KR100359773B1 - Method for manufacturing semiconductor device - Google Patents
Method for manufacturing semiconductor device Download PDFInfo
- Publication number
- KR100359773B1 KR100359773B1 KR1020000023276A KR20000023276A KR100359773B1 KR 100359773 B1 KR100359773 B1 KR 100359773B1 KR 1020000023276 A KR1020000023276 A KR 1020000023276A KR 20000023276 A KR20000023276 A KR 20000023276A KR 100359773 B1 KR100359773 B1 KR 100359773B1
- Authority
- KR
- South Korea
- Prior art keywords
- region
- active region
- active
- mask
- gate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/021—Manufacture or treatment of FETs having insulated gates [IGFET]
- H10D30/0223—Manufacture or treatment of FETs having insulated gates [IGFET] having source and drain regions or source and drain extensions self-aligned to sides of the gate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/28008—Making conductor-insulator-semiconductor electrodes
- H01L21/28017—Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
- H01L21/28026—Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
- H01L21/28123—Lithography-related aspects, e.g. sub-lithography lengths; Isolation-related aspects, e.g. to solve problems arising at the crossing with the side of the device isolation; Planarisation aspects
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/17—Semiconductor regions connected to electrodes not carrying current to be rectified, amplified or switched, e.g. channel regions
- H10D62/213—Channel regions of field-effect devices
- H10D62/221—Channel regions of field-effect devices of FETs
- H10D62/235—Channel regions of field-effect devices of FETs of IGFETs
- H10D62/299—Channel regions of field-effect devices of FETs of IGFETs having lateral doping variations
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/60—Electrodes characterised by their materials
- H10D64/66—Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes
- H10D64/661—Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes the conductor comprising a layer of silicon contacting the insulator, e.g. polysilicon having vertical doping variation
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/01—Manufacture or treatment
- H10D84/0123—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs
- H10D84/0126—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs
- H10D84/0165—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs the components including complementary IGFETs, e.g. CMOS devices
- H10D84/0172—Manufacturing their gate conductors
- H10D84/0177—Manufacturing their gate conductors the gate conductors having different materials or different implants
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/01—Manufacture or treatment
- H10D84/0123—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs
- H10D84/0126—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs
- H10D84/0165—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs the components including complementary IGFETs, e.g. CMOS devices
- H10D84/0188—Manufacturing their isolation regions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/01—Manufacture or treatment
- H10D84/02—Manufacture or treatment characterised by using material-based technologies
- H10D84/03—Manufacture or treatment characterised by using material-based technologies using Group IV technology, e.g. silicon technology or silicon-carbide [SiC] technology
- H10D84/038—Manufacture or treatment characterised by using material-based technologies using Group IV technology, e.g. silicon technology or silicon-carbide [SiC] technology using silicon technology, e.g. SiGe
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/26—Bombardment with radiation
- H01L21/263—Bombardment with radiation with high-energy radiation
- H01L21/265—Bombardment with radiation with high-energy radiation producing ion implantation
- H01L21/266—Bombardment with radiation with high-energy radiation producing ion implantation using masks
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S438/00—Semiconductor device manufacturing: process
- Y10S438/914—Doping
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S438/00—Semiconductor device manufacturing: process
- Y10S438/942—Masking
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
본 발명은 액티브 영역의 엣지부위에서 전계감소를 유도하여 오프(off)상태에서 전류가 흐르지 않도록하는데 적당한 반도체 소자의 제조방법을 제공하기 위한 것으로, 본 발명의 반도체 소자 제조방법은 반도체 기판을 액티브 영역과 필드 영역으로 정의하는 공정과, 상기 액티브 영역상의 소정부분에 게이트 물질층을 패터닝하는 공정과, 상기 액티브 영역이 노출되는 오픈영역을 갖는 마스크를 형성하는 공정과, 상기 노출된 게이트 물질층 및 액티브 영역에 상기 반도체 기판과 반대도전형의 불순물을 도핑시켜 게이트 전극과 소오스 및 드레인 영역을 형성하는 공정을 포함하여 이루어진다.The present invention provides a method for manufacturing a semiconductor device suitable for inducing an electric field reduction at the edge of the active region so that no current flows in the off state. And a field region, patterning a gate material layer on a predetermined portion of the active region, forming a mask having an open region where the active region is exposed, and exposing the exposed gate material layer and active layer. And a step of forming a gate electrode, a source, and a drain region by doping a region having an opposite conductivity type with that of the semiconductor substrate.
Description
본 발명은 반도체 소자에 관한 것으로, 특히 고집적 반도체 소자의 제조방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to semiconductor devices, and more particularly to a method for manufacturing a highly integrated semiconductor device.
일반적으로 반도체 소자의 집적화가 진행됨에 따라 디자인 룰(design rule)이 감소하게 되어 게이트 전극의 폭, 채널길이 등 셀 사이즈가 작아지고 있는 추세에 있다.In general, as the integration of semiconductor devices proceeds, design rules decrease, and cell sizes such as gate electrodes and channel lengths are decreasing.
하지만, 고집적화를 위해 셀 사이즈를 작게하는데에는 한계가 있고, 또한 셀 사이즈를 작게하더라도 소자의 동작 및 신뢰성에 있어서 아무런 문제가 없어야 한다.However, there is a limitation in reducing the cell size for high integration, and there should be no problem in the operation and reliability of the device even if the cell size is reduced.
특히, 초소형 반도체 소자의 경우, 게이트 전극의 폭이 매우 좁기 때문에 그로 인한 문제점들이 나타나고 있다.In particular, since the width of the gate electrode is very narrow in the case of the ultra-small semiconductor device, there are problems caused by it.
문제점중 하나가 게이트 유도 드레인 리키지 현상(GIDL:Gate Induced Drain Leakage)이다.One problem is the Gate Induced Drain Leakage (GIDL).
이는, 좁은 폭의 트렌치 격리구조에서 나타나는 것으로, 트렌치의 엣지부위와 게이트, 드레인간의 3차원 영역에서 나타나는 현상이다.This occurs in a narrow trench isolation structure, which occurs in a three-dimensional region between the edge of the trench and the gate and drain.
통상, 게이트와 드레인간의 오버랩(overlap)부위에 전계가 발생하게 되는데, 트렌치 격리구조를 채용함에 따라 트렌치의 엣지부위에서의 GIDL에 의해 게이트와 드레인간의 2차원 영역에서의 전계보다 트렌치의 엣지부위, 게이트, 드레인간의 3차원 영역에서의 전계가 훨씬 높게 나타난다.In general, an electric field is generated at an overlap portion between the gate and the drain. As a trench isolation structure is employed, the edge portion of the trench is formed by the GIDL at the edge portion of the trench, rather than the electric field in the two-dimensional region between the gate and the drain. The electric field in the three-dimensional region between the gate and the drain appears much higher.
이하, 첨부된 도면을 참조하여 종래 기술에 따른 반도체 소자의 제조방법을 설명하기로 한다.Hereinafter, a method of manufacturing a semiconductor device according to the prior art will be described with reference to the accompanying drawings.
먼저, 종래 기술은 NMOS 또는 PMOS 또는 CMOS와 같은 모스(MOS)소자 형성시, 폴리 게이트를 도핑시키는 방법으로서, 그 중 CMOS소자 형성에 따른 폴리 게이트 도핑방법을 도 1a 내지 1b에 도시하였다.First, the prior art is a method of doping a poly gate when forming a MOS (MOS) device, such as NMOS, PMOS or CMOS, of which poly gate doping method according to the CMOS device is shown in Figs.
도 1a에서와 같이, PMOS소자가 형성될 영역(A)과 NMOS소자가 형성될 영역(B)을 정의한다.As shown in FIG. 1A, a region A in which a PMOS device is to be formed and a region B in which an NMOS device is to be formed are defined.
그리고 트렌치 아이솔레이션(trench isolation)공정으로 형성된 소자 격리 영역에 의해 서로 격리되는 제 1 액티브 영역(11)과 제 2 액티브 영역(11a)을 정의한다.The first active region 11 and the second active region 11a which are isolated from each other by the device isolation region formed by the trench isolation process are defined.
여기서, 제 1 액티브 영역(11)은 PMOS소자의 액티브 영역이고, 제 2 액티브 영역(11a)은 NMOS소자의 액티브 영역이다.Here, the first active region 11 is an active region of the PMOS element, and the second active region 11a is an active region of the NMOS element.
이어, 전면에 불순물이 도핑되지 않은 폴리실리콘층을 형성한 후, 패터닝하여 상기 제 1, 제 2 액티브 영역(11,11a)을 가로지르는 방향으로 폴리 게이트(12)를 형성한다.Subsequently, after forming a polysilicon layer not doped with impurities on the entire surface, the poly gate 12 is formed in a direction crossing the first and second active regions 11 and 11a.
이후, 폴리 게이트(12)에 불순물을 도핑시키는 공정이 진행되는데, 상기 불순물 도핑은 폴리 게이트(12)만 별도로 도핑시키는 방법과, 소오스/드레인 불순물 이온주입시에 한꺼번에 도핑시키는 방법이 있다.Thereafter, a process of doping an impurity into the poly gate 12 is performed. The impurity doping may be performed by separately doping the poly gate 12 only and at the time of source / drain impurity ion implantation.
통상적으로, 폴리 게이트에 도핑되는 불순물의 농도는 소오스/드레인용 불순물의 농도보다 더 높다. 따라서, 폴리 게이트와 소오스/드레인을 별도의 공정으로 도핑시킬 경우에는 상기 소오스/드레인용 불순물의 농도는 폴리 게이트의 농도보다 더 낮다.Typically, the concentration of impurities doped in the poly gate is higher than the concentration of the impurities for the source / drain. Therefore, when the poly gate and the source / drain are doped in separate processes, the concentration of the source / drain impurity is lower than that of the poly gate.
하지만, 폴리 게이트를 소오스/드레인 불순물 이온주입시 한꺼번에 도핑시킬 경우에는 상기 소오스/드레인 불순물의 농도가 통상적인 농도보다 높아야 한다. 즉, 통상적인 소오스/드레인용 불순물의 농도만으로는 폴리 게이트의 도핑 농도를 충분히 만족시키지 못하므로, 상기 폴리 게이트의 도핑농도를 만족시킬 수 있도록 소오스/드레인용 불순물의 농도를 통상적인 농도보다 더 높여 주어야 한다.However, when the poly gate is doped at the time of source / drain impurity ion implantation, the concentration of the source / drain impurity must be higher than the usual concentration. That is, since the concentration of the source / drain impurity alone does not sufficiently satisfy the doping concentration of the poly gate, the concentration of the source / drain impurity must be higher than the conventional concentration to satisfy the doping concentration of the poly gate. do.
종래 기술은 폴리 게이트를 소오스/드레인 불순물 주입시에 도핑시키는 것으로, 도 1a에 도시된 바와 같이, 상기 폴리 게이트(12)를 형성한 후, 상기 PMOS소자가 형성될 영역(A)이 노출되도록 제 1 마스크(13)를 형성한다.In the prior art, the poly gate is doped at the time of source / drain impurity implantation. As shown in FIG. 1A, after the poly gate 12 is formed, a region A on which the PMOS device is to be formed is exposed. 1 Mask 13 is formed.
즉, 도 1a에서와 같이, PMOS소자가 형성될 영역(A)만 노출되도록 제 1 마스크(13)를 형성한 후, 전면에 P도전형의 불순물 이온주입을 실시하여 상기 폴리 게이트(12) 및 제 1 액티브 영역(11)을 도핑시킨다.That is, as shown in FIG. 1A, after forming the first mask 13 to expose only the region A in which the PMOS device is to be formed, the poly gate 12 and The first active region 11 is doped.
따라서, 노출된 폴리 게이트(12)에 불순물이 도핑되고, 그 양측의 제 1 액티브 영역(11)에도 불순물이 도핑되어 PMOS의 소오스/드레인 불순물 영역(14,15)이 형성된다.Accordingly, impurities are doped in the exposed poly gate 12, and impurities are also doped in the first active regions 11 on both sides thereof to form source / drain impurity regions 14 and 15 of the PMOS.
이때, 주입되는 불순물은 B 또는 BF2이온을 이용한다.In this case, the implanted impurities use B or BF 2 ions.
이후, 도 1b에서와 같이, 제 1 마스크(13)를 제거한 후, NMOS소자가 형성될 부위(B)만 노출되도록 제 2 마스크(16)를 형성한 후, 전면에 N도전형의 불순물 이온주입을 실시하여 노출부위의 폴리 게이트(12) 및 제 2 액티브 영역(11a)을 도핑시킨다.Thereafter, as shown in FIG. 1B, after the first mask 13 is removed, the second mask 16 is formed to expose only the portion B where the NMOS device is to be formed, and then an N conductive impurity ion implantation is formed on the entire surface. Next, the poly gate 12 and the second active region 11a of the exposed portion are doped.
따라서, 폴리 게이트(12)에 N도전형의 불순물이 도핑되고, 제 2 액티브 영역(11a)에도 불순물이 도핑되어 NMOS의 소오스/드레인 불순물 영역(17,18)이 형성된다.Accordingly, an N conductive impurity is doped into the poly gate 12, and an impurity is doped into the second active region 11a to form source / drain impurity regions 17 and 18 of the NMOS.
이때, 주입되는 불순물은 As 또는 P 이온을 이용한다.In this case, the implanted impurity uses As or P ions.
한편, 도 2a는 도 1a의 Ⅰ-Ⅰ'선에 따른 단면도로써, 폴리 게이트를 도핑시킬 때, 종래와 같이, 마스크의 오픈 영역을 형성할 경우, 게이트 전극에 의해 액티브 영역의 엣지부위에 전계가 집중되는 부분을 도시한 것이다.FIG. 2A is a cross-sectional view taken along the line II ′ of FIG. 1A, and when the open region of the mask is formed as in the prior art when the poly gate is doped, an electric field is formed at the edge of the active region by the gate electrode. It shows the concentration.
도 2b는 도 1a의 Ⅱ-Ⅱ'선에 따른 단면도로써, 액티브 영역의 엣지부위에 게이트 전극에 의해 전계가 집중될 경우, 액티브 영역의 엣지부위에 대전되는 전하들에 의해 소오스와 드레인간에 채널이 형성되는 모습을 도시한 것이다.FIG. 2B is a cross-sectional view taken along the line II-II ′ of FIG. 1A, and when the electric field is concentrated by the gate electrode at the edge portion of the active region, the channel is connected between the source and the drain by charges charged at the edge portion of the active region. This shows how it is formed.
상기와 같은 종래 반도체 소자의 제조방법은 다음과 같은 문제점이 있었다.The conventional method of manufacturing a semiconductor device as described above has the following problems.
소자가 작아짐에 따라 액티브 영역의 엣지부위에서 게이트에 의한 전계가 다른 영역에서 보다 강해지므로 이 영역의 문턱전압이 낮아지게 된다. 따라서, 드레인-소오스간의 전압이 낮은 오프(off)상태에서도 전류가 흐르게 되어 소자의 전력(power) 소모가 증가하게 되며, 특히 채널 폭이 작아질수록 이러한 문제는 더욱 심각해진다.As the device becomes smaller, the threshold voltage in the region becomes lower because the electric field by the gate becomes stronger in the other regions of the active region. Accordingly, current flows even when the voltage between the drain and the source is low, thereby increasing power consumption of the device. In particular, the smaller the channel width, the more serious this problem becomes.
본 발명은 상기한 종래 기술의 문제점을 해결하기 위해 안출한 것으로,액티브 영역의 엣지부위에서 전계감소를 유도하여 오프상태에서 전류가 흐르지 않도록하는데 적당한 반도체 소자의 제조방법을 제공하는데 그 목적이 있다.The present invention has been made to solve the above problems of the prior art, and an object of the present invention is to provide a method for manufacturing a semiconductor device suitable for inducing electric field reduction at the edge of the active region so that no current flows in the off state.
도 1a 내지 1b는 종래 기술에 따른 반도체 소자 제조방법을 설명하기 위한 레이아웃 공정도1A to 1B are layout process diagrams for explaining a method of manufacturing a semiconductor device according to the related art.
도 2a는 도 1a의 Ⅰ-Ⅰ'선에 따른 단면도FIG. 2A is a cross-sectional view taken along line II ′ of FIG. 1A
도 2b는 도 1a의 Ⅱ-Ⅱ'선에 따른 단면도FIG. 2B is a cross-sectional view taken along the line II-II 'of FIG. 1A
도 3은 게이트의 엣지부위에서 전계 발생을 보여주는 레이아웃도3 is a layout showing electric field generation at an edge portion of a gate;
도 4a 내지 4b는 본 발명 제 1 실시예에 따른 반도체 소자 제조방법을 설명하기 위한 레이아웃 공정도4A to 4B are layout process diagrams for describing a method of manufacturing a semiconductor device in accordance with a first embodiment of the present invention.
도 5a 내지 5b는 본 발명 제 2 실시예에 따른 반도체 소자 제조방법을 설명하기 위한 레이아웃 공정도5A through 5B are layout process diagrams for describing a method of manufacturing a semiconductor device in accordance with a second embodiment of the present invention.
도면의 주요부분에 대한 부호의 설명Explanation of symbols for main parts of the drawings
31,31a : 제 1, 제 2 액티브 영역 32 : 폴리 게이트31,31a: first and second active regions 32: poly gate
33,36 : 제 1, 제 2 마스크 34,35 : 제 1 소오스/드레인 영역33,36: first and second masks 34,35: first source / drain regions
37,38 : 제 2 소오스/드레인 영역37,38: second source / drain region
상기의 목적을 달성하기 위한 본 발명의 반도체 소자 제조방법은 반도체 기판을 액티브 영역과 필드 영역으로 정의하는 공정과, 상기 액티브 영역상의 소정부분에 게이트 물질층을 패터닝하는 공정과, 상기 액티브 영역이 노출되는 오픈영역을 갖는 마스크를 형성하는 공정과, 상기 노출된 게이트 물질층 및 액티브 영역에 상기 반도체 기판과 반대도전형의 불순물을 도핑시켜 게이트 전극과 소오스 및 드레인 영역을 형성하는 공정을 포함하여 이루어진다.A semiconductor device manufacturing method of the present invention for achieving the above object is a process for defining a semiconductor substrate as an active region and a field region, patterning a gate material layer on a predetermined portion of the active region, and the active region is exposed And forming a gate electrode, a source, and a drain region by doping the exposed gate material layer and the active region with an impurity of an opposite conductivity type to the semiconductor substrate.
먼저, 본 발명은 초소형 반도체 소자에 있어서, 액티브 영역에서 게이트 전극에 의해 전계가 증가하여 오프(off) 상태에서도 소오스와 드레인간에 전류가 흐르는 현상을 방지하기 위한 것으로, 소자 형성에 따른 게이트 도핑시 마스크를 액티브 영역의 크기와 거의 동일하게 하여 전계가 발생하는 부위의 게이트의 도핑농도를 감소시키는데 특징이 있다.First of all, the present invention is to prevent a phenomenon in which a current flows between a source and a drain even in an off state due to an increase in an electric field by a gate electrode in an active region. It is characterized by reducing the doping concentration of the gate of the region where the electric field is generated by making the mask almost the same size as the active region.
이하, 본 발명의 반도체 소자 제조방법을 첨부된 도면을 참조하여 설명하기로 한다.Hereinafter, a method of manufacturing a semiconductor device of the present invention will be described with reference to the accompanying drawings.
도 3은 본 발명의 반도체 소자 제조방법을 설명하기 위한 개략적인 레이아웃도로서, 도 3에 도시한 점선부분에서 전계가 증가하지 않도록 하기 위함이다.FIG. 3 is a schematic layout diagram illustrating a method of manufacturing a semiconductor device of the present invention in order to prevent an electric field from increasing in a dotted line shown in FIG. 3.
도 4a 내지 4b는 본 발명 제 1 실시예에 따른 반도체 소자 제조방법을 설명하기 위한 레이아웃 공정도로서, NMOS 또는 PMOS 또는 CMOS와 같은 모스(MOS) 소자형성시 폴리게이트를 도핑시키는 방법에 관한 것이다.4A to 4B are layout process diagrams illustrating a method of fabricating a semiconductor device according to a first exemplary embodiment of the present invention, and relate to a method of doping polygates when forming a MOS device such as an NMOS or a PMOS or a CMOS.
참고적으로, 본 발명의 실시예는 CMOS소자를 예로 한 것이다.For reference, the embodiment of the present invention uses a CMOS device as an example.
도 4a에 도시한 바와 같이, 반도체 기판을 PMOS가 형성될 영역(A)과 NMOS가 형성될 영역(B)으로 정의한다.As shown in FIG. 4A, the semiconductor substrate is defined as a region A in which a PMOS is to be formed and a region B in which an NMOS is to be formed.
이 후, 트렌치 아이솔레이션(trench isolation) 공정을 이용하여 소자 격리영역을 형성하는 것에 의해 각 영역의 액티브 영역 즉, 제 1 액티브 영역(31)과 제 2 액티브 영역(31a)을 정의한다.Thereafter, the device isolation region is formed using a trench isolation process to define an active region of each region, that is, a first active region 31 and a second active region 31a.
이후, 상기 제 1, 제 2 액티브 영역(31,31a)을 포함한 반도체 기판 전면에 불순물이 도핑되지 않은 폴리실리콘층을 형성한 후, 패터닝하여 제 1 액티브 영역(31) 및 제 2 액티브 영역(31a)을 가로지르는 폴리 게이트(32)를 형성한다.Thereafter, a polysilicon layer that is not doped with impurities is formed on the entire surface of the semiconductor substrate including the first and second active regions 31 and 31a, and then patterned to form the first active region 31 and the second active region 31a. To form a poly gate 32.
PMOS가 형성될 영역(A)의 폴리 게이트(32)에 불순물을 도핑시키기 위해 제 1 마스크(33)를 형성한다.The first mask 33 is formed to dope the poly gate 32 in the region A in which the PMOS is to be formed.
이때, 제 1 마스크(33)의 오픈(open) 부위는 PMOS가 형성될 영역(A)의 제 1 액티브 영역(31)만 노출되도록 한다.In this case, an open portion of the first mask 33 exposes only the first active region 31 of the region A in which the PMOS is to be formed.
즉, 종래에는 액티브 영역 및 필드 영역을 포함하여 PMOS가 형성될 영역(A)이 전부 노출되도록 마스크를 형성하였으나, 본 발명 제 1 실시예는 마스크의 오픈(open) 부위가 액티브 영역의 크기와 거의 동일하도록 한다.That is, in the related art, a mask is formed such that the area A including the active region and the field region on which the PMOS is to be formed is entirely exposed. Make it the same.
물론, 마스크의 오픈 부위가 액티브 영역의 크기보다 0.1㎛ 정도 크거나 작게 형성할 수도 있다.Of course, the open portion of the mask may be formed to be 0.1 μm larger or smaller than the size of the active region.
이와 같이, 제 1 마스크(33)를 형성한 후, P도전형의 불순물 이온주입을 실시하여 상기 오픈된 폴리 게이트(32)를 도핑시키고, 제 1 액티브 영역(31)에 소오스 불순물 영역(34)과 드레인 불순물 영역(35)을 형성한다.As described above, after the first mask 33 is formed, an impurity ion implantation of a P conductivity type is performed to dope the open poly gate 32, and the source impurity region 34 is formed in the first active region 31. And drain impurity region 35 is formed.
이때, 주입되는 불순물은 B 또는 BF2이온을 이용한다.In this case, the implanted impurities use B or BF 2 ions.
이어, 도 4b에 도시한 바와 같이, 상기 제 1 마스크(33)를 제거한 후, 이번에는 NMOS가 형성될 영역(B)의 제 2 액티브영역(31a)이 노출되도록 제 2 마스크(36)를 형성한다.Subsequently, as shown in FIG. 4B, after the first mask 33 is removed, the second mask 36 is formed so that the second active region 31a of the region B in which the NMOS is to be formed is exposed. do.
이후, 상기 노출된 제 2 액티브 영역(31a)에 상기 PMOS영역에 주입된 불순물과 반대도전형의 불순물을 이온주입한 후, 확산공정을 실시하여 폴리 게이트(32)를 도핑시킴과 동시에 소오스 불순물 영역(37)과 드레인 불순물 영역(38)을 형성한다.Subsequently, after ion implanting impurities exposed to the second active region 31a and impurities opposite to that of the PMOS region, a diffusion process is performed to dope the poly gate 32 and simultaneously source impurity regions. 37 and the drain impurity region 38 are formed.
여기서, 상기 PMOS영역에 주입되는 불순물은 As 또는 P 이온을 이용한다.In this case, as the impurity implanted into the PMOS region, As or P ions are used.
한편, 상기 폴리 게이트 도핑함에 있어서, 폴리실리콘층을 형성하기 이전에 폴리 게이트가 형성될 영역에 미리 폴리 게이트 도핑용 불순물을 주입시키는 것이 가능하다.Meanwhile, in the poly gate doping, it is possible to inject an impurity for poly gate doping into a region where the poly gate is to be formed before forming the polysilicon layer.
즉, 미리 폴리 게이트가 형성될 영역의 반도체 기판에 불순물을 도핑시킨 후, 이후에 폴리 게이트를 형성한 다음, 확산공정으로 상기 폴리 게이트를 도핑시킨다. 이후, 각각 PMOS영역 및 NMOS영역에 소오스 및 드레인 영역을 형성한다.That is, the semiconductor substrate in the region where the poly gate is to be formed is previously doped with impurities, a poly gate is subsequently formed, and then the poly gate is doped by a diffusion process. Thereafter, source and drain regions are formed in the PMOS region and the NMOS region, respectively.
상기와 같은 본 발명 제 1 실시예에 따르면, 폴리 게이트에 도핑된 불순물이 확산공정시에 옆으로 확산되어 폴리 게이트 엣지부위의 도핑농도를 낮추게 된다.According to the first embodiment of the present invention as described above, impurities doped in the poly gate are laterally diffused during the diffusion process to lower the doping concentration of the poly gate edge portion.
따라서, 엣지부위에서 전계가 감소하여 오프(off)상태에서 소오스와 드레인간에 채널이 형성되는 것을 방지할 수 있다.Therefore, it is possible to prevent the formation of a channel between the source and the drain in the off state by reducing the electric field at the edge portion.
즉, 종래에는 폴리 게이트의 농도와 소오스/드레인 불순물의 농도가 동일하므로 확산을 실시하더라도 폴리 게이트 엣지부위에서의 농도의 변화가 없는 반면에, 본 발명의 제 1 실시예는 폴리 게이트의 농도보다 소오스/드레인 불순물 확산영역의 농도가 더 낮으므로 확산공정을 실시하면, 농도가 높은 폴리 게이트의 불순물이 농도가 낮은 소오스나 드레인쪽으로 확산되어 폴리 게이트의 도핑 농도를 낮게 가져갈 수 있다.That is, conventionally, since the concentration of the poly gate is the same as that of the source / drain impurities, there is no change in the concentration at the poly gate edge even when diffusion is performed. Since the concentration of the / drain impurity diffusion region is lower, the diffusion process may cause impurities of the high concentration poly gate to diffuse toward the source or drain having a lower concentration, resulting in a lower doping concentration of the poly gate.
이어, 도 5a 내지 5b는 본 발명 제 2 실시예에 따른 반도체 소자의 제조방법을 설명하기 위한 레이아웃 공정도이다.5A through 5B are layout process diagrams for describing a method of manufacturing a semiconductor device in accordance with a second embodiment of the present invention.
본 발명 제 2 실시예는 각 마스크의 오픈 영역을 더욱더 축소하여 액티브 영역상의 게이트 전극만이 노출되도록 마스크를 형성하는데 특징이 있다.The second embodiment of the present invention is characterized by further reducing the open area of each mask to form a mask so that only the gate electrode on the active area is exposed.
도 5a에 도시한 바와 같이, 반도체 기판을 PMOS가 형성될 영역(A)과 NMOS가 형성될 영역(B)으로 정의한다.As shown in FIG. 5A, a semiconductor substrate is defined as a region A in which a PMOS is to be formed and a region B in which an NMOS is to be formed.
이후, 트렌치 아이솔레이션 공정을 이용하여 소자 격리영역을 형성하는 것에 의해 제 1 액티브 영역(31)과 제 2 액티브 영역(31a)을 정의한다.Then, the first active region 31 and the second active region 31a are defined by forming the device isolation region using the trench isolation process.
이어, 반도체 기판 전면에 불순물이 도핑되지 않은 폴리실리콘층을 형성한 후, 패터닝하여 폴리 게이트(32)를 형성한다.Subsequently, a polysilicon layer without doping impurities is formed on the entire surface of the semiconductor substrate, and then patterned to form a poly gate 32.
PMOS가 형성될 영역(A)의 폴리 게이트(32)에 불순물을 도핑시키기 위해 제 1 마스크(33)를 형성한다.The first mask 33 is formed to dope the poly gate 32 in the region A in which the PMOS is to be formed.
이때, 제 1 마스크(33)는 PMOS가 형성될 영역(A)의 제 1 액티브 영역(31)상의 폴리 게이트(32)만이 노출되도록 오픈(open)영역을 형성한다.In this case, the first mask 33 forms an open region so that only the poly gate 32 on the first active region 31 of the region A in which the PMOS is to be formed is exposed.
즉, 종래에는 액티브 영역 및 소자 격리영역을 포함하여 PMOS가 형성될 영역이 전부 노출되도록 마스크를 형성하였으며, 본 발명 제 1 실시예는 마스크의 오픈 부위가 액티브 영역과 거의 일치하도록 하였으나, 본 발명 제 2 실시예는 마스크의 오픈(open) 부위가 액티브 영역상의 폴리 게이트와 동일하도록 한다.That is, in the related art, a mask is formed such that an area in which a PMOS is to be formed, including an active region and a device isolation region, is completely exposed. In the first embodiment of the present invention, the open portion of the mask is substantially coincident with the active region. The second embodiment allows the open portion of the mask to be identical to the poly gate on the active region.
물론, 마스크의 오픈 부위가 노출된 폴리 게이트보다 0.1㎛ 정도 크거나 작게 형성할 수도 있다.Of course, the open portion of the mask may be formed to be 0.1 μm larger or smaller than the exposed poly gate.
이와 같이, 제 1 마스크(33)를 형성한 후, P도전형의 불순물 이온주입을 실시하여 상기 오픈부위의 폴리 게이트(32)을 도핑시킨다.As described above, after the first mask 33 is formed, impurity ion implantation of P conductivity type is performed to dope the poly gate 32 in the open portion.
이어, 도 5b에 도시한 바와 같이, 상기 제 1 마스크(33)를 제거한 후, 이번에는 NMOS가 형성될 영역(B)의 제 2 액티브 영역(31a)을 가로지르는 폴리 게이트(32)가 노출되도록 제 2 마스크(36)를 형성한다.Subsequently, as shown in FIG. 5B, after the first mask 33 is removed, the poly gate 32 crossing the second active region 31a of the region B in which the NMOS is to be formed is exposed. The second mask 36 is formed.
이후, 상기 노출된 폴리 게이트에 상기 PMOS영역에 주입된 불순물과 반대도전형의 불순물을 이온주입하고 확산공정을 실시하여 폴리 게이트(32)를 도핑시킨다.Thereafter, the exposed poly gate is ion-implanted with impurities implanted in the PMOS region into an impurity, and a diffusion process is performed to dope the poly gate 32.
이어서, 도면에는 도시되지 않았지만, 마스크를 이용한 불순물 이온주입으로 PMOS가 형성될 영역의 액티브 영역에 소오스/드레인 영역을 형성한다.Next, although not shown in the drawing, source / drain regions are formed in the active region of the region where the PMOS is to be formed by impurity ion implantation using a mask.
그리고, 상기 마스크를 제거한 후, 이번에는 NMOS가 형성될 영역의 액티브 영역에 불순물을 주입하여 소오스/드레인 영역을 형성하면, 본 발명 제 2 실시예에 따른 반도체 소자 제조공정이 완료된다.After the mask is removed, an impurity is implanted into the active region of the region where the NMOS is to be formed to form a source / drain region. The semiconductor device manufacturing process according to the second embodiment of the present invention is completed.
한편, 상기 폴리 게이트의 도핑은 폴리실리콘층을 형성하기 이전에 미리 기판에 불순물을 도핑시키는 것이 가능하다.On the other hand, the doping of the poly gate can be doped with impurities to the substrate in advance before forming the polysilicon layer.
즉, 폴리 게이트가 형성될 부위에 미리 폴리 게이트를 도핑시키기 위한 불순물을 도핑시킨 후, 폴리 게이트를 패터닝한 다음, 확산공정을 실시하여 불순물을 폴리 게이트로 확산시킨 후, PMOS 및 NMOS영역에 각각 소오스 및 드레인 영역을 형성할 수도 있다.That is, after the doping of the poly gate to the poly gate to be doped with the impurity for the poly gate, the poly gate is patterned, and then the diffusion process to diffuse the impurity into the poly gate, the source in the PMOS and NMOS region, respectively And a drain region may be formed.
이상 상술한 바와 같이, 본 발명의 반도체 소자 제조방법은 다음과 같은 효과가 있다.As described above, the semiconductor device manufacturing method of the present invention has the following effects.
폴리 게이트 엣지부위의 농도를 낮추어 엣지부위에서 문턱전압이 감소하고 전계가 증가하는 현상을 방지하여 오프상태에서 소오스와 드레인간에 전류가 흐르는 것을 방지할 수 있다. 따라서, 전력 소모를 최소화할 수 있으며, 특히, 폴리 게이트의 폭이 좁은 소자에서 오프 커런트(off current)를 방지할 수 있다.By reducing the concentration of the poly gate edge portion, the threshold voltage decreases and the electric field increases at the edge portion, thereby preventing current from flowing between the source and the drain in the off state. Therefore, power consumption can be minimized, and in particular, off current can be prevented in a device having a narrow width of the poly gate.
Claims (10)
Priority Applications (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| KR1020000023276A KR100359773B1 (en) | 2000-05-01 | 2000-05-01 | Method for manufacturing semiconductor device |
| US09/722,818 US6432783B1 (en) | 2000-05-01 | 2000-11-28 | Method for doping a semiconductor device through a mask |
| JP2001004494A JP4548946B2 (en) | 2000-05-01 | 2001-01-12 | Manufacturing method of semiconductor device |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| KR1020000023276A KR100359773B1 (en) | 2000-05-01 | 2000-05-01 | Method for manufacturing semiconductor device |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| KR20010100357A KR20010100357A (en) | 2001-11-14 |
| KR100359773B1 true KR100359773B1 (en) | 2002-11-07 |
Family
ID=19667820
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| KR1020000023276A Expired - Fee Related KR100359773B1 (en) | 2000-05-01 | 2000-05-01 | Method for manufacturing semiconductor device |
Country Status (3)
| Country | Link |
|---|---|
| US (1) | US6432783B1 (en) |
| JP (1) | JP4548946B2 (en) |
| KR (1) | KR100359773B1 (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7307320B2 (en) | 2005-11-07 | 2007-12-11 | Samsung Electronics Co., Ltd. | Differential mechanical stress-producing regions for integrated circuit field effect transistors |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20030204618A1 (en) * | 2001-04-27 | 2003-10-30 | Foster Michael S. | Using virtual identifiers to process received data routed through a network |
Family Cites Families (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB1578259A (en) * | 1977-05-11 | 1980-11-05 | Philips Electronic Associated | Methods of manufacturing solid-state devices apparatus for use therein and devices manufactured thereby |
| JPH06151831A (en) * | 1992-11-13 | 1994-05-31 | Matsushita Electron Corp | Semiconductor device and its manufacture |
| JP3290776B2 (en) * | 1993-09-08 | 2002-06-10 | 富士通株式会社 | Insulated gate field effect transistor |
| JPH0846191A (en) * | 1994-07-29 | 1996-02-16 | Nkk Corp | Method for manufacturing semiconductor device |
| US5644155A (en) * | 1994-09-06 | 1997-07-01 | Integrated Device Technology, Inc. | Structure and fabrication of high capacitance insulated-gate field effect transistor |
| JP3239202B2 (en) * | 1995-12-01 | 2001-12-17 | シャープ株式会社 | MOS transistor and method of manufacturing the same |
| US6297111B1 (en) * | 1997-08-20 | 2001-10-02 | Advanced Micro Devices | Self-aligned channel transistor and method for making same |
| KR100339409B1 (en) * | 1998-01-14 | 2002-09-18 | 주식회사 하이닉스반도체 | semiconductor device and method for fabricating the same |
| US5998848A (en) * | 1998-09-18 | 1999-12-07 | International Business Machines Corporation | Depleted poly-silicon edged MOSFET structure and method |
| US6211555B1 (en) * | 1998-09-29 | 2001-04-03 | Lsi Logic Corporation | Semiconductor device with a pair of transistors having dual work function gate electrodes |
| KR100374551B1 (en) * | 2000-01-27 | 2003-03-04 | 주식회사 하이닉스반도체 | Semiconductor device and method for fabricating thereof |
-
2000
- 2000-05-01 KR KR1020000023276A patent/KR100359773B1/en not_active Expired - Fee Related
- 2000-11-28 US US09/722,818 patent/US6432783B1/en not_active Expired - Fee Related
-
2001
- 2001-01-12 JP JP2001004494A patent/JP4548946B2/en not_active Expired - Fee Related
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7307320B2 (en) | 2005-11-07 | 2007-12-11 | Samsung Electronics Co., Ltd. | Differential mechanical stress-producing regions for integrated circuit field effect transistors |
Also Published As
| Publication number | Publication date |
|---|---|
| JP4548946B2 (en) | 2010-09-22 |
| KR20010100357A (en) | 2001-11-14 |
| US6432783B1 (en) | 2002-08-13 |
| JP2001320046A (en) | 2001-11-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6054357A (en) | Semiconductor device and method for fabricating the same | |
| KR100211635B1 (en) | Semiconductor device and manufacturing method | |
| KR100290884B1 (en) | Method for manufacturing semiconductor device the same | |
| KR100232197B1 (en) | Method of manufacturing semiconductor device | |
| KR100359773B1 (en) | Method for manufacturing semiconductor device | |
| KR20050045560A (en) | Method for implanting channel ions in recess gate type transistor | |
| KR100469373B1 (en) | High Voltage Device and Method for the Same | |
| KR19980053138A (en) | Mask ROM Coding Method | |
| KR100252902B1 (en) | method for fabricvating complementary metal oxide semiconductor device | |
| KR100268928B1 (en) | Method for fabricating semiconductor device | |
| KR100236104B1 (en) | Method of manufacturing semiconductor device | |
| KR0172763B1 (en) | Thin film transistor and its manufacturing method | |
| KR100498592B1 (en) | Most transistors and manufacturing method thereof | |
| KR100384860B1 (en) | Method for manufacturing semiconductor device | |
| KR100215858B1 (en) | Mask ROM Coding Method | |
| KR100565752B1 (en) | Manufacturing method of semiconductor device | |
| KR100304960B1 (en) | Semiconductor device and manufacturing method | |
| KR100429857B1 (en) | Manufacturing method of transistor having punch-through blocking region | |
| KR100260042B1 (en) | Transistor Manufacturing Method | |
| KR100268924B1 (en) | method for manufacturing semiconductor device | |
| KR100474543B1 (en) | Manufacturing method of semiconductor device | |
| KR100253705B1 (en) | Manufacturing method of complementary MOS transistor | |
| KR100672737B1 (en) | ESD semiconductor device and method for manufacturing same | |
| KR100327419B1 (en) | Method for fabricating semiconductor device | |
| KR19990004943A (en) | Transistor Formation Method With Low Doping Drain Structure |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A201 | Request for examination | ||
| PA0109 | Patent application |
St.27 status event code: A-0-1-A10-A12-nap-PA0109 |
|
| PA0201 | Request for examination |
St.27 status event code: A-1-2-D10-D11-exm-PA0201 |
|
| PN2301 | Change of applicant |
St.27 status event code: A-3-3-R10-R13-asn-PN2301 St.27 status event code: A-3-3-R10-R11-asn-PN2301 |
|
| PN2301 | Change of applicant |
St.27 status event code: A-3-3-R10-R13-asn-PN2301 St.27 status event code: A-3-3-R10-R11-asn-PN2301 |
|
| PG1501 | Laying open of application |
St.27 status event code: A-1-1-Q10-Q12-nap-PG1501 |
|
| E902 | Notification of reason for refusal | ||
| PE0902 | Notice of grounds for rejection |
St.27 status event code: A-1-2-D10-D21-exm-PE0902 |
|
| E13-X000 | Pre-grant limitation requested |
St.27 status event code: A-2-3-E10-E13-lim-X000 |
|
| P11-X000 | Amendment of application requested |
St.27 status event code: A-2-2-P10-P11-nap-X000 |
|
| P13-X000 | Application amended |
St.27 status event code: A-2-2-P10-P13-nap-X000 |
|
| E701 | Decision to grant or registration of patent right | ||
| PE0701 | Decision of registration |
St.27 status event code: A-1-2-D10-D22-exm-PE0701 |
|
| GRNT | Written decision to grant | ||
| PR0701 | Registration of establishment |
St.27 status event code: A-2-4-F10-F11-exm-PR0701 |
|
| PR1002 | Payment of registration fee |
St.27 status event code: A-2-2-U10-U11-oth-PR1002 Fee payment year number: 1 |
|
| PG1601 | Publication of registration |
St.27 status event code: A-4-4-Q10-Q13-nap-PG1601 |
|
| PR1001 | Payment of annual fee |
St.27 status event code: A-4-4-U10-U11-oth-PR1001 Fee payment year number: 4 |
|
| PR1001 | Payment of annual fee |
St.27 status event code: A-4-4-U10-U11-oth-PR1001 Fee payment year number: 5 |
|
| PR1001 | Payment of annual fee |
St.27 status event code: A-4-4-U10-U11-oth-PR1001 Fee payment year number: 6 |
|
| PR1001 | Payment of annual fee |
St.27 status event code: A-4-4-U10-U11-oth-PR1001 Fee payment year number: 7 |
|
| PR1001 | Payment of annual fee |
St.27 status event code: A-4-4-U10-U11-oth-PR1001 Fee payment year number: 8 |
|
| PR1001 | Payment of annual fee |
St.27 status event code: A-4-4-U10-U11-oth-PR1001 Fee payment year number: 9 |
|
| FPAY | Annual fee payment |
Payment date: 20110923 Year of fee payment: 10 |
|
| PR1001 | Payment of annual fee |
St.27 status event code: A-4-4-U10-U11-oth-PR1001 Fee payment year number: 10 |
|
| PN2301 | Change of applicant |
St.27 status event code: A-5-5-R10-R13-asn-PN2301 St.27 status event code: A-5-5-R10-R11-asn-PN2301 |
|
| FPAY | Annual fee payment |
Payment date: 20120921 Year of fee payment: 11 |
|
| PR1001 | Payment of annual fee |
St.27 status event code: A-4-4-U10-U11-oth-PR1001 Fee payment year number: 11 |
|
| PN2301 | Change of applicant |
St.27 status event code: A-5-5-R10-R13-asn-PN2301 St.27 status event code: A-5-5-R10-R11-asn-PN2301 |
|
| LAPS | Lapse due to unpaid annual fee | ||
| PC1903 | Unpaid annual fee |
St.27 status event code: A-4-4-U10-U13-oth-PC1903 Not in force date: 20131024 Payment event data comment text: Termination Category : DEFAULT_OF_REGISTRATION_FEE |
|
| PC1903 | Unpaid annual fee |
St.27 status event code: N-4-6-H10-H13-oth-PC1903 Ip right cessation event data comment text: Termination Category : DEFAULT_OF_REGISTRATION_FEE Not in force date: 20131024 |
|
| PN2301 | Change of applicant |
St.27 status event code: A-5-5-R10-R13-asn-PN2301 St.27 status event code: A-5-5-R10-R11-asn-PN2301 |
|
| P22-X000 | Classification modified |
St.27 status event code: A-4-4-P10-P22-nap-X000 |