[go: up one dir, main page]

KR102228533B1 - 가공성이 우수한 에틸렌/알파-올레핀 공중합체 - Google Patents

가공성이 우수한 에틸렌/알파-올레핀 공중합체 Download PDF

Info

Publication number
KR102228533B1
KR102228533B1 KR1020160133020A KR20160133020A KR102228533B1 KR 102228533 B1 KR102228533 B1 KR 102228533B1 KR 1020160133020 A KR1020160133020 A KR 1020160133020A KR 20160133020 A KR20160133020 A KR 20160133020A KR 102228533 B1 KR102228533 B1 KR 102228533B1
Authority
KR
South Korea
Prior art keywords
group
alpha
ethylene
olefin copolymer
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
KR1020160133020A
Other languages
English (en)
Other versions
KR20180040998A (ko
Inventor
이시정
최이영
홍복기
조경진
이승민
한창완
선순호
김선미
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to KR1020160133020A priority Critical patent/KR102228533B1/ko
Publication of KR20180040998A publication Critical patent/KR20180040998A/ko
Application granted granted Critical
Publication of KR102228533B1 publication Critical patent/KR102228533B1/ko
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2420/00Metallocene catalysts
    • C08F2420/10Heteroatom-substituted bridge, i.e. Cp or analog where the bridge linking the two Cps or analogs is substituted by at least one group that contains a heteroatom
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/12Melt flow index or melt flow ratio
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/18Bulk density
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65916Component covered by group C08F4/64 containing a transition metal-carbon bond supported on a carrier, e.g. silica, MgCl2, polymer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • C08F4/65922Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not
    • C08F4/65925Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not two cyclopentadienyl rings being mutually non-bridged
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • C08F4/65922Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not
    • C08F4/65927Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not two cyclopentadienyl rings being mutually bridged

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

본 발명은 에틸렌/알파-올레핀 공중합체에 관한 것으로, 본 발명에 따른 에틸렌/알파-올레핀 공중합체는 우수한 기계적 가공성 및 안정성을 가져 식품 용기 등의 제품을 제조하는데 유용하게 적용될 수 있다.

Description

가공성이 우수한 에틸렌/알파-올레핀 공중합체{Ethylene/alpha-olefin copolymer having excellent processibility}
본 발명은 가공성이 우수한 에틸렌/알파-올레핀 공중합체에 관한 것이다.
식품 용기 등으로 사용되는 수지의 경우, 우수한 가공성, 기계적 물성 및 내응력 균열성이 요구된다. 따라서, 이전부터 큰 분자량, 보다 넓은 분자량 분포 및 바람직한 공단량체 분포 등을 충족하여, 용기나 보틀캡 등으로 바람직하게 사용 가능한 폴리올레핀의 제조에 관한 기술이 계속적으로 요구되고 있다.
한편, 4족 전이금속을 이용한 메탈로센 촉매는 기존의 지글러 나타 촉매에 비해 폴리올레핀의 분자량 및 분자량 분포 등을 제어하기 쉽고, 고분자의 공단량체 분포를 조절할 수 있어, 기계적 물성 및 가공성이 동시에 향상된 폴리올레핀 등을 제조하는데 사용되어 왔다. 그러나, 메탈로센 촉매를 사용하여 제조된 폴리올레핀은 좁은 분자량 분포로 인해 가공성이 떨어지는 문제가 있다.
일반적으로 분자량 분포가 넓을수록 전단속도(shear rate)에 따른 점도저하 정도가 커져 가공영역에서 우수한 가공성을 나타내는데, 메탈로센 촉매로 제조된 폴리올레핀은 상대적으로 좁은 분자량 분포 등으로 인해, 높은 전단속도에서 점도가 높아 압출시 부하나 압력이 많이 걸리게 되어 압출 생산성이 저하되고, 블로우몰딩 가공시 버블 안정성이 크게 떨어지며, 제조된 성형품 표면이 불균일해져 투명성 저하 등을 초래하는 단점이 있다.
이에, 이전부터 메탈로센 촉매로 넓은 분자량 분포를 갖는 폴리올레핀 등을 얻기 위해 복수의 반응기를 포함하는 다단 반응기가 사용되어 왔으며, 이러한 복수의 반응기에서의 각 중합 단계를 통해, 보다 넓은 다봉 분자량 분포 및 큰 분자량을 동시에 충족하는 폴리올레핀을 얻고자 시도되어 왔다.
그러나, 메탈로센 촉매의 큰 반응성 등으로 인해, 전단의 반응기에서의 중합 지속 시간 등에 따라 후단의 반응기에서 제대로 중합이 이루어지기 어려웠고, 그 결과 충분히 큰 분자량 및 보다 넓은 다봉 분자량 분포를 동시에 충족하는 폴리올레핀을 제조하는데 한계가 있었던 것이 사실이다. 이에 큰 분자량 및 보다 넓은 다봉 분자량 분포를 가짐에 따라, 기계적 물성 및 가공성 등을 동시에 충족할 수 있고 제품용으로 바람직하게 사용 가능한 폴리올레핀을 보다 효과적으로 제조할 수 있는 기술의 개발이 계속적으로 요구되고 있다.
미국 특허 제6,180,736호는 1종의 메탈로센 촉매를 사용하여 단일 기상 반응기 또는 연속 슬러리 반응기에서 폴리에틸렌을 제조하는 방법에 대해 기재하고 있다. 이 방법을 이용시 폴리에틸렌 제조원가가 낮고 파울링이 거의 발생하지 않으며 중합 활성이 안정적인 장점이 있다. 또한, 미국 특허 제6,911.508호는 새로운 메탈로센 촉매 화합물을 사용하고, 1-헥센을 공단량체로 하여 단일 기상 반응기에서 중합한 유변물성이 개선된 폴리에틸렌 제조에 대해 기재하고 있다. 그러나, 상기 특허들에서 생성된 폴리에틸렌 역시 좁은 분자량 분포를 가져, 충분한 충격 강도 및 가공성을 나타내기 어렵다는 단점을 가지고 있다.
미국 특허 제4,935,474호에는 2종 또는 그 이상의 메탈로센 화합물을 사용하여 넓은 분자량 분포를 갖는 폴리에틸렌을 제조하는 방법이 기재되어 있다. 또한, 미국 특허 제6,841,631호, 미국 특허 제6,894,128호에는 적어도 2종의 금속 화합물이 사용된 메탈로센계 촉매로 이정 또는 다정의 분자량 분포를 갖는 폴리에틸렌을 제조하여, 상기 폴리에틸렌이 필름, 파이프, 중공성형품 등의 제조에 적용이 가능하다고 기재되어 있다. 그러나, 이렇게 제조된 폴리에틸렌은 개선된 가공성을 가지나, 단위 입자 내의 분자량별 분산 상태가 균일하지 못해 비교적 양호한 가공 조건에서도 외관이 거칠고 물성이 안정적이지 못한 문제점이 있다.
이러한 배경에서 제반물성간, 또는 제반물성과 가공성 간의 균형이 이루어진, 보다 우수한 수지의 제조가 끊임없이 요구되고 있으며, 이에 대한 연구가 더욱 필요한 상태이다.
이에 본 발명은 상기 종래기술의 문제점을 해결하기 위한 것으로, 내환경 응력 균열성 및 가공성이 우수하여 식품 용기, 보틀캡 등으로 바람직하게 사용 가능한 에틸렌/알파-올레핀 공중합체를 제공하고자 한다.
상기 과제를 해결하기 위하여, 본 발명은 하기 식 1을 만족하는 에틸렌/알파-올레핀 공중합체를 제공한다:
[식 1]
-3 < SF - (5.92*MFR2 .16) - (2.369*MFRR5 /2.16) < 3
식 1에서,
SF는 스파이럴 플로우 길이(spiral flow length, 190℃, 90 bar)를, MFR2 . 16는 ASTM D1238에 의거하여 190℃, 2.16 kg 하중에서 측정한 용융 유동 지수를, MFRR5/2.16은 ASTM D1238에 의거하여 190℃, 5kg 하중에서 측정한 용융 유동 지수를 190℃, 2.16 kg 하중에서 측정한 용융 유동 지수로 나눈 값을 의미한다.
본 발명에 따른 에틸렌/알파-올레핀 공중합체는, 스파이럴 플로우 길이와 용융 유동 지수 및 용융 유동률비가 일정한 관계식을 만족하는 것으로, 용융 유동 지수 및 용융 유동률비가 넓어 가공성이 우수하며, 동시에 높은 내환경 응력 균열성을 갖추어 가공성과 안정성을 동시에 만족시킬 수 있다.
이에 따라 사출시 가공성이 우수하여 생산성 향상에 기여하면서, 고압 및 고온 환경에서 안정성이 요구되는 식품 용기, 보틀캡 등으로 바람직하게 사용 가능하다.
본 명세서에서 사용되는 용어는 단지 예시적인 실시예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도는 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다", "구비하다" 또는 "가지다" 등의 용어는 실시된 특징, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 예시하고 하기에서 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
이하, 본 발명의 에틸렌/알파-올레핀 공중합체를 상세히 설명한다.
본 발명의 에틸렌/알파-올레핀 공중합체는 하기 식 1을 만족하는 것을 특징으로 한다:
[식 1]
-3 < SF - (5.92*MFR2 .16) - (2.369*MFRR5 /2.16) < 3
식 1에서,
SF는 스파이럴 플로우 길이(spiral flow length, 190℃, 90 bar)를, MFR2 . 16는 ASTM D1238에 의거하여 190℃, 2.16 kg 하중에서 측정한 용융 유동 지수를, MFRR5/2.16은 ASTM D1238에 의거하여 190℃, 5kg 하중에서 측정한 용융 유동 지수를 190℃, 2.16 kg 하중에서 측정한 용융 유동 지수로 나눈 값을 의미한다.
본 발명에 따른 에틸렌/알파-올레핀 공중합체는, 사출 성형에 유리한 물성을 가지고 있다. 본 발명에 따른 에틸렌/알파-올레핀 공중합체는 메탈로센 촉매로 제조되는데, 일반적으로 메탈로센 촉매로 제조되는 고분자는 기계적 물성이 우수하나 가공성이 떨어져 사출 성형으로 제품을 제조하는데 한계가 있다.
그러나, 본 발명에 따른 에틸렌/알파-올레핀 공중합체는 후술할 바와 같은 혼성 담지 메탈로센 촉매를 사용하고, 상기 혼성 담지 메탈로센 촉매의 구성 및 중합 공정 조건을 최적화하여, 스파이럴 플로우 길이와 용융 유동 지수 및 용융 유동률비가 일정한 관계식을 만족하도록 제조함으로써, 우수한 기계적 물성, 특히 내환경 응력 균열성과 함께 가공성을 향상시킬 수 있음에 기초하여 본 발명을 완성하였다.
본 발명의 에틸렌/알파-올레핀 공중합체는 하기 식 1을 만족한다.
[식 1]
-3 < SF - (5.92*MFR2 .16) - (2.369*MFRR5 /2.16) < 3
식 1에서,
SF는 스파이럴 플로우 길이(spiral flow length, 190℃, 90 bar)를, MFR2 . 16는 ASTM D1238에 의거하여 190℃, 2.16 kg 하중에서 측정한 용융 유동 지수를, MFRR5/2.16은 ASTM D1238에 의거하여 190℃, 5kg 하중에서 측정한 용융 유동 지수를 190℃, 2.16 kg 하중에서 측정한 용융 유동 지수로 나눈 값을 의미한다.
즉, 상기 식 1에서, SF - (5.92*MFR2 .16) - (2.369*MFRR5 /2.16)를 z값 이라 할 때, 본 발명의 에틸렌/알파-올레핀 공중합체는 -3 < z < 3, 또는 -2.5 < z < 3인 특징을 지닌다. 이와 같이 에틸렌/알파-올레핀 공중합체에서 z가 일정한 범위를 만족할 때, 가공성과 기계적 물성이 최적화될 수 있음에 착안하여 본 발명을 완성하였다.
상기와 같은 식 1을 만족하는 범위 내에서, 본 발명의 에틸렌/알파-올레핀 공중합체는 중량 평균 분자량(Mw)이 100,000 내지 300,000 g/mol일 수 있다. 보다 바람직하게 상기 중량 평균 분자량은, 120,000 g/mol 이상, 130,000 g/mol 이상, 또는 140,000 g/mol 이상이고, 250,000 g/mol 이하, 또는 220,000 g/mol 이하, 또는 200,000 g/mol 이하일 수 있다.
또한, 본 발명의 에틸렌/알파-올레핀 공중합체는 분자량 분포(PDI)가 10 내지 20일 수 있다. 보다 바람직하게 상기 분자량 분포는, 11 이상, 또는 12 이상, 또는 13 이상이고, 19 이하, 또는 18 이하, 또는 16 이하일 수 있다.
또한, 본 발명의 에틸렌/알파-올레핀 공중합체는 밀도가 0.950 내지 0.960 g/cm3, 또는 0.950 내지 0.955 g/cm3이다. 에틸렌/알파-올레핀 공중합체의 밀도가 0.950 g/cm3보다 낮을 경우, 탄산음료 용기의 보틀캡(bottle cap)으로 사용하였을 때, 탄산음료의 압력으로 인해 swelling 현상이 일어나게 된다. 한편, 밀도를 증가시키기 위해 알파-올레핀의 함량을 감소시킬 경우 ESCR 특성이 나빠지게 되나, 본 발명에 따른 에틸렌/알파-올레핀 공중합체는, 고밀도이면서도 ESCR 특성이 우수한 에틸렌/알파-올레핀 공중합체를 제공할 수 있다.
또한, 본 발명에 따른 에틸렌/알파-올레핀 공중합체는 MFR2 .16(ASTM D1238에 의거하여 190℃, 2.16 kg 하중에서 측정한 용융 유동 지수)이 0.01 내지 1.0 g/10min 일 수 있다. 보다 바람직하게 상기 MFR2 .16은, 0.05 g/10min 이상, 또는 0.1 g/10min 이상, 0.15 g/10min 이상이고, 0.9 g/10min 이하, 또는 0.8 g/10min 이하, 또는 0.6 g/10min 이하일 수 있다.
또한, 본 발명에 따른 에틸렌/알파-올레핀 공중합체는 MFRR5 /2.16(ASTM D1238에 의거하여 190℃, 5kg 하중에서 측정한 용융 유동 지수를 190℃, 2.16 kg 하중에서 측정한 용융 유동 지수로 나눈 값)이 5 내지 10의 값을 가진다. 보다 바람직하게 상기 MFRR5 /2.16은 5 이상, 또는 5.2 이상, 또는 5.5 이상이고, 9 이하, 또는 9.5 이하, 또는 8 이하일 수 있다.
상기 스파이럴 플로우 길이(spiral flow length, 190℃, 90 bar)는 에틸렌/알파-올레핀 공중합체의 가공성을 나타내는 것으로, 이의 값이 클수록 가공성이 우수함을 의미한다. 그러나, 가공성과 더불어 다른 기계적 물성 및 안정성의 조화 관점에서 스파이럴 플로우 길이가 클수록 반드시 바람직하다고는 볼 수 없으며, 용도에 따라 적절한 스파이럴 플로우 길이 범위가 존재할 수 있다.
상기 스파이럴 플로우 길이는, 나선형의 금형에 특정 압력 및 온도를 적용하여 고분자를 사출하고 이에 따라 용융되어 사출된 고분자가 얼마나 밀려나는지를 측정하는 방식으로 평가할 수 있다. 후술할 본 발명의 일 실시예와 같이, 본 발명에서는 두께 1.5 mm의 금형을 사용하고, 사출 온도 190℃, 금형 온도 50℃ 및 사출 압력을 90 bar로 설정하여 측정할 수 있으며, 본 발명에 따른 에틸렌/알파-올레핀 공중합체의 스파이럴 플로우 길이는 10 내지 21 cm로 우수한 가공성을 나타낸다. 바람직하게는 상기 스파이럴 플로우 길이는 10 cm 이상, 또는 12 cm 이상, 또는 14 cm 이상이고, 20 cm 이하, 또는 19 cm 이하일 수 있다.
또한, 상기와 같은 기계적 물성 및 가공성 외에도 본 발명에 따른 에틸렌/알파-올레핀 공중합체는 내환경 응력 균열성(ESCR, environmental stress crack resistance) 또한 우수하다는 특징이 있다.
일반적으로, 가공성과 내환경 응력 균열성은 상반되는 물성으로, 가공성을 높이기 위해 용융 지수를 높이면 내환경 응력 균열성이 떨어지게 되나, 본 발명의 에틸렌/알파-올레핀 공중합체는 양호한 가공성 및 내환경 응력 균열성을 모두 만족시킨다.
상기 에틸렌/1-헥센 공중합체는 ASTM D 1693에 따라 측정한 내환경 응력 균열성(ESCR)이 200 시간 이상, 또는 240 시간 이상, 또는 300 시간 이상일 수 있다. 내환경 응력 균열성(ESCR)이 200 시간 이상이면 보틀캡 용도의 사용 상태에서 안정적으로 성능 유지가 가능하므로 상한값은 실질적으로 크게 의미가 없으나, 1,000 시간 이하, 또는 800 시간 이하, 또는 약 500 시간 이하일 수 있다. 이와 같이 고성능의 내환경 응력 균열성을 나타내므로, 보틀캡 등의 식품 용기 제품으로 성형하여 고온 고압의 조건에서 사용하였을 때에도 안정성이 높아 지속적인 성능을 유지할 수 있다.
본 발명에 따른 에틸렌/알파-올레핀 공중합체에서, 상기 알파-올레핀 단량체의 구체적인 예로는 프로필렌, 1-부텐, 1-펜텐, 4-메틸-1-펜텐, 1-헥센, 1-헵텐, 1-옥텐, 1-데센, 1-운데센, 1-도데센, 1-테트라데센, 1-헥사데센, 1-에이코센 등이 있으며, 이들을 2종 이상 사용할 수도 있다. 바람직하게는, 상기 알파-올레핀 단량체로 1-부텐을 사용할 수 있다.
상기 에틸렌/알파-올레핀 공중합체에서, 상기 공단량체인 알파-올레핀의 함량은 특별히 제한되는 것은 아니며, 적절하게 선택할 수 있다. 보다 구체적으로는 0 초과 99 몰% 이하일 수 있다.
상기와 같은 에틸렌/알파-올레핀 공중합체는 메탈로센 촉매를 이용하여 제조할 수 있다. 상기 사용할 수 있는 메탈로센 촉매는 하기 화학식 1로 표시되는 제 1 메탈로센 화합물 1종 이상; 및 하기 화학식 3으로 표시되는 제 2 메탈로센 화합물 1종 이상의 혼합물인, 혼성 메탈로센 촉매일 수 있다.
[화학식 1]
Figure 112016099420791-pat00001
상기 화학식 1에서,
M은 4족 전이금속이고;
B1은 탄소, 실리콘 또는 게르마늄이고;
Q1 및 Q2는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기, C6 내지 C20의 아릴기, C7 내지 C20의 알킬아릴기, C7 내지 C20의 아릴알킬기, C1 내지 C20의 알콕시기, C2 내지 C20의 알콕시알킬기, C3 내지 C20의 헤테로시클로알킬기, 또는 C5 내지 C20의 헤테로아릴기이고;
X1 및 X2는 서로 동일하거나 상이하고, 각각 독립적으로 할로겐, C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기, C6 내지 C20의 아릴기, 니트로기, 아미도기, C1 내지 C20의 알킬실릴기, C1 내지 C20의 알콕시기, 또는 C1 내지 C20의 술폰네이트기이고;
C1 C2는 서로 동일하거나 상이하고, 각각 독립적으로 하기 화학식 2a, 화학식 2b, 화학식 2c, 또는 화학식 2d 중 하나로 표시되고, 단, C1 및 C2 중 하나 이상은 화학식 2a로 표시되며;
[화학식 2a]
Figure 112016099420791-pat00002
[화학식 2b]
Figure 112016099420791-pat00003
[화학식 2c]
Figure 112016099420791-pat00004
[화학식 2d]
Figure 112016099420791-pat00005
상기 화학식 2a, 2b, 2c, 및 2d에서,
R1 내지 R28은 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기, C1 내지 C20의 알킬실릴기, C1 내지 C20의 실릴알킬기, C1 내지 C20의 알콕시실릴기, C1 내지 C20의 에테르기, C1 내지 C20의 실릴에테르기, C1 내지 C20의 알콕시기, C6 내지 C20의 아릴기, C7 내지 C20의 알킬아릴기, 또는 C7 내지 C20의 아릴알킬기이고,
R'1 내지 R'3은 서로 동일하거나 상이하고, 각각 독립적으로, 수소, 할로겐, C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기, C6 내지 C20의 아릴기이며,
상기 R1 내지 R28 중 서로 인접하는 2개 이상이 서로 연결되어 치환 또는 비치환된 지방족 또는 방향족 고리를 형성할 수 있다.
[화학식 3]
Figure 112016099420791-pat00006
상기 화학식 3에서,
R31 내지 R38 중 어느 하나 이상은 -(CH2)n-OR (이때, R은 C1 내지 C6의 직쇄 또는 분지쇄 알킬기이고, n은 2 내지 4의 정수이다.)이고,
나머지는 서로 동일하거나 상이하고 각각 독립적으로, 수소, C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기, C6 내지 C20의 아릴기, C7 내지 C20의 알킬아릴기, 및 C7 내지 C20의 아릴알킬기로 이루어진 군에서 선택된 작용기이거나, 또는 서로 인접하는 2개 이상이 서로 연결되어 C1 내지 C10의 하이드로카빌기로 치환 또는 비치환된 지방족 또는 방향족 고리를 형성할 수 있고,
Q3 및 Q4는 서로 동일하거나 상이하고 각각 독립적으로, 할로겐, 또는 탄소수 1 내지 20의 알킬기이고;
M'은 4족 전이금속이고,
X3 및 X4는 서로 동일하거나 상이하고 각각 독립적으로, 할로겐, 또는 C1 내지 C20의 알킬기이며,
m은 0 또는 1의 정수이다.
상기 화학식들의 치환기들을 보다 구체적으로 설명하면 하기와 같다.
상기 C1 내지 C20의 알킬로는, 직쇄 또는 분지쇄의 알킬을 포함하고, 구체적으로 메틸, 에틸, 프로필, 이소프로필, n-부틸, tert-부틸, 펜틸, 헥실, 헵틸, 옥틸 등을 들 수 있으나, 이에만 한정되는 것은 아니다.
상기 C2 내지 C20의 알케닐로는, 직쇄 또는 분지쇄의 알케닐을 포함하고, 구체적으로 알릴, 에테닐, 프로페닐, 부테닐, 펜테닐 등을 들 수 있으나, 이에만 한정되는 것은 아니다.
상기 C6 내지 C20의 아릴로는, 단환 또는 축합환의 아릴을 포함하고, 구체적으로 페닐, 비페닐, 나프틸, 페난트레닐, 플루오레닐 등을 들 수 있으나, 이에만 한정되는 것은 아니다.
상기 C5 내지 C20의 헤테로아릴로는, 단환 또는 축합환의 헤테로아릴을 포함하고, 카바졸릴, 피리딜, 퀴놀린, 이소퀴놀린, 티오페닐, 퓨라닐, 이미다졸, 옥사졸릴, 티아졸릴, 트리아진, 테트라하이드로피라닐, 테트라하이드로퓨라닐 등을 들 수 있으나, 이에만 한정되는 것은 아니다.
상기 C1 내지 C20의 알콕시로는, 메톡시, 에톡시, 페닐옥시, 시클로헥실옥시 등을 들 수 있으나, 이에만 한정되는 것은 아니다.
상기 C1 내지 C20의 알킬실릴기로는 메틸실릴기, 디메틸실릴기, 트리메틸실릴기 등을 들 수 있으나, 이에만 한정되는 것은 아니다.
상기 C1 내지 C20의 실릴알킬기로는 실릴메틸기, 디메틸실릴메틸기(-CH2-Si(CH3)2H), 트리메틸실릴메틸기(-CH2-Si(CH3)3) 등을 들 수 있으나, 이에만 한정되는 것은 아니다.
상기 4족 전이금속으로는 티타늄, 지르코늄, 하프늄 등을 들 수 있으나, 이에만 한정되는 것은 아니다.
상기 화학식 1의 메탈로센 화합물에 있어서, 상기 화학식 2a, 2b, 2c, 및 2d의 R1 내지 R28은 각각 독립적으로 수소, 할로겐, 메틸기, 에틸기, 프로필기, 이소프로필기, n-부틸기, tert-부틸기, 펜틸기, 헥실기, 헵틸기, 옥틸기, 에틸렌기, 프로필렌기, 부틸렌기, 페닐기, 벤질기, 나프틸기, 할로겐기, 에테르기, 트리메틸실릴기, 트리에틸실릴기, 트리프로필실릴기, 트리부틸실릴기, 트리이소프로필실릴기, 트리메틸실릴메틸기, 디메틸에테르기, tert-부틸디메틸실릴에테르기, 메톡시기, 에톡시기, 또는 tert-부톡시헥실기인 것이 바람직하나, 이에만 한정되는 것은 아니다.
상기 화학식 1의 Q1 및 Q2는 수소, 메틸기, 에틸기, 프로필기, 이소프로필기, n-부틸기, tert-부틸기, 메톡시메틸기, tert-부톡시메틸기, 1-에톡시에틸기, 1-메틸-1-메톡시에틸기, tert-부톡시헥실기, 테트라하이드로피라닐기, 또는 테트라하이드로퓨라닐기인 것이 바람직하나, 이에만 한정되는 것은 아니다.
상기 화학식 1의 B1은 실리콘(Si)인 것이 바람직하나, 이에만 한정되는 것은 아니다.
상기 화학식 1의 메탈로센 화합물은 특히, 상기 화학식 2a의 치환기에서 트리메틸실릴 메틸기(trimethylsilyl methyl)와 같은 C1 내지 C20의 실릴알킬기를 적어도 하나 이상 포함하는 것을 특징으로 한다.
보다 구체적으로, 상기 화학식 2a의 인덴 유도체는 인데노인돌 유도체나 플루오레닐 유도체에 비해 상대적으로 전자 밀도가 낮으며, 입체 장애가 큰 실릴알킬기를 포함함에 따라 입체 장애 효과 및 전자 밀도적 요인에 의하여 유사한 구조의 메탈로센 화합물에 비해 상대적으로 낮은 분자량의 올레핀 중합체를 고활성으로 중합할 수 있다.
또한 상기 화학식 2b와 같이 표시될 수 있는 인데노 인돌(Indeno indole) 유도체, 상기 화학식 2c와 같이 표시될 수 있는 플루오레닐(Fluorenyl) 유도체, 상기 화학식 2d와 같이 표시될 수 있는 인덴(Indene) 유도체가 브릿지에 의해 가교된 구조를 형성하며, 리간드 구조에 루이스 염기로 작용할 수 있는 비공유 전자쌍을 가짐으로써 높은 중합 활성을 나타낸다.
본 발명의 일 실시예에 따르면, 상기 화학식 2a로 표시되는 작용기의 구체적인 예로는 하기 구조식들 중 하나로 표시되는 화합물을 들 수 있으나, 본 발명이 이에만 한정되는 것은 아니다.
Figure 112016099420791-pat00007
Figure 112016099420791-pat00008
Figure 112016099420791-pat00009
Figure 112016099420791-pat00010
Figure 112016099420791-pat00011
본 발명의 일 실시예에 따르면, 상기 화학식 2b로 표시되는 작용기의 구체적인 예로는 하기 구조식들 중 하나로 표시되는 화합물을 들 수 있으나, 본 발명이 이에만 한정되는 것은 아니다.
Figure 112016099420791-pat00012
Figure 112016099420791-pat00013
Figure 112016099420791-pat00014
Figure 112016099420791-pat00015
Figure 112016099420791-pat00016
Figure 112016099420791-pat00017
본 발명의 일 실시예에 따르면, 상기 화학식 2c로 표시되는 작용기의 구체적인 예로는 하기 구조식들 중 하나로 표시되는 화합물을 들 수 있으나, 본 발명이 이에만 한정되는 것은 아니다.
Figure 112016099420791-pat00018
Figure 112016099420791-pat00019
Figure 112016099420791-pat00020
Figure 112016099420791-pat00021
Figure 112016099420791-pat00022
Figure 112016099420791-pat00023
본 발명의 일 실시예에 따르면, 상기 화학식 2d로 표시되는 작용기의 구체적인 예로는 하기 구조식들 중 하나로 표시되는 화합물을 들 수 있으나, 본 발명이 이에만 한정되는 것은 아니다.
Figure 112016099420791-pat00024
Figure 112016099420791-pat00025
Figure 112016099420791-pat00026
Figure 112016099420791-pat00027
본 발명의 일 실시예에 따르면, 상기 화학식 1로 표시되는 메탈로센 화합물의 구체적인 예로는 하기 구조식들 중 하나로 표시되는 화합물을 들 수 있으나, 이에만 한정되는 것은 아니다.
Figure 112016099420791-pat00028
Figure 112016099420791-pat00029
Figure 112016099420791-pat00030
Figure 112016099420791-pat00031
상기 화학식 1의 제 1 메탈로센 화합물은 활성이 우수하고 고분자량의 에틸렌/알파-올레핀 공중합체를 중합할 수 있다. 특히, 담체에 담지하여 사용할 경우에도 높은 중합 활성을 나타내어, 고분자량의 에틸렌/알파-올레핀 공중합체를 제조할 수 있다.
본 발명의 일 실시예에 따르면, 상기 화학식 1의 메탈로센 화합물은 인덴 유도체와, 사이클로펜타디엔 유도체를 브릿지 화합물로 연결하여 리간드 화합물로 제조한 다음, 금속 전구체 화합물을 투입하여 메탈레이션(metallation)을 수행함으로써 수득될 수 있으나, 이에 제한되는 것은 아니다.
상기 혼성 메탈로센 촉매에 포함되는 제 2 메탈로센 화합물 하기 화학식 3으로 표시되는 것일 수 있다.
[화학식 3]
Figure 112016099420791-pat00032
상기 화학식 3에서,
R31 내지 R38 중 어느 하나 이상은 -(CH2)n-OR (이때, R은 C1 내지 C6의 직쇄 또는 분지쇄 알킬기이고, n은 2 내지 4의 정수이다.)이고, 나머지는 서로 동일하거나 상이하고 각각 독립적으로, 수소, C1 내지 C20의 알킬기, C2 내지 C20의 알케닐기, C6 내지 C20의 아릴기, C7 내지 C20의 알킬아릴기, 및 C7 내지 C20의 아릴알킬기로 이루어진 군에서 선택된 작용기이거나, 또는 서로 인접하는 2개 이상이 서로 연결되어 C1 내지 C10의 하이드로카빌기로 치환 또는 비치환된 지방족 또는 방향족 고리를 형성할 수 있고,
Q3 및 Q4는 서로 동일하거나 상이하고 각각 독립적으로, 할로겐, 또는 C1 내지 C20의 알킬기이고;
M'은 4족 전이금속이고,
X3 및 X4는 서로 동일하거나 상이하고 각각 독립적으로, 할로겐, 또는 탄소수 1 내지 20의 알킬기이며,
m은 0 또는 1의 정수이다.
상기 화학식 3의 메탈로센 화합물은 사이클로펜타디엔(Cp) 또는 그 유도체의 치환기에 -(CH2)n-OR (이때, R은 C1 내지 C6의 직쇄 또는 분지쇄 알킬기이고, n은 2 내지 4의 정수이다.)의 치환기를 도입함으로써, 공단량체를 이용한 폴리올레핀 제조시 상기 치환기를 포함하지 않는 다른 Cp계 촉매에 비하여 공단량체에 대한 낮은 전환율을 나타내어 공중합도 또는 공단량체 분포가 조절된 중저분자량의 폴리올레핀을 제조할 수 있다.
보다 구체적인 예로, 상기 화학식 3의 제 2 메탈로센 화합물과 함께 고분자량 영역의 폴리올레핀 제조용의 다른 메탈로센 화합물을 함께 사용하여 혼성(hybrid) 촉매로써 사용할 경우, 상기 다른 메탈로센 화합물에 의해 고분자량 영역의 폴리올레핀에서는 높은 공중합성을 나타내면서, 상기 화학식 3의 제 2 메탈로센 화합물의 작용에 의해 저분자량 영역에서의 폴리올레핀에서는 낮은 공중합성을 나타낼 수 있다. 이에 따라, 공단량체의 함량이 고분자량 주쇄에 집중되어 있는 구조, 즉, 곁가지 함량이 고분자량 쪽으로 갈수록 많아지는 구조인 BOCD(Broad Orthogonal Co-monomer Distribution) 구조를 갖는 폴리올레핀을 중합하기에 매우 유리하다.
상기 화학식 3에서 정의된 각 치환기에 대하여 보다 상세히 설명하면 다음과 같다.
상기 C1 내지 C20의 알킬기(alkyl group)는 직쇄 또는 분지쇄의 알킬기를 포함할 수 있다.
상기 아릴기(aryl group)는 C6 내지 C20인 방향족 고리인 것이 바람직하며, 구체적으로 페닐, 나프틸, 안트라세닐, 피리딜, 디메틸아닐리닐, 아니솔릴 등이 있으나, 이에 한정되는 것은 아니다.
상기 알킬아릴기는 C1 내지 C20의 직쇄 또는 분지쇄의 알킬기가 1이상 도입된 아릴기를 의미하고, 상기 아릴알킬기는 C6 내지 C20의 아릴기가 1이상 도입된 직쇄 또는 분지쇄의 알킬기를 의미한다.
상기 하이드로카빌기(hydrocarbyl group)는 1가의 탄화수소 화합물(hydrocarbon compound)을 의미하며, 알킬기, 알케닐기, 아릴기, 알킬아릴기, 아릴알킬기 등을 포함한다.
상기 할로겐기는 불소(F), 염소(Cl), 브롬(Br), 요오드(I)를 의미한다.
상기 M'로 정의된 4족 전이금속으로는 Ti(티타늄), Zr(지르코늄), 하프늄(Hf) 등을 사용할 수 있으나, 이에 한정되는 것은 아니다.
상기 Q3 및 Q4는 바람직하게는 C1 내지 C20의 알킬기, 보다 바람직하게는 메틸기, 에틸기, 또는 프로필기 일 수 있다.
상기 X3 및 X4는 바람직하게는 할로겐기, 보다 바람직하게는 Cl일 수 있다.
상기 일 구현예의 메탈로센 화합물에서, 화학식 3의 R31 내지 R38 중 어느 하나 이상은 -(CH2)n-OR (이때, R은 C1 내지 C6의 직쇄 또는 분지쇄 알킬기이고, n은 2 내지 4의 정수이다.)인 특징을 지닌다. 상기 화학식 3에서, -(CH2)n-OR는 바람직하게는 tert-부톡시 부틸기(tert-butoxybutyl)일 수 있다. 보다 바람직하게는, 2개의 사이클로펜타디엔(Cp) 유도체가 각각 -(CH2)n-OR기를 포함하거나, 어느 하나의 Cp 유도체만 -(CH2)n-OR기를 포함할 수 있으며, 상기 -(CH2)n-OR기는 tert-부톡시 부틸기(tert-butoxybutyl)일 수 있다.
이와 같은 구조의 메탈로센 화합물이 담체에 담지되었을 때, 치환기 중 -(CH2)n-OR기가 담지체로 사용되는 실리카 표면의 실라놀기와 밀접한 상호작용을 통해 공유결합을 형성할 수 있어 안정적인 담지 중합이 가능하다. 또한, 상기 작용기는 1-부텐(1-butene), 또는 1-헥센(1-hexene)과 같은 알파 올레핀 공단량체의 공중합성에 영향을 미칠 수 있는데, -(CH2)n-OR에서 n이 4 이하의 짧은 알킬 체인을 갖는 경우, 전체 중합 활성은 유지하면서 알파 올레핀 공단량체에 대한 공중합성(comonomer incorporation)이 낮아져 다른 물성의 저하없이 공중합도가 조절된 폴리올레핀의 제조에 유리하다.
상기 화학식 3의 메탈로센 화합물은 보다 구체적으로 하기와 같은 화학식 3-1 내지 화학식 3-4로 표시될 수 있다.
[화학식 3-1]
Figure 112016099420791-pat00033
[화학식 3-2]
Figure 112016099420791-pat00034
[화학식 3-3]
Figure 112016099420791-pat00035
[화학식 3-4]
Figure 112016099420791-pat00036
상기 화학식 3-1 내지 3-4에서, R31 내지 R38, Q3 내지 Q4, M', X3 내지 X4의 정의는 상기 화학식 3과 같고, R' 및 R''는 서로 동일하거나 상이하고 각각 독립적으로, C1 내지 C10의 하이드로카빌기이다.
화학식 3-1의 구조는 화학식 3에서 m이 0인 경우로, 2개의 사이클로펜타디엔(Cp)기가 비가교된 구조이며, R31 내지 R38 중 어느 하나 이상의 치환기는 -(CH2)n-OR 이다.
화학식 3-2의 구조는 화학식 3에서 m이 1인 경우로, 2개의 Cp기가 SiQ3Q4 브릿지(bridge)에 의해 가교된 구조이며, R31 내지 R38 중 어느 하나 이상의 치환기는 -(CH2)n-OR 이다.
화학식 3-3의 구조는 화학식 3에서 m이 0인 경우로, Cp기에서 인접하는 치환기가 서로 연결되어 형성된 2개의 인덴(indene)기가 비가교된 구조이며, 상기 인덴기의 치환기 R31, R32, R35, 및 R36 중 어느 하나 이상의 치환기는 -(CH2)n-OR이고, 각각의 인덴기는 C1 내지 C10의 하이드로카빌기(R', R'')로 치환될 수 있다.
화학식 3-4의 구조는 화학식 3에서 m이 1인 경우로, Cp기에서 인접하는 치환기가 서로 연결되어 형성된 2개의 인덴기가 SiQ3Q4 브릿지(bridge)에 의해 가교된 형태이며, 상기 인덴기의 치환기 R31, R32, R35, 및 R36 중 어느 하나 이상의 치환기는 -(CH2)n-OR이고, 각각의 인덴기는 C1 내지 C10의 하이드로카빌기(R', R'')로 치환될 수 있다.
한편, 상기 화학식 3으로 표시되는 메탈로센 화합물의 구체적인 예로, 하기 구조식들로 표시되는 화합물을 들 수 있으나, 본 발명이 이에 제한되는 것은 아니다.
Figure 112016099420791-pat00037
Figure 112016099420791-pat00038
Figure 112016099420791-pat00039
Figure 112016099420791-pat00040
Figure 112016099420791-pat00041
Figure 112016099420791-pat00042
Figure 112016099420791-pat00043
Figure 112016099420791-pat00044
그리고, 상기 화학식 3으로 표시되는 메탈로센 화합물은 알려진 유기 화합물 및 전이금속 화합물의 제조방법에 따라 제조할 수 있다.
본 발명에서 사용되는 메탈로센 촉매는 상기 화학식 1로 표시되는 제 1 메탈로센 화합물의 1종 이상, 및 상기 화학식 3으로 표시되는 화합물 중 선택되는 제 2 메탈로센 화합물의 1종 이상을 조촉매 화합물과 함께 담체에 담지한 혼성 담지 메탈로센 촉매일 수 있다.
본 발명에 따른 혼성 담지 메탈로센 촉매에 있어서, 상기 메탈로센 화합물을 활성화하기 위하여 담체에 함께 담지되는 조촉매로는 13족 금속을 포함하는 유기 금속 화합물로서, 일반적인 메탈로센 촉매 하에 올레핀을 중합할 때 사용될 수 있는 것이라면 특별히 한정되는 것은 아니다.
구체적으로, 상기 조촉매 화합물은 하기 화학식 4의 알루미늄 함유 제 1 조촉매, 및 하기 화학식 5의 보레이트계 제 2 조촉매 중 하나 이상을 포함할 수 있다.
[화학식 4]
-[Al(R39)-O-]k-
화학식 4에서, R39은 각각 독립적으로 할로겐, 할로겐 치환 또는 비치환된 C1 내지 C20의 하이드로카빌기이고, k는 2 이상의 정수이고,
[화학식 5]
T+[BG4]-
화학식 5에서, T+은 +1가의 다원자 이온이고, B는 +3 산화 상태의 붕소이고, G는 각각 독립적으로 하이드라이드, 디알킬아미도, 할라이드, 알콕사이드, 아릴옥사이드, 하이드로카빌, 할로카빌 및 할로-치환된 하이드로카빌로 이루어진 군에서 선택되고, 상기 G는 20개 이하의 탄소를 가지나, 단 하나 이하의 위치에서 G는 할라이드이다.
이러한 제 1 및 제 2 조촉매의 사용에 의해, 최종 제조된 에틸렌/알파-올레핀 공중합체의 분자량 분포가 보다 균일하게 되면서, 중합 활성이 향상될 수 있다.
상기 화학식 4의 제 1 조촉매는 선형, 원형 또는 망상형으로 반복단위가 결합된 알킬알루미녹산계 화합물로 될 수 있고, 이러한 제 1 조촉매의 구체적인 예로는, 메틸알루미녹산(MAO), 에틸알루미녹산, 이소부틸알루미녹산 또는 부틸알루미녹산 등을 들 수 있다.
또한, 상기 화학식 5의 제 2 조촉매는 삼치환된 암모늄염, 또는 디알킬 암모늄염, 삼치환된 포스포늄염 형태의 보레이트계 화합물로 될 수 있다. 이러한 제2 조촉매의 구체적인 예로는, 트리메탈암모늄 테트라페닐보레이트, 메틸디옥타데실암모늄 테트라페닐보레이트, 트리에틸암모늄 테트라페닐보레이트, 트리프로필암모늄 테트라페닐보레이트, 트리(n-부틸)암모늄 테트라페닐보레이트, 메틸테트라데사이클로옥타데실암모늄 테트라페닐보레이트, N,N-디메틸아닐늄 테트라페닐보레이트, N,N-디에틸아닐늄 테트라페닐보레이트, N,N-디메틸(2,4,6-트리메틸아닐늄)테트라페닐보레이트, 트리메틸암모늄 테트라키스(펜타플로오로페닐)보레이트, 메틸디테트라데실암모늄 테트라키스(펜타페닐)보레이트, 메틸디옥타데실암모늄 테트라키스(펜타플루오로페닐)보레이트, 트리에틸암모늄, 테트라키스(펜타플루오로페닐)보레이트, 트리프로필암모늄테트라키스(펜타프루오로페닐)보레이트, 트리(n-부틸)암모늄 테트라키스(펜타플루오로페닐)보레이트, 트리(2급-부틸)암모늄테트라키스(펜타플루오로페닐)보레이트, N,N-디메틸아닐늄 테트라키스(펜타플루오로페닐)보레이트, N,N-디에틸아닐늄테트라키스(펜타플루오로페닐)보레이트, N,N-디메틸(2,4,6-트리메틸아닐늄)테트라키스(펜타플루오로페닐)보레이트, 트리메틸암모늄테트라키스(2,3,4,6-테트라플루오로페닐)보레이트, 트리에틸암모늄 테트라키스(2,3,4,6-테트라플루오로페닐)보레이트, 트리프로필암모늄 테트라키스(2,3,4,6-테트라플루오로페닐)보레이트, 트리(n-부틸)암모늄 테트라키스(2,3,4,6-,테트라플루오로페닐)보레이트, 디메틸(t-부틸)암모늄 테트라키스(2,3,4,6-테트라플루오로페닐)보레이트, N,N-디메틸아닐늄 테트라키스(2,3,4,6-테트라플루오로페닐)보레이트, N,N-디에틸아닐늄 테트라키스(2,3,4,6-테트라플루오로페닐)보레이트 또는 N,N-디메틸-(2,4,6-트리메틸아닐늄)테트라키스-(2,3,4,6-테트라플루오로페닐)보레이트 등의 삼치환된 암모늄염 형태의 보레이트계 화합물; 디옥타데실암모늄 테트라키스(펜타플루오로페닐)보레이트, 디테트라데실암모늄 테트라키스(펜타플루오로페닐)보레이트 또는 디사이클로헥실암모늄 테트라키스(펜타플루오로페닐)보레이트 등의 디알킬암모늄염 형태의 보레이트계 화합물; 또는 트리페닐포스포늄 테트라키스(펜타플루오로페닐)보레이트, 메틸디옥타데실포스포늄 테트라키스(펜타플루오로페닐)보레이트 또는 트리(2,6-, 디메틸페닐)포스포늄 테트라키스(펜타플루오로페닐)보레이트 등의 삼치환된 포스포늄염 형태의 보레이트계 화합물 등을 들 수 있다.
본 발명에 따른 혼성 담지 메탈로센 촉매에 있어서, 화학식 1로 표시되는 제 1 메탈로센 화합물, 또는 화학식 3으로 표시되는 제 2 메탈로센 화합물에 포함되는 전체 전이금속 대 담체의 질량비는 1 : 10 내지 1 : 1,000 일 수 있다. 상기 질량비로 담체 및 메탈로센 화합물을 포함할 때, 최적의 형상을 나타낼 수 있다. 또한, 조촉매 화합물 대 담체의 질량비는 1 : 1 내지 1 : 100 일 수 있다.
본 발명에 따른 담지 메탈로센 촉매에 있어서, 상기 담체로는 표면에 하이드록시기를 함유하는 담체를 사용할 수 있으며, 바람직하게는 건조되어 표면에 수분이 제거된, 반응성이 큰 하이드록시기와 실록산기를 가지고 있는 담체를 사용할 수 있다.
예컨대, 고온에서 건조된 실리카, 실리카-알루미나, 및 실리카-마그네시아 등이 사용될 수 있고, 이들은 통상적으로 Na2O, K2CO3, BaSO4, 및 Mg(NO3)2 등의 산화물, 탄산염, 황산염, 및 질산염 성분을 함유할 수 있다.
상기 담체의 건조 온도는 200 내지 800℃가 바람직하고, 300 내지 600℃가 더욱 바람직하며, 300 내지 400℃가 가장 바람직하다. 상기 담체의 건조 온도가 200℃ 미만인 경우 수분이 너무 많아서 표면의 수분과 조촉매가 반응하게 되고, 800℃를 초과하는 경우에는 담체 표면의 기공들이 합쳐지면서 표면적이 줄어들며, 또한 표면에 하이드록시기가 많이 없어지고 실록산기만 남게 되어 조촉매와의 반응자리가 감소하기 때문에 바람직하지 않다.
상기 담체 표면의 하이드록시기 양은 0.1 내지 10 mmol/g이 바람직하며, 0.5 내지 5 mmol/g일 때 더욱 바람직하다. 상기 담체 표면에 있는 하이드록시기의 양은 담체의 제조방법 및 조건 또는 건조 조건, 예컨대 온도, 시간, 진공 또는 스프레이 건조 등에 의해 조절할 수 있다.
상기 하이드록시기의 양이 0.1 mmol/g 미만이면 조촉매와의 반응자리가 적고, 10 mmol/g을 초과하면 담체 입자 표면에 존재하는 하이드록시기 이외에 수분에서 기인한 것일 가능성이 있기 때문에 바람직하지 않다.
한편, 본 발명에 따른 에틸렌/알파-올레핀 공중합체는, 상술한 혼성 담지 메탈로센 촉매의 존재 하에서, 에틸렌 및 알파-올레핀을 중합시킴으로써 제조할 수 있다.
상기 중합 반응은 하나의 연속식 슬러리 중합 반응기, 루프 슬러리 반응기, 기상 반응기 또는 용액 반응기를 이용하여 에틸렌 및 알파-올레핀을 공중합하여 진행할 수 있다.
또한, 본 발명의 일 구현예에 따르면 수소 기체의 존재 하에 올레핀계 단량체를 공급하여 중합이 진행될 수 있다.
이때, 상기 수소 기체는 중합 초기의 메탈로센 촉매의 급격한 반응을 억제하는 역할을 하여 고분자량 에틸렌/알파-올레핀 공중합체가 보다 많은 양으로 생성될 수 있도록 한다. 따라서, 이러한 수소 기체의 사용 및 사용량의 조절에 의해, 본 발명의 에틸렌/알파-올레핀 공중합체가 효과적으로 얻어질 수 있다.
상기 수소 기체는 이러한 수소 기체 : 올레핀계 단량체의 몰비가 약 1:100 내지 1:1,000으로 되도록 투입될 수 있다. 수소 기체의 사용량이 지나치게 작아지면, 촉매 활성이 충분히 구현되지 않아 원하는 물성을 갖는 에틸렌/알파-올레핀 공중합체의 제조가 어려워질 수 있고, 지나치게 많은 양의 수소 기체를 투입할 경우 촉매의 활성이 충분히 구현되지 않을 수 있다.
한편, 상기 반응기에는, 반응기 내의 수분을 제거하기 위한 유기 알루미늄 화합물이 더욱 투입되어, 이의 존재 하에 중합 반응이 진행될 수 있다. 이러한 유기 알루미늄 화합물의 구체적인 예로는, 트리알킬알루미늄, 디알킬 알루미늄 할라이드, 알킬 알루미늄 디할라이드, 알루미늄 디알킬 하이드라이드 또는 알킬 알루미늄 세스퀴 할라이드 등을 들 수 있으며, 이의 보다 구체적인 예로는, Al(C2H5)3, Al(C2H5)2H, Al(C3H7)3, Al(C3H7)2H, Al(i-C4H9)2H, Al(C8H17)3, Al(C12H25)3, Al(C2H5)(C12H25)2, Al(i-C4H9)(C12H25)2, Al(i-C4H9)2H, Al (i-C4H9)3, (C2H5)2AlCl, (i-C3H9)2AlCl 또는 (C2H5)3Al2Cl3 등을 들 수 있다. 이러한 유기 알루미늄 화합물은 반응기에 연속적으로 투입될 수 있고, 적절한 수분 제거를 위해 반응기에 투입되는 반응 매질의 1kg 당 약 0.1 내지 10몰의 비율로 투입될 수 있다.
그리고, 상기 중합 온도는 약 25 내지 약 500℃, 바람직하게는 약 25 내지 약 200℃, 보다 바람직하게는 약 50 내지 약 150℃일 수 있다. 또한, 중합 압력은 약 1 내지 약 100 Kgf/cm2, 바람직하게는 약 1 내지 약 50 Kgf/cm2, 보다 바람직하게는 약 5 내지 약 30 Kgf/cm2일 수 있다.
상기 담지 메탈로센 촉매는 탄소수 5 내지 12의 지방족 탄화수소 용매, 예를 들면 펜탄, 헥산, 헵탄, 노난, 데칸, 및 이들의 이성질체와 톨루엔, 벤젠과 같은 방향족 탄화수소 용매, 디클로로메탄, 클로로벤젠과 같은 염소원자로 치환된 탄화수소 용매 등에 용해하거나 희석하여 주입할 수 있다. 여기에 사용되는 용매는 소량의 알킬 알루미늄 처리함으로써 촉매 독으로 작용하는 소량의 물 또는 공기 등을 제거하여 사용하는 것이 바람직하며, 조촉매를 더 사용하여 실시하는 것도 가능하다.
본 발명에 따른 에틸렌/알파-올레핀 공중합체는 저분자량의 고분자 쇄를 주로 중합하는 화학식 3의 메탈로센 화합물과, 고분자량의 고분자 쇄를 주로 중합하는 화학식 1의 메탈로센 화합물을 함께 사용하여, 에틸렌 및 알파-올레핀 단량체를 공중합하여 제조된다.
또한 제 1 및 제 2 메탈로센 화합물의 종류 및 함량, 수소 기체의 투입량, 공단량체의 함량 등을 조절하여 다양하게 변화시켜 시킬 수 있으므로, 상기 식 1을 만족하여 원하는 물성의 에틸렌/알파-올레핀 공중합체를 제조할 수 있다. 즉, 제 1 및 제 2 메탈로센 화합물이 갖는 반응성, 알파-올레핀 공단량체의 혼입률이 각각 다르므로, 한 반응기 내에서 메탈로센 화합물의 선택적인 조합과 수소 기체의 투입량 등에 따라 식 1과, 상술한 물성을 갖는 에틸렌/알파-올레핀 공중합체의 제조가 가능하다.
이렇게 제조된 에틸렌/알파-올레핀 공중합체는, 용융 유동 지수 및 용융 유동률비가 넓어 가공성이 우수하며, 동시에 높은 내환경 응력 균열성을 갖추어, 고압 및 고온 환경에서 안정성이 요구되는 식품 용기, 보틀캡 등으로 매우 바람직하게 사용될 수 있다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 이에 의해 본 발명의 내용이 한정되는 것은 아니다.
<실시예>
<메탈로센 화합물 및 담지 촉매의 제조 실시예>
합성예 1 : 제 1 메탈로센 화합물의 합성
Figure 112016099420791-pat00045
1-1 리간드 화합물의 제조
건조된 250 mL schlenk flask에 2.331 g (10 mmol)의 Indenoindole을 넣고 아르곤 하에서 40 mL의 에테르를 주입하였다. 에테르 용액을 0℃까지 냉각한 후, 4.8 mL (12 mmol)의 2.5 M nBuLi hexane solution을 천천히 적가하였다. 반응 혼합물은 천천히 상온으로 올린 후 다음날까지 교반하였다. 다른 250 mL schlenk flask에 에테르 20 mL를 채운 후 3.6 mL (30 mmol)의 dichloromethyl(tertbutoxyhexyl)silane을 주입하였다. 이 flask를 -78℃까지 냉각한 뒤, 여기에 Indenoindole의 lithiated solution을 cannula를 통해 주입하였다. 주입이 끝난 혼합물은 상온으로 천천히 올린 후 약 5시간 동안 교반시킨 후, 하루동안 교반한 후, Flask 내에 50 ml의 물을 넣어 퀸칭하고 유기층을 분리하여 MgSO4로 건조하였다. 감압 하에서 용매로 사용된 에테르를 제거하였다. 이를 NMR로 확인하여 약 95% 이상 순도의 10-((6-(tert-butoxy)hexyl)chloro(methyl)silyl)-5,8-dimethyl-5,10-dihydroindeno[1,2-b]indole 을 얻었다.
Indenoindole part의 합성이 확인된 후, 건조된 100 mL schlenk flask에 1.7 g (10 mmol)의 ((1H-inden-3-yl)methyl)trimethylsilane을 주입하고 40 mL의 에테르에 용해시켰다. 이후 -78℃에서 4.8 ml (12 mmol)의 2.5 M nBuLi hexane solution을 천천히 적가하고 하루 동안 교반하였다. 앞서 합성한 10-((6-(tert-butoxy)hexyl)chloro(methyl)silyl)-5,8-dimethyl-5,10-dihydroindeno[1,2-b]indole 를 40 mL의 에테르에 녹인 후, -78℃에서 ((1H-inden-3-yl)methyl)trimethylsilane의 lithiated solution을 적가하였다. 약 20시간 후, flask 내에 50 mL의 물을 넣어 퀀칭하고 유기층을 분리하여 MgSO4로 건조하였다. Filtration을 통해 얻어진 혼합물은 진공 감압 조건에서 용매를 증발시켰다. 그 결과, 6.5 g (10.2 mmol, 100%)의 10-((6-(tert-butoxy)hexyl)(methyl)(3-((trimethylsilyl)methyl)-1H-inden-1-yl)silyl)-5,8-dimethyl-5,10-dihydroindeno[1,2-b]indo의 노란색 oil을 얻었다.
Mw : 634.05, Purity(wt%) = 100%
1H NMR (500 MHz, CDCl3): -0.40, -0.37 (3H, d), 0.017 (9H, m), 1.10 (4H, m), 1.18 (9H, s), 1.34 (6H, m), 2.41 (3H, m), 3.25 (2H, m), 3.25 (1H, m), 3.53 (1H, m), 4.09 (3H, s), 5.62, 5.82, 5.95, 5.95, 6.11 (1H, s), 7.04 ~ 7.32 (9H, m), 7.54 (1H, m), 7.75 (1H, m).
1-2 메탈로센 화합물의 제조
오븐에 건조한 250 mL schlenk flask에 리간드를 넣고 에테르에 녹인 다음, 2.1당량의 nBuLi solution을 가해 다음날까지 lithiation을 시켰다. 글러브 박스 내에서 1당량의 ZrCl4(THF)2를 취해 250 ml schlenk flask에 담고 에테르 또는 톨루엔을 넣은 suspension을 준비하였다. 위 두 개의 flask 모두 -78℃까지 냉각시킨 후 ligand anion을 천천히 Zr suspension에 가하였다. 주입이 끝난 후, 반응 혼합물은 천천히 상온까지 올렸다. 이 과정에서 메탈레이션이 성공적으로 진행되고 있는 경우, 촉매 전구체 특유의 색인 자주색이 나타나는 것이 확인되었다. 이를 하루동안 교반한 후, 혼합물 내의 톨루엔 또는 에테르를 약 1/5 volume까지 진공 감압을 통해 제거하고 남아있는 용매의 5배 정도 volume의 헥산을 가하였다. 이 때 헥산을 가하는 이유는 합성된 촉매 전구체가 헥산에 대한 용해도가 떨어지기 때문에 결정화를 촉진시키기 위해서이다. 이 hexane slurry를 아르곤 하에서 필터하고 여과 후 필터된 고체와 여과액을 모두 진공 감압하에서 증발시켰다. 위에 남은 filter cake을 글러브 박스 내에서 계량하고 샘플링하여 합성 여부와 수율, 순도를 확인하였다. 메탈레이션의 용매로는 에테르를 사용하였으며 6.4 g (10 mmol)의 리간드로부터 6.08 g (76.5%)의 자주색 고체가 얻어졌다.
NMR 기준 purity (wt%) = 100%, Mw = 794.17
1H NMR (500 MHz, CDCl3): -0.23, -0.16 (9H, d), 0.81 (3H, m), 1.17 (9H, m), 1.20 ~1.24 (3H, m), 1.31 (2H, s), 1.62 ~ 1.74 (5H, m), 1.99 ~ 2.11 (2H, m), 2.55 (3H, d), 3.33 (2H, m), 3.95, 4.13 (3H, s), 5.17, 5.21, 5.32 (1H, s), 6.89 ~7.07 (3H, m), 7.12 ~ 7.21 (3H, m), 7.29 (1H, m), 7.36 (1H, m), 7.44 (1H, m), 7.84 (1H, m).
합성예 2 : 제 2 메탈로센 화합물의 합성
Figure 112016099420791-pat00046
2-1 리간드 화합물의 제조
건조된 250 mL Schlenk flask에 10.8 g (100 mmol)의 chlorobutanol을 넣은 후 10 g의 molecular sieve와 100 mL의 MTBE를 가한 다음 20 g의 황산을 30분에 걸쳐 천천히 가하였다. 반응 혼합물은 시간이 지나며 천천히 분홍색으로 변하며, 16시간 이후 얼음으로 차갑게 식힌 포화 sodium bicarbonate 용액에 부었다. 이 혼합물에 ether (100 mL x 4)를 가해 여러 번 추출해내고, 모인 유기층은 MgSO4로 건조하고 여과를 거친 다음 진공 감압 하에서 용매를 제거하여 노란색의 액체 형태의 1-(tert butoxy)-4-chlorobutane 10 g (60% 수율)을 얻었다.
1 H NMR (500MHz, CDCl3): 1.16 (9H, s), 1.67 ~ 1.76 (2H, m), 1.86 ~ 1.90 (2H, m), 1.94 (1H, m), 3.36 (2H, m), 3.44 (1H, m), 3.57 (3H, m)
건조된 250 mL Schlenk flask에 4.5 g (25 mmol)의 상기에서 합성합 1-(tert butoxy)-4-chlorobutane을 넣고 40 mL의 THF에 녹였다. 여기에 20 mL의 sodium cyclopentadienylide THF 용액을 천천히 가한 후 하룻동안 교반시켰다. 이 반응 혼합물에 50 mL의 물을 가해 퀀칭(quenching)시키고, ether로 추출(50 mL x 3)한 다음 모인 유기층을 brine으로 충분히 씻어주었다. MgSO4로 남은 수분을 건조하고 여과한 다음, 진공 감압 하에 용매를 제거함으로써 어두운 갈색의 점성이 있는 형태의 생성물인 2-(4-(tert-butoxy)butyl) cyclopenta-1,3-diene을 정량 수율로 수득하였다.
1 H NMR (500MHz, CDCl3): 1.16 (9H, s), 1.54 ~ 1.60 (4H, m), 1.65 (1H, m), 1.82 (1H, m), 2.37 ~ 2.42 (2H, m), 2.87, 2.92 (2H, s), 3.36 (2H, m), 5.99 (0.5H, s), 6.17 (0.5H, s), 6.25 (0.5H, s), 6.34 (0.5H, s), 6.42 (1H, s)
2-2 메탈로센 화합물의 제조
건조된 250 mL Schlenk flask에 1-1에서 합성한 리간드 화합물 4.3 g(23 mmol)을 넣고 60 mL의 THF에 녹였다. 여기에 11 mL의 n-BuLi 2.0M hexane solution (28 mmol)을 가하고 하룻동안 교반시킨 다음, 이 용액을 ZrCl4(THF)2 3.83 g(10.3 mmol)을 50 mL의 ether에 분산시킨 플라스크에 -78℃에서 천천히 가하였다.
이 반응 혼합물은 상온까지 올리면 옅은 갈색의 서스펜션에서 탁한 노란색이 서스펜션 형태로 변하였다. 하룻동안 교반시킨 후 반응 혼합물의 용매를 모두 건조시키고 200 mL의 헥산을 넣어 sonication을 하여 가라앉힌 다음, 위층에 뜬 헥산 용액을 cannula로 decantation하여 모았다. 이 과정을 2회 반복하여 얻은 헥산 용액을 진공 감압하에서 건조하여 옅은 노란색 고체 형태의 화합물인 bis(3-(4-(tert-butoxy)butyl-2,4-dien-yl) zirconium(IV) chloride가 생성되었음을 확인하였다.
1 H NMR (500MHz, CDCl3): 0.84 (6H, m), 1.14 (18H, s), 1.55 ~ 1.61 (8H, m), 2.61 (4H, m), 3.38 (4H, m), 6.22 (3H, s), 6.28 (3H, s)
제조예 1: 담지 촉매의 제조
300mL의 유리 반응기에 톨루엔 용액 50mL을 넣고 건조된 실리카(Grace Davison사 제조, SP 2410) 10g을 투입한 후, 반응기 온도를 40℃로 올리면서 교반하였다. 10 중량% 메틸알루미녹산(MAO)/톨루엔 용액을 60mL 투입하고, 60℃로 온도를 올린 후 200rpm으로 12시간 동안 교반하였다. 반응기 온도를 40℃로 낮춘 후 교반을 중지하고 10분 동안 settling한 후 반응 용액을 디캔테이션(decantation)하였다. 다시 톨루엔 100mL를 투입하고 10분 동안 교반한 후, 교반을 중지하고 10분 동안 settling한 후 톨루엔 용액을 디캔테이션하였다.
반응기에 톨루엔 50mL를 투입하고 고분자량 촉매 전구체로 상기 합성예 1의 메탈로센 화합물 0.50g과 톨루엔 10mL을 반응기에 투입하고 200rpm으로 60분간 교반하였다. 여기에 저분자량 촉매 전구체로 상기 합성예 2의 메탈로센 화합물 0.5g과 톨루엔 10mL을 반응기에 투입하고 200rpm으로 12시간 동안 교반하였다.
이후 교반을 중지하고 10분간 settling한 후 반응 용액을 디캔테이션하였다. 반응기에 헥산 100mL를 투입하고 헥산 슬러리를 250mL schlenk flask로 이송하여 헥산 용액을 디켄테이션하고, 상온에서 3시간 동안 감압 건조하여 혼성 담지 메탈로센 촉매를 제조하였다.
<에틸렌/알파-올레핀 공중합체의 제조>
실시예 1
상기 제조예 1에서 제조한 혼성 담지 촉매를 글러브 박스(glove box)에서 정량하여 50mL의 유리병에 담은 후, 고무 격막으로 밀봉하여 글러브 박스에서 꺼내어 중합에 주입할 촉매를 준비하였다. 중합은 기계식 교반기가 장착되고 온도 조절이 가능하며, 고압에서 사용할 수 있는 600mL 금속 합금 반응기에서 수행하였다.
이 반응기에 1.0mmol의 트리에틸알루미늄(triethylaluminium)이 들어있는 헥산 400mL와, 상기에서 준비한 혼성 담지 촉매를 반응기에 공기 접촉없이 투입한 후, 80℃에서 1-부텐 4g을 투입하였다. 반응기에 기체 에틸렌 단량체를 9 kgf/cm2의 압력으로 계속적으로 가하면서 1시간 동안 중합하였다. 중합의 종결은 먼저 반응을 멈춘 후 미반응 에틸렌을 배기시켜 제거함으로써 완료시켰다.
이로부터 얻어진 중합체 생성물을 여과하여 용매 대부분을 제거한 후 80℃ 진공 오븐에서 4시간 동안 건조시켰다.
실시예 2 내지 7
중합시 에틸렌 부피 대비 0.5 v/v% 이하의 범위 내에서 수소 기체를 추가로 투입하여 공중합체의 물성을 조절한 것을 제외하고는 실시예 1과 동일한 방법을 에틸렌/알파-올레핀 공중합체를 제조하였다.
비교예 1
INEOS社의 HDPE인 CAP602를 비교예 1로 준비하였다.
비교예 2
INEOS社의 HDPE인 CAP508을 비교예 2로 준비하였다.
상기 실시예 및 비교예에서 제조된 에틸렌/알파-올레핀 공중합체에 대해 하기의 방법으로 물성을 측정하고, MFR, MFRR, 스파이럴 플로우 길이로부터 z값을 계산하여 표 1에 나타내었다.
1) 밀도(Density, g/cm3): ASTM 1505
2) 용융지수(MFR, 2.16 kg): 측정 온도 190℃, ASTM 1238
3) 용융유동률비(MFRR, MFR5/MFR2 .16): MFR5 용융지수(MFR, 190℃, 5kg 하중)를 MFR2.16(MFR, 190℃, 2.16kg 하중)으로 나눈 비율이다.
4) Mn, Mw, PDI: 샘플을 PL-SP260을 이용하여 BHT 0.0125% 포함된 1,2,4-Trichlorobenzene에서 160℃, 10시간 동안 녹여 전처리하고, PL-GPC220을 이용하여 측정 온도 160℃에서 수 평균분자량, 중량 평균분자량을 측정하였다. 분자량 분포(PDI)는 중량 평균분자량과 수 평균분자량의 비로 나타내었다.
2) 스파이럴 플로우 길이(SF: Spiral flow length): ENGEL 150톤 사출기를 사용하였으며, 금형 두께는 1.5 mm, 사출 온도는 190℃, 금형 온도는 50℃, 사출 압력을 90 bar로 하여 측정하였다.
6) z값: SF - (5.92*MFR2 .16) - (2.369*MFRR5 /2.16)
Mw (g/mol) PDI MFR2.16
(g/10min)
MFRR Density (g/cm3) SF
(cm)
Z값
실시예 1 174,000 14.7 0.19 6.16 0.951 18.0 2.28216
실시예 2 190,000 15.1 0.25 7.45 0.950 19.0 -0.12905
실시예 3 203,000 10.8 0.27 6.93 0.951 16.0 -2.21557
실시예 4 155,000 14.5 0.29 6.07 0.953 18.0 1.90337
실시예 5 151,000 14.8 0.31 5.58 0.950 18.0 2.94578
실시예 6 142,000 12.9 0.42 7.37 0.953 21.0 1.05407
실시예 7 161,000 15.7 0.46 5.50 0.953 17.0 1.2473
비교예 1 133,000 9.8 0.82 3.40 0.952 9.5 -3.409
비교예 2 110,000 14.4 1.77 3.30 0.952 14.0 -4.2961
< 실험예 >
상기 실시예 및 비교예에서 제조된 에틸렌/알파-올레핀 공중합체에 대하여 하기의 방법으로 물성을 측정하였다.
1) 내환경 응력 균열성(ESCR, environmental stress crack resistance): ASTM D1673에 따라 측정하였다.
상기 결과를 하기 표 2에 나타내었다.
ESCR (hr)
실시예 1 240
실시예 2 >300
실시예 3 >300
실시예 4 >300
실시예 5 >300
실시예 6 >300
실시예 7 >300
비교예 1 180
비교예 2 140
표 1 및 2을 참고하면, 식 1에서 z값이 소정의 범위를 만족하는 실시예 1 내지 7의 에틸렌/알파-올레핀 공중합체는 내환경 응력 균열성이 200 시간 이상이며 며 높은 SF값으로 향상된 가공성을 지녀, 양호한 가공성 및 안정성을 모두 만족시킴을 알 수 있다.

Claims (6)

  1. 하기 식 1을 만족하고, 용융지수(MFR, 190℃, 2.16kg)가 0.01 내지 1.0인, 에틸렌/알파-올레핀 공중합체:
    [식 1]
    -3 < SF - (5.92*MFR2.16) - (2.369*MFRR5/2.16) < 3
    식 1에서,
    SF는 ENGEL 150톤 사출기를 사용하여 두께 1.5 mm의 나선형의 금형에, 사출 온도 190℃, 금형 온도 50℃ 및 사출 압력을 90 bar로 설정하여 측정한 스파이럴 플로우 길이(spiral flow length)를, MFR2.16는 ASTM D1238에 의거하여 190℃, 2.16 kg 하중에서 측정한 용융 유동 지수를, MFRR5/2.16은 ASTM D1238에 의거하여 190℃, 5kg 하중에서 측정한 용융 유동 지수를 190℃, 2.16 kg 하중에서 측정한 용융 유동 지수로 나눈 값을 의미한다.
  2. 제1항에 있어서,
    스파이럴 플로우 길이(spiral flow length, 190℃, 90 bar)가 10 내지 21 cm인,
    에틸렌/알파-올레핀 공중합체.
  3. 제1항에 있어서,
    MFRR5/2.16(ASTM D1238에 의거하여 190℃, 5kg 하중에서 측정한 용융 유동 지수를 190℃, 2.16 kg 하중에서 측정한 용융 유동 지수로 나눈 값)이 5 내지 10인,
    에틸렌/알파-올레핀 공중합체.
  4. 제1항에 있어서,
    중량 평균 분자량(Mw)이 100,000 내지 300,000 g/mol 이고,
    분자량 분포(Mw/Mn)가 10 내지 20이고,
    밀도가 0.950 내지 0.960 g/cm3인,
    에틸렌/알파-올레핀 공중합체.
  5. 제1항에 있어서,
    상기 알파-올레핀은, 프로필렌, 1-부텐, 1-펜텐, 4-메틸-1-펜텐, 1-헥센, 1-헵텐, 1-옥텐, 1-데센, 1-운데센, 1-도데센, 1-테트라데센, 1-헥사데센 및 1-에이코센으로 구성되는 군으로부터 선택되는 어느 하나 이상인,
    에틸렌/알파-올레핀 공중합체.
  6. 제1항에 있어서,
    메탈로센 촉매화된(metallocene catalyzed) 것인, 에틸렌/알파-올레핀 공중합체.
KR1020160133020A 2016-10-13 2016-10-13 가공성이 우수한 에틸렌/알파-올레핀 공중합체 Active KR102228533B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160133020A KR102228533B1 (ko) 2016-10-13 2016-10-13 가공성이 우수한 에틸렌/알파-올레핀 공중합체

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160133020A KR102228533B1 (ko) 2016-10-13 2016-10-13 가공성이 우수한 에틸렌/알파-올레핀 공중합체

Publications (2)

Publication Number Publication Date
KR20180040998A KR20180040998A (ko) 2018-04-23
KR102228533B1 true KR102228533B1 (ko) 2021-03-15

Family

ID=62089264

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160133020A Active KR102228533B1 (ko) 2016-10-13 2016-10-13 가공성이 우수한 에틸렌/알파-올레핀 공중합체

Country Status (1)

Country Link
KR (1) KR102228533B1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018093078A1 (ko) * 2016-11-15 2018-05-24 주식회사 엘지화학 내환경 응력 균열성이 우수한 에틸렌/알파-올레핀 공중합체
EP3434700B1 (en) * 2016-11-15 2022-09-14 LG Chem, Ltd. Ethylene/alpha-olefin copolymer having excellent processability
KR102578777B1 (ko) * 2019-10-07 2023-09-14 주식회사 엘지화학 폴리에틸렌 및 이의 염소화 폴리에틸렌
US20220177614A1 (en) * 2019-10-07 2022-06-09 Lg Chem, Ltd. Polyethylene and Its Chlorinated Polyethylene

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005307002A (ja) 2004-04-21 2005-11-04 Tosoh Corp 樹脂キャップ
US20110217499A1 (en) 2008-08-29 2011-09-08 Basell Polyolefine Gmbh Polyethylene for Injection Moldings

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2446180C2 (ru) * 2006-06-27 2012-03-27 ЮНИВЕЙШН ТЕКНОЛОДЖИЗ, ЭлЭлСи Полимеры, изготовленные с металлоценовыми катализаторами, для применения в изделиях, изготовленных центробежным и инъекционным формованием
KR101685662B1 (ko) * 2013-11-21 2016-12-12 주식회사 엘지화학 폴리올레핀의 제조 방법 및 이로부터 제조된 폴리올레핀
EP3040375B2 (en) * 2014-12-30 2025-06-18 Abu Dhabi Polymers Co. Ltd (Borouge) LLC. Hdpe

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005307002A (ja) 2004-04-21 2005-11-04 Tosoh Corp 樹脂キャップ
US20110217499A1 (en) 2008-08-29 2011-09-08 Basell Polyolefine Gmbh Polyethylene for Injection Moldings

Also Published As

Publication number Publication date
KR20180040998A (ko) 2018-04-23

Similar Documents

Publication Publication Date Title
KR102285480B1 (ko) 폴리에틸렌 공중합체 및 이의 제조 방법
JP6487924B2 (ja) 加工性および環境応力亀裂抵抗性に優れたエチレン/1−ヘキセンまたはエチレン/1−ブテン共重合体
CN106232638B (zh) 具有优异耐环境应力开裂性的聚烯烃
CN108401432B (zh) 用于合成烯烃共聚物的催化剂组合物和制备烯烃共聚物的方法
KR102204960B1 (ko) 혼성 담지 메탈로센 촉매의 제조방법, 상기 제조방법으로 제조된 혼성 담지 메탈로센 촉매, 및 이를 이용하는 폴리올레핀의 제조방법
KR101709688B1 (ko) 폴리올레핀의 제조 방법 및 이로부터 제조된 폴리올레핀
KR102234944B1 (ko) 올레핀 공중합체
KR102064990B1 (ko) 에틸렌 슬러리 중합용 혼성 담지 촉매 시스템 및 이를 이용한 에틸렌 중합체의 제조 방법
KR102073253B1 (ko) 혼성 담지 메탈로센 촉매 및 이를 이용한 폴리올레핀의 제조 방법
WO2017146375A1 (ko) 혼성 담지 메탈로센 촉매 및 이를 이용한 폴리올레핀의 제조 방법
US10501563B2 (en) Method of preparing supported metallocene catalyst
KR102028063B1 (ko) 전이 금속 화합물, 이를 포함하는 촉매 조성물 및 이를 이용하는 올레핀 중합체의 제조 방법
WO2016167547A1 (ko) 내환경 응력 균열성이 우수한 에틸렌/알파-올레핀 공중합체
KR102229002B1 (ko) 가공성 및 내환경 응력 균열성이 우수한 에틸렌/알파-올레핀 공중합체
JP2019524963A (ja) エチレン/アルファ−オレフィン共重合体
KR20160123172A (ko) 가공성이 우수한 에틸렌/알파-올레핀 공중합체
KR102228533B1 (ko) 가공성이 우수한 에틸렌/알파-올레핀 공중합체
KR102211603B1 (ko) 올레핀 공중합체 합성용 촉매 조성물 및 올레핀 공중합체의 제조 방법
US20200123357A1 (en) Olefin Polymer And Method For Preparing Same
KR102048521B1 (ko) 내환경 응력 균열성이 우수한 에틸렌/알파-올레핀 공중합체
KR102724460B1 (ko) 혼성 담지 메탈로센 촉매 및 이를 이용한 폴리올레핀의 제조 방법
KR102174389B1 (ko) 내환경 응력 균열성이 우수한 에틸렌/알파-올레핀 공중합체
KR102074510B1 (ko) 혼성 담지 촉매 및 이를 이용하는 올레핀 중합체의 제조 방법
KR102580844B1 (ko) 에틸렌-알파올레핀의 제조 방법 및 사출 성형품의 제조 방법
KR20180055558A (ko) 기계적 물성 및 가공성이 우수한 에틸렌/알파-올레핀 공중합체

Legal Events

Date Code Title Description
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20161013

PG1501 Laying open of application
A201 Request for examination
PA0201 Request for examination

Patent event code: PA02012R01D

Patent event date: 20190725

Comment text: Request for Examination of Application

Patent event code: PA02011R01I

Patent event date: 20161013

Comment text: Patent Application

E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20200825

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20210223

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20210310

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20210310

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
PR1001 Payment of annual fee

Payment date: 20231226

Start annual number: 4

End annual number: 4

PR1001 Payment of annual fee

Payment date: 20241219

Start annual number: 5

End annual number: 5