k g P d・h) is obtained. It was. These results were compared with those of Example 4.
実施例4 この比較実験で用いたりアクタ−は、触媒床が多数部分に分かれておらず単一で あることを除いて、実施例3で用いたものと同じであった。したがって触媒層間 の液体分配器としての分散板や、混合部もなかった。パラジウムの量も、他のり アクタ−の細部構造やテスト条件と同様、実施例3と同じとした。水素の供給が 反応混合物の20体積%のとき、収量は90 k g H202/ (k g P d・h)であった。また水素の供給が10体積%のとき、収量は60 k g H202/(kg Pd−h)であった。Example 4 The catalyst bed used in this comparative experiment was a single catalyst bed, not divided into multiple parts. It was the same as that used in Example 3 with one exception. Therefore, between the catalyst layers There was no dispersion plate as a liquid distributor or mixing section. The amount of palladium is also different from other glues. The detailed structure of the actor and the test conditions were the same as in Example 3. hydrogen supply When the reaction mixture is 20% by volume, the yield is 90 kg H202/(k g Pd・h). Also, when the hydrogen supply is 10% by volume, the yield is 60k g H202/(kg Pd-h).
図1 国際調査報告 国際調査報告 フロントページの続き (72)発明者 マキニエミ ニスコ フィンランド国ヤーリ ニスエフ−90940、ケッロスティエ 2 ニー (72)発明者 マウヌラ テウポ フィンランド国オウル ニスエフ−90650、ミッルオヤンティエ 13 ゲ ー 33Figure 1 international search report international search report Continuation of front page (72) Inventor Makiniemi Nisco Kellostier 2, Nisev-90940, Jari, Finland (72) Inventor Maunula Teupo Mill Ojantier 13, Nisev-90650, Oulu, Finland -33
Claims (4)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP4503299A JP3007686B2 (en) | 1991-01-23 | 1992-01-23 | Lactic acid bacterium starter containing peroxidase, fermented milk product, and methods for producing the same |
Applications Claiming Priority (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP3-22927 | 1991-01-23 | ||
| JP2292791 | 1991-01-23 | ||
| FI913649 | 1991-07-31 | ||
| PCT/JP1992/000053 WO1992013064A1 (en) | 1991-01-23 | 1992-01-23 | Lactic acid bacterium starter, containing peroxidase, fermented milk product, and production thereof |
| JP4503299A JP3007686B2 (en) | 1991-01-23 | 1992-01-23 | Lactic acid bacterium starter containing peroxidase, fermented milk product, and methods for producing the same |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPH07500559A true JPH07500559A (en) | 1995-01-19 |
| JP3007686B2 JP3007686B2 (en) | 2000-02-07 |
Family
ID=26360228
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP4503299A Expired - Lifetime JP3007686B2 (en) | 1991-01-23 | 1992-01-23 | Lactic acid bacterium starter containing peroxidase, fermented milk product, and methods for producing the same |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP3007686B2 (en) |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR101204260B1 (en) | 2006-01-20 | 2012-11-23 | 모리나가 뉴교 가부시키가이샤 | Pharmaceutical composition, food or drink, or feed for intestinal disease |
-
1992
- 1992-01-23 JP JP4503299A patent/JP3007686B2/en not_active Expired - Lifetime
Also Published As
| Publication number | Publication date |
|---|---|
| JP3007686B2 (en) | 2000-02-07 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| FI70398B (en) | FOERFARANDE VID FRAMSTAELLNING AV VAETEPEROXID | |
| US5637286A (en) | Process for producing hydrogen peroxide | |
| JP4172831B2 (en) | Method and reactor for carrying out catalytic reactions | |
| JP2009529479A (en) | Autooxidation of hydrogen peroxide by hydrogenation in a microreactor | |
| NZ510362A (en) | Bubble column with one or more perforated trays having a cross-sectional area for each perforation of 0.003 to 3 millimeters squared | |
| US6521767B1 (en) | Method for suspension hydrogenation of an anthraquinone compound in a special reactor in order to produce hydrogen peroxide | |
| US6150564A (en) | Selective liquid-phase hydrogenation of α,β-unsaturated carbonyl compounds | |
| JP5598952B2 (en) | Microreactor and liquid phase chemical reaction method using microreactor | |
| US4102778A (en) | Method and apparatus for carrying out hydrogenation reactions | |
| CN106395755B (en) | Method for preparing hydrogen peroxide by anthraquinone process | |
| EP1051352B1 (en) | Process for the manufacture of hydrogen peroxide | |
| CA2389428C (en) | Method for producing hydrogen peroxide | |
| EP0596938B1 (en) | Process for the preparation of hydrogen peroxide | |
| US6419892B1 (en) | Process for carrying out gas-liquid reactions and continuous flow reactor for this purpose | |
| JPH07500559A (en) | Method for producing hydrogen peroxide | |
| CA2492261C (en) | Method for continuous hydrogenation of citronellal to form citronellol | |
| CN104926616A (en) | Alkyl anthrahydroquinone production method and hydrogen peroxide production method | |
| JP2000143216A (en) | Production of hydrogen peroxide | |
| NO180366B (en) | Process for cooling a synthesis gas in a catalytic reactor | |
| CN114471376A (en) | Feed gas distributor, reactor and method for preparing gasoline by hydrogenation of carbon dioxide | |
| ZA200100949B (en) | Method for carrying out gas-liquid reactions and corresponding flow reactor. | |
| JP2528067C (en) |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071126 Year of fee payment: 8 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081126 Year of fee payment: 9 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081126 Year of fee payment: 9 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091126 Year of fee payment: 10 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091126 Year of fee payment: 10 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101126 Year of fee payment: 11 |
|
| S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111126 Year of fee payment: 12 |
|
| R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111126 Year of fee payment: 12 |
|
| S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
| EXPY | Cancellation because of completion of term |