[go: up one dir, main page]

JPS589924A - Manufacturing method for high-strength oil country tubular goods with excellent stress corrosion cracking resistance - Google Patents

Manufacturing method for high-strength oil country tubular goods with excellent stress corrosion cracking resistance

Info

Publication number
JPS589924A
JPS589924A JP10691581A JP10691581A JPS589924A JP S589924 A JPS589924 A JP S589924A JP 10691581 A JP10691581 A JP 10691581A JP 10691581 A JP10691581 A JP 10691581A JP S589924 A JPS589924 A JP S589924A
Authority
JP
Japan
Prior art keywords
less
calculated
limit temperature
stress corrosion
corrosion cracking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10691581A
Other languages
Japanese (ja)
Other versions
JPS6363608B2 (en
Inventor
Yasutaka Okada
康孝 岡田
Kunihiko Yoshikawa
吉川 州彦
Yasuo Otani
大谷 泰夫
Takeo Kudo
赳夫 工藤
Akio Ikeda
昭夫 池田
Daiji Moroishi
諸石 大司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP10691581A priority Critical patent/JPS589924A/en
Priority to US06/389,568 priority patent/US4421571A/en
Priority to GB08217860A priority patent/GB2104100B/en
Priority to FR8211645A priority patent/FR2508930A1/en
Priority to DE3224865A priority patent/DE3224865C2/en
Priority to SE8204121A priority patent/SE461986C/en
Publication of JPS589924A publication Critical patent/JPS589924A/en
Publication of JPS6363608B2 publication Critical patent/JPS6363608B2/ja
Priority to SE8901647A priority patent/SE502102C2/en
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • C21D8/105Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To obtain a high strength oil well pipe of high stress corrosion cracking resistance by contg. specific ratios of C, Si, Mn, P, Ni, Cr, Mo, W, etc. and working the steel thermally and mechanically under prescribed conditions. CONSTITUTION:The alloy consisting of <=0.05% C, <=1%, Si, <=2% Mn, <=0.03% P, <=0.005% S, <=0.5% sol.Al, 30-60% Ni, 15-30% Cr, <=12% Mo, and/or <=24% W, or further <=2% Cu, and/or <=2% Co, and the balance Fe in addition to these satisfying Cr(%)+10Mo(%)+5W(%)>=110%, 8%<=Mo(%)+1/2W(%)<=12% is produced by melting. Such alloy is subjected to a solution heat treatment under the conditions of holding the alloy for <=2hr at temps. between 260logC (%)+1,300 lower limit temp. and 16Mo(%)+10W(%)+10Cr(%)+777 upper limit temp. The alloy is cold worked at 10-60% fractional reduction is area.

Description

【発明の詳細な説明】 この発明は、優れた耐応力腐食割れ性を有する高強度油
井管の製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing high-strength oil country tubular goods having excellent stress corrosion cracking resistance.

近年、エネルギー事情の悪化から、油井および天然ガス
井は深井戸化の傾向が著しく、深さ:6000m以上、
なかには深さ:10,000m以上の深井戸が出現して
いる。
In recent years, due to the deterioration of the energy situation, there has been a marked tendency for oil and natural gas wells to become deeper, with depths of 6000 m or more,
Some deep wells with a depth of 10,000 m or more have appeared.

また、同様な事情から、湿潤な硫化水素をはじめ、炭酸
ガスや塩素イオンなどの腐食性成分を含有する苛酷な腐
食環境下での石油および天然ガスの採掘が予儀なくされ
つつある。
Furthermore, due to similar circumstances, it is becoming increasingly difficult to extract oil and natural gas in a harsh corrosive environment containing humid hydrogen sulfide, as well as corrosive components such as carbon dioxide gas and chloride ions.

このような厳しい環境下での石油および天然ガスの掘削
に伴い、これに使用される油井管にも高強度、並びに優
れた耐食性、特に耐応力腐食割れ性が要求されるように
なってきている。
As oil and natural gas are drilled in such harsh environments, the oil country tubular goods used therein are required to have high strength and excellent corrosion resistance, especially resistance to stress corrosion cracking. .

油井管の一般的腐食対策として、インヒビタと呼ばれる
腐食抑制剤を投入する方法が知られているが、この方法
は、例えば海上油井などには有効に活用できない場合が
多い。
As a general anti-corrosion measure for oil country tubular goods, it is known to introduce a corrosion suppressant called an inhibitor, but this method is often not effective for use in, for example, offshore oil wells.

かかる点から、最近では油井管の製造に、ステンレス鋼
はじめ、インコロイやノ・ステロイ(いずれも商品名)
といった高級な耐食性高合金鋼の採用も検討されはじめ
ているが、いまのところ、これらの合金に関して、H,
S −co、 −” C1−の油井源 9− 境での腐食挙動についての詳細は十分に解明されるに至
っておらず、しかも深井戸用油井管に要求される高強度
をもつものではないのが現状である。
From this point of view, recently stainless steel, as well as Incoloy and Nosteroy (both trade names) have been used to manufacture oil country tubular goods.
Consideration has begun to be given to the use of high-grade corrosion-resistant high-alloy steels such as H,
The details of corrosion behavior at the oil well source 9- boundary of S-co, -"C1- have not yet been fully elucidated, and furthermore, it does not have the high strength required for oil country tubing for deep wells. is the current situation.

そこで、本発明者等は、上述のような観点から、深井戸
や苛酷な腐食環境、特にH2S −Co2−01−の油
井環境下での石油掘削に十分耐え得る高強度とすぐれた
耐応力腐食割れ性とを有する油井管を製造すべく研究を
行なった結果、 (a)  H2S −Co2−0L−環境下における腐
食の主たるものは応力腐食割れであるが、この場合の応
力腐食割れ態様は、オーステナイトステンレス鋼におけ
る一般的なそれとは挙動を全く異にするものであること
。すなわち、一般の応力腐食割れがat−の存在と深く
係わるものであるのに対して、上記の油井環境によるも
のではat−もさることながら、それ以上にH2Sの影
響が大きいこと。
Therefore, from the above-mentioned viewpoint, the present inventors have developed a material with high strength and excellent stress corrosion resistance that can withstand oil drilling in deep wells and harsh corrosive environments, especially in H2S-Co2-01- oil well environments. As a result of research to manufacture oil country tubular goods with crackability, it was found that (a) The main cause of corrosion in the H2S-Co2-0L environment is stress corrosion cracking, and the mode of stress corrosion cracking in this case is as follows: The behavior is completely different from that of general austenitic stainless steel. That is, while general stress corrosion cracking is deeply related to the presence of at-, in the oil well environment mentioned above, the influence of H2S is greater than that of at-.

(b)  油井管として実用に供される鋼管は一般に、
強度上の必要から冷間加工が施されるが、冷間加工は上
記応力腐食割れに対する抵抗性を著しく減少させること
(b) Steel pipes used for practical use as oil country tubular goods are generally:
Cold working is performed to improve strength, but cold working significantly reduces the resistance to stress corrosion cracking.

一1〇− (c)  H2S −002−at−環境での鋼の溶出
速度(腐食速度)は、Or、Ni+Mo+およびWの含
有量に依存し、これらの成分からなる表面皮膜によって
耐食性が保持され、かつこれらの成分は、応力腐食割れ
に対してもその抵抗性を高め、特にMoはOrに対し1
0倍の効果を、またMoはWの2倍の効果をもっておシ
、シたがって、このMoおよびWが、Or (@ +1
0 Mo (%) +5 W(%)2110%。
110- (c) The elution rate (corrosion rate) of steel in an H2S -002-at- environment depends on the content of Or, Ni + Mo + and W, and corrosion resistance is maintained by the surface film made of these components. , and these components also increase its resistance to stress corrosion cracking, and in particular, Mo has a 1% resistance to Or.
0 times the effect, and Mo has twice the effect of W. Therefore, this Mo and W are Or (@ +1
0 Mo (%) +5 W (%) 2110%.

8%≦MO(イ)十−W(@≦12%。8%≦MO(a)10-W(@≦12%.

の条件式を満足すると共に、N1含有量を30〜60%
、Or含有量を15〜30%とすると、冷間加工材であ
っても、きわめて腐食性の強いH2S−C02−at−
の油井環境下、特に200℃以上の悪環境において、応
力腐食割れに対して優れた抵抗性を示す表面皮膜が得ら
れること。
Satisfy the conditional expression and reduce the N1 content to 30 to 60%.
, when the Or content is 15 to 30%, H2S-C02-at- is extremely corrosive even when cold-worked.
It is possible to obtain a surface coating that exhibits excellent resistance to stress corrosion cracking under an oil well environment, particularly in a harsh environment of 200°C or higher.

(d)  Niについては表面皮膜に対する効果だけで
なく、組織的にも応力腐食割れ抵抗性を高める効果があ
ること。
(d) Ni has the effect of increasing stress corrosion cracking resistance not only on the surface film but also on the structure.

(e)  合金成分としてNを0.05〜o、3qbの
緯囲で含有させると一段と管材強度が向上するようにな
ること。
(e) When N is included as an alloy component in a latitude range of 0.05 to 3 qb, the strength of the pipe material is further improved.

(f)  不可避不純物としてのS含有量を0.000
 ’i’チ以下に低減させると、管材の熱間加工性゛が
著しく改善されるようになること。
(f) S content as an unavoidable impurity is set to 0.000
If it is reduced to less than 'i', the hot workability of the tube material will be significantly improved.

←)不可避不純物としてのP含有量を0.003チ以下
に低減させると、水素割れ感受性が著しく低下するよう
になること。
←) When the P content as an unavoidable impurity is reduced to 0.003 h or less, the hydrogen cracking susceptibility is significantly reduced.

(h)  合金成分としてCu:2%以下およびCo:
’2チ以下のうちの1種または2種を含有させると、耐
食性がさらに改善されるようになること。
(h) Cu: 2% or less and Co: as alloy components
Corrosion resistance can be further improved by containing one or two of the following.

(1)合金成分として、希土類元素:o、lo%以下、
Y:0.20%以下、 Mg: 0.10 %以下、T
i、:0.5%以下、およびCa: 0.10 %以下
のうちの1種または2種以上を含有させると、熱間加工
性がさらに一段と改善されるようになること。
(1) Rare earth elements as alloy components: o, lo% or less,
Y: 0.20% or less, Mg: 0.10% or less, T
When one or more of Ca: 0.5% or less and Ca: 0.10% or less are contained, hot workability is further improved.

(J)シかし、所望の高強度を確保するためには、上記
組成の合金を、経験式:2601ogC(イ)+130
0で算出された下限温度CC)と、同じく経験式−16
M0(%;)+l o’w(4+10 Or($) +
’7’77で算出された上限温度(℃)の間の温度に2
時間以下保持の条件で熱処理して炭化物を完全に固溶し
、か゛つ固溶化後の合金に10〜60%の肉厚減少率で
冷間加工を施す必要がある−こと。
(J) However, in order to ensure the desired high strength, an alloy with the above composition must be prepared using the empirical formula: 2601ogC(A)+130
0) and the same empirical formula -16
M0(%;)+l o'w(4+10 Or($) +
2 for the temperature between the upper limit temperature (℃) calculated in '7'77
It is necessary to completely dissolve the carbide by heat treatment under conditions of holding for less than 1 hour, and then cold work the alloy after solid solution at a wall thickness reduction rate of 10 to 60%.

以上(a)〜(J)に示される知見を得たのである。The findings shown in (a) to (J) above were obtained.

したがって、この発明は上記知見にもとづいてなされた
ものであって、C: 0.05 %以下、S1:1.0
チ以下、 Mn: 2.0 %以下、P:0.030%
以下、望ましくは耐水素割れ性を一段と改善する目的で
、P : 0.003チ以下、S:0.005%以下。
Therefore, this invention was made based on the above knowledge, and C: 0.05% or less, S1: 1.0%.
Less than or equal to 1, Mn: 2.0% or less, P: 0.030%
Hereinafter, for the purpose of further improving hydrogen cracking resistance, P: 0.003% or less, S: 0.005% or less.

望ましくは熱間加工性を一段と改善する目的でS二〇、
0O07%以下、 sot、Ag、: 0.5 %以下
、N1:30〜60%、Or:15〜30%を含有し、
MO:lz%以下およびW:24%以下のうちの1種ま
たは2種を含有し、さらに必要に応じて、N:0.05
〜0.3 %、 Cu: 2%以下、Co:2%以下。
Preferably, S20 is added for the purpose of further improving hot workability.
Contains 0O07% or less, sot, Ag,: 0.5% or less, N1: 30-60%, Or: 15-30%,
Contains one or two of MO: 1z% or less and W: 24% or less, and if necessary, N: 0.05
~0.3%, Cu: 2% or less, Co: 2% or less.

希土類元素:O,lOチ以下、Y:0.20係以下。Rare earth elements: O, 10% or less, Y: 0.20% or less.

Mg:0.10%以下、 Ti: 0.5 %以下、お
よびCa:0.10%以下のうちの1種または2種以上
を含有し、残シがFeと不可避不純物からなる組成(以
よ重量%、以下−の表示はすべて重量%を意味する)1
3− を有し、かつ、 Or(%+10Mo@+5W(II)2110%。
A composition containing one or more of Mg: 0.10% or less, Ti: 0.5% or less, and Ca: 0.10% or less, with the remainder consisting of Fe and inevitable impurities (hereinafter referred to as % by weight, all indications below - mean % by weight) 1
3- and Or(%+10Mo@+5W(II)2110%.

8チ≦Mo (%) + −W (d≦12チ。8chi≦Mo (%) + -W (d≦12chi.

の条件を満足する合金を、2601ogc(%) + 
1300で算出された下限温度(℃)と、16Mo(4
)+l0W(イ)+10Or(イ)+777で算出され
た上限温度(℃)の間の温度に、2時間以下保持の条件
で固溶化処理した後、lO〜60チの肉厚減少率で冷間
加工することによって、耐応力腐食割れ性に優れた高強
度油井管を製造する方法に特徴を有するものである。
An alloy that satisfies the conditions of 2601ogc (%) +
The lower limit temperature (℃) calculated at 1300 and 16Mo (4
)+l0W(a)+10Or(a)+777 After solution treatment at a temperature between the upper limit temperature (℃) calculated by 777 for 2 hours or less, cold treatment at a wall thickness reduction rate of lO~60cm. This method is characterized by a method of manufacturing high-strength oil country tubular goods with excellent stress corrosion cracking resistance through processing.

つぎに、この発明の油井管の製造法において、成分組成
、溶体化処理条件、および冷間加工における肉厚減少率
を上記の通シに限定した理由を以下に説明する。
Next, in the method for manufacturing oil country tubular goods of the present invention, the reason why the component composition, solution treatment conditions, and wall thickness reduction rate during cold working are limited to the above-mentioned values will be explained below.

A、成分組成 (a)O C含有量を低くすればするほど炭化物の析出が抑制され
るようになるので、固溶化処理をよシ低い温度で実施で
き、このことは冷間加工後の強度14− 上昇により有効に作用するものである。したがって、C
含有量はできるだけ低い方が望ましいが、C含有量がo
、o5%を越えると、粒界応力腐食割れが生じやすくな
ることから、その上限値を0.05チと定めた。
A. Component composition (a) The lower the O C content, the more the precipitation of carbides will be suppressed, so solution treatment can be carried out at a lower temperature, and this will improve the strength after cold working. 14- It works more effectively by rising. Therefore, C
It is desirable that the content be as low as possible, but if the C content is
If the content exceeds 5%, intergranular stress corrosion cracking tends to occur, so the upper limit was set at 0.05%.

(b)  5i Slは脱酸成分として必要な成分であるが、その含有量
が1.0%を越えると熱間加工性が劣化するようになる
ことから、その上限値を1.0%と定めだ。
(b) 5i Sl is a necessary component as a deoxidizing component, but if its content exceeds 1.0%, hot workability will deteriorate, so its upper limit is set at 1.0%. It's a rule.

(c)  Mn Mn成分には、Slと同様に脱酸作用があり、しかもこ
の成分は応力腐食割れ性にほとんど影響を及ぼさない成
分であることから、その上限値を高めの2.Q%と定め
た。
(c) Mn The Mn component has a deoxidizing effect similar to Sl, and since this component has almost no effect on stress corrosion cracking resistance, the upper limit value was set at a higher value of 2. It was set as Q%.

(d)  P 不可避不純物としてのP成分には、その含有量が0.0
30%を越えると、応力腐食割れ感受、憔を高める作用
が現われるので、上限値を0.030・チと定めて応力
腐食割れ感受性を低位の状態とする0、003%を境に
して急激に耐水素割れ性が改善されるようになることが
判明しており、かかる点から、特にすぐれた耐水素割れ
性を必要とする場合には、P含有量を0.0030%以
下とするのが望ましい。
(d) P The P component as an unavoidable impurity has a content of 0.0
If it exceeds 30%, the effect of increasing stress corrosion cracking susceptibility and cracking will appear, so the upper limit value is set at 0.030・chi, and the stress corrosion cracking susceptibility will suddenly increase after 0.003%, which is a low state. It has been found that hydrogen cracking resistance is improved, and from this point of view, when particularly excellent hydrogen cracking resistance is required, it is recommended to set the P content to 0.0030% or less. desirable.

(e)  S 不可避不純物としてのS成分には、その含有量が0.0
05%を越えると、熱間加工性を劣化させる作用がある
ので、その上限値を0.005%と定めて熱間加工性の
劣化を防止する必要がある。このようにS成分には、含
有量が多くなると熱間加工性を劣化させる作用があるが
、その含有量を低めてゆき、0.0007%まで低減す
ると、逆に熱間加工性が一段と改善されるようになるこ
とから、厳しい条件での熱間加工を必要とする場合には
、S含有量をO,OOO’7%以下とするのが望ましい
(e) S The S component as an unavoidable impurity has a content of 0.0
If it exceeds 0.05%, it has the effect of deteriorating hot workability, so it is necessary to set the upper limit at 0.005% to prevent deterioration of hot workability. In this way, the S component has the effect of deteriorating hot workability when its content increases, but when its content is lowered to 0.0007%, hot workability improves even further. Therefore, when hot working under severe conditions is required, it is desirable that the S content be 7% or less.

(f)  he。(f) he.

AAはSlおよびMnと同様に脱酸成分として有効でア
シ、soL、Al含有量で0.5チまで含有させても管
材の特性を何らそこなうものではないこと〃島ら、その
含有量をsol、Al含有量で0.591以下と定めた
AA is effective as a deoxidizing component like Sl and Mn, and it does not impair the properties of the pipe material even if it is contained up to 0.5% in terms of reed, soL, and Al contents. Shima et al. , the Al content was set at 0.591 or less.

(ハ  Nl N1成分には管板の耐応力腐食割れ性を向上させる作用
があるが、その含有量が30チ未満では所望のすぐれた
耐応力腐食割れ性を確保すること力;できず、一方60
チを越えて含有させても耐応力腐食割れ性にさらに一段
の向上効果は現われず、経済性をも考慮して、その含有
量を30〜60%と定めた。
(C) Nl The N1 component has the effect of improving the stress corrosion cracking resistance of the tube sheet, but if its content is less than 30 g, it is impossible to secure the desired excellent stress corrosion cracking resistance; 60
Even if the content exceeds 10%, no further improvement in stress corrosion cracking resistance will be obtained, and the content was set at 30% to 60% in consideration of economic efficiency.

(h)  0r Or酸成分、Ni+Mo+およびW成分との共存におい
て一耐応力腐食割れ性を著しく改善する成分であるが、
その含有量を15%未満としても熱間加工性が改善され
るようになるものでもなく、逆に篤所望の耐応力腐食割
れ性を〜確保するためには、MoやWの含有量をそれだ
け増加させなければならず、経済的に不利となることか
ら、その下限値を15%と定めた。一方、その含有量が
30%を越えると、いくらS含有量を低減させても熱間
加工17− 性の劣化は避けることができないことかと1、その上限
値を30チと定めた。
(h) It is a component that significantly improves stress corrosion cracking resistance in coexistence with the 0r Or acid component, Ni + Mo + and W components,
Even if the content is less than 15%, hot workability will not be improved; on the contrary, in order to secure the desired stress corrosion cracking resistance, the content of Mo and W must be increased to that extent. Since this would be economically disadvantageous, the lower limit was set at 15%. On the other hand, if the S content exceeds 30%, no matter how much the S content is reduced, deterioration in hot workability cannot be avoided, so the upper limit was set at 30%.

(i)  MoおよびW 上記のように、これらの成分には、N1およびOrとの
共存において耐応力腐食割れ性を改善する均等的作用が
あるが、それぞれMo:12%、およびW:24%を越
えて含有させても、環境温度が200℃以上のH2S 
−co2− ct’−(7)腐食環境で、さらに一段の
改善効果が現われず、経済性を考慮して、それぞれの含
有量を、Mo:12’1以下、W:24%以下と定めた
。また、MOとWの含有量に関して、条件式:MO(鉤
+−W((イ)で規定するのは、Wが市0に対し原子量
が約2倍で、効果の点では約−で均等となるととからで
、この値が8%未満では特に200℃以上の上記悪環境
下で所望の耐応力腐食割れ性が得られず、一方、この値
を12%を越えて高くしても、上記の通り実質的に不必
要な量のMoおよびWの含有となり、経済的でなく、か
かる点から、Mo(イ)+−W(イ)の値を8〜12%
と定めた。
(i) Mo and W As mentioned above, these components have an equal effect of improving stress corrosion cracking resistance when coexisting with N1 and Or, but Mo: 12% and W: 24%, respectively. H2S at an environmental temperature of 200°C or higher even if the content exceeds
-co2- ct'- (7) In a corrosive environment, no further improvement effect appeared, and in consideration of economic efficiency, the respective contents were determined to be Mo: 12'1 or less and W: 24% or less. . In addition, regarding the content of MO and W, the conditional expression: MO Therefore, if this value is less than 8%, the desired stress corrosion cracking resistance cannot be obtained, especially in the above-mentioned adverse environment of 200 ° C. or higher, but on the other hand, even if this value is increased to more than 12%, As mentioned above, it contains substantially unnecessary amounts of Mo and W, which is not economical, and from this point of view, the value of Mo (a) + - W (a) is set to 8 to 12%.
It was determined that

18− 困難となることから、その含有量を0,05〜0.3チ
と定めた。
18- Since it would be difficult, the content was set at 0.05 to 0.3 chi.

(k)CuおよびC。(k) Cu and C.

これらの成分には管材の耐食性を向上させる均等的作用
がちシ、かつCOにはさらに固溶強化作用があるので、
特に一段とすぐれた耐食性が要求される場合に必要に応
じて含有されるが、CUが2%を越えると、熱間加工性
が劣化するようになシ、一方c’oは2%を越えて含有
させてもより一層の改善効果は現われないことから、そ
の上限値をそれぞれCu:2チ、Co:2チと定めた。
These components tend to have a uniform effect on improving the corrosion resistance of the pipe material, and CO also has a solid solution strengthening effect.
In particular, it is included as needed when even better corrosion resistance is required, but if CU exceeds 2%, hot workability will deteriorate, while c'o exceeds 2%. Even if they were included, no further improvement effect would appear, so the upper limits were set at 2 for Cu and 2 for Co, respectively.

(1)  希土類元素、Y、Mg、Ti、およびCaこ
れらの成分には、熱間加工性をjへらに改善する均等的
作用があるので、厳しい条件で熱間加工が行なわれる場
合に、必要に応じて含有されるが、それぞれ希土類元素
: 0.10%、Y:0.20%。
(1) Rare earth elements, Y, Mg, Ti, and Ca These components have a uniform effect of improving hot workability to a large extent, so they are necessary when hot working is performed under severe conditions. Rare earth elements: 0.10%, Y: 0.20%, respectively.

Mg: 0.10 %、 Ti: 0.5 %、 オよ
びCa:0.10%を越えて含有させても、熱間加工性
に改善効果は見られず、むしろ劣化現象さえ現われるよ
うになることから、それぞれの含有量を、希土類元素:
0.10%以下、Y:0.20−以下、 Mg: 0.
10%以下、 Ti: 0.5%以下、および(:a:
O,10%以下と定めた。
Even if the content exceeds Mg: 0.10%, Ti: 0.5%, O and Ca: 0.10%, no improvement effect is seen on hot workability, and rather a deterioration phenomenon appears. Therefore, the content of each rare earth element:
0.10% or less, Y: 0.20 or less, Mg: 0.
10% or less, Ti: 0.5% or less, and (:a:
O, 10% or less.

(m)  cr(@+ 10Mo(@+ 5 w(@第
1図は厳しい腐食環境下での耐応力腐食割れ性に関し、
Cr(9gl+ 10Mo (吻+ 5 W (@とN
i(情との関係を示したものである。すなわち、 Cr
、 Ni 、 Mo。
(m) cr(@+10Mo(@+5w)(@Figure 1 shows stress corrosion cracking resistance under severe corrosive environment.
Cr (9gl+ 10Mo (proboscis + 5 W (@ and N
i (indicates the relationship with emotion, i.e. Cr
, Ni, Mo.

およびWの含有量を種々変化させたCr−Ni−Mo系
and Cr-Ni-Mo systems with various W contents.

Cr−Ni−W系、およびCr−Ni −Mo −W系
の鋼を溶製し、鋳造し、鍛伸し、熱間圧延して板厚ニア
朋の板材とし、ついでこの板材に、温度:1OOO℃に
30分保持後水冷の溶体化処理を施、した後、強度向上
の目的で加工率=22%の冷間加工を加え、この結果得
られた鋼板から圧延方向と直角に、厚さ:2間X幅:1
0m11X長さニア5M11Lの試験片を切り出し、こ
の試験片について、第2図に示す3点支持ビーム冶具を
用い、前記試験片Sに0.2チ耐力に相当する引張応力
を付加した状態で、10気圧のH2Sおよび10気圧の
CO2でH2SおよびCO2を飽和させた20%NaC
1溶液(温度:150℃)中に1000時間浸漬の応力
腐食割れ試験を行ない、試験後、前記試験片における割
れ発生の有無を観察した。これらの結果に基き、発明者
等が独自に設定した条件式:Cr(@+ 10Mo(%
)+ 5 w(罰とN1含有量との間には、耐応力腐食
割れ性に関して、第1図に示される関係があることが明
確になったのである。なお、第1図において、○印は割
れ発生なし、X印は割れ発生をそれぞれ示すものである
。第1図に示される結果から、Cr(%)+10Mo(
919’+ 5 W (%)の値が50%未満にして、
Ni含有量が35%未満では所望のすぐれた耐応力腐食
割れ性は得られ々いことが明らかである。
Cr-Ni-W and Cr-Ni-Mo-W steels are melted, cast, forged, and hot-rolled into a sheet material with a near thickness, and then this sheet material is heated at a temperature of: After holding the temperature at 100℃ for 30 minutes and applying water-cooling solution treatment, cold working was applied at a working rate of 22% for the purpose of improving strength. : 2 spaces x width: 1
A test piece with a length of 0 m11 x near 5 m11 L was cut out, and a tensile stress equivalent to 0.2 inch proof stress was applied to the test piece S using the three-point support beam jig shown in Fig. 2. 20% NaC saturated with H2S and CO2 with 10 atm H2S and 10 atm CO2
1 solution (temperature: 150° C.) for 1000 hours, and after the test, the presence or absence of cracking in the test piece was observed. Based on these results, the inventors independently set a conditional expression: Cr(@+10Mo(%
) + 5 w indicates no cracking and X indicates cracking.From the results shown in Figure 1, Cr(%)+10Mo(
919'+5 W (%) value is less than 50%,
It is clear that if the Ni content is less than 35%, the desired excellent stress corrosion cracking resistance cannot be obtained.

なお、この発明の合金において、不可避不純物として1
3 、 Sn、 Pb、およびZnをそれぞれ0.1%
以下の範囲で含有しても、この発明の合金の特性が何ら
そこなわれるものではない。
In addition, in the alloy of this invention, 1 is an unavoidable impurity.
3, 0.1% each of Sn, Pb, and Zn
Even if it is contained within the following range, the properties of the alloy of the present invention will not be impaired in any way.

B、固溶化処理条件および冷間加工条件この発明の油井
管における高強度は、合金成分の含有のほかに、炭化物
を完全に固溶化した後、で、冷間加工を施すことによっ
て確保されるものであ21− る。この場合炭化物の完全固溶化は、2 e olog
c S)+1300で算出された下限温度(@と、16
Mo(%)+1OW(%)+10Cr(%+7’77で
算出された上限温度(’C)゛との間の温度に2時間以
下保持することによってはかられ名が、上記の下限温度
の算出式: 2 a OlogC(%)および上限温度
の算出式: l 6Mo(銹+ユOW (%) 十:c
 o cr(%) +7 ’7 ’i’は多数の試験結
果にもとづいて経験的に定めたものであって、上記の下
限温度未満では、炭化物を完全に固溶することができず
、未固溶の炭化物が残存するようになって応力腐食割れ
感受性が高くなり、一方、固溶化処理温度が上記の上限
温度を越えて高くなったシ、保持時間が2時間を越えて
長くなったシすると、結晶粒が粗大化するようになって
、その後の冷間加工で所望の高強度を得ることはできな
いことから、固溶化処理温度および保持時間を上記の通
りに定めた。
B. Solution treatment conditions and cold working conditions The high strength of the oil country tubular goods of this invention is ensured not only by the inclusion of alloy components but also by cold working after completely solid solutionizing the carbides. It is 21-years old. In this case, the complete solid solution of carbides is 2 e olog
c S) + 1300 calculated lower limit temperature (@ and 16
Mo (%) + 1 OW (%) + 10 Cr (% + 7'C) By keeping the temperature between the calculated upper limit temperature ('C) for 2 hours or less, the name is calculated as the lower limit temperature above. Formula: 2 a Calculation formula for OlogC (%) and upper limit temperature: l 6Mo (rust + OW (%) 10: c
o cr (%) +7 '7 'i' was determined empirically based on the results of numerous tests, and below the above lower limit temperature, carbides cannot be completely dissolved and remain unsolidified. The susceptibility to stress corrosion cracking increases as carbides in the solution remain, and on the other hand, if the solution treatment temperature exceeds the above upper limit temperature or the holding time exceeds 2 hours, Since the crystal grains become coarse and the desired high strength cannot be obtained in the subsequent cold working, the solution treatment temperature and holding time were determined as described above.

また、この発明では、上記のように固溶化処理後に冷間
加工を施して強度向上をはかるが、との冷間加工が肉厚
減少率で10%未満では所望の強度を確保することがで
きず、一方同じく肉厚減少22− すると、結晶粒が粗大化するようになって、その後の冷
間加工で所望の高強度を得ることはできないことから、
固溶化処理温度および保持時間を上記の通りに定めた。
In addition, in this invention, as described above, cold working is performed after the solution treatment to improve the strength, but if the cold working is less than 10% in wall thickness reduction rate, the desired strength cannot be secured. On the other hand, when the wall thickness decreases22-, the crystal grains become coarser and the desired high strength cannot be obtained in subsequent cold working.
The solution treatment temperature and holding time were determined as described above.

また、この発明では、上記のように固溶化処理後に冷間
加工を施して強度向上をはかるが、この冷間加工が肉厚
減少率で10%未満では所望の強度を確保することがで
きず、一方同じく肉厚減少率で60%を越えた冷間加工
を施すと、延性および靭性の劣化が著しくなることから
、冷間加工を肉厚減少率で10〜60%と定めたのであ
る。
In addition, in this invention, as described above, cold working is performed after the solution treatment to improve the strength, but if the cold working reduces the wall thickness by less than 10%, the desired strength cannot be secured. On the other hand, cold working with a wall thickness reduction rate of more than 60% causes significant deterioration of ductility and toughness, so cold working was set at a wall thickness reduction rate of 10 to 60%.

以上の成分組成および製造条件を適用することによって
0.2チ耐力が85に91’/−以上の高強度をもち、
かつ延性および靭性は勿論のこと、耐応力腐食割れ性に
優れた油井管を製造することができるのである。
By applying the above component composition and manufacturing conditions, it has a high strength of 0.2 inch yield strength of 85 to 91'/- or more,
Moreover, oil country tubular goods having excellent stress corrosion cracking resistance as well as ductility and toughness can be manufactured.

つぎに、この発明の油井管製造法を実施例によシ比較例
と対比し゛ながら具体的に□説明する。
Next, the method for producing oil country tubular goods according to the present invention will be specifically explained using examples and comparing with comparative examples.

実施例 それぞれ第1表に示される成分組成をもった溶Ar−酸
素脱炭炉(AOD炉)を併用し、さらに必要に応じて脱
燐の目的でエレクトロスラグ溶解炉(ESR炉)を使用
して溶製した後、直径: 500龍φのインゴットに鋳
造し、ついでこのインゴットに温度:1200℃で熱間
鍛造を施して直径:150m+1φのビレットを成形し
、この場合熱間加工性を評価する目的でビレットに割れ
の発生があるか否かを観察し、引続いて前記ビレットよ
多熱間押出加工により直径:60.mφ×肉厚:4龍の
素管を成形し、引続いて、同じくそれぞれ第1表に示さ
れる固溶化電性(処flt f&の冷却けいずJlも水
冷)および肉厚減少率で、固溶化処理と冷間加工を施す
ことによって、本発明合金管材1〜29゜比較合金管材
1〜8.および従来合金管材1〜4をそれぞれ製造した
In each of the examples, a molten Ar-oxygen decarburization furnace (AOD furnace) having the composition shown in Table 1 was used, and if necessary, an electroslag melting furnace (ESR furnace) was used for the purpose of dephosphorization. After melting, it is cast into an ingot with a diameter of 500 mm, and then this ingot is hot forged at a temperature of 1200 °C to form a billet with a diameter of 150 m + 1 mm, and in this case, hot workability is evaluated. The billet was then inspected for cracks, and then subjected to multi-hot extrusion to a diameter of 60mm. mφ x wall thickness: 4 pieces of raw pipe are molded, and then solidified with the solid solution conductivity (cooling chip Jl of processing flt f& is also water-cooled) and wall thickness reduction rate shown in Table 1. By performing solution treatment and cold working, the alloy tube materials 1 to 29° of the present invention and the comparison alloy tube materials 1 to 8. and conventional alloy tube materials 1 to 4 were manufactured, respectively.

なお、比較合金管材1〜8は、構成成分のうちのいずれ
かの成分の含有量、あるいは製造条件のうちのいずれか
の条件(第1表に※印を付して表示)がこの発明の範囲
から外れた条件で製造されたものであり、また従来合金
管材は、いずれも公知の成分組成をもつものであって、
同管材lは、JIS−8US 316に、同2はJ I
’S −SUS 310Sに、同3はインコロイ800
に、同4はJ I S 、−8US 329 Jlにそ
れぞれ相当する組成をもつものである。
Comparative alloy tube materials 1 to 8 have a content of any one of the constituent components or one of the manufacturing conditions (indicated with an asterisk in Table 1) of the present invention. It was manufactured under conditions outside the range, and all conventional alloy tube materials had known compositions.
The same pipe material 1 is in accordance with JIS-8US 316, and the same 2 is in accordance with JIS-8US 316.
'S-SUS 310S, the same 3 is Incoloy 800
In addition, No. 4 has a composition corresponding to JIS and -8US 329 Jl, respectively.

ついで、この結果得られた本発明合金管材1〜29、比
較合金管材1〜8.および従来合金管材1〜4よシ長さ
=20龍の試験片をそれぞれ切出し、この試験片よシ長
さ方向にそって60°に相当する部分を切落し、この状
態の試験片に第3図に正面図で示されるようにボルトを
貫通し、ナツトでしめつけて管外表面に0.2%耐力に
相当する引張応力を付加し、この状態の試験片Sに対し
て、H2S分圧をそれぞれ0.1気圧、1気圧、および
20気圧としたH2S −10気圧(302−20%N
a1l溶液(液温:300℃)中に1000時間浸漬の
応力腐食割れ試験を行ない、試験後における応力腐食割
れの有無を調査した。この結果を、上記の熱部鍛造時の
割れ発生の有無、引張試験結果、および25− 衝撃試験結果と共に、第2表に合せて示した。なお、第
2表において、○印はいずれも割れ発生のないものを示
し、一方X印は割れ発生のあったものを示す。
Next, the resulting alloy tube materials 1 to 29 of the present invention and comparative alloy tube materials 1 to 8. Then, a test piece with a length of 20 mm was cut out from each of the conventional alloy tube materials 1 to 4, and a portion corresponding to 60° was cut off along the length direction of this test piece. As shown in the front view in the figure, a bolt is passed through and tightened with a nut to apply a tensile stress equivalent to 0.2% yield strength to the outer surface of the tube, and the H2S partial pressure is applied to the test piece S in this state. H2S - 10 atm (302 - 20% N
A stress corrosion cracking test was conducted by immersing the sample in an a1l solution (liquid temperature: 300° C.) for 1000 hours, and the presence or absence of stress corrosion cracking after the test was investigated. The results are shown in Table 2 together with the presence or absence of cracking during hot forging, the tensile test results, and the 25-impact test results. In Table 2, all marks ○ indicate those with no cracks, while marks X indicate those with cracks.

第2表に示される結果から、比較合金管材1〜8は、熱
間加工性、耐応力腐食割れ性、および強度のうちの少な
くともいずれかの性質が劣ったものであるのに対して、
本発明合金管材1〜29は、いずれもすぐれた熱間加工
性および耐応力腐食割れ性を有し、さらに高強度を有し
、かつ熱間加工性は良好であるが、相対的に強度が低く
、しかも耐応力腐食割れ性に劣る従来合金管材1〜4と
比較しても一段とすぐれた特性を有することが明らかで
ある。
From the results shown in Table 2, comparative alloy tube materials 1 to 8 were inferior in at least one of the following properties: hot workability, stress corrosion cracking resistance, and strength.
The alloy tube materials 1 to 29 of the present invention all have excellent hot workability and stress corrosion cracking resistance, and also have high strength and good hot workability, but have relatively low strength. It is clear that this material has even better properties than conventional alloy tube materials 1 to 4, which have low stress corrosion cracking resistance and are inferior in stress corrosion cracking resistance.

上述のように、この発明の方法によって製造された油井
管は、特に高強度および優れた耐応力腐食割れ性を有す
るので、これらの特性が要求される苛酷な環境下での石
油並びに天然ガス:採掘は、勿論のこと、地熱井管とし
て用いた場合にもきわめて優れた性能を発揮するのであ
る。
As mentioned above, the oil country tubular goods manufactured by the method of the present invention have particularly high strength and excellent stress corrosion cracking resistance, and therefore can be used in oil and natural gas under harsh environments where these properties are required: It exhibits extremely excellent performance not only in mining, but also when used as geothermal well pipes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は合金の耐応力腐食割れ性に関し、Ni含有量と
Or 1%) + l OMo (@ + 5 W@ 
との関係を示した図、第2図および第3図はそれぞれ板
状および管状試験片に対する応力腐食割れ試験の態様を
示す図である。 出願人  住友金属工業株式会社 代理人  富  1) 和  夫 第1図 Cr(%ンーf 10Mo(%)−ト5W(%ン第1頁
の続き 0発 明 者 工藤赳夫 尼崎市西長洲本通1丁目3番地 住友金属工業株式会社中央技術 研究所内 0発 明 者 池田昭夫 尼崎市西長洲本通1丁目3番地 住友金属工業株式会社中央技術 研究所内 研究所内
Figure 1 shows the stress corrosion cracking resistance of the alloy, with Ni content and Or 1%) + l OMo (@ + 5 W@
FIGS. 2 and 3 are diagrams showing the stress corrosion cracking test for plate-shaped and tubular specimens, respectively. Applicant Sumitomo Metal Industries Co., Ltd. Agent Tomi 1) Kazuo Figure 1 Cr(%-f 10Mo(%)-5W(%n Continued from page 1) 0 Inventor Takeo Kudo 1 Nishinagasu Hondori, Amagasaki City Chome 3, Central Technology Research Laboratory, Sumitomo Metal Industries, Ltd. 0 Author: Akio Ikeda, Amagasaki City, Nishinagasu Hondori, 1-3, Sumitomo Metal Industries, Ltd. Central Technology Research Laboratory, Chome

Claims (8)

【特許請求の範囲】[Claims] (1)  C: 0.05%以下、’ Si : 1.
0 %以下、Mn:2.0%以下、P:0.030%以
下、S : 0.005チ以下*  5oLA1 : 
0.5%以下、 Ni: 30〜60%。 Cr:15〜30%を含有し、Mo:12%以下および
W:24%以下のうちの1種または2種を含有し、残り
がFeと不可避不純物からなる組成(以上重量%)を有
し、かつ、 Cr (%) + l OMo ($) −)−5W(
4≧llo%。 8%≦Mo @;) + −W ($)≦12チ。 0条件を満足する合金を、2601ogC鈍) + 1
300で算出された下限温度(℃)と、16−Mo楠+
1’eW($)+10Or(%)+777で算出された
上限温度(℃)′−]− の間の温度に、2時間以下保持の条件で固静化処理した
後、10〜60%の肉厚減少率で冷間加工することを特
徴とする耐応力腐食割れ性に優れた高強度油井管の製造
法。
(1) C: 0.05% or less, 'Si: 1.
0% or less, Mn: 2.0% or less, P: 0.030% or less, S: 0.005 or less* 5oLA1:
0.5% or less, Ni: 30-60%. Contains 15 to 30% of Cr, one or two of Mo: 12% or less and W: 24% or less, with the remainder consisting of Fe and unavoidable impurities (wt%). , and Cr (%) + l OMo ($) −) −5W(
4≧llo%. 8%≦Mo @;) + −W ($)≦12chi. The alloy that satisfies the 0 condition is 2601ogC dull) + 1
The lower limit temperature (℃) calculated at 300 and 16-Mo Camphor +
After solidifying at a temperature between 1'eW ($) + 10 Or (%) + 777 upper limit temperature (°C)'-]- for 2 hours or less, 10 to 60% of the meat A method for producing high-strength oil country tubular goods with excellent stress corrosion cracking resistance, which is characterized by cold working at a rate of thickness reduction.
(2)  C: 0.05%以下、 Si : 1.0
%以下、Mn:2.0%以下、P:0.030%以下I
 S : 0.005%以下+ sot、AQ : 0
.5%以下、N1:30〜60%。 Cr:15〜30%を含有し、Mo:12%以下および
W:24%以下のうちの1、種または2種を含有し、さ
らにCu:2%以下およびOo:2%以下のうちの1種
または2種を含有し、残シがFeと不可避不純物からな
る組成(以上重量%)を有し、かつ、Or (91il
+ 10 Mo (%) + 5 W([5110%。 8%≦Mo(鉤+−W(4)512%。 の−条件を満足する合金を、2601ogC(@−)−
’1300で算出された下限温度(C)と、16M0(
4)+l0W(1)+10 Or(イ)+777で算出
された上限温度(℃)の間の温度に、2時間以下保持の
条件で固溶化処理した後、10〜60チの肉厚減少率で
冷間加工することを特徴とする耐応力腐食割れ性に優れ
た高強度油井管の製造法。
(2) C: 0.05% or less, Si: 1.0
% or less, Mn: 2.0% or less, P: 0.030% or less I
S: 0.005% or less + sot, AQ: 0
.. 5% or less, N1: 30-60%. Contains Cr: 15 to 30%, contains one or two of Mo: 12% or less and W: 24% or less, and further contains one of Cu: 2% or less and Oo: 2% or less. containing one or two species, the remainder having a composition (weight %) consisting of Fe and unavoidable impurities, and Or (91il
+ 10 Mo (%) + 5 W ([5110%. 8% ≦ Mo (hook + - W (4) 512%. An alloy that satisfies the - condition of 2601ogC (@-) -
The lower limit temperature (C) calculated at '1300 and 16M0 (
4) After solution treatment at a temperature between the upper limit temperature (°C) calculated by +l0W(1)+10 Or(a)+777 and held for 2 hours or less, the wall thickness was reduced at a wall thickness reduction rate of 10 to 60 inches. A method for manufacturing high-strength oil country tubular goods with excellent stress corrosion cracking resistance, which is characterized by cold working.
(3)  C:0.051%以下、Si:1.0%以下
、Mn:2.0%以下、P : 0.030%以下、 
S : 0.005%以下+  sot、A1 : 0
.5%以下、 Ni: 30〜’60%、cr:15〜
30チを含有し、Mo:12%以下およびW:24%以
下のうちの1種または2種を含有し、さらに希土類元素
:O,10%以下、Y:0.20チ以下+ Mg :O
−10’16以下、 Ti : 0.5%以下、および
Ca: 0.10 %以下のうちの1種または2種以上
を含有し、残シがFeと不可避不純物からなる組成(以
上重量%)を有し、かつ、 Or(%)+ 10 Mo(tl + 5 w(@≧1
10%。 8%≦MO(@ +  W (%)612%。 の条件を満足する合金を、2601ogo(%) + 
1300で算出された下限温度(C)と、16Mo@−
)−10W(1)+l OCr(4)+777で算出さ
れた上限温度(C)の間の温度に、2時間以下保持の条
件で固溶化処理した後、10〜60%の肉厚減少率で、
冷間剤、工することを特徴とする耐応力腐食割れ性に優
れた高強度油井管の製造法。
(3) C: 0.051% or less, Si: 1.0% or less, Mn: 2.0% or less, P: 0.030% or less,
S: 0.005% or less + sot, A1: 0
.. 5% or less, Ni: 30~'60%, cr: 15~
30%, contains one or two of Mo: 12% or less and W: 24% or less, and further contains rare earth elements: O, 10% or less, Y: 0.20% or less + Mg:O
A composition containing one or more of -10'16 or less, Ti: 0.5% or less, and Ca: 0.10% or less, with the remainder consisting of Fe and unavoidable impurities (wt%) and Or(%)+10Mo(tl+5w(@≧1
10%. 8%≦MO(@+W(%)612%. 2601ogo(%)+
The lower limit temperature (C) calculated at 1300 and 16Mo@-
)-10W(1)+l OCr(4)+777 After solution treatment at a temperature between the upper limit temperature (C) calculated by 777 and held for 2 hours or less, the wall thickness was reduced by 10 to 60%. ,
A method for producing high-strength oil country tubular goods with excellent stress corrosion cracking resistance, which is characterized by cold working.
(4)  C: 0.05%以下、Si:1.0チ以下
、MID:2.0チ以下、P:0.030%以下、S 
: 0.005%以下+  sot、Ai : 0.5
チ以下、Ni:30〜60悌。 Cr:15〜30%を含有し、Mo:12%以下および
W:24%以下のうちの1種または2種を含有し、さら
にOu:2%以下およびCO:2%以下のうちの1種ま
たは2種と、希土類元素:0.10%以下、Y:0.2
0係以下、 Mg : 0.10%以下、Tに0.5係
以下、およびCa: 0.10 %以下のうちの1種ま
たは2種以上とを含有し、残りがFeと不可避不純物か
らなる組成(以上重量%)を有し、かつ、Or(%)+
 10Mo(%9 +5W(%D≧110%。 81%≦MO(イ)+TW(4)≦12チ。 の条件を満足する合金を、2601ogC(イ)+13
00で算出された下限温度(℃)と、16Mo(4)+
l0W(慢+1Ocr(4)+777で算出された上限
温度(C)の間の温度に、2時間以下保持の条件で固溶
化処理した後、10〜66%の肉厚減少率で冷間加工 
   □することを特徴とする耐応力腐食割れ性に優れ
た高強度油井管の製造法。
(4) C: 0.05% or less, Si: 1.0 or less, MID: 2.0 or less, P: 0.030% or less, S
: 0.005% or less + sot, Ai: 0.5
Chi and below, Ni: 30-60 悌. Contains Cr: 15 to 30%, contains one or two of Mo: 12% or less and W: 24% or less, and further contains one of O: 2% or less and CO: 2% or less. Or 2 types, rare earth element: 0.10% or less, Y: 0.2
Contains one or more of the following: 0 coefficient or less, Mg: 0.10% or less, T: 0.5% or less, and Ca: 0.10% or less, and the remainder consists of Fe and inevitable impurities. has the composition (more than % by weight), and Or(%)+
10Mo(%9 +5W(%D≧110%. 81%≦MO(a)+TW(4)≦12chi.) An alloy that satisfies the conditions of 2601ogC(a)+13
The lower limit temperature (℃) calculated from 00 and 16Mo(4)+
After solution treatment at a temperature between the upper limit temperature (C) calculated by 10W (long + 1Ocr (4) + 777) for 2 hours or less, cold working at a wall thickness reduction rate of 10 to 66%.
□A method for producing high-strength oil country tubular goods with excellent stress corrosion cracking resistance.
(5)  C:0.05%以下、 Si: 1.0%以
下、Mn:2.0%以下、P:0.030%以下、S 
: 0.005%以下+  sot、Al : 0.5
%以下、N:0.05〜0.3%。 Ni:30〜60%、 Or: l 5〜30%を含有
し、Mo:12%以下およびW:24%以下のうちの1
種または2種を含有し、残りがFeと不可避不純物から
なる組成(以上重量%)を有し、かつ、の条件を満足す
る合金を、2601ogO(イ)+1300で算出され
た下限温度(℃)と、16M0(1)+1OW(@−1
−1ocr(イ)+777で算出された上限温度(℃)
の間の温度に、2時間以下保持の条件で固溶化処理した
後、10〜60チの肉厚減少率で冷間加工することを特
徴とする耐応力腐食割れ性に優れた高強度油井管の製造
法。
(5) C: 0.05% or less, Si: 1.0% or less, Mn: 2.0% or less, P: 0.030% or less, S
: 0.005% or less + sot, Al: 0.5
% or less, N: 0.05-0.3%. Contains Ni: 30-60%, Or: l 5-30%, Mo: 12% or less and W: 24% or less.
The lower limit temperature (°C) calculated by 2601ogO (a) + 1300 is an alloy that has a composition (by weight %) containing one or two species and the remainder consisting of Fe and unavoidable impurities, and that satisfies the following conditions: and 16M0(1)+1OW(@-1
Upper limit temperature (℃) calculated by -1ocr(a)+777
High-strength oil country tubular goods with excellent stress corrosion cracking resistance, characterized by being subjected to solid solution treatment at a temperature between manufacturing method.
(6)  C: 0.05%以下、 Si: 1.0%
以下、Mn:2.0%以下、P : 0.030%以下
、 S : 0.<)05%以下+  5oLAl :
 0.5%以下、N:0.05〜0.3%、N辷:30
〜60 %+ Cr:’15〜30%を含有し、Mo:
125− チ以下およびW:24%以下のうちの1種ま°たは2種
を含有し、さらにCu: 2 %以下およびCo:2−
以下のうちの1種または2種を含有し、残りがFeと不
可避不純物からなる組成(以上重量%)を有し、かつ、 Or (働+ l OMo%+ 5 W(n≧110%
。 8%≦Mo (d + −W(4)612%。 の条件を満足する合金を、2601ogC(イ)+13
00で算出された下限温度(℃)と、16M0(イ)+
l0W(4)+10Cjr(イ)+777で算出された
上限温度(℃)の間の温度に、2時間以下保持の条件で
固溶化処理した後、10〜60チの肉厚減少率で冷間加
工することを特徴とする耐応力腐食割れ性に優れた高強
度油井管の製造法。
(6) C: 0.05% or less, Si: 1.0%
Below, Mn: 2.0% or less, P: 0.030% or less, S: 0. <) 05% or less + 5oLA1:
0.5% or less, N: 0.05-0.3%, N: 30
Contains ~60% + Cr:'15-30%, Mo:
Contains one or two of the following: 125% or less and W: 24% or less, and further contains Cu: 2% or less and Co: 2% or less.
Contains one or two of the following, with the remainder consisting of Fe and unavoidable impurities (weight%), and Or (Work + l OMo% + 5 W (n≧110%)
. 8%≦Mo(d+−W(4)612%.) An alloy satisfying the condition of 2601ogC(a)+13
The lower limit temperature (℃) calculated at 00 and 16M0 (a) +
After solution treatment at a temperature between the upper limit temperature (℃) calculated by 10W (4) + 10Cjr (a) + 777 for 2 hours or less, cold working at a wall thickness reduction rate of 10 to 60 inches. A method for manufacturing high-strength oil country tubular goods with excellent stress corrosion cracking resistance.
(7)  c:o、o5q6以下、Si:1.0%以下
、Mn:2.0%以下、P:0.030%以下、S :
 0.005%以下+ soL/u : 0.5チ以下
、N:0.05〜0−13チ。 Ni:30〜60%、Or: 15〜30%を含有し、
Mo: 12%以下およびW:24%以下のうちの1種
または2種を含有し、さらに希土類元素:O,’10=
 6− チ以下、Y:0.20%以下、 Mg: O,l 0%
以下。 T]:0.5%以下、およびCa: 0.10 ’16
以下のうちの1種または2種以上を含有し、残りがFe
と不可避不純物からなる組成(以上重量%)を有し、力
1つ、 Or(%)+l OMo(%)+5W(%)≧110’
%。 8%≦MO(イ)+、w(イ)≦12チ。 の条件を満足する合金を、2601ogC(イ)+13
00で算出された下限温度(C)と、16M0(イ)+
l0W(イ)+1OCr(イ)+777で算出された上
限温度(℃)の間の温度に、2時間以下保持の条件で固
溶化処理した後、10〜60esの肉厚減少率で冷間加
工することを特徴とする耐応力腐食割れ性に優れた高強
度油井管の製造法。
(7) c: o, o5q6 or less, Si: 1.0% or less, Mn: 2.0% or less, P: 0.030% or less, S:
0.005% or less + soL/u: 0.5 inches or less, N: 0.05 to 0-13 inches. Contains Ni: 30-60%, Or: 15-30%,
Contains one or two of Mo: 12% or less and W: 24% or less, and further contains a rare earth element: O,'10=
6-chi or less, Y: 0.20% or less, Mg: O, l 0%
below. T]: 0.5% or less, and Ca: 0.10'16
Contains one or more of the following, with the remainder being Fe
and unavoidable impurities (weight %), 1 force, Or (%) + l OMo (%) + 5W (%) ≧ 110'
%. 8%≦MO(a)+, w(a)≦12chi. An alloy that satisfies the conditions of 2601ogC(a)+13
The lower limit temperature (C) calculated at 00 and 16M0 (a) +
After solution treatment at a temperature between the upper limit temperature (°C) calculated by 10W (a) + 1OCr (a) + 777 for 2 hours or less, cold working at a wall thickness reduction rate of 10 to 60es. A method for manufacturing high-strength oil country tubular goods with excellent stress corrosion cracking resistance.
(8)  C: 0.05%以下、 Si:’1.0 
%以下、Mn:z、oelb以下、P:0.030チ以
下、S:0.O05チ以下、  sot、A1 : 0
.5%以下、N:0.05〜0.3%+ Ni: 30
〜60%、 Or: 15.−30 %を含有し、Mo
:12%以下およびW:24%以下のうちの1種または
2種を含有し、さらにCu:2%以下およびCO:2%
以下のうちの1種または2種と、希土類元素:O,lO
チ以下、Y:0.20係以下。 Mg: 0.10%以下、 Ti: 0.5%以下、お
よびCa:0.10%以下のうちの1種または2種以上
とを含有し、残シがFeと不可避不純物からなる組成(
以上重量%)を有し、かつ、 Cr(%)+ 10 Mo(%) +5W(%)≧11
0 %。 8チ≦Mo(慟十丁W(4)≦12チ。 の条件を満足する合金を、2601ogc(%) + 
1300で算出された下限温度(℃)と、16Mo(4
)+l0W(@ +10 cr@−1−77’/で算出
された上限温度CC)の間の温度に2時間以下保持の条
件で固溶化処理した後、10〜60%の肉厚減少率で冷
間加工することを特徴とする耐応力腐食割れ性に優れた
高強度油井管の製造法。
(8) C: 0.05% or less, Si: '1.0
% or less, Mn: z, oelb or less, P: 0.030 chi or less, S: 0. O05chi or less, sot, A1: 0
.. 5% or less, N: 0.05-0.3% + Ni: 30
~60%, Or: 15. -30%, Mo
: 12% or less and W: 24% or less, further Cu: 2% or less and CO: 2%
One or two of the following and rare earth elements: O, lO
Chi or less, Y: 0.20 or less. A composition containing one or more of Mg: 0.10% or less, Ti: 0.5% or less, and Ca: 0.10% or less, with the remainder consisting of Fe and inevitable impurities (
or more weight%), and Cr (%) + 10 Mo (%) + 5W (%) ≧ 11
0%. The alloy that satisfies the condition of 8chi≦Mo (慟十CHOW(4)≦12chi.) is 2601ogc (%) +
The lower limit temperature (℃) calculated at 1300 and 16Mo (4
)+10W (upper limit temperature CC calculated by +10 cr@-1-77'/) After solution treatment at a temperature of 2 hours or less, cooling with a wall thickness reduction rate of 10 to 60%. A method for producing high-strength oil country tubular goods with excellent stress corrosion cracking resistance, which involves special processing.
JP10691581A 1981-07-03 1981-07-10 Manufacturing method for high-strength oil country tubular goods with excellent stress corrosion cracking resistance Granted JPS589924A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP10691581A JPS589924A (en) 1981-07-10 1981-07-10 Manufacturing method for high-strength oil country tubular goods with excellent stress corrosion cracking resistance
US06/389,568 US4421571A (en) 1981-07-03 1982-06-17 Process for making high strength deep well casing and tubing having improved resistance to stress-corrosion cracking
GB08217860A GB2104100B (en) 1981-07-03 1982-06-21 High strength deep well casing and tubing having improved resistance to stress-corrosion cracking
FR8211645A FR2508930A1 (en) 1981-07-03 1982-07-02 PROCESS FOR MANUFACTURING HIGH MECHANICAL RESISTANCE PIPES AND PIPES FOR DEEP WELLS
DE3224865A DE3224865C2 (en) 1981-07-03 1982-07-02 Process for the production of heavy-duty casing for deep boreholes or the like
SE8204121A SE461986C (en) 1981-07-03 1982-07-02 PROCEDURES FOR PREPARING HOEGHAALLFASTA DEEP BORROWS WITH RESISTANCE TO TENSION CORROSION
SE8901647A SE502102C2 (en) 1981-07-03 1989-05-09 Process for the manufacture of high strength deep drill pipes with resistance to stress corrosion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10691581A JPS589924A (en) 1981-07-10 1981-07-10 Manufacturing method for high-strength oil country tubular goods with excellent stress corrosion cracking resistance

Publications (2)

Publication Number Publication Date
JPS589924A true JPS589924A (en) 1983-01-20
JPS6363608B2 JPS6363608B2 (en) 1988-12-08

Family

ID=14445717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10691581A Granted JPS589924A (en) 1981-07-03 1981-07-10 Manufacturing method for high-strength oil country tubular goods with excellent stress corrosion cracking resistance

Country Status (1)

Country Link
JP (1) JPS589924A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6017973A (en) * 1983-07-11 1985-01-29 Mitsubishi Electric Corp Laser oscillator
JPS6050134A (en) * 1983-08-29 1985-03-19 Sumitomo Metal Ind Ltd Alloy for heat exchanger tube
JPS6142181A (en) * 1984-08-06 1986-02-28 Agency Of Ind Science & Technol Laser generating apparatus
JPS6159366U (en) * 1984-09-26 1986-04-21
JPS6187855A (en) * 1984-10-05 1986-05-06 Sumitomo Metal Ind Ltd Stainless steel with excellent corrosion resistance and hot workability
JPS61276948A (en) * 1985-05-30 1986-12-06 Nippon Kokan Kk <Nkk> High-chromium alloy steel having superior hot workability
JP2004526866A (en) * 2001-04-24 2004-09-02 エイティーアイ・プロパティーズ・インコーポレーテッド Method for producing stainless steel with improved corrosion resistance
WO2019146504A1 (en) 2018-01-26 2019-08-01 日本製鉄株式会社 Cr-Ni ALLOY AND SEAMLESS STEEL PIPE FORMED OF Cr-Ni ALLOY

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54110918A (en) * 1978-02-21 1979-08-30 Cabot Corp Anticorrosion nickel alloy

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54110918A (en) * 1978-02-21 1979-08-30 Cabot Corp Anticorrosion nickel alloy

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6017973A (en) * 1983-07-11 1985-01-29 Mitsubishi Electric Corp Laser oscillator
JPS6050134A (en) * 1983-08-29 1985-03-19 Sumitomo Metal Ind Ltd Alloy for heat exchanger tube
JPS6142181A (en) * 1984-08-06 1986-02-28 Agency Of Ind Science & Technol Laser generating apparatus
JPS6159366U (en) * 1984-09-26 1986-04-21
JPS6187855A (en) * 1984-10-05 1986-05-06 Sumitomo Metal Ind Ltd Stainless steel with excellent corrosion resistance and hot workability
JPS61276948A (en) * 1985-05-30 1986-12-06 Nippon Kokan Kk <Nkk> High-chromium alloy steel having superior hot workability
JP2004526866A (en) * 2001-04-24 2004-09-02 エイティーアイ・プロパティーズ・インコーポレーテッド Method for producing stainless steel with improved corrosion resistance
WO2019146504A1 (en) 2018-01-26 2019-08-01 日本製鉄株式会社 Cr-Ni ALLOY AND SEAMLESS STEEL PIPE FORMED OF Cr-Ni ALLOY

Also Published As

Publication number Publication date
JPS6363608B2 (en) 1988-12-08

Similar Documents

Publication Publication Date Title
JP3104622B2 (en) Nickel-based alloy with excellent corrosion resistance and workability
JPS625977B2 (en)
JPS625976B2 (en)
JPS589924A (en) Manufacturing method for high-strength oil country tubular goods with excellent stress corrosion cracking resistance
JP3864437B2 (en) High Mo nickel base alloy and alloy tube
JPS6144133B2 (en)
JPS586927A (en) Production of high-strength oil well pipe of high stress corrosion cracking resistance
JPS5811736A (en) Production of high strength oil well pipe of superior stress corrosion cracking resistance
JPS6144135B2 (en)
JPS6199660A (en) High strength welded steel pipe for line pipe
JPS581044A (en) High strength alloy having superior stress corrosion cracking resistance for oil well pipe
JPS589922A (en) Production of high strength oil well pipe of high stress corrosion cracking resistance
JPS5811735A (en) Manufacturing method for high-strength oil country tubular goods with excellent stress corrosion cracking resistance
JP4502131B2 (en) Duplex stainless steel with excellent hot workability
JPS6144126B2 (en)
JPS6144128B2 (en)
JPS58210155A (en) High-strength alloy for oil country tubular goods with excellent corrosion resistance
JPS6199661A (en) High-strength, high-toughness welded clad steel pipes for line pipes
JPS6144125B2 (en)
JPS6144134B2 (en)
JPS5811737A (en) Production of high strength oil well pipe of superior stress corrosion cracking resistance
JPS61201759A (en) High-strength, high-toughness welded clad steel pipes for line pipes
JPS6363607B2 (en)
JPS6362570B2 (en)
JPS6144132B2 (en)