[go: up one dir, main page]

JPH0797489B2 - Flat sealed battery - Google Patents

Flat sealed battery

Info

Publication number
JPH0797489B2
JPH0797489B2 JP63292819A JP29281988A JPH0797489B2 JP H0797489 B2 JPH0797489 B2 JP H0797489B2 JP 63292819 A JP63292819 A JP 63292819A JP 29281988 A JP29281988 A JP 29281988A JP H0797489 B2 JPH0797489 B2 JP H0797489B2
Authority
JP
Japan
Prior art keywords
battery
container
battery container
active material
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63292819A
Other languages
Japanese (ja)
Other versions
JPH02139867A (en
Inventor
博和 吉川
佐藤  淳
茂 池成
賢一 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Energy Ltd filed Critical Hitachi Maxell Energy Ltd
Priority to JP63292819A priority Critical patent/JPH0797489B2/en
Publication of JPH02139867A publication Critical patent/JPH02139867A/en
Publication of JPH0797489B2 publication Critical patent/JPH0797489B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte
    • H01M6/06Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid
    • H01M6/12Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid with flat electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/609Arrangements or processes for filling with liquid, e.g. electrolytes
    • H01M50/627Filling ports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/172Arrangements of electric connectors penetrating the casing
    • H01M50/174Arrangements of electric connectors penetrating the casing adapted for the shape of the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/609Arrangements or processes for filling with liquid, e.g. electrolytes
    • H01M50/627Filling ports
    • H01M50/636Closing or sealing filling ports, e.g. using lids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Filling, Topping-Up Batteries (AREA)
  • Primary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、負極活物質としてリチウム、ナトリウム、カ
リウムなどのアルカリ金属を用い、正極活物質として塩
化チオニル、塩化スルフリル、塩化ホスホリルなどの常
温で液体のオキシハロゲン化物を用い、ハーメチックシ
ールを採用した扁平形密閉電池に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention uses an alkali metal such as lithium, sodium, or potassium as a negative electrode active material and a positive electrode active material at room temperature such as thionyl chloride, sulfuryl chloride, or phosphoryl chloride. The present invention relates to a flat sealed battery using a liquid oxyhalide and adopting a hermetic seal.

〔従来の技術〕[Conventional technology]

近年、電子機器の発達に伴い、そのバックアップ用電源
として、自己放電が小さく、長寿命で、かつ密閉性が高
く、10年間以上の長期間にわたって使用できる電池が要
望されるようになってきた。
In recent years, with the development of electronic devices, a battery that has a small self-discharge, a long life, a high sealing property, and can be used for a long period of 10 years or more has been demanded as a backup power source.

そこで、そのような要望に応えるべく、負極活物質とし
てリツウムを用い、正極活物質として塩化チオニルを用
い、電池蓋にメタル−ガラス−メタルのいわゆるハーメ
チックシールを採用した筒形の密閉電池が開発され(例
えば、特開昭62−206769号公報)、その需要が益々増加
している。
Therefore, in order to meet such a demand, a cylindrical sealed battery was developed in which lithium was used as the negative electrode active material, thionyl chloride was used as the positive electrode active material, and a so-called hermetic seal of metal-glass-metal was used for the battery lid. (For example, Japanese Unexamined Patent Publication No. 62-206769), the demand thereof is increasing more and more.

また、ICの消費電流の低減や、電子機器の小形、軽量化
に伴う要請から、上記のような筒形の密閉電池のみなら
ず、より小形、薄形のバックアップ電源用電池が要望さ
れ、扁平形の密閉電池も開発されはじめてきた。
In addition, due to demands for reduction of IC current consumption and miniaturization and weight reduction of electronic devices, not only the cylindrical sealed battery as described above but also smaller and thinner backup power supply battery is demanded. Shaped sealed batteries have also begun to be developed.

ところで、このような扁平形の密閉電池では、その電解
液の注入と電解液注入後の封止に際して、次のような方
法が採用されている。例えば、第3図に示すように電解
液注入口を設けていない電池では、電池の組立時に、電
池容器(5)に電解液を注入した後、電池蓋(6)を電
気容器(5)の開口部に嵌合し、電池蓋(6)のボディ
(7)の外周部(7a)を電池容器(5)の開口端部(5
a)と溶接しており、また、第4図に示すように電池蓋
(6)のボディ(7)に電解液注入口(14)を設けた電
池では、電池蓋(6)のボディ(7)の外周部(7a)と
電池容器(5)の開口端部(5a)とを溶接した後、上記
電解液注入口(14)から電解液を電池内部に注入し、電
解液の注入後、電解液注入口(14)に封止ピン(15)を
挿入し、該封止ピン(15)の頭部を上記電解液注入口
(14)の周壁部に溶接していた。
By the way, in such a flat sealed battery, the following method is adopted in the injection of the electrolytic solution and the sealing after the injection of the electrolytic solution. For example, in a battery having no electrolyte solution inlet as shown in FIG. 3, the electrolyte solution is injected into the battery container (5) at the time of assembling the battery, and then the battery lid (6) is attached to the electric container (5). The outer peripheral portion (7a) of the body (7) of the battery lid (6) is fitted in the opening, and the outer end (7a) of the battery container (5) is opened (5).
In a battery which is welded to a) and has an electrolyte injection port (14) provided in the body (7) of the battery lid (6) as shown in FIG. 4, the body (7) of the battery lid (6) is ) The outer peripheral part (7a) and the open end part (5a) of the battery container (5) are welded, and then the electrolytic solution is injected into the battery through the electrolytic solution injection port (14), and after the electrolytic solution is injected, The sealing pin (15) was inserted into the electrolytic solution inlet (14), and the head of the sealing pin (15) was welded to the peripheral wall of the electrolytic solution inlet (14).

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

しかしながら、前者の電解液注入法では、電解液注入後
に電池蓋(6)のボディ(7)の外周部(7a)と電池容
器(5)の開口端部(5a)とを溶接するため、その溶接
時の熱によって電解液が膨脹し、そのため電池容器
(5)の底部(5b)の中央部が膨出し、電池総高の増加
を引き起こす。一方、後者の方法では、封止ピン(15)
の頭部と電解液注入口(14)の周壁部とを溶接したとき
に溶接部分に盛り上がりが生じ、そのため、電気総高が
設定した高さより高くなって総高不良が発生するという
問題があった。また、そのような溶接部分の盛り上がり
を考慮して電池総高を設定すると、そのぶん電池内容積
が減少して放電容量が低下することになった。
However, in the former electrolytic solution injection method, since the outer peripheral portion (7a) of the body (7) of the battery lid (6) and the open end portion (5a) of the battery container (5) are welded after the electrolytic solution injection, The heat of welding causes the electrolytic solution to expand, so that the central portion of the bottom portion (5b) of the battery container (5) swells, causing an increase in the total height of the battery. On the other hand, in the latter method, the sealing pin (15)
There is a problem that when welding the head of the and the peripheral wall of the electrolyte injection port (14), the welded portion rises, and the total electrical height becomes higher than the set height, causing total height failure. It was In addition, if the total battery height is set in consideration of such swelling of the welded portion, the internal volume of the battery is reduced, and the discharge capacity is reduced accordingly.

したがって、本発明は、電解液注入後の溶接による電池
総高の増加が生じない扁平形密閉電池を提供することを
目的とする。
Therefore, an object of the present invention is to provide a flat sealed battery in which the total height of the battery does not increase due to welding after injection of the electrolytic solution.

〔課題を解決するための手段〕[Means for Solving the Problems]

本発明の構成を実施例に対応する第1〜2図に基づいて
説明すると、本発明は、電池容器(5)の底部(5b)の
中央部に、電池内部側に底部を有しかつ中心部に先端が
電池外部側を向き該先端が電池容器(5)の底部(5b)
の主底面より電池内部側に位置する筒状部(12a)を有
する凹部(12)を設け、該筒状部(12a)を電解液注入
口として使用した後に該筒状部(12a)にリベッ状の封
止ピン(13)を挿入し、該封止ピン(13)の頭部を筒状
部(12a)の先端部に溶接したものである。
The structure of the present invention will be described with reference to FIGS. 1 and 2 corresponding to the embodiments. According to the present invention, the bottom portion (5b) of the battery container (5) has a bottom portion on the inner side of the battery and a center portion. End faces the outside of the battery, and the end is the bottom part (5b) of the battery container (5)
A concave portion (12) having a cylindrical portion (12a) located inside the main bottom surface of the battery is provided, and the cylindrical portion (12a) is used as an electrolyte injection port, and then the cylindrical portion (12a) is rivet-mounted. The sealing pin (13) is inserted and the head of the sealing pin (13) is welded to the tip of the tubular portion (12a).

〔作用〕[Action]

上記構成にすれば、電池蓋(6)のボディ(7)の外周
部(7a)を電池容器(5)の開口端部(5a)に溶接した
後に電解液を注入することができるが、筒状部(12a)
に挿入した封止ピン(13)の頭部を筒状部(12a)の先
端部に溶接しても、該筒状部(12a)の先端が電池容器
(5)の底部(5b)の主底面〔電池容器(5)の底部
(5b)の凹部(12)を設けていない部分の底面〕より電
池内部側に位置するので、上記封止ピン(13)の頭部と
筒状部(12a)の先端部との溶接による溶接部分の盛り
上がりが電池容器(5)の底部(5b)の主底面より電池
外部側に飛び出すことがなく、電池総高の増加を引き起
こさない。また、電池容器(5)の底部(5b)の中央部
に前記特定の凹部(12)を設けているので、電池容器
(5)の底部(5b)の変形に対する抵抗性が向上し、前
記の溶接時の熱による電解液の体積膨脹〔この場合は、
電池蓋(6)のボディ(7)の外周部(7a)と電池容器
(5)の開口端部(5a)とを溶接する場合に比べて溶接
面積が小さく、したがって、溶接に要する熱量が少な
く、また電解液の膨張も少ない〕程度では、電池容器
(5)の底部(5b)に変形が生じない。
With the above structure, the electrolytic solution can be injected after welding the outer peripheral portion (7a) of the body (7) of the battery lid (6) to the open end portion (5a) of the battery container (5). Section (12a)
Even if the head of the sealing pin (13) inserted in the tube is welded to the tip of the tubular part (12a), the tip of the tubular part (12a) is the main part of the bottom (5b) of the battery container (5). Since it is located on the inner side of the battery from the bottom surface [the bottom surface of the bottom portion (5b) of the battery container (5) where the recess (12) is not provided], the head of the sealing pin (13) and the cylindrical portion (12a) are located. The swelling of the welded portion due to the welding with the tip portion of (1) does not jump out from the main bottom surface of the bottom portion (5b) of the battery container (5) to the outside of the battery and does not cause an increase in the total height of the battery. Moreover, since the specific recess (12) is provided in the center of the bottom portion (5b) of the battery container (5), the resistance to deformation of the bottom portion (5b) of the battery container (5) is improved, and Volume expansion of the electrolyte due to heat during welding (in this case,
The welding area is smaller than that in the case of welding the outer peripheral portion (7a) of the body (7) of the battery lid (6) and the open end portion (5a) of the battery container (5), and therefore the amount of heat required for welding is small. Also, the expansion of the electrolytic solution is small], so that the bottom portion (5b) of the battery container (5) is not deformed.

〔実施例〕〔Example〕

つぎに本発明の実施例を図面に基づいて説明する。ただ
し、実施例ではリチウム−塩化チオニル系の扁平形密閉
電池について説明するが、本発明はその場合のみに限ら
れるものではない。
Next, an embodiment of the present invention will be described with reference to the drawings. However, although the lithium-thionyl chloride-based flat sealed battery is described in the examples, the present invention is not limited to this case.

第1図は本発明の扁平形密閉電池の一実施例を示す断面
図であり、第2図は第1図に示す電池に使用された電池
容器を示すもので、第2図の(a)はその断面図であ
り、第2図の(b)はその底面図である。
FIG. 1 is a cross-sectional view showing an embodiment of the flat sealed battery of the present invention, and FIG. 2 shows a battery container used for the battery shown in FIG. 1, and FIG. Is a sectional view thereof, and FIG. 2 (b) is a bottom view thereof.

まず、電池の構成について概略的に説明すると、(1)
はリチウムからなる負極、(2)は炭素多孔質成形体か
らなる正極、(3)はガラス繊維不織布からなるセパレ
ータであり、このセパレータ(3)は上記負極(1)と
正極(2)とを隔離している。(4)は電解液で、
(5)はステンレス鋼製の電池容器、(6)は電池蓋で
あり、この電池蓋(6)はステンレス鋼製で環状のボデ
ィ(7)とガラスからなる環状の絶縁層(8)とステン
レス鋼製の端子(9)とからなり、上記ボディ(7)の
外周部(7a)は電池容器(5)の開口端部(5a)に溶接
されている。(10)は集電体であり、ステンレス鋼製網
からなり、その中央部が端子(9)の下部にスポット溶
接されている。(11)はガラス繊維不織布からなる絶縁
体で、負極(1)および集電体(10)と電池蓋(6)の
ボディ(7)との間を絶縁している。(12)は電池容器
(5)の底部(5b)の中央部に設けた電池内部側に底部
を有する凹部であり、この凹部(12)はその中心部に筒
状部(12a)を有している。(13)はステンレス鋼製で
リベット状の封止ピンであり、この封止ピン(13)は、
上記筒状部(12a)を電解液注入口として使用して電解
液を電池内部に注入したのち、上記筒状部(12a)に挿
入され、その頭部が上記筒状部(12a)の先端部に溶接
されている。そして、この電池は、外径20mm、電池総高
(厚み)2.5mmの円板状をした扁平形密閉電池である。
First, the structure of the battery will be briefly described as follows. (1)
Is a negative electrode made of lithium, (2) is a positive electrode made of a carbon porous molded body, (3) is a separator made of a glass fiber non-woven fabric, and the separator (3) includes the negative electrode (1) and the positive electrode (2). Isolated. (4) is the electrolyte,
(5) is a battery container made of stainless steel, (6) is a battery lid, and the battery lid (6) is made of stainless steel and has an annular body (7), an annular insulating layer (8) made of glass, and stainless steel. The outer peripheral portion (7a) of the body (7) is welded to the open end portion (5a) of the battery container (5). (10) is a current collector made of stainless steel net, and its center is spot-welded to the lower part of the terminal (9). (11) is an insulator made of a non-woven glass fiber, which insulates the negative electrode (1) and the current collector (10) from the body (7) of the battery lid (6). Reference numeral (12) is a concave portion having a bottom portion inside the battery, which is provided in the central portion of the bottom portion (5b) of the battery container (5), and this concave portion (12) has a cylindrical portion (12a) in its central portion. ing. (13) is a rivet-shaped sealing pin made of stainless steel, and this sealing pin (13) is
The cylindrical portion (12a) is used as an electrolytic solution inlet to inject the electrolytic solution into the battery, and then the cylindrical portion (12a) is inserted, and its head is the tip of the cylindrical portion (12a). It is welded to the part. This battery is a disk-shaped flat sealed battery having an outer diameter of 20 mm and a total battery height (thickness) of 2.5 mm.

つぎに、主要構成部材について詳しく説明すると、負極
(1)はリング状に打抜いたリチウムシートを集電体
(10)に圧着したものであって、負極活物質のリチウム
のみで構成され、正極(2)はアセチレンブラックを主
成分とし、これに黒鉛とポリテトラフルオロエチレンを
添加した炭素質を主材とする材料の多孔質成形体、いわ
ゆる炭素多孔質成形体からなるものであり、リング状を
していて、電池容器(5)の底部側に収容されている。
電解液(4)は塩化チオニルに電解質として四塩化アル
ミニウムリチウムを1.0mol/l溶解した塩化チオニル溶液
からなり、塩化チオニルは上記のように電解液溶媒であ
るとともに正極活物質でもある。このように塩化チオニ
ルが正極活物質として用いられていることからも明らか
であるように、上記正極(2)はそれ自身が反応するも
のではなく、正極活物質の塩化チオニルと負極(1)か
らイオン化して溶出してきたリチウムイオンとの反応場
所を提供するものである。
Next, the main constituent members will be described in detail. The negative electrode (1) is obtained by pressing a ring-shaped punched lithium sheet onto a current collector (10) and is composed of only lithium as a negative electrode active material. (2) consists of a so-called carbon porous molded body, which is a porous molded body composed mainly of acetylene black, and a carbonaceous material containing graphite and polytetrafluoroethylene as a main material And is housed on the bottom side of the battery container (5).
The electrolytic solution (4) is composed of a thionyl chloride solution in which 1.0 mol / l of lithium aluminum tetrachloride is dissolved in thionyl chloride as an electrolyte, and thionyl chloride is a solvent for the electrolytic solution and a positive electrode active material as described above. As is clear from the fact that thionyl chloride is used as the positive electrode active material, the positive electrode (2) does not react by itself, but thionyl chloride of the positive electrode active material and the negative electrode (1) are used. It provides a place for reaction with ionized and eluted lithium ions.

電池容器(5)は、厚さ0.25mmのステンレス鋼板で外径
20mm、高さ2.3mmの容器状に形成されたものであり、そ
の内部に収容した正極(2)との接触により、正極端子
としての機能を備えている。
The battery case (5) is made of stainless steel plate with a thickness of 0.25 mm and has an outer diameter.
It is formed in a container shape with a height of 20 mm and a height of 2.3 mm, and has a function as a positive electrode terminal by contact with the positive electrode (2) housed inside.

電池蓋(6)は、前記のようにステンレス鋼製のボディ
(7)とガラスからなる環状の絶縁層(8)とステンレ
ス鋼製の端子(9)とからなり、上記ガラスからなる絶
縁層(8)がその外周面でステンレス鋼製のボディ
(7)の内周面に融着し、その内周面でステンレス鋼製
の端子(9)の外周面に融着していて、いわゆるメタル
−ガラス−メタルのハーメチックシールを持ち、また、
前記のように電池蓋(6)のボディ(7)の外周部(7
a)は電池容器(5)の開口端部(5a)に溶接されてい
て、この電池はいわゆる完全密閉構造となり得るように
構成されている。そして、上記電池蓋(6)に設けられ
た端子(9)は、その下面に中央部が溶接されている集
電体(10)に負極(1)を圧着しているので、負極端子
として作用する。
As described above, the battery lid (6) includes the body (7) made of stainless steel, the annular insulating layer (8) made of glass, and the terminal (9) made of stainless steel, and the insulating layer made of the glass ( 8) is fused to the inner peripheral surface of the stainless steel body (7) on its outer peripheral surface, and is fused to the outer peripheral surface of the stainless steel terminal (9) on its inner peripheral surface. It has a glass-metal hermetic seal,
As described above, the outer peripheral portion (7) of the body (7) of the battery lid (6) is
The a) is welded to the open end portion (5a) of the battery container (5) so that the battery can have a so-called completely sealed structure. The terminal (9) provided on the battery lid (6) functions as a negative electrode terminal because the negative electrode (1) is pressure-bonded to the current collector (10) whose central portion is welded to the lower surface. To do.

電池容器(5)の底部(5b)の中央部に設けた凹部(1
2)は、電池内部側に底部を有するものであり、したが
って、この凹部(12)は電池容器(5)の底面から見た
ときに凹んでおり、第1図に示すように底部(5b)を下
側にして電池容器(5)を配置したときには、凹部(1
2)は上方に凸出した状態に示される。筒状部12a)は上
記凹部(12)の中心部に先端が電池外部側を向く態様で
設けられているが、その先端は電池容器(5)の底部
(5b)の主底面〔つまり、電池容器(5)の底部(5b)
より凹部(12)を設けていない部分の底面〕より電池内
部側に位置していて、この筒状部(12a)から電解液を
電池内部に注入した後、封止ピン(13)を上記筒状部
(12)に挿入し、該封止ピン(13)の頭部を筒状部(12
a)の先端部に溶接した場合に溶接部分に生じる盛り上
がりも電池容器(5)の底部(5b)より電池外部側に突
出することがないので、溶接部分の盛り上がりによる電
池総高の増加がない。
The recess (1) provided at the center of the bottom (5b) of the battery container (5)
2) has a bottom portion on the inner side of the battery, therefore, the recess (12) is recessed when viewed from the bottom surface of the battery container (5), and as shown in FIG. 1, the bottom portion (5b). When the battery case (5) is placed with the bottom facing down,
2) is shown protruding upward. The cylindrical portion 12a) is provided at the center of the recess (12) with its tip facing the outside of the battery, and the tip is the main bottom surface of the bottom (5b) of the battery container (5) [that is, the battery]. Bottom (5b) of container (5)
The bottom surface of the portion not provided with the recessed portion (12)] is located on the inner side of the battery from the cylindrical portion (12a), and after the electrolytic solution is injected into the battery, the sealing pin (13) is attached to the cylinder. The cylindrical pin (12) by inserting the sealing pin (13) into the cylindrical part (12).
Since the swelling that occurs in the welded portion when welded to the tip of a) does not protrude to the outside of the battery from the bottom portion (5b) of the battery container (5), the total height of the battery does not increase due to the swelling of the welded portion. .

また、この電池では、電池容器(5)の底部(5b)の中
央部に筒状部(12a)を有する凹部(12)を設けている
ので、電池容器(5)の底部(5b)の変形に対する抵抗
性が高くなっていて、封止ピン(13)の頭部と筒状部
(12a)の先端部との溶接による電解液の膨脹程度で
は、電池容器(5)の底部(5b)が変形するようなこと
はない。
In addition, in this battery, since the recess (12) having the cylindrical portion (12a) is provided in the center of the bottom portion (5b) of the battery container (5), the deformation of the bottom portion (5b) of the battery container (5). Resistance of the sealing pin (13) and the tip of the tubular portion (12a) to the extent of expansion of the electrolyte by welding, the bottom portion (5b) of the battery container (5) is There is no deformation.

上記実施例に示す本発明の電池を製造したときの電池容
器(5)の底部(5b)のふくれによる総高不良の発生を
調べた結果と、第3図に示す構造の電池を製造したとき
の電池容器(5)の底部(5b)のふくれによる総高不良
の発生を調べた結果を第1表に対比して示す。
When the generation of the total height defect due to the swelling of the bottom portion (5b) of the battery container (5) when the battery of the present invention shown in the above example was manufactured, and the battery having the structure shown in FIG. The results of examining the occurrence of the total height defect due to the swelling of the bottom part (5b) of the battery container (5) of No. 1 are shown in comparison with Table 1.

電池はいずれも最大寸法を外径20mm、電池総高2.5mmに
設定した扁平形密閉電池であり、本発明の電池では、正
極(2)、セパレータ(3)、負極(1)などをそれぞ
れ電池容器(5)と電池蓋(6)の所定位置に収容して
電池容器(5)と電池蓋(6)とを嵌合したのち、電池
蓋(6)のボディ(7)の外周部(7a)を電池容器
(5)の開口端部(5a)に炭酸ガスレーザーで出力700
W、溶接速度60mm/secで溶接したのち、電池を第1図に
示す状態から上下を反転させ、筒状部(12a)から電解
液を電池内部に注入し、電解液の注入後、封止ピン(1
3)を筒状部(12a)に挿入し、その封止ピン(13)の頭
部を筒状部(12a)の先端部に炭酸ガスレーザーで出力7
00W、溶接時間0.3秒で溶接した。
Each of the batteries is a flat sealed battery whose maximum dimensions are set to an outer diameter of 20 mm and a total battery height of 2.5 mm. In the battery of the present invention, the positive electrode (2), the separator (3), the negative electrode (1), etc. are respectively After accommodating the battery container (5) and the battery lid (6) at predetermined positions in the container (5) and the battery container (6) and fitting the battery container (5) and the battery lid (6) together, the outer peripheral portion (7a) of the body (7) of the battery lid (6). ) Is output to the open end (5a) of the battery container (5) with a carbon dioxide laser 700
After welding at W and a welding speed of 60 mm / sec, the battery is turned upside down from the state shown in FIG. 1, the electrolytic solution is injected into the battery from the cylindrical part (12a), and after the electrolytic solution is injected, sealing is performed. Pin (1
3) is inserted into the tubular part (12a), and the head of the sealing pin (13) is output to the tip of the tubular part (12a) with a carbon dioxide laser.
Welded at 00W for 0.3 seconds.

一方、第3図に示す従来電池(従来品)では、電池容器
(5)に正極(2)およびセパレータ(3)を収容した
段階で電解液を注入し、その後、電池蓋(6)を上記の
電池容器(5)に嵌合し、電池蓋(6)のボディ(7)
の外周部(7a)を電池容器(5)の開口端部(5a)に前
記本発明の電池の場合同様に炭酸ガスレーザーで出力70
0W、溶接速度60mm/secで溶接した。
On the other hand, in the conventional battery (conventional product) shown in FIG. 3, the electrolytic solution is injected at the stage where the positive electrode (2) and the separator (3) are housed in the battery container (5), and then the battery lid (6) is put in the above-mentioned state. Body (7) of the battery lid (6) fitted into the battery container (5) of
The outer peripheral part (7a) is output to the opening end part (5a) of the battery container (5) by a carbon dioxide laser as in the case of the battery of the present invention.
Welded at 0 W and welding speed of 60 mm / sec.

両電池とも100個ずつ製造し、電池総高が2.5mmを越えた
ものを総高不良と判定し、その総高不良発生率を第1表
に示した。
100 batteries were manufactured for each of the two batteries, and a battery with a total height of more than 2.5 mm was judged to be a total height failure, and the total high failure rate is shown in Table 1.

第1表に示すように、従来品、つまり第3図に示す構造
の電池では、総高不良が30%発生したが、本発明の電池
では総高不良の発生がまったくなかった。これは、本発
明の電池では、電解液注入口の溶接が封止ピン(13)の
頭部と筒状部(12a)の先端部とを溶接するだけであっ
て、第3図に示す従来構造の電池より電解液注入後の溶
接面積が少なく、したがって、溶接に要する熱量が少な
くて電解液の体積膨張が少ないことと、中央部に凹部
(12)を設けていることによって、電池容器(5)の底
部(5b)の変形に対する抵抗性が向上したためである。
As shown in Table 1, in the conventional product, that is, in the battery having the structure shown in FIG. 3, the total height defect was 30%, but in the battery of the present invention, the total height defect was not generated at all. This is because in the battery of the present invention, the welding of the electrolyte injection port only welds the head of the sealing pin (13) and the tip of the tubular portion (12a). Since the welding area after injection of the electrolytic solution is smaller than that of the battery having the structure, the amount of heat required for welding is small and the volume expansion of the electrolytic solution is small, and the concave portion (12) is provided in the central portion of the battery container ( This is because the resistance of the bottom portion (5b) of 5) to deformation is improved.

なお、上記実施例では、電池蓋(6)に設けた端子
(9)が負極(1)の端子である場合について説明した
が、負極(1)と正極(2)の配置する位置を変えるこ
とによって、上記端子(9)が正極(2)の端子となる
場合がある。また、上記実施例では、絶縁層(8)をガ
ラスで構成したが、ガラスに代えてセラミックで絶縁層
(8)を構成してもよい。また、実施例では、負極活物
質としてリチウムを用い、正極活物質として塩化チオニ
ルを用いたリチウム−塩化チオニル電池について説明し
たが、負極活物質としてナトリウム、カリウムなどのリ
チウム以外のアルカリ金属を用いてもよいし、正極活物
質として塩化チオニル以外に塩化スルフリル、塩化ホス
フリルなどの常温(25℃)で液体のオキシハロゲン化物
を用いてもよい。
In the above-mentioned embodiment, the case where the terminal (9) provided on the battery lid (6) is the terminal of the negative electrode (1) has been described, but the positions where the negative electrode (1) and the positive electrode (2) are arranged are changed. Depending on the situation, the terminal (9) may serve as the positive electrode (2) terminal. In addition, although the insulating layer (8) is made of glass in the above embodiments, the insulating layer (8) may be made of ceramic instead of glass. Further, in the examples, lithium was used as the negative electrode active material, and the lithium-thionyl chloride battery using thionyl chloride as the positive electrode active material was described. However, as the negative electrode active material, an alkali metal other than lithium such as sodium and potassium was used. In addition to thionyl chloride, oxyhalides that are liquid at room temperature (25 ° C.), such as sulfuryl chloride and phosfuryl chloride, may be used as the positive electrode active material.

〔発明の効果〕 以上説明したように、本発明は、電池容器(5)の底部
(5b)の中央部に、電池内部側に底部を有しかつ中心部
に先端が電池外部側を向き該先端が電池容器(5)の底
部(5b)の主底面より電池内部側に位置する筒状部(12
a)を有する凹部(12)を設け、該筒状部(12a)を電解
液注入口として使用した後に封止ピン(13)を上記筒状
部(12a)に挿入し、封止ピッ(13)の頭部を筒状部(1
2a)の先端部に溶接する構成にしたことにより、応接に
基づく電池総高不良の発生がない扁平形密閉電池を提供
することができた。
[Effects of the Invention] As described above, according to the present invention, the bottom portion (5b) of the battery container (5) has a bottom portion on the inner side of the battery and a tip end facing the outer side of the battery in the center portion. A cylindrical part (12) whose tip is located inside the battery from the main bottom surface of the bottom part (5b) of the battery container (5).
a concave portion (12) having a) is provided, and after the tubular portion (12a) is used as an electrolyte injection port, a sealing pin (13) is inserted into the tubular portion (12a) to form a sealing pin (13). ) The cylindrical part (1
By adopting a configuration in which the tip portion of 2a) is welded, it is possible to provide a flat sealed battery in which the total height defect of the battery due to the reception does not occur.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の扁平形密閉電池の一実施例を示す断面
図であり、第2図は第1図に示す電池に使用された電池
容器を示すもので、第2図の(a)はその断面図であ
り、第2図の(b)はその底面図である。第3図および
第4図はそれぞれ従来の扁平形密閉電池を示す断面図で
ある。 (1)……負極、(2)……正極、(3)……セパレー
タ、(4)……電解液、(5)……電池容器、(5a)…
…開口端部、(5b)……底部、(6)……電池蓋、
(7)……ボディ、(7a)……外周部、(8)……絶縁
層、(9)……端子、(12)……凹部、(12a)……筒
状部、(13)……封止ピン
FIG. 1 is a cross-sectional view showing an embodiment of the flat sealed battery of the present invention, and FIG. 2 shows a battery container used for the battery shown in FIG. 1, and FIG. Is a sectional view thereof, and FIG. 2 (b) is a bottom view thereof. 3 and 4 are cross-sectional views showing a conventional flat sealed battery. (1) ... Negative electrode, (2) ... Positive electrode, (3) ... Separator, (4) ... Electrolyte, (5) ... Battery container, (5a) ...
… Open end, (5b) …… bottom, (6) …… Battery lid,
(7) ... Body, (7a) ... Outer peripheral part, (8) ... Insulating layer, (9) ... Terminal, (12) ... Recessed part, (12a) ... Cylindrical part, (13) ... … Sealing pin

フロントページの続き (72)発明者 横山 賢一 大阪府茨木市丑寅1丁目1番88号 日立マ クセル株式会社内 (56)参考文献 特開 平1−120771(JP,A) 特開 平2−65049(JP,A) 実開 平1−119163(JP,U)Front Page Continuation (72) Kenichi Yokoyama Inventor Kenichi Yokoyama 1-88 No. 1 Tora, Ibaraki-shi, Osaka Inside Hitachi Maxell Co., Ltd. (56) Reference JP-A-1-120771 (JP, A) JP-A-2-65049 (JP, A) Actual Kaihei 1-1119163 (JP, U)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】負極活物質としてアルカリ金属を用い、正
極活物質として常温で液体のオキシハロゲン化物を用
い、上記負極活物質および正極活物質を含む発電要素を
電池容器(5)と電池蓋(6)とで密閉する扁平形密閉
電池であって、上記電池蓋(6)は金属製で環状のボデ
ィ(7)と上記環状のボディ(7)の内周側に位置しガ
ラスまたはセラミックスからなる環状の絶縁層(8)と
上記環状の絶縁層(8)の中心部に位置する端子(9)
とからなり、該電池蓋(6)のボディ(7)の外周部
(7a)は前記電池容器(5)の開口端部(5a)に溶接さ
れ、電池容器(5)の底部(5b)の中央部には電池内部
側に底部を有しかつ中心部に先端が電池外部側を向き該
先端が電池容器(5)の底部(5b)の主底面より電池内
部側に位置する筒状部(12a)を有する凹部(12)を設
け、該筒状(12a)を電解液注入口として使用した後に
該筒状部(12a)にリベット状の封止ピン(13)を挿入
し、該封止ピン(13)の頭部と筒状部(12a)の先端部
とを溶接していることを特徴とする扁平形密閉電池。
1. An alkali metal is used as a negative electrode active material, an oxyhalide that is liquid at room temperature is used as a positive electrode active material, and a power generating element including the negative electrode active material and the positive electrode active material is provided in a battery container (5) and a battery lid ( 6) A flat sealed battery which is hermetically sealed with (6), wherein the battery lid (6) is made of metal and is located on the inner peripheral side of the annular body (7) and the annular body (7) and is made of glass or ceramics. A ring-shaped insulating layer (8) and a terminal (9) located at the center of the ring-shaped insulating layer (8).
And the outer peripheral portion (7a) of the body (7) of the battery lid (6) is welded to the open end portion (5a) of the battery container (5), so that the bottom portion (5b) of the battery container (5) is A tubular portion (a central portion having a bottom portion on the inner side of the battery and having a tip directed to the outer side of the battery in the center portion and located on the inner side of the battery from the main bottom surface of the bottom portion (5b) of the battery container (5) ( The recess (12) having 12a) is provided, and after the tubular (12a) is used as an electrolyte injection port, a rivet-shaped sealing pin (13) is inserted into the tubular (12a) and the sealing is performed. A flat sealed battery characterized in that the head of the pin (13) and the tip of the tubular portion (12a) are welded.
JP63292819A 1988-11-19 1988-11-19 Flat sealed battery Expired - Lifetime JPH0797489B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63292819A JPH0797489B2 (en) 1988-11-19 1988-11-19 Flat sealed battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63292819A JPH0797489B2 (en) 1988-11-19 1988-11-19 Flat sealed battery

Publications (2)

Publication Number Publication Date
JPH02139867A JPH02139867A (en) 1990-05-29
JPH0797489B2 true JPH0797489B2 (en) 1995-10-18

Family

ID=17786757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63292819A Expired - Lifetime JPH0797489B2 (en) 1988-11-19 1988-11-19 Flat sealed battery

Country Status (1)

Country Link
JP (1) JPH0797489B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PT1896356E (en) 2005-05-27 2011-09-01 Great Stuff Inc Reciprocating mechanism for a reel assembly

Also Published As

Publication number Publication date
JPH02139867A (en) 1990-05-29

Similar Documents

Publication Publication Date Title
US6670074B2 (en) Glass to metal seal
EP0360039B1 (en) A flat typed sealed battery with hermetic sealing structure
EP1886364B1 (en) Battery and method for producing the same
US3925102A (en) Divalent silver oxide cell having a unipotential discharge level
JPH11144742A (en) Electrode
US20090142667A1 (en) Cylinder type zinc-air cell and method of producing the same
JPH0797489B2 (en) Flat sealed battery
EP1029376B1 (en) Miniature galvanic cell having optimum low surface area conductive collector
JPH0290455A (en) Cylindrical sealed battery
JPH04267061A (en) lithium-iodine battery
JPH0793129B2 (en) Flat sealed battery
JPS633091Y2 (en)
JPS633090Y2 (en)
JPH0821386B2 (en) Flat non-aqueous liquid active material battery
JPH03216955A (en) flat sealed battery
JPH03216954A (en) Flat sealed battery
JP3031497B2 (en) Inorganic non-aqueous electrolyte battery
JPH0290457A (en) flat sealed battery
JPH0770307B2 (en) Explosion-proof cylindrical sealed battery with lead terminal
JPH11283605A (en) Alkaline storage battery and manufacture thereof
JPH0290456A (en) Manufacturing method of flat sealed battery
JPH0620704A (en) Hermetically sealed liquid active material battery
JPH0290458A (en) flat sealed battery
JPH0715813B2 (en) Non-aqueous solvent battery
JPH0381954A (en) Cylindrical battery and its manufacturing method