KR0170954B1 - Composite of the membrane for optical projection system - Google Patents
Composite of the membrane for optical projection system Download PDFInfo
- Publication number
- KR0170954B1 KR0170954B1 KR1019950027517A KR19950027517A KR0170954B1 KR 0170954 B1 KR0170954 B1 KR 0170954B1 KR 1019950027517 A KR1019950027517 A KR 1019950027517A KR 19950027517 A KR19950027517 A KR 19950027517A KR 0170954 B1 KR0170954 B1 KR 0170954B1
- Authority
- KR
- South Korea
- Prior art keywords
- membrane
- composition
- optical path
- silicon nitride
- vapor deposition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000012528 membrane Substances 0.000 title claims abstract description 43
- 230000003287 optical effect Effects 0.000 title claims abstract description 17
- 239000002131 composite material Substances 0.000 title 1
- 239000000203 mixture Substances 0.000 claims abstract description 43
- 229910052581 Si3N4 Inorganic materials 0.000 claims abstract description 17
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims abstract description 17
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 12
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 9
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 9
- 239000010703 silicon Substances 0.000 claims abstract description 9
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 7
- 238000000034 method Methods 0.000 claims description 16
- 238000004518 low pressure chemical vapour deposition Methods 0.000 claims description 12
- 238000005336 cracking Methods 0.000 abstract description 3
- 238000010030 laminating Methods 0.000 abstract description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 8
- 239000011810 insulating material Substances 0.000 description 7
- 239000010410 layer Substances 0.000 description 7
- 239000005360 phosphosilicate glass Substances 0.000 description 7
- 239000000758 substrate Substances 0.000 description 6
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 5
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 229910052698 phosphorus Inorganic materials 0.000 description 5
- 239000011574 phosphorus Substances 0.000 description 5
- 229910052814 silicon oxide Inorganic materials 0.000 description 5
- 238000000151 deposition Methods 0.000 description 4
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- 239000005380 borophosphosilicate glass Substances 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 239000011241 protective layer Substances 0.000 description 2
- -1 that is Substances 0.000 description 2
- 239000002253 acid Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- QPJSUIGXIBEQAC-UHFFFAOYSA-N n-(2,4-dichloro-5-propan-2-yloxyphenyl)acetamide Chemical compound CC(C)OC1=CC(NC(C)=O)=C(Cl)C=C1Cl QPJSUIGXIBEQAC-UHFFFAOYSA-N 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81B—MICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
- B81B3/00—Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
- B81B3/0064—Constitution or structural means for improving or controlling the physical properties of a device
- B81B3/0067—Mechanical properties
- B81B3/0072—For controlling internal stress or strain in moving or flexible elements, e.g. stress compensating layers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N9/00—Details of colour television systems
- H04N9/12—Picture reproducers
- H04N9/31—Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
- H04N9/3141—Constructional details thereof
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/20—Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Signal Processing (AREA)
- Multimedia (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Power Engineering (AREA)
- Surface Treatment Of Optical Elements (AREA)
- Mechanical Light Control Or Optical Switches (AREA)
Abstract
본 발명은 광로 조절 장치의 구동부를 지지하는 멤브레인을 구성하는 조성물에 관한 것으로 상기 멤브레인은 희생막상에 실리콘 질화물을 소정 두께로 적층시킴으로서 형성되고 SiCl2H2에 대한 NH3의 조성비를 6:1로 유지시킴으로서 상기 실리콘 질화물을 구성하는 성분중 실리콘(Si)에 대한 질소(N)의 조성비가 6:1로 유지시키며 이에 이해서 화학량론적 조성물로 이루어진 멤브레인상에서 압축 인장 응력에 의하여 크랙이 발생되는 것을 방지시킬 수 있다.The present invention relates to a composition constituting a membrane for supporting the drive unit of the optical path control device, wherein the membrane is formed by laminating silicon nitride to a predetermined thickness on a sacrificial film, and the composition ratio of NH 3 to SiCl 2 H 2 is 6: 1. By maintaining it, the composition ratio of nitrogen (N) to silicon (Si) of the components constituting the silicon nitride is maintained at 6: 1, thereby preventing cracking due to compressive tensile stress on the membrane made of the stoichiometric composition. You can.
Description
첨부 도면은 일반적인 광로 조절 장치를 도시한 부분 확대 단면도.The accompanying drawings are partially enlarged sectional views showing a general optical path adjusting device.
* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings
110 : 구동 기판 130 : 패드110: drive substrate 130: pad
141 : 희생막 142 : 멤브레인141: sacrificial film 142: membrane
본 발명은 광로 조절 장치의 지지부로 작용하는 멤브레인을 구성하는 조성물에 관한 것으로서 특히 상기 멤브레인상에 잔류 응력에 의하여 크랙이 발생하는 것을 방지시킬 수 있는 광로 조절 장치의 멤브레인 조성물에 관한 것이다.TECHNICAL FIELD The present invention relates to a composition constituting a membrane serving as a support of an optical path control device, and more particularly, to a membrane composition of an optical path control device capable of preventing cracks from occurring due to residual stress on the membrane.
일반적으로, 광로 조절 장치는 제어 시스템으로부터 인가되는 전기적 신호에 의하여 집속된 광속의 광로를 조절시키기 위한 장치로서, 제1도에 도시된 바와 같이 복수개의 트랜지스터가 내장된 구동기판(110)상에 형성된 인이 함유된 산화 실리콘 조성(PSG)의 희생막(141)을 매개층으로 하여 순차적으로 적층된 복수개의 층으로 이루어진 구동부(140)를 구비한 복수개의 액츄에이터를 포함하고 있다.In general, the optical path control device is a device for adjusting the optical path of the focused luminous flux by an electrical signal applied from the control system, and is formed on the driving substrate 110 in which a plurality of transistors are built, as shown in FIG. The actuator includes a plurality of actuators including a driver 140 including a plurality of layers sequentially stacked on the sacrificial film 141 of the phosphorus-containing silicon oxide composition (PSG).
이때, 상기 구동부(140)는 멤브레인(142)과, 하부 전극(143)과, 변형부(144)와 상부 전극(145)으로 구성되며, 상기 하부 전극(143)은 상기 멤브레인(142)에 형성된 콘택홀(320)을 통하여 상기 구동 기판(110)상에 형성된 패드(130)에 전기적으로 접촉되어 있다.In this case, the driving unit 140 includes a membrane 142, a lower electrode 143, a deformable unit 144, and an upper electrode 145, and the lower electrode 143 is formed on the membrane 142. The pad 130 is in electrical contact with the pad 130 formed on the driving substrate 110 through the contact hole 320.
따라서, 상기 제어 시스템으로부터 인가된 전기적 신호는 상기 패드(130)를 통하여 상기 하부 전극(143)에 부가되며 이에 의해서 상기 변형부(144)가 변형됨과 동시에 상기 액츄에이터는 구동되고 그 결과 상기 광속의 광로는 변경된다.Accordingly, the electrical signal applied from the control system is added to the lower electrode 143 through the pad 130, whereby the deformable portion 144 is deformed and at the same time the actuator is driven and consequently the optical path of the luminous flux. Is changed.
한편, 상기 멤브레인(142)은 NH3와 SiCl2H2성분의 화학 반응에 의하여 생성되는 Si3N4조성으로 이루어져 있으며 이때, 상기된 바와 같이 Si3N4조성으로 이루어진 적층막은 상대적으로 높은 밀도를 갖으며 이에 의해서 잔류 응력이 발생되고 그 결과 상기 Si3N4조성의 적층막이 2000Å 이상으로 적층되는 경우에 상기 멤브레인(142)상에 크랙이 발생된다는 문제점이 야기된다.On the other hand, the membrane 142 is composed of a Si 3 N 4 composition produced by the chemical reaction of NH 3 and SiCl 2 H 2 components, wherein, as described above, the laminated film made of a Si 3 N 4 composition is relatively high density This results in a problem that residual stress is generated and cracks are generated on the membrane 142 when the Si 3 N 4 composition layer is laminated at 2000 GPa or more.
본 발명은 상기와 같은 종래의 문제점을 해소시키기 위하여 안출된 것으로 그 목적은 광로 조절 장치의 구동부의 지지부로 작용할 뿐만 아니라 표면 보호층으로 작용하는 멤브레인(142)을 구성하는 조성물의 밀도를 저하시켜서 잔류 인장 응력에 의한 크랙 발생을 방지시킬 수 있는 광로 조절 장치의 멤브레인 조성물을 제공하는데 있다.The present invention has been made to solve the above-mentioned conventional problems, and its purpose is to reduce the density of the composition constituting the membrane 142 which acts not only as a supporting part of the driving part of the optical path control device but also as a surface protective layer. It is to provide a membrane composition of the optical path control device that can prevent the occurrence of cracks due to tensile stress.
본 발명에 따른 광로 조절 장치의 멤브레인은 희생막상에 실리콘 질화물을 소정 두께로 적층시킴으로서 형성되고 상기 실리콘 질화물을 구성하는 성분중 실리콘(Si)에 대한 질소(N)의 조성비가 6:1로 유지된다.The membrane of the optical path control apparatus according to the present invention is formed by stacking silicon nitride on a sacrificial film to a predetermined thickness, and the composition ratio of nitrogen (N) to silicon (Si) in the components constituting the silicon nitride is maintained at 6: 1. .
본 발명의 일실시예에 따르면, 상기 멤브레인을 구성하는 실리콘 질화물은 SiCl2H2에 대한 NH3의 조성비를 6:1로 유지시킴으로서 형성된다.According to an embodiment of the present invention, the silicon nitride constituting the membrane is formed by maintaining the composition ratio of NH 3 to SiCl 2 H 2 at 6: 1.
본 발명의 다른 실시예에 따르면, 상기 멤브레인은 조성비를 6:1로 유지시킨 SiCl2H2성분과 NH3성분을 균일한 스텝 커버리지를 제공할 수 있는 저압 화학 기상 증착 공정(LPCVD)에 의하여 상기 희생막상에 증착시킴으로서 형성된다.According to another embodiment of the present invention, the membrane is formed by a low pressure chemical vapor deposition process (LPCVD) capable of providing uniform step coverage of the SiCl 2 H 2 component and the NH 3 component having a composition ratio of 6: 1. It is formed by depositing on a sacrificial film.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하면 다음과 같으며 종래 구성과 동일한 구성은 첨부 도면에 표시된 도면 부호를 사용한다.Hereinafter, with reference to the accompanying drawings, a preferred embodiment of the present invention will be described in detail as follows, and the same configuration as the conventional configuration using the reference numerals shown in the accompanying drawings.
본 발명의 일실시예에 따르면, 전기적 접점 단자로 작용하는 패드(130)가 복수개 형성된 구동 기판(110)상에 화학 기상 증착 공정(CVD) 또는 급가열 공정(rapid thermal process)에 의하여 절연 물질을 소정 두께로 적층시킴으로서 희생막(141)을 형성시킨다.According to an embodiment of the present invention, an insulating material may be formed by a chemical vapor deposition process (CVD) or a rapid thermal process on a driving substrate 110 having a plurality of pads 130 serving as electrical contact terminals. The sacrificial film 141 is formed by laminating to a predetermined thickness.
이때, 상기 절연 물질은 상기 구동 기판(110)상에 형성된 패드(130)의 상호간에 전기적으로 도통되는 것을 방지시키기 위한 절연 특성을 나타낼 수 있을 뿐만 아니라 상기 패드(130)의 표면 보호 특성을 나타내는 것이 바람직하다.In this case, the insulating material may not only exhibit insulation characteristics for preventing electrical conduction between the pads 130 formed on the driving substrate 110, but also exhibit surface protection characteristics of the pads 130. desirable.
또한, 본 발명의 일실시예에 따르면, 상기 절연 물질은 이후의 공정에 의하여 상기 희생막(141)상에 적층되는 막(예를 들면 멤브레인(142))의 스텝 커버리지(step coverage)를 양호하게 유지시킬 수 있도록 약 1000℃ 내지 1100℃의 고온에서 양호한 유동 특성을 나타낼 수 있는 인이 함유된 산화 실리콘(PSG; phosphosilicate glass)으로 구성된다.In addition, according to one embodiment of the present invention, the insulating material preferably improves step coverage of a film (for example, the membrane 142) deposited on the sacrificial layer 141 by a subsequent process. It is composed of phosphorus-containing silicon oxide (PSG) phosphosilicate glass (PSG) which can exhibit good flow characteristics at high temperatures of about 1000 ° C to 1100 ° C to maintain.
이때, 상기 인이 함유된 산화 실리콘(PSG)는 화학 기상 증착 공정(CVD)시 H2O, N2및 O2분위기하에서 약 1 내지 25기압의 압력과 약 1000 내지 1100℃ 정도의 온도 조건하에 SiO2를 상기 구동 기판(110)상에 증착시키는 동안 PH3형태로 인을 첨가시킴으로서 P2O5·SiO2와 같은 2원계 산화물로 구성된다.At this time, the phosphorus-containing silicon oxide (PSG) is a chemical vapor deposition process (CVD) under a pressure of about 1 to 25 atm and temperature of about 1000 to 1100 ℃ under H 2 O, N 2 and O 2 atmosphere It is composed of a binary oxide such as P 2 O 5 · SiO 2 by adding phosphorus in the form of PH 3 during the deposition of SiO 2 on the drive substrate 110.
또한, 본 발명의 다른 실시예에 따르면, 상기 절연 물질은 상기 인이 함유된 산화 실리콘(PSG)의 유동 특성 온도보다 낮은 온도 예를 들면 700℃ 정도의 온도에서 양호한 유동 특성을 나타낼 수 있도록 상기 인이 함유된 산화 실리콘(PSG) 조성물 B2H6성분을 첨가시킴으로서 형성된 B2O3·P2O5·SiO2조성의 3원계 산화물 즉 BPSG(borop hosphosilicate glass)로 구성된다.In addition, according to another embodiment of the present invention, the insulating material is such that the phosphorus can exhibit a good flow characteristics at a temperature lower than the flow characteristic temperature of the silicon oxide (PSG) containing, for example, about 700 ℃ It is composed of a ternary oxide of B 2 O 3 · P 2 O 5 · SiO 2 composition, that is, BPSG (borop hosphosilicate glass) formed by adding the contained silicon oxide (PSG) composition B 2 H 6 component.
한편, 상기 희생막(141)상에 불산 용액에 대한 내식성이 양호한 절연 물질을 저압 화학 기상 증착 공정(LPCVD) 또는 플라즈마 화학 기상 증착 공정(PECVD)에 의하여 소정 두께로 적층시킴으로서 멤브레인(142)을 형성시킨다.Meanwhile, the membrane 142 is formed by depositing an insulating material having good corrosion resistance against hydrofluoric acid solution on the sacrificial layer 141 to a predetermined thickness by low pressure chemical vapor deposition (LPCVD) or plasma chemical vapor deposition (PECVD). Let's do it.
이때, 본 발명의 일실시예에 따르면, 상기 멤브레인(142)을 구성하는 절연 물질은 양호한 절연 특성을 나타낼 수 있을 뿐만 아니라 상기 광로 조절 장치를 구성하는 액츄에이터의 구동부가 불산(HF) 용액에 용해되는 것을 방지시키기 위한 표면 보호층으로 작용할 수 있는 내산성이 양호한 실리콘 질화물(SiN) 조성으로 이루어진다.At this time, according to an embodiment of the present invention, the insulating material constituting the membrane 142 may not only exhibit good insulating properties, but also the driving unit of the actuator constituting the optical path control device is dissolved in a hydrofluoric acid (HF) solution. It is made of a silicon nitride (SiN) composition having good acid resistance, which can act as a surface protective layer for preventing it.
여기에서, 본 발명에 따른 광로 조절 장치의 멤브레인(142)은 실리콘 질화물(SiN)을 희생막(141)상에 소정 두께로 적층시킴으로서 형성되며, 이때, 상기 실리콘 질화물을 구성하는 성분은 조성비가 2.5:1 내지 7:1로 유지된 실리콘(Si) 및 질소(N)로 구성된다.Here, the membrane 142 of the optical path control apparatus according to the present invention is formed by stacking silicon nitride (SiN) on a sacrificial film 141 to a predetermined thickness, wherein the components constituting the silicon nitride have a composition ratio of 2.5. It is composed of silicon (Si) and nitrogen (N) maintained at: 1 to 7: 1.
한편, 본 발명의 바람직한 실시예에 따르면 상기 멤브레인(142)은 절연층을 형성시키기 위한 화학 기상 증착 공정(CV) 또는 열적인 공정에 의하여 형성될 수 있으며 특히 저압 화학 기상 증착 공정(LPCVD)에 의하여 형성되는 것이 바람직하다.Meanwhile, according to a preferred embodiment of the present invention, the membrane 142 may be formed by a chemical vapor deposition process (CV) or a thermal process for forming an insulating layer, in particular by a low pressure chemical vapor deposition process (LPCVD) It is preferably formed.
즉, 상기 저합 화학 기상 증착 공정을 수행하게 되면 양호한 스텝 커버리지(step coverage)를 얻을 수 있고 조성과 구조를 정확히 맞출 수 있으며 또한 증착 속도가 빠르고 이에 부가하여 저렴한 공정단가를 얻을 수 있다는 장점이 있다.In other words, the low chemical chemical vapor deposition process may provide good step coverage, precisely match the composition and structure, and have a high deposition rate and low process cost.
한편, 상기 정바 화학 기상 증착 공정에 의하여 상기 멤브레인(142)을 구성하는 성분중 실리콘(Si)에 대한 질소(N)의 조성비를 2.5:1 내지 7:1로 유지시키기 위하여 SiCl2H2에 대한 NH3의 조성비를 2.5:1 내지 7:1로 유지시키며 특히 바람직하게는 상기 실리콘(Si)에 대한 질소(N)의 조성비를 6:1로 유지시키기 위하여 SiCl2H2에 대한 NH3의 조성비를 6:1로 유지시킨다.Meanwhile, in order to maintain the composition ratio of nitrogen (N) to silicon (Si) in the components constituting the membrane 142 by the chemical vapor deposition process, the ratio of SiCl 2 H 2 to 2.5: 1 to 7: 1. the composition ratio of NH 3 2.5: keeps to 1 and particularly preferably the composition ratio of nitrogen (N) on the silicon (Si) 6:: 1 to 7. the composition ratio of NH 3 to SiCl 2 H 2 in order to maintain a 1 Keep 6: 1.
또한, 본 발명의 바람직한 실시예에 따르면, 상기 멤브레인(142)을 구성하는 실리콘 질화물은 상기된 바와 같은 증착 공정에 의하여 약 2000Å 이상으로 두께로 상기 희생막(141)상에 적층되는 경우에 잔류 인장 응력에 의하여 상기 멤브레인(142)상에 크랙이 발생되는 것을 방지시킬 수 있도록 상기 실리콘 질화물의 조성을 비화학량론(non-stoichiometric) 조성으로 구성시킨다.In addition, according to a preferred embodiment of the present invention, the silicon nitride constituting the membrane 142 is a residual tension when the silicon nitride is deposited on the sacrificial layer 141 to a thickness of about 2000 GPa or more by the deposition process as described above The silicon nitride is composed of a non-stoichiometric composition to prevent cracking on the membrane 142 due to stress.
한편, 상기 저압 화학 기상 증착 공정에 의하여 SiCl2H2와 NH3를 약 700 내지 900℃의 온도 및 약 350 내지 400mmtorr의 압력하에서 하기의 식에 나타난 바와 같이 화학 반응을 시키면 상기 멤브레인(142)을 구성하는 조성물은 화학량론적(stoichiometric) 조성물 즉, Si3N4으로 이루어진다.In the meantime, when the SiCl 2 H 2 and NH 3 are chemically reacted at a temperature of about 700 to 900 ° C. and a pressure of about 350 to 400 mmtorr by the low pressure chemical vapor deposition process, the membrane 142 may be reacted. The constituent composition consists of a stoichiometric composition, i.e., Si 3 N 4 .
SiCl2H2+ 4NH3→ Si3N4+ 6HCl + 6H2 SiCl 2 H 2 + 4NH 3 → Si 3 N 4 + 6HCl + 6H 2
즉, 본 발명의 일실시예에 따르면, 상기된 바와 같은 온도 및 압력과 동일한 분위기하에서 특히 약 850℃ 정도의 온도 및 380mmtorr 정도의 압력하에서 수행되는 저압 화학 기상 증착 공정(LPCVD)에 의하여 상기 희생막(141)상에 실리콘 질화물 조성의 절연 물질을 소정 두께로 적층시킴으로서 멤브레인(142)을 형성시킬 때 상기 멤브레인(142)을 구성하는 조성물이 비화학량론적 조성물로 이루어질 수 있도록 SiCl2H2에 대한 NH3의 조성비를 6:1로 유지시킨다.That is, according to one embodiment of the present invention, the sacrificial film by a low pressure chemical vapor deposition process (LPCVD) is carried out under the same temperature and pressure as described above, in particular under a temperature of about 850 ℃ and a pressure of about 380mmtorr By laminating an insulating material of silicon nitride composition to a predetermined thickness on 141, the NH constituent of SiCl 2 H 2 may be composed of a non-stoichiometric composition when the membrane 142 is formed. The composition ratio of 3 is maintained at 6: 1.
여기에서, 상기된 바와 같이 비화학량론적 조성으로 이루어져 있는 멤브레인(142)은 과량의 실리콘(Si)을 함유하고 있으며 상기 실리콘은 상기 멤브레인(142)을 구성하는 조성물내에서 압축 응력을 발생시킨다.Here, the membrane 142 composed of a non-stoichiometric composition as described above contains excess silicon (Si) and the silicon generates compressive stress in the composition constituting the membrane 142.
즉, 상기 멤브레인(142)의 조성물에 과량의 실리콘 성분이 함유되어서 발생되는 압축 응력에 의하여 상기된 바와 같이 화학량론적 실리콘 질화물 즉 Si3N4조성으로 이루어진 적층막내에서 발생되는 잔류 인장 응력은 상쇄되며 이에 의해서 멤브레인(142)상에서 크랙의 발생을 방지시킬 수 있다.That is, the residual tensile stress generated in the laminated film made of the stoichiometric silicon nitride, i.e., Si 3 N 4 composition, is canceled by the compressive stress caused by the excessive amount of the silicon component in the composition of the membrane 142. This can prevent the occurrence of cracks on the membrane 142.
따라서, 상기된 바와 같이 광로 조절 장치의 구동부(140)를 지지하는 작용을 하는 멤브레인(142)은 크랙의 발생없이 평탄한 표면을 제공하며 이에 의해서 상기 멤브레인(142)상에 형성되는 복수개의 층들의 토폴러지(topology)를 향상시킬 수 있으며 특히 하부 전극의 크랙 발생을 방지시킬 수 있다.Thus, the membrane 142, which acts to support the drive 140 of the optical path control device as described above, provides a flat surface without the occurrence of cracks and thereby the topolles of the plurality of layers formed on the membrane 142. Topology can be improved, and in particular, the occurrence of cracking of the lower electrode can be prevented.
이상, 상기 내용은 본 발명의 바람직한 일실시예를 단지 예시한 것으로 본 발명이 속하는 분야의 당업자는 본 발명의 요지를 변경시킴이 없이 본 발명에 대한 수정 및 변경을 가할 수 있음을 인지할 수 있다.The foregoing is merely illustrative of a preferred embodiment of the present invention, those skilled in the art can recognize that modifications and variations can be made to the present invention without changing the subject matter of the present invention. .
따라서, 본 발명에 따르면, 광로 조절 장치의 멤브레인을 구성하는 조성물을 비화학량론적으로 형성시킴으로서 상기 멤브레인이 소정 두께로 형성되는 경우에 크랙의 발생을 방지시킬 수 있다.Therefore, according to the present invention, by non-stoichiometrically forming the composition constituting the membrane of the optical path control device, it is possible to prevent the occurrence of cracks when the membrane is formed to a predetermined thickness.
Claims (5)
Priority Applications (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| KR1019950027517A KR0170954B1 (en) | 1995-08-30 | 1995-08-30 | Composite of the membrane for optical projection system |
| GB9617567A GB2304918B (en) | 1995-08-30 | 1996-08-21 | Method for manufacturing a thin film actuated mirror having a stable elastic member |
| US08/703,257 US5702569A (en) | 1995-08-30 | 1996-08-26 | Method for manufacturing a thin film actuated mirror having a stable elastic member |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| KR1019950027517A KR0170954B1 (en) | 1995-08-30 | 1995-08-30 | Composite of the membrane for optical projection system |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| KR970014279A KR970014279A (en) | 1997-03-29 |
| KR0170954B1 true KR0170954B1 (en) | 1999-03-20 |
Family
ID=19425132
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| KR1019950027517A Expired - Lifetime KR0170954B1 (en) | 1995-08-30 | 1995-08-30 | Composite of the membrane for optical projection system |
Country Status (1)
| Country | Link |
|---|---|
| KR (1) | KR0170954B1 (en) |
-
1995
- 1995-08-30 KR KR1019950027517A patent/KR0170954B1/en not_active Expired - Lifetime
Also Published As
| Publication number | Publication date |
|---|---|
| KR970014279A (en) | 1997-03-29 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP1269531A1 (en) | Electronic device packaging | |
| US4091406A (en) | Combination glass/low temperature deposited Siw Nx Hy O.sub.z | |
| US4091407A (en) | Combination glass/low temperature deposited Siw Nx Hy O.sub.z | |
| US4097889A (en) | Combination glass/low temperature deposited Siw Nx Hy O.sub.z | |
| US5336640A (en) | Method of manufacturing a semiconductor device having an insulating layer composed of a BPSG film and a plasma-CVD silicon nitride film | |
| US4952531A (en) | Sealing glass for matched sealing of copper and copper alloys | |
| JPH051738B2 (en) | ||
| US5043222A (en) | Metal sealing glass composite with matched coefficients of thermal expansion | |
| US20020137323A1 (en) | Metal ion diffusion barrier layers | |
| US9333746B2 (en) | Ink jet recording head substrate, method for manufacturing the same, and ink jet recording head | |
| KR100205301B1 (en) | Structure of interconnection and process for the same | |
| KR0170954B1 (en) | Composite of the membrane for optical projection system | |
| US6156483A (en) | Integrated optical devices | |
| KR970052237A (en) | Contact formation method of semiconductor device | |
| WO1991011827A1 (en) | Passivated silicon substrate | |
| US4985712A (en) | Thermal head | |
| KR100231734B1 (en) | Silicon oxide film formation method of semiconductor device | |
| KR100272653B1 (en) | Method of manufacturing semiconductor device | |
| KR19980038873A (en) | Manufacturing method of semiconductor device | |
| KR100274353B1 (en) | Method of manufacturing a capacitor in a semiconductor device | |
| JP3323870B2 (en) | Thermal printer head | |
| JPH0499026A (en) | Semiconductor device | |
| JPS6150378B2 (en) | ||
| JPS63160365A (en) | Insulating substrate for semiconductor devices | |
| KR19990057835A (en) | Method of forming insulating film between metal wirings of semiconductor device |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A201 | Request for examination | ||
| PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 19950830 |
|
| PA0201 | Request for examination |
Patent event code: PA02012R01D Patent event date: 19950830 Comment text: Request for Examination of Application |
|
| PG1501 | Laying open of application | ||
| E701 | Decision to grant or registration of patent right | ||
| PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 19980718 |
|
| GRNT | Written decision to grant | ||
| PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 19981016 Patent event code: PR07011E01D |
|
| PR1002 | Payment of registration fee |
Payment date: 19981016 End annual number: 3 Start annual number: 1 |
|
| PG1601 | Publication of registration | ||
| PR1001 | Payment of annual fee |
Payment date: 20010928 Start annual number: 4 End annual number: 4 |
|
| PR1001 | Payment of annual fee |
Payment date: 20020930 Start annual number: 5 End annual number: 5 |
|
| PR1001 | Payment of annual fee |
Payment date: 20030930 Start annual number: 6 End annual number: 6 |
|
| PR1001 | Payment of annual fee |
Payment date: 20040923 Start annual number: 7 End annual number: 7 |
|
| PR1001 | Payment of annual fee |
Payment date: 20050926 Start annual number: 8 End annual number: 8 |
|
| PR1001 | Payment of annual fee |
Payment date: 20061004 Start annual number: 9 End annual number: 9 |
|
| PR1001 | Payment of annual fee |
Payment date: 20071001 Start annual number: 10 End annual number: 10 |
|
| PR1001 | Payment of annual fee |
Payment date: 20081001 Start annual number: 11 End annual number: 11 |
|
| PR1001 | Payment of annual fee |
Payment date: 20091001 Start annual number: 12 End annual number: 12 |
|
| PR1001 | Payment of annual fee |
Payment date: 20101001 Start annual number: 13 End annual number: 13 |
|
| PR1001 | Payment of annual fee |
Payment date: 20111004 Start annual number: 14 End annual number: 14 |
|
| FPAY | Annual fee payment |
Payment date: 20120924 Year of fee payment: 15 |
|
| PR1001 | Payment of annual fee |
Payment date: 20120924 Start annual number: 15 End annual number: 15 |
|
| FPAY | Annual fee payment |
Payment date: 20130926 Year of fee payment: 16 |
|
| PR1001 | Payment of annual fee |
Payment date: 20130926 Start annual number: 16 End annual number: 16 |
|
| FPAY | Annual fee payment |
Payment date: 20140923 Year of fee payment: 17 |
|
| PR1001 | Payment of annual fee |
Payment date: 20140923 Start annual number: 17 End annual number: 17 |
|
| PC1801 | Expiration of term |