JPH11154550A - connector - Google Patents
connectorInfo
- Publication number
- JPH11154550A JPH11154550A JP33509497A JP33509497A JPH11154550A JP H11154550 A JPH11154550 A JP H11154550A JP 33509497 A JP33509497 A JP 33509497A JP 33509497 A JP33509497 A JP 33509497A JP H11154550 A JPH11154550 A JP H11154550A
- Authority
- JP
- Japan
- Prior art keywords
- conductive
- conductive portion
- semiconductor element
- material layer
- forming material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
- H01L2224/161—Disposition
- H01L2224/16151—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/16221—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/16225—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L2224/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
- H01L2224/321—Disposition
- H01L2224/32151—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/32221—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/32225—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73201—Location after the connecting process on the same surface
- H01L2224/73203—Bump and layer connectors
- H01L2224/73204—Bump and layer connectors the bump connector being embedded into the layer connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/91—Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
- H01L2224/92—Specific sequence of method steps
- H01L2224/921—Connecting a surface with connectors of different types
- H01L2224/9212—Sequential connecting processes
- H01L2224/92122—Sequential connecting processes the first connecting process involving a bump connector
- H01L2224/92125—Sequential connecting processes the first connecting process involving a bump connector the second connecting process involving a layer connector
Landscapes
- Manufacturing Of Electrical Connectors (AREA)
- Wire Bonding (AREA)
Abstract
(57)【要約】
【課題】 電子部品等の微細な電極同士を接続できる
複数の導電部とその間を相互に絶縁する絶縁部とを有す
るコネクターを提供すること。
【解決手段】 一方の面と他方の面とを電気的に接続す
る複数の導電部と、これら導電部を相互に絶縁する絶縁
部とを有してなり、前記導電部は高分子物質中に導電性
粒子が含有されてなり、当該高分子物質は感放射線性樹
脂材料であることを特徴とするコネクター。
(57) Abstract: Provided is a connector having a plurality of conductive portions capable of connecting fine electrodes of electronic components or the like and an insulating portion for mutually insulating the conductive portions. SOLUTION: It has a plurality of conductive portions for electrically connecting one surface and the other surface, and an insulating portion for insulating these conductive portions from each other. A connector comprising conductive particles, wherein the polymer substance is a radiation-sensitive resin material.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、複数の導電部とそ
の間を相互に絶縁する絶縁部とを有するコネクターに関
する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a connector having a plurality of conductive portions and an insulating portion for mutually insulating the conductive portions.
【0002】[0002]
【従来の技術】近年、半導体素子においては、その高機
能化、高容量化等に伴って電極数が増加し、さらに半導
体素子の小型化の要請に伴って、電極配列のピッチすな
わち隣接する電極の中心間距離が小さくなって高密度化
する傾向にある。そのため、半導体素子としては、BG
A型、CSP型、FC型などの、格子点配列に従って表
面に電極が形成された半導体素子が使用されてきてい
る。これらの半導体素子は、表面に形成されたパッド電
極上に、半田よりなる接続用の突起状電極(半田バン
プ)が形成されてなるものが多い。2. Description of the Related Art In recent years, the number of electrodes in a semiconductor device has been increased due to its higher function and higher capacity. Tend to decrease the center-to-center distance and increase the density. Therefore, as a semiconductor element, BG
Semiconductor devices, such as A type, CSP type, and FC type, having electrodes formed on the surface according to lattice point arrangement have been used. In many of these semiconductor devices, a connection protruding electrode (solder bump) made of solder is formed on a pad electrode formed on the surface.
【0003】しかしながら、このような半導体素子を回
路基板等に接続あるいは実装する場合には、以下のよう
な問題がある。 (1)半導体素子の半田バンプの形状や寸法は、パッド
電極の形状によって変わりやすく、半田バンプの突出高
さを制御することは極めて困難である。そして、半田バ
ンプの突出高さにばらつきが生じると、当該半導体素子
を回路基板等に接続する際には、半導体素子の電極と回
路基板の電極との電気的接続を確実に達成することが出
来ない。 (2)半田バンプを有する半導体素子の電気的検査は、
通常ピンプローブなどの検査用冶具を半田バンプに接触
させて行われる。このような電気的検査においては、検
査用冶具を接触させることにより半田バンプが損傷する
ことがあるため、半導体素子のパッド電極と回路基板の
電極との電気的接続を確実に達成することが出来ず、半
導体装置等の製造における歩留まりも低い。 (3)半導体素子を構成する材料、回路基板を構成する
材料等は、それぞれ熱膨張係数が異なるものである。従
って、得られる半導体装置においては、温度変化による
熱履歴を受けた場合などには、各構成材料の熱膨張係数
の差が生じ、あるいはその応力により半田バンプ等が破
損し、接続不良となったり、回路基板の電極との電気的
接続が不良になったりする。 (4)半導体素子の高密度化に伴い、パッド電極は互い
にその間隔(ピッチ)が狭くなり、高密度化している
が、このような電極と回路基板の電極等への接続が確実
に出来なくなっている。However, when such a semiconductor element is connected or mounted on a circuit board or the like, there are the following problems. (1) The shape and dimensions of the solder bumps of the semiconductor element are easily changed by the shape of the pad electrodes, and it is extremely difficult to control the height of the solder bumps. Then, when the protrusion heights of the solder bumps vary, when connecting the semiconductor element to a circuit board or the like, it is possible to reliably achieve the electrical connection between the electrode of the semiconductor element and the electrode of the circuit board. Absent. (2) Electrical inspection of a semiconductor element having solder bumps
Usually, the inspection is performed by bringing an inspection jig such as a pin probe into contact with the solder bump. In such an electrical inspection, solder bumps may be damaged by contact with an inspection jig, so that electrical connection between a pad electrode of a semiconductor element and an electrode of a circuit board can be reliably achieved. And the yield in the manufacture of semiconductor devices and the like is low. (3) Materials constituting the semiconductor element, materials constituting the circuit board, and the like have different thermal expansion coefficients. Therefore, in the obtained semiconductor device, when it receives a thermal history due to a temperature change, for example, a difference in thermal expansion coefficient of each constituent material occurs, or a solder bump or the like is broken by the stress, resulting in poor connection or the like. In addition, the electrical connection with the electrodes of the circuit board may be poor. (4) As the density of semiconductor elements increases, the spacing (pitch) between pad electrodes becomes narrower and the density increases. However, connection between such electrodes and electrodes of a circuit board cannot be ensured. ing.
【0004】[0004]
【発明が解決しようとする課題】本発明は、以上のよう
な事情に基づいてなされたものであって、その第1の目
的は、半導体素子等の電極を回路基板等の電極と接続し
たりするコネクターであって、たとえ半導体素子の電極
配置のピッチが小さい場合であっても、当該半導体素子
の電極と回路基板の電極との電気的接続を、簡単に確実
に達成することができるコネクターを提供することにあ
る。また、第2の目的は、温度変化による熱履歴などの
環境変化に対しても、半導体素子等の電極と回路基板等
の電極との電気的接続を確実かつ安定的に維持すること
ができるコネクターを提供することにある。本発明の第
3の目的は、上記コネクターを有利にかつ確実に製造す
る方法を提供することにある。SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and a first object of the present invention is to connect an electrode of a semiconductor element or the like to an electrode of a circuit board or the like. A connector that can easily and reliably achieve electrical connection between the electrodes of the semiconductor element and the electrodes of the circuit board, even if the pitch of the electrode arrangement of the semiconductor element is small. To provide. Further, a second object is to provide a connector capable of reliably and stably maintaining an electrical connection between an electrode such as a semiconductor element and an electrode such as a circuit board, even in an environmental change such as a heat history due to a temperature change. Is to provide. A third object of the present invention is to provide a method for producing the connector advantageously and reliably.
【0005】[0005]
【課題を解決するための手段】本発明は、一方の面と他
方の面とを電気的に接続する複数の導電部と、これら導
電部を相互に絶縁する絶縁部とを有してなり、前記導電
部は高分子物質中に導電性粒子が含有されてなり、当該
高分子物質は感放射線性樹脂材料であることを特徴とす
るコネクターを提供するものである。なお、上記導電部
を構成する高分子物質は、弾性を有するものであること
が好ましい。また、上記のコネクターを製造する方法で
あって、感放射線性樹脂材料中に磁性を示す導電性粒子
が分散されてなる導電部形成用材料層を形成し、この導
電部形成用材料層に対して、その厚み方向に磁場を作用
させることにより、導電性粒子を当該導電部形成用材料
層の厚み方向に配向させ、この導電部形成用材料層に対
して露光処理および現像処理を行うことにより導電部を
形成する工程を有することを特徴とするコネクターの製
造方法を提供するものである。The present invention comprises a plurality of conductive portions for electrically connecting one surface and the other surface, and an insulating portion for insulating these conductive portions from each other. The conductive portion includes a polymer material containing conductive particles, and the polymer material is a radiation-sensitive resin material. In addition, it is preferable that the high molecular substance which comprises the said conductive part has elasticity. Further, in the method of manufacturing the connector, a conductive part forming material layer in which conductive particles exhibiting magnetism are dispersed in a radiation-sensitive resin material is formed, and the conductive part forming material layer is formed on the conductive part forming material layer. Then, by applying a magnetic field in the thickness direction, the conductive particles are oriented in the thickness direction of the conductive portion forming material layer, and the conductive portion forming material layer is subjected to an exposure process and a developing process. An object of the present invention is to provide a method for manufacturing a connector, comprising a step of forming a conductive portion.
【0006】[0006]
【発明の実施の形態】以下、本発明の実施形態について
詳細に説明する。図1は、本発明に係るコネクターの一
例における構成の概略を示す説明用断面図である。図1
において、コネクターには柱状の導電部30が配置され
ており、この導電部によりコネクターの一方の面と他方
の面とが電気的に接続されている。また、コネクターの
導電部と導電部との間には、導電部の各々を相互に絶縁
する絶縁部35が形成されている。導電部30の高さH
は、コネクターにおける導電部の配置ピッチ、接続電極
径等に応じて適宜選定される。例えば、コネクターにお
ける導電部の配置ピッチが150μm、接続電極径が1
00μmの場合には、導電部30の高さHは50〜25
0μmであることが好ましい。DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described in detail. FIG. 1 is an explanatory cross-sectional view schematically showing a configuration of an example of a connector according to the present invention. FIG.
In FIG. 1, a columnar conductive portion 30 is arranged on the connector, and the conductive portion electrically connects one surface and the other surface of the connector. Further, between the conductive portions of the connector, an insulating portion 35 that insulates each of the conductive portions from each other is formed. Height H of conductive part 30
Is appropriately selected according to the arrangement pitch of the conductive portions in the connector, the connection electrode diameter, and the like. For example, the arrangement pitch of the conductive parts in the connector is 150 μm, and the connection electrode diameter is 1 μm.
In the case of 00 μm, the height H of the conductive part 30 is 50 to 25
It is preferably 0 μm.
【0007】導電部30は、高分子物質中に導電性粒子
Rが好ましくは高さ方向に配列した状態で含有されてな
るものである。導電部30を構成する高分子物質として
は、感放射線性樹脂材料の硬化物が用いられる。 かか
る感放射線性樹脂材料としては、厚みが例えば10〜1
00μmの膜を形成し得るフォトレジストが好ましく用
いられるが、なかでも解像性および剥離性の観点から、
ポジ型のものを用いることが好ましい。感放射線性樹脂
材料としては、例えばノボラック系感放射線性樹脂、共
役ジエン系感放射線性樹脂、アクリル系感放射線性樹脂
などが挙げられる。これらのうち、共役ジエン系感放射
線性樹脂としては、例えば環化ポリブタジエン、環化ポ
リイソプレン、ポリブタジエンもしくはポリイソプレン
への無水マレイン酸等の付加物、ポリブタジエンもしく
はポリイソプレンに(メタ)アクリロイル基やアジド基
などの光重合性基を導入したものなどが挙げられる。ま
た、アクリル系感放射線性樹脂としては、例えばアクリ
ロイル基を1、2、3もしくは4以上有する化合物を用
いたものが挙げられる。また、ポリブタジエンやポリイ
ソプレンなどの弾性ポリマーとアクリル酸エステルなど
のビニルモノマーと光重合開始剤の組成物などが挙げら
れる。[0007] The conductive portion 30 is a material in which conductive particles R are contained in a polymer substance, preferably in a state of being arranged in the height direction. As the polymer substance constituting the conductive portion 30, a cured product of a radiation-sensitive resin material is used. Such a radiation-sensitive resin material has a thickness of, for example, 10 to 1
A photoresist capable of forming a film having a thickness of 00 μm is preferably used. Among them, from the viewpoint of resolution and peelability,
It is preferable to use a positive type. Examples of the radiation-sensitive resin material include a novolak-based radiation-sensitive resin, a conjugated diene-based radiation-sensitive resin, and an acrylic radiation-sensitive resin. Among these, conjugated diene-based radiation-sensitive resins include, for example, cyclized polybutadiene, cyclized polyisoprene, adducts of polybutadiene or polyisoprene such as maleic anhydride, and polybutadiene or polyisoprene with (meth) acryloyl group or azide. And those into which a photopolymerizable group such as a group is introduced. Examples of the acrylic radiation-sensitive resin include those using a compound having 1, 2, 3, or 4 or more acryloyl groups. Further, a composition of an elastic polymer such as polybutadiene or polyisoprene, a vinyl monomer such as an acrylate ester, and a photopolymerization initiator may be used.
【0008】また、導電部30を構成する高分子物質は
弾性を有するものが好ましく、特に導電部全体の弾性の
程度が例えば圧縮弾性率で、3.5×106から6.2
×106N/m2となるものが好ましい。このような高分
子物質を得るための感放射線性樹脂としては、環化ポリ
ブタジエン系などの共役ジエン系感放射線性樹脂が好ま
しく用いられる。It is preferable that the polymer material forming the conductive portion 30 has elasticity. In particular, the degree of elasticity of the entire conductive portion is, for example, from 3.5 × 10 6 to 6.2 in terms of compression modulus.
What becomes x10 < 6 > N / m < 2 > is preferable. As a radiation-sensitive resin for obtaining such a polymer substance, a conjugated diene-based radiation-sensitive resin such as a cyclized polybutadiene-based resin is preferably used.
【0009】導電部30を構成する導電性粒子Rとして
は、例えば鉄、銅、亜鉛、クロム、ニッケル、金、銀、
コバルト、アルミニウムなどの公知の単体導電性金属粒
子およびこれらの金属元素の2種以上からなる合金また
は複合化された導電性金属粒子、カーボンブラックなど
を挙げることができる。これらのうち、カーボンブラッ
ク、ニッケル、鉄、銅などの導電性粒子が、経済性と導
電特性の面から好ましい。また、特に表面が金や銀によ
り被覆された粒子が導電性の面から好ましい。 また、
後述する方法によって導電部30の高さ方向に配向させ
ることができる点で、磁性を示すものを用いることが好
ましい。磁性を示す導電性粒子Rとしては、導電性磁性
体よりなる芯粒子に導電性被膜が形成されてなるものを
好適に用いることができ、芯粒子を構成する導電性磁性
体としては、ニッケル、鉄若しくはこれらの合金などの
磁性を示す金属材料が挙げられ、導電性被膜を構成する
材料としては、金、銀、パラジウムなどの金属材料が挙
げられる。特に好ましくは表面が金や銀により被覆され
たものであり、特に金や銀で被覆されたニッケル粒子が
好ましい。The conductive particles R constituting the conductive portion 30 include, for example, iron, copper, zinc, chromium, nickel, gold, silver,
Known conductive metal particles, such as cobalt and aluminum, and alloys or composite conductive metal particles of two or more of these metal elements, and carbon black can be used. Among these, conductive particles such as carbon black, nickel, iron, and copper are preferable in terms of economy and conductive characteristics. Further, particles whose surface is coated with gold or silver are particularly preferable from the viewpoint of conductivity. Also,
It is preferable to use a material exhibiting magnetism because it can be oriented in the height direction of the conductive portion 30 by a method described later. As the conductive particles R exhibiting magnetism, those obtained by forming a conductive coating on core particles made of a conductive magnetic material can be preferably used. As the conductive magnetic material forming the core particles, nickel, Examples of the metal material exhibiting magnetism such as iron or an alloy thereof include metal materials such as gold, silver, and palladium as the material forming the conductive film. Particularly preferably, the surface is coated with gold or silver, and nickel particles coated with gold or silver are particularly preferable.
【0010】本発明において導電性粒子として特に好ま
しく用いられる表面が金により被覆されたニッケル粒子
であり、例えば無電解メッキなどによりニッケル粒子の
表面に金メッキを施したものである。このように、表面
が金被覆を有するニッケル粒子は接触抵抗がきわめて小
さいものとなる。メッキにより金を被覆する場合の膜厚
は500オングストローム以上であることが好ましい。
また、メッキ量としては粒子の1重量%以上が好まし
く、さらに好ましくは2〜10重量%、特に好ましくは
3〜7重量%である。The surface of the nickel particles coated with gold, which is particularly preferably used as the conductive particles in the present invention, is obtained by plating the surface of the nickel particles with gold by, for example, electroless plating. Thus, the nickel particles having a gold coating on the surface have extremely low contact resistance. When gold is coated by plating, the film thickness is preferably 500 Å or more.
The plating amount is preferably 1% by weight or more of the particles, more preferably 2 to 10% by weight, and particularly preferably 3 to 7% by weight.
【0011】また、導電性に支障を与えない範囲で、導
電性粒子Rの表面がシランカップリング剤、チタンカッ
プリング剤などのカップリング剤で処理されたものを適
宜用いることができる。導電性粒子Rの表面がカップリ
ング剤で処理されることにより、当該導電性粒子Rと高
分子物質との接着力が大きくなり、その結果、得られる
導電部30は、耐久性が高いものとなる。In addition, a conductive particle R whose surface is treated with a coupling agent such as a silane coupling agent or a titanium coupling agent can be appropriately used as long as the conductivity is not impaired. By treating the surface of the conductive particles R with the coupling agent, the adhesive force between the conductive particles R and the polymer substance is increased, and as a result, the obtained conductive portion 30 has high durability. Become.
【0012】導電部30における導電性粒子Rの含有割
合は、体積分率で4〜50%、特に10〜30%である
ことが好ましい。また、導電性粒子の粒子径は1〜1000
μmであることが好ましく、さらに好ましくは2〜500μ
m、より好ましくは3〜300μm、特に好ましくは5〜100
μmである。また、導電性粒子Rの粒径は、半導体素子
10のパッド電極11の寸法、形状によって適宜選定す
ることができ、例えば半導体素子10のパッド電極11
が幅100μmの正方形のものである場合には、導電性
粒子Rの粒径は、10〜30μmであることが好まし
い。これにより、当該導電部30には良好な導電性が得
られ、所期の電気的接続を確実に達成することができ
る。The content ratio of the conductive particles R in the conductive portion 30 is preferably 4 to 50% by volume, and particularly preferably 10 to 30%. Also, the particle size of the conductive particles is 1 to 1000
μm, more preferably 2 to 500 μm
m, more preferably 3 to 300 μm, particularly preferably 5 to 100
μm. The particle size of the conductive particles R can be appropriately selected depending on the size and shape of the pad electrode 11 of the semiconductor element 10.
Is a square having a width of 100 μm, the particle size of the conductive particles R is preferably 10 to 30 μm. As a result, the conductive portion 30 has good conductivity, and the intended electrical connection can be reliably achieved.
【0013】また、導電性粒子の粒子径分布(Dw/Dn)
は1〜10であることが好ましく、さらに好ましくは1
〜7、より好ましくは1.01〜5、特に好ましくは
1.02〜4である。また、導電性粒子の含水率は5%
以下が好ましく、さらに好ましくは3%以下、より好ま
しくは2%以下、特に好ましくは1%以下である。この
導電性粒子の形状は特に限定されるものではないが、上
記感放射線性樹脂材料等に対する分散の容易性から球状
あるいは星形状であることが好ましい。以上の感放射線
性樹脂材料および導電性粒子を含有する本発明の導電部
形成用材料には、必要に応じて、通常のシリカ粉、コロ
イダルシリカ、エアロゲルシリカ、アルミナなどの無機
充填材を含有させることができる。The particle size distribution of the conductive particles (Dw / Dn)
Is preferably 1 to 10, more preferably 1
To 7, more preferably 1.01 to 5, particularly preferably 1.02 to 4. The water content of the conductive particles is 5%.
Is preferably 3% or less, more preferably 2% or less, particularly preferably 1% or less. The shape of the conductive particles is not particularly limited, but is preferably spherical or star-shaped from the viewpoint of easy dispersion in the radiation-sensitive resin material or the like. The conductive part forming material of the present invention containing the above radiation-sensitive resin material and conductive particles, if necessary, contains an inorganic filler such as ordinary silica powder, colloidal silica, airgel silica, and alumina. be able to.
【0014】絶縁部35を構成する材料としては、シリ
コーンゴムやウレタンゴムなどのエラストマー、熱可塑
性樹脂、熱硬化性樹脂などを好適に用いることができ
る。なかでも熱硬化性樹脂が加工性等の点で好ましく、
その具体例としては、エポキシ系樹脂、ポリイミド系樹
脂、フェノール系樹脂などが挙げられる。また、本発明
のコネクターをフレキシブルにするためには、エラスト
マーなどの弾性を有するものを用いることが好ましい。As a material for forming the insulating portion 35, an elastomer such as silicone rubber or urethane rubber, a thermoplastic resin, a thermosetting resin, or the like can be suitably used. Among them, thermosetting resins are preferred in terms of workability and the like,
Specific examples thereof include an epoxy resin, a polyimide resin, and a phenol resin. Further, in order to make the connector of the present invention flexible, it is preferable to use an elastic material such as an elastomer.
【0015】上記のコネクターによれば、例えば図9の
(b)に示すように、半導体素子10のパッド電極11
と回路基板20の端子電極21とを接続する場合、コネ
クターの高分子物質中に導電性粒子Rが含有されてなる
導電部30を介して電気的に接続されるため、当該半導
体装置を製造する際に、半導体素子10のパッド電極1
1上に半田パンプを形成する必要がなく、しかも、導電
部30における高分子物質は感放射線性樹脂材料の硬化
物により構成されているため、フォトリソグラフィーの
手法により、導電部30を形成することが可能となり、
従って、半導体素子10のパッド電極11の配置ピッチ
が小さくても、電極の大きさが不均一であっても、また
複雑な配置をしていても、当該半導体素子10のパッド
電極11と回路基板20の端子電極21との電気的接続
を、簡単な工程で確実に達成することができる。According to the above connector, for example, as shown in FIG.
And the terminal electrode 21 of the circuit board 20 are electrically connected via the conductive portion 30 in which the conductive particles R are contained in the polymer material of the connector, so that the semiconductor device is manufactured. At this time, the pad electrode 1 of the semiconductor element 10
Since it is not necessary to form a solder pump on 1 and the polymer material in the conductive portion 30 is made of a cured material of a radiation-sensitive resin material, the conductive portion 30 must be formed by a photolithography technique. Becomes possible,
Therefore, even if the arrangement pitch of the pad electrodes 11 of the semiconductor element 10 is small, the size of the electrodes is uneven, or the arrangement is complicated, the pad electrodes 11 of the semiconductor element 10 The electrical connection between the terminal electrode 20 and the terminal electrode 21 can be reliably achieved by a simple process.
【0016】また、導電部30における高分子物質とし
て弾性を有するものを用いる構成によれば、半導体素子
10の電気的検査において、ピンプローブなどの検査用
治具を導電部30に接触させても、当該導電部30が損
傷することがない。また、半導体装置が温度変化による
熱履歴を受けることにより、半導体素子10、回路基板
20および絶縁部35の各々の構成材料の熱膨張係数の
差に起因して、導電部30に相当に大きい応力が作用し
ても、当該導電部30は、それに作用される応力の大き
さに応じて変形するため破損することがない。従って、
温度変化による熱履歴などの環境の変化に対しても、半
導体素子10のパッド電極11と回路基板20の端子電
極21との良好な電気的接続状態を安定に維持すること
ができる。Further, according to the configuration in which the conductive portion 30 is made of a material having elasticity as a polymer substance, even when an inspection jig such as a pin probe is brought into contact with the conductive portion 30 in the electrical inspection of the semiconductor element 10. The conductive part 30 is not damaged. Further, when the semiconductor device receives a thermal history due to a temperature change, a considerably large stress is applied to the conductive portion 30 due to a difference in thermal expansion coefficient between respective constituent materials of the semiconductor element 10, the circuit board 20, and the insulating portion 35. Does, the conductive portion 30 is deformed in accordance with the magnitude of the stress applied to the conductive portion 30 and does not break. Therefore,
A favorable electrical connection between the pad electrode 11 of the semiconductor element 10 and the terminal electrode 21 of the circuit board 20 can be stably maintained even with environmental changes such as thermal history due to temperature changes.
【0017】本発明のコネクターの形態としては、前記
図1のようであってもよく、また図2のように回路基板
や半導体素子などの基板と積層あるいは一体化されてい
てもよい。また、図3の(a)のように補強シートなど
を積層したもの、あるいは図3の(b)のように補強シ
ート等をコネクター中に一体化したものでもよい。さら
に、図4の(a)、(b)、(c)のように補強枠を組
み合わせたものでもよい。The form of the connector of the present invention may be as shown in FIG. 1 described above, or may be laminated or integrated with a circuit board or a substrate such as a semiconductor element as shown in FIG. Further, as shown in FIG. 3A, a reinforcing sheet or the like may be laminated, or as shown in FIG. 3B, a reinforcing sheet or the like may be integrated into the connector. Further, as shown in FIGS. 4A, 4B, and 4C, a combination of reinforcing frames may be used.
【0018】次に、本発明の半導体装置の製造方法につ
いて説明する。本発明の製造方法においては、先ず、液
状の感放射線性樹脂材料中に導電性粒子を分散させるこ
とにより、流動性の混合物よりなる導電部形成用材料を
調製する。そして、例えば図5に示すように、半導体素
子10などの基板において、例えば電極11が形成され
た一面に、調製した導電部形成用材料を塗布することに
より、当該半導体素子10の一面上に導電部形成用材料
層31を形成する。以上において、導電部形成用材料
は、導電性粒子が分散されることによって粘度が高いも
のなるため、導電部形成用材料を塗布する手段として
は、印刷法を利用することが好ましい。Next, a method of manufacturing a semiconductor device according to the present invention will be described. In the production method of the present invention, first, a conductive part forming material composed of a fluid mixture is prepared by dispersing conductive particles in a liquid radiation-sensitive resin material. Then, as shown in FIG. 5, for example, a prepared conductive portion forming material is applied to one surface of the substrate such as the semiconductor element 10 on which the electrode 11 is formed, so that the conductive element is formed on one surface of the semiconductor element 10. The part forming material layer 31 is formed. In the above, since the conductive portion forming material has a high viscosity due to dispersion of the conductive particles, it is preferable to use a printing method as a means for applying the conductive portion forming material.
【0019】このようにして形成された導電部形成用材
料層31に対して、プリベークを行いながら或いはプリ
ベークを行う前に、当該導電部形成用材料層31の厚み
方向に磁場を作用させることにより、導電性粒子を導電
部形成用材料層31の厚み方向に配向させる。具体的に
は、図6に示すように、導電部形成用材料層31が形成
された半導体素子10を、一対の電磁石40,41の間
に配置し、この電磁石40,41を作動させることによ
り、導電部形成用材料層31の厚み方向に平行磁場が作
用し、その結果、導電部形成用材料層31中における導
電性粒子Rが厚み方向に並ぶよう配向する。By applying a magnetic field to the conductive portion forming material layer 31 in the thickness direction of the conductive portion forming material layer 31 while pre-baking or before pre-baking the conductive portion forming material layer 31 thus formed. Then, the conductive particles are oriented in the thickness direction of the conductive portion forming material layer 31. Specifically, as shown in FIG. 6, the semiconductor element 10 on which the conductive portion forming material layer 31 is formed is disposed between a pair of electromagnets 40 and 41, and the electromagnets 40 and 41 are operated. A parallel magnetic field acts in the thickness direction of the conductive part forming material layer 31, and as a result, the conductive particles R in the conductive part forming material layer 31 are oriented so as to be arranged in the thickness direction.
【0020】以上において、導電部形成用材料層31に
作用される平行磁場の強度は、平均で1500〜500
0ガウスとなる大きさが好ましい。また、平行磁場を作
用させる手段としては、電磁石の代わりに永久磁石を用
いることもできる。このような永久磁石としては、上記
の範囲の平行磁場の強度が得られる点で、アルニコ(F
e−Al−Ni−Co系合金)、フェライトなどよりな
るものが好ましい。なお、導電部形成用材料層31にお
ける導電性粒子Rを配向させるためには、導電部形成用
材料層31全体にその厚み方向に平行磁場を作用させれ
ばよいので、金型などの特殊な装置は不要である。ま
た、プリベークの条件は、導電部形成用材料層31を構
成する感光性樹脂材料の種類によって異なるが、一般的
な厚膜用ポジ型レジストを用いる場合には、例えばオー
ブン加熱により、加熱温度が80〜100℃、加熱時間
が10〜40分間である。In the above description, the intensity of the parallel magnetic field applied to the conductive portion forming material layer 31 is 1500 to 500 on average.
A size of 0 Gauss is preferable. As a means for applying a parallel magnetic field, a permanent magnet can be used instead of an electromagnet. As such a permanent magnet, Alnico (F
e-Al-Ni-Co alloy), ferrite, and the like are preferable. In order to orient the conductive particles R in the conductive portion forming material layer 31, a parallel magnetic field may be applied to the entire conductive portion forming material layer 31 in the thickness direction thereof. No equipment is required. The prebaking conditions vary depending on the type of the photosensitive resin material constituting the conductive portion forming material layer 31, but when a general positive resist for a thick film is used, the heating temperature is increased by, for example, oven heating. The heating time is 80 to 100 ° C and the heating time is 10 to 40 minutes.
【0021】次いで、図7に示すように、半導体素子1
0の一面に形成された導電部形成用材料層31の上方
に、例えば板状の透明基体46の一面に、半導体素子1
0の電極11の配置パターンと対掌なパターンに従って
遮光膜47が形成されたフォトマスク45を配置し、こ
のフォトマスク45を介して導電部形成用材料層31の
露光処理を行う。感放射線性樹脂材料を露光処理するた
めの放射線としては、可視光、紫外線、赤外線、レーザ
ー光、電子線などが挙げられ、好ましくは紫外線、レー
ザー光、電子線などが挙げられる。そして、露光処理さ
れた導電部形成用材料層31に現像処理を行うことによ
り、図8に示すように、半導体素子10のパッド電極1
1上に導電部30が形成される。Next, as shown in FIG.
0, for example, on one surface of a plate-shaped transparent substrate 46, the semiconductor element 1
A photomask 45 on which a light-shielding film 47 is formed is arranged in accordance with a pattern opposite to the arrangement pattern of the zero-electrodes 11, and the conductive portion forming material layer 31 is exposed through the photomask 45. Radiation for exposing the radiation-sensitive resin material includes visible light, ultraviolet light, infrared light, laser light, and electron beam, and preferably includes ultraviolet light, laser light, and electron beam. Then, the exposed portion of the conductive portion forming material layer 31 is subjected to a development process, so that the pad electrode 1 of the semiconductor element 10 is formed as shown in FIG.
The conductive part 30 is formed on the first conductive layer 1.
【0022】以上において、露光処理および現像処理の
条件は、導電部形成用材料層31を構成する感放射線性
樹脂材料の種類によって異なるが、例えば一般的な厚膜
用ポジ型レジストを用いる場合には、波長405nmの
光を用い、露光量が200〜600mJ/cm2 となる
条件で露光処理が行われ、有機アルカリ現像液を用いて
現像処理が行われ、必要部分に配置された導電部が形成
される。In the above, the conditions of the exposure processing and the development processing are different depending on the kind of the radiation-sensitive resin material constituting the conductive portion forming material layer 31, but for example, when a general positive resist for a thick film is used. Is exposed to light having a wavelength of 405 nm under an exposure amount of 200 to 600 mJ / cm 2, is subjected to a development treatment using an organic alkali developing solution, and a conductive portion disposed at a necessary portion is formed. It is formed.
【0023】次いで、半導体素子10のパッド電極11
上に形成された導電部30に対してポストベークを行
う。以上において、ポストベークの条件は、導電部形成
用材料層31を構成する感光性樹脂材料の種類によって
異なるが、一般的な厚膜用ポジ型レジストを用いる場合
には、加熱温度が100〜140℃、加熱時間が5〜1
5分間である。その後、導電部間の空隙に、エラストマ
ー、熱可塑性樹脂、熱硬化性樹脂等を充填し、必要に応
じて架橋あるいは硬化させることによりコネクターが得
られる(図9の(a)の上部)。熱硬化性樹脂等の充填
方法としては、塗布、スキージ、印刷など種々の方法で
行うことができる。絶縁部形成材料36の硬化処理は、
当該絶縁部形成材料の種類によって異なるが、通常、光
照射または加熱によって行われる。Next, the pad electrode 11 of the semiconductor element 10
Post baking is performed on the conductive portion 30 formed above. In the above, the conditions of the post-baking are different depending on the kind of the photosensitive resin material constituting the conductive portion forming material layer 31, but when a general positive resist for a thick film is used, the heating temperature is 100 to 140. ℃, heating time 5-1
5 minutes. Thereafter, the gap between the conductive portions is filled with an elastomer, a thermoplastic resin, a thermosetting resin, or the like, and the connector is obtained by crosslinking or curing as necessary (upper part of FIG. 9A). As a method for filling the thermosetting resin or the like, various methods such as coating, squeegee, and printing can be used. The curing treatment of the insulating part forming material 36 is as follows.
Although it depends on the type of the insulating portion forming material, it is usually performed by light irradiation or heating.
【0024】また、本発明のコネクターの応用例とし
て、例えば半導体素子の電極と回路基板の電極とを電気
的に接続する場合、次のような方法が可能である。 (1)図10のように、電極11上に導電部30を形成
した半導体素子10を、回路基板20における端子電極
21が形成された一面上に重ね合わせることにより、回
路基板20の端子電極21に導電部30が対接した状態
とする。そして、半導体素子10を回路基板20に向か
って押圧した状態で、半導体素子10と回路基板20と
の間の間隙Sに、絶縁部形成材料36を注入し、当該絶
縁部形成材料36の硬化処理を行うことにより、導電部
30の各々を相互に絶縁しかつ半導体素子10と回路基
板20とを一体的に接合した半導体装置が製造される。
上記の製造方法によれば、導電部30の形成において、
フォトリソグラフィーの手法を用いるため、半導体素子
10のパッド電極11上に導電部30を一括して形成す
ることができる。しかも、導電性粒子Rを導電部形成用
材料層31の厚み方向に配向させた状態で導電部形成用
材料層31の露光処理を行うため、当該露光処理におい
て、光を導電部形成用材料層31の底部にまで確実に作
用させることができ、これにより、その後の現像処理に
おいて高い解像度が得られるので、半導体素子10のパ
ッド電極11の配置ピッチが小さくても、各々のパッド
電極11上に位置されかつ相互に離間した状態の導電部
30を確実に形成することができる。また、形成される
導電部30の導電性粒子Rは高さ方向に配向しているた
め、当該導電部30の高さ方向には高い導電性が得られ
る。Further, as an application example of the connector of the present invention, for example, when an electrode of a semiconductor element is electrically connected to an electrode of a circuit board, the following method is possible. (1) As shown in FIG. 10, the semiconductor element 10 having the conductive portion 30 formed on the electrode 11 is overlapped on one surface of the circuit board 20 on which the terminal electrode 21 is formed, so that the terminal electrode 21 of the circuit board 20 is formed. Is in a state where the conductive part 30 is in contact with the conductive part 30. Then, in a state where the semiconductor element 10 is pressed toward the circuit board 20, an insulating portion forming material 36 is injected into the gap S between the semiconductor element 10 and the circuit board 20, and the insulating portion forming material 36 is cured. By performing the above, a semiconductor device in which each of the conductive portions 30 is insulated from each other and the semiconductor element 10 and the circuit board 20 are integrally joined is manufactured.
According to the above manufacturing method, in forming the conductive portion 30,
Since the photolithography technique is used, the conductive portion 30 can be formed on the pad electrode 11 of the semiconductor element 10 at a time. In addition, since the exposure process of the conductive portion forming material layer 31 is performed in a state where the conductive particles R are oriented in the thickness direction of the conductive portion forming material layer 31, in the exposure process, light is applied to the conductive portion forming material layer 31. 31 can be reliably applied to the bottom of the semiconductor element 10, whereby high resolution can be obtained in the subsequent development process. Therefore, even if the arrangement pitch of the pad electrodes 11 of the semiconductor element 10 is small, the The conductive portions 30 positioned and separated from each other can be reliably formed. In addition, since the conductive particles R of the conductive portion 30 to be formed are oriented in the height direction, high conductivity is obtained in the height direction of the conductive portion 30.
【0025】(2)図11に示すように、回路基板20
における端子電極21が形成された一面に、絶縁部形成
用材料層37を形成し、この絶縁部形成用材料層37が
形成された回路基板20上に、電極11上に導電部30
が形成された半導体素子10を重ね合わせることによ
り、回路基板20の端子電極21に導電部30が対接し
た状態とする。そして、半導体素子10を回路基板20
に向かって押圧した状態で、絶縁部形成材料層37の硬
化処理を行う。 (3)図12に示すように、半導体素子10における導
電部30が形成された一面に、絶縁部形成用材料層37
を形成し硬化処理を行う。あるいはこの絶縁部形成用材
料層37が形成された半導体素子10を、回路基板20
における端子電極21が形成された一面に重ね合わせる
ことにより、回路基板20の端子電極21に導電部30
が対接した状態とする。そして、半導体素子10を回路
基板20に向かって押圧した状態で、絶縁部形成材料層
37の硬化処理を行う。上記(2)および(3)の方法
においては、導電部30のポストベークを絶縁部形成用
材料層37の硬化処理と同一の工程で行うことができ
る。(2) As shown in FIG.
A material layer 37 for forming an insulating portion is formed on one surface on which the terminal electrode 21 is formed, and the conductive portion 30 is formed on the electrode 11 on the circuit board 20 on which the material layer 37 for forming the insulating portion is formed.
The conductive element 30 is brought into contact with the terminal electrode 21 of the circuit board 20 by superposing the semiconductor elements 10 on which are formed. Then, the semiconductor element 10 is connected to the circuit board 20.
The insulating portion forming material layer 37 is subjected to a hardening process in a state where the insulating layer forming material layer 37 is pressed toward the substrate. (3) As shown in FIG. 12, an insulating part forming material layer 37 is formed on one surface of the semiconductor element 10 where the conductive part 30 is formed.
Is formed and a curing process is performed. Alternatively, the semiconductor element 10 on which the insulating portion forming material layer 37 is formed is mounted on the circuit board 20.
Of the conductive part 30 on the terminal electrode 21 of the circuit board 20
Are in contact with each other. Then, in a state where the semiconductor element 10 is pressed toward the circuit board 20, the insulating portion forming material layer 37 is cured. In the methods (2) and (3), the post-baking of the conductive portion 30 can be performed in the same step as the hardening treatment of the insulating portion forming material layer 37.
【0026】[0026]
【実施例】以下、本発明の具体的な実施例について説明
するが、本発明はこれに限定されるものではない。 実施例1 (1)導電部形成用材料の調製:ノボラック系レジスト
中に、ニッケルよりなる芯粒子に金よりなる被覆膜が形
成されてなる平均粒子径が25μmの導電性粒子を60
重量%となる割合で混合することにより、導電部形成用
材料を調製した。The present invention will be described below in more detail with reference to Examples, but it should not be construed that the present invention is limited thereto. Example 1 (1) Preparation of a material for forming a conductive part: 60 conductive particles having an average particle diameter of 25 μm in which a core film made of nickel and a coating film made of gold were formed in a novolak-based resist.
A material for forming a conductive portion was prepared by mixing at a ratio of weight%.
【0027】(2)導電部の形成:寸法100μm×1
00μmの矩形のアルミニウムよりなる複数のパッド電
極(21)が180μmのピッチで配置された半導体素
子(10)を用意し、このパッド電極(11)が形成さ
れた一面に、調製した導電部形成用材料を塗布し導電部
形成用材料層(31)を形成した(図5参照)。この導
電部形成用材料層(31)が塗布された半導体素子(1
0)を、一対の電磁石(17,18)の間に配置して当
該電磁石(17,18)を作動させることにより、導電
部形成用材料層(31)の厚み方向に2500ガウスの
平行磁場を作用させると共に、85℃、30分間の条件
で、導電部形成用材料層(31)のプリベークを行った
(図6参照)。(2) Formation of conductive part: dimensions 100 μm × 1
A semiconductor element (10) is prepared in which a plurality of pad electrodes (21) made of 00 μm rectangular aluminum are arranged at a pitch of 180 μm, and a prepared conductive part forming surface is formed on one surface on which the pad electrodes (11) are formed. The material was applied to form a conductive portion forming material layer (31) (see FIG. 5). The semiconductor element (1) to which the conductive layer forming material layer (31) is applied.
0) is disposed between the pair of electromagnets (17, 18) and the electromagnets (17, 18) are operated to generate a parallel magnetic field of 2500 Gauss in the thickness direction of the conductive portion forming material layer (31). At the same time, the conductive portion forming material layer (31) was pre-baked at 85 ° C. for 30 minutes (see FIG. 6).
【0028】次いで、板状の透明基体(46)の一面
に、半導体素子(10)のパッド電極(11)の配置パ
ターンと対掌なパターンに従って遮光膜(47)が形成
されたフォトマスク45を用い、導電部形成用材料層
(31)に対して、波長405nmの光によって露光量
が400mJ/cm2 となる条件で露光処理を行い、そ
の後、当該導電部形成用材料層(31)に対して、テト
ラメチルアンモニウムハイドロオキサイドよりなる現像
液を用いて現像処理を行うことにより、半導体素子(1
0)のパッド電極(11)上に導電部(30)を形成し
た(図7および図8参照)。そして、半導体素子(1
0)のパッド電極(11)上に形成された導電部(3
0)に対して、150℃、30分間の条件でポストベー
クを行った。次に、図8の各導電部(30)の間隙S
に、絶縁部形成用材料(36)としてエポキシ樹脂を注
入し、硬化処理を行うことにより図9の(a)のAに示
すコネクターを得た。Next, a photomask 45 having a light-shielding film (47) formed on one surface of the plate-shaped transparent substrate (46) in accordance with a pattern opposite to the arrangement pattern of the pad electrodes (11) of the semiconductor element (10). The conductive part forming material layer (31) is exposed to light having a wavelength of 405 nm under an exposure amount of 400 mJ / cm 2, and then the conductive part forming material layer (31) is applied to the conductive part forming material layer (31). Then, by performing development processing using a developing solution composed of tetramethylammonium hydroxide, the semiconductor device (1
A conductive portion (30) was formed on the pad electrode (11) of (0) (see FIGS. 7 and 8). Then, the semiconductor element (1
0) on the conductive portion (3) formed on the pad electrode (11).
0) was post-baked at 150 ° C. for 30 minutes. Next, the gap S between the conductive portions (30) in FIG.
Then, an epoxy resin was injected as a material (36) for forming an insulating portion, and a curing treatment was performed to obtain a connector shown in A of FIG. 9A.
【0029】実施例2 実施例1において、半導体(10)の替わりに、表面に
離型剤を塗布した基板を用い、実施例1と同様にして導
電部、絶縁部を成形した後、該基板から剥離してコネク
ター本体を取り出し、図1に示すようなコネクターを得
た。得られたコネクターは、電子部品の電極どうしの接
続が確実にでき、極めて有用であった。Example 2 In Example 1, a conductive part and an insulating part were formed in the same manner as in Example 1 except that a substrate having a release agent applied to the surface thereof was used instead of the semiconductor (10). And the connector body was taken out to obtain a connector as shown in FIG. The obtained connector was able to reliably connect the electrodes of the electronic component and was extremely useful.
【0030】[0030]
【発明の効果】請求項1に記載のコネクターによれば、
例えば半導体素子のパッド電極と回路基板の端子電極と
が、高分子物質中に導電性粒子が含有されてなる導電部
を介して電気的に接続されているため、当該半導体装置
を製造する際に、半導体素子のパッド電極上に半田パン
プを形成する必要がなく、しかも、導電部における高分
子物質は感光性樹脂材料の硬化物により構成されている
ため、フォトリソグラフィーの手法により、導電部を形
成することが可能となり、従って、半導体素子のパッド
電極の配置ピッチが小さくても、当該半導体素子のパッ
ド電極と回路基板の端子電極との電気的接続を、簡単な
工程で確実に達成することができる。According to the connector of the first aspect,
For example, since a pad electrode of a semiconductor element and a terminal electrode of a circuit board are electrically connected to each other via a conductive portion including conductive particles contained in a polymer substance, when manufacturing the semiconductor device, Since it is not necessary to form a solder pump on the pad electrode of the semiconductor element and the polymer material in the conductive portion is made of a cured material of a photosensitive resin material, the conductive portion is formed by a photolithography technique. Therefore, even if the arrangement pitch of the pad electrodes of the semiconductor element is small, the electrical connection between the pad electrodes of the semiconductor element and the terminal electrodes of the circuit board can be reliably achieved in a simple process. it can.
【0031】請求項2に記載の半導体装置によれば、導
電部における高分子物質として弾性を有するものを用い
る構成によれば、半導体素子の電気的検査において、ピ
ンプローブなどの検査用治具を導電部に接触させても、
当該導電部が損傷することがない。また、温度変化によ
る熱履歴を受けることにより、半導体素子、回路基板お
よび封止部の各々の構成材料の熱膨張係数の差に起因し
て、導電部に相当に大きい応力が作用しても、当該導電
部は、それに作用される応力の大きさに応じて変形する
ため破損することがない。従って、温度変化による熱履
歴などの環境の変化に対しても、半導体素子のパッド電
極と回路基板の端子電極との良好な電気的接続状態を安
定に維持することができる。According to the semiconductor device of the second aspect, according to the configuration using an elastic polymer material in the conductive portion, an inspection jig such as a pin probe can be used in the electrical inspection of the semiconductor element. Even if it comes into contact with conductive parts,
The conductive part is not damaged. Further, by receiving a thermal history due to a temperature change, even if a considerably large stress acts on the conductive portion due to a difference in thermal expansion coefficient between the constituent materials of the semiconductor element, the circuit board, and the sealing portion, The conductive portion is not damaged because it is deformed according to the magnitude of the stress applied thereto. Therefore, even in a change in environment such as a heat history due to a temperature change, a good electrical connection between the pad electrode of the semiconductor element and the terminal electrode of the circuit board can be stably maintained.
【0032】請求項3に記載の半導体装置の製造方法に
よれば、導電部の形成において、フォトリソグラフィー
の手法を用いるため、半導体素子のパッド電極上に導電
部を一括して形成することができる。しかも、導電性粒
子を導電部形成用材料層の厚み方向に配向させた状態で
導電部形成用材料層の露光処理を行うため、当該露光処
理において、光を導電部形成用材料層の底部にまで確実
に作用させることができ、これにより、その後の現像処
理において高い解像度が得られるので、半導体素子のパ
ッド電極の配置ピッチが小さくても、各々のパッド電極
上に位置されかつ相互に離間した状態の導電部を確実に
形成することができる。また、形成される導電部の導電
性粒子は高さ方向に配向しているため、当該導電部の高
さ方向には高い導電性が得られる。According to the third aspect of the present invention, since the photolithography technique is used in forming the conductive portion, the conductive portion can be formed on the pad electrode of the semiconductor element at a time. . Moreover, in order to perform the exposure processing of the conductive part forming material layer in a state where the conductive particles are oriented in the thickness direction of the conductive part forming material layer, in the exposure processing, light is applied to the bottom of the conductive part forming material layer. Can be reliably actuated, whereby high resolution can be obtained in the subsequent development process, so that even if the arrangement pitch of the pad electrodes of the semiconductor element is small, they are located on each pad electrode and separated from each other. The conductive portion in the state can be reliably formed. Further, since the conductive particles of the formed conductive portion are oriented in the height direction, high conductivity is obtained in the height direction of the conductive portion.
【図1】本発明に係るコネクターの一例における構成の
概略を示す説明用断面図である。FIG. 1 is an explanatory cross-sectional view schematically showing a configuration of an example of a connector according to the present invention.
【図2】本発明に係るコネクターの一例における構成の
概略を示す説明用断面図である。FIG. 2 is an explanatory cross-sectional view schematically showing a configuration of an example of a connector according to the present invention.
【図3】本発明に係るコネクターの一例における構成の
概略を示す説明用断面図である。FIG. 3 is an explanatory cross-sectional view schematically showing a configuration of an example of a connector according to the present invention.
【図4】本発明に係るコネクターの一例における構成の
概略を示す説明用断面図である。FIG. 4 is an explanatory cross-sectional view schematically showing a configuration of an example of a connector according to the present invention.
【図5】半導体素子におけるパッド電極が形成された一
面に、導電部形成用材料層が形成された状態を示す説明
用断面図である。FIG. 5 is an explanatory cross-sectional view showing a state in which a conductive portion forming material layer is formed on one surface of a semiconductor element on which pad electrodes are formed.
【図6】導電部形成用材料層に平行磁場を作用させ、導
電性粒子が厚み方向に配向した状態を示す説明図であ
る。FIG. 6 is an explanatory view showing a state in which a parallel magnetic field is applied to a conductive part forming material layer and conductive particles are oriented in a thickness direction.
【図7】導電部形成用材料層に露光処理を行う工程を示
す説明図である。FIG. 7 is an explanatory view showing a step of performing an exposure process on a conductive portion forming material layer.
【図8】半導体素子の電極上に導電部が形成された状態
を示す説明用断面図である。FIG. 8 is an explanatory cross-sectional view showing a state where a conductive portion is formed on an electrode of a semiconductor element.
【図9】回路基板上に半導体素子を配置して絶縁部を形
成したもの、およびこれを回路基板と接続した一例を示
す説明用断面図である。FIG. 9 is an explanatory cross-sectional view showing an example in which a semiconductor element is arranged on a circuit board to form an insulating portion, and an example in which the insulating section is connected to the circuit board.
【図10】回路基板上に半導体素子を配置して絶縁部を
形成する工程の他の例を示す説明用断面図である。FIG. 10 is an explanatory cross-sectional view showing another example of the step of forming an insulating portion by disposing a semiconductor element on a circuit board.
【図11】回路基板上に半導体素子を配置して絶縁部を
形成する工程の更に他の例を示す説明用断面図である。FIG. 11 is an explanatory cross-sectional view showing still another example of the step of forming an insulating portion by disposing a semiconductor element on a circuit board.
【図12】回路基板上に半導体素子を配置して絶縁部を
形成する工程の更に他の例を示す説明用断面図である。FIG. 12 is an explanatory cross-sectional view showing yet another example of the step of forming an insulating portion by disposing a semiconductor element on a circuit board.
10 半導体素子 11 パッド電極 20 回路基板 21 端子電極 30 導電部 35 絶縁部 36 絶縁部形成材料 37 絶縁部形成材料層 40,41 電磁石 45 フォトマスク 46 透明基体 47 遮光膜 R 導電性粒子 S 間隙 DESCRIPTION OF SYMBOLS 10 Semiconductor element 11 Pad electrode 20 Circuit board 21 Terminal electrode 30 Conductive part 35 Insulating part 36 Insulating part forming material 37 Insulating part forming material layer 40, 41 Electromagnet 45 Photomask 46 Transparent base 47 Light shielding film R Conductive particle S Gap
Claims (3)
る複数の導電部と、これら導電部を相互に絶縁する絶縁
部とを有してなり、前記導電部は高分子物質中に導電性
粒子が含有されてなり、当該高分子物質は感放射線性樹
脂材料であることを特徴とするコネクター。1. A semiconductor device comprising: a plurality of conductive portions for electrically connecting one surface and the other surface; and an insulating portion for insulating the conductive portions from each other. Wherein the high molecular substance is a radiation-sensitive resin material.
有するものであることを特徴とする請求項1に記載のコ
ネクター。2. The connector according to claim 1, wherein the polymer material constituting the conductive portion has elasticity.
方法であって、感放射線性樹脂材料中に磁性を示す導電
性粒子が分散されてなる導電部形成用材料層を形成し、
この導電部形成用材料層に対して、その厚み方向に磁場
を作用させることにより、導電性粒子を当該導電部形成
用材料層の厚み方向に配向させ、この導電部形成用材料
層に対して露光処理および現像処理を行うことにより導
電部を形成する工程を有することを特徴とするコネクタ
ーの製造方法。3. The method for manufacturing a connector according to claim 1, wherein a conductive portion forming material layer is formed by dispersing conductive particles exhibiting magnetism in a radiation-sensitive resin material.
By applying a magnetic field to the conductive portion forming material layer in the thickness direction, the conductive particles are oriented in the thickness direction of the conductive portion forming material layer, and the conductive particles are aligned with the conductive portion forming material layer. A method for manufacturing a connector, comprising a step of forming a conductive portion by performing an exposure process and a development process.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP33509497A JPH11154550A (en) | 1997-11-19 | 1997-11-19 | connector |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP33509497A JPH11154550A (en) | 1997-11-19 | 1997-11-19 | connector |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH11154550A true JPH11154550A (en) | 1999-06-08 |
Family
ID=18284709
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP33509497A Pending JPH11154550A (en) | 1997-11-19 | 1997-11-19 | connector |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH11154550A (en) |
Cited By (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2002124353A (en) * | 2000-10-13 | 2002-04-26 | Polymatech Co Ltd | Holder |
| US6486001B1 (en) * | 1999-03-10 | 2002-11-26 | Kabushiki Kaisha Toshiba | Fabricating method of semiconductor device |
| JP2005197563A (en) * | 2004-01-09 | 2005-07-21 | Mitsubishi Electric Corp | Power semiconductor device |
| WO2006009144A1 (en) * | 2004-07-23 | 2006-01-26 | Jsr Corporation | Anisotropic conductive connector and production method therefor, adaptor device and electric inspection device for circuit device |
| WO2006025279A1 (en) * | 2004-08-31 | 2006-03-09 | Jsr Corporation | Wafer inspection-use anisotropic conductive connector and production method and applications therefor |
| JP2007087709A (en) * | 2005-09-21 | 2007-04-05 | Jsr Corp | Anisotropic conductive connector and manufacturing method thereof, adapter device and circuit device electrical inspection device |
| JP2014191892A (en) * | 2013-03-26 | 2014-10-06 | Fujifilm Corp | Anisotropic conductive sheet and conductive connection method |
| CN111009750A (en) * | 2019-12-30 | 2020-04-14 | 歌尔科技有限公司 | Connection blocks, connection components and electronic products |
-
1997
- 1997-11-19 JP JP33509497A patent/JPH11154550A/en active Pending
Cited By (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6486001B1 (en) * | 1999-03-10 | 2002-11-26 | Kabushiki Kaisha Toshiba | Fabricating method of semiconductor device |
| JP2002124353A (en) * | 2000-10-13 | 2002-04-26 | Polymatech Co Ltd | Holder |
| JP2005197563A (en) * | 2004-01-09 | 2005-07-21 | Mitsubishi Electric Corp | Power semiconductor device |
| WO2006009144A1 (en) * | 2004-07-23 | 2006-01-26 | Jsr Corporation | Anisotropic conductive connector and production method therefor, adaptor device and electric inspection device for circuit device |
| WO2006025279A1 (en) * | 2004-08-31 | 2006-03-09 | Jsr Corporation | Wafer inspection-use anisotropic conductive connector and production method and applications therefor |
| JP2007087709A (en) * | 2005-09-21 | 2007-04-05 | Jsr Corp | Anisotropic conductive connector and manufacturing method thereof, adapter device and circuit device electrical inspection device |
| JP2014191892A (en) * | 2013-03-26 | 2014-10-06 | Fujifilm Corp | Anisotropic conductive sheet and conductive connection method |
| CN111009750A (en) * | 2019-12-30 | 2020-04-14 | 歌尔科技有限公司 | Connection blocks, connection components and electronic products |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP0757407B1 (en) | Films and coatings having anisotropic conductive pathways therein | |
| US5304460A (en) | Anisotropic conductor techniques | |
| JP5152177B2 (en) | Conductive bump, manufacturing method thereof, and electronic component mounting structure | |
| JP4240724B2 (en) | Anisotropic conductive sheet and connector | |
| JPH0773739A (en) | Flexible circuit board and its manufacture | |
| WO2007043350A1 (en) | Anisotropic conductive connector and inspection equipment of circuit device | |
| TWI450315B (en) | Method for implementing semiconductor device | |
| JP3788258B2 (en) | Anisotropic conductive connector and its application products | |
| JPH11154550A (en) | connector | |
| JPH08181172A (en) | Device with dielectric property dam of peak form and its preparation | |
| JP3257433B2 (en) | Method for producing anisotropic conductive sheet and anisotropic conductive sheet | |
| JPH1012673A (en) | Semiconductor element mounting sheet and semiconductor device | |
| JP3185452B2 (en) | Manufacturing method of circuit board inspection adapter device, circuit board inspection adapter device, and circuit board inspection method and apparatus using the same | |
| JPH11354178A (en) | Anisotropic conductive sheet, method of manufacturing the same, and inspection apparatus and inspection method for circuit device | |
| JP2001076541A (en) | Anisotropic conductive sheet | |
| JP2890911B2 (en) | Circuit board device | |
| JPH11145185A (en) | Semiconductor device and manufacturing method thereof | |
| JP3111688B2 (en) | Manufacturing method of circuit board inspection adapter device, circuit board inspection method and inspection device | |
| KR960001811A (en) | Integrated circuit mounting method using anisotropic conductive adhesive | |
| JPH09260817A (en) | Circuit board device for inspecting | |
| JPH038213A (en) | Manufacture of anisotropic conductive film | |
| JPH09223860A (en) | Circuit board device for inspection | |
| JP2000235877A (en) | Anisotropic conductive sheet and manufacturing method thereof | |
| JP2001239526A (en) | Mold, method of manufacturing the same, and method of manufacturing anisotropic conductive sheet | |
| JP3283947B2 (en) | Semiconductor device and manufacturing method thereof |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050729 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050816 |
|
| A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20060124 |