US20090239749A1 - Biocidal compositions - Google Patents
Biocidal compositions Download PDFInfo
- Publication number
- US20090239749A1 US20090239749A1 US12/309,293 US30929307A US2009239749A1 US 20090239749 A1 US20090239749 A1 US 20090239749A1 US 30929307 A US30929307 A US 30929307A US 2009239749 A1 US2009239749 A1 US 2009239749A1
- Authority
- US
- United States
- Prior art keywords
- water
- biocide
- dispersion
- insoluble
- nano
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 230000003115 biocidal effect Effects 0.000 title claims abstract description 98
- 239000000203 mixture Substances 0.000 title claims abstract description 86
- 239000003139 biocide Substances 0.000 claims abstract description 101
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 94
- 238000000034 method Methods 0.000 claims abstract description 53
- 239000006185 dispersion Substances 0.000 claims abstract description 48
- 239000002904 solvent Substances 0.000 claims abstract description 45
- 239000012876 carrier material Substances 0.000 claims abstract description 42
- 238000001694 spray drying Methods 0.000 claims abstract description 19
- 239000004009 herbicide Substances 0.000 claims abstract description 15
- 230000008569 process Effects 0.000 claims abstract description 14
- 230000002363 herbicidal effect Effects 0.000 claims abstract description 8
- 239000000839 emulsion Substances 0.000 claims description 40
- 239000000243 solution Substances 0.000 claims description 39
- 238000001035 drying Methods 0.000 claims description 34
- -1 ii) optionally Substances 0.000 claims description 28
- 239000003125 aqueous solvent Substances 0.000 claims description 19
- 238000011282 treatment Methods 0.000 claims description 11
- 239000000758 substrate Substances 0.000 claims description 10
- 241001465754 Metazoa Species 0.000 claims description 8
- 238000002360 preparation method Methods 0.000 claims description 8
- 206010061217 Infestation Diseases 0.000 claims description 4
- 239000007864 aqueous solution Substances 0.000 claims description 3
- 208000015181 infectious disease Diseases 0.000 claims description 3
- 239000002689 soil Substances 0.000 claims description 3
- 238000005507 spraying Methods 0.000 claims description 3
- 238000005406 washing Methods 0.000 claims description 3
- 238000007598 dipping method Methods 0.000 claims description 2
- 238000011321 prophylaxis Methods 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 claims 3
- 239000002245 particle Substances 0.000 description 56
- 239000000463 material Substances 0.000 description 50
- 239000004094 surface-active agent Substances 0.000 description 41
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 40
- 239000012071 phase Substances 0.000 description 38
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 30
- 229960001701 chloroform Drugs 0.000 description 21
- 229920001223 polyethylene glycol Polymers 0.000 description 20
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 18
- 239000002202 Polyethylene glycol Substances 0.000 description 18
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 16
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 16
- CRQQGFGUEAVUIL-UHFFFAOYSA-N chlorothalonil Chemical compound ClC1=C(Cl)C(C#N)=C(Cl)C(C#N)=C1Cl CRQQGFGUEAVUIL-UHFFFAOYSA-N 0.000 description 15
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 15
- 239000000843 powder Substances 0.000 description 15
- 239000007787 solid Substances 0.000 description 15
- 239000007921 spray Substances 0.000 description 15
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 14
- 239000000047 product Substances 0.000 description 14
- 239000005747 Chlorothalonil Substances 0.000 description 13
- 229920000642 polymer Polymers 0.000 description 13
- XMAYWYJOQHXEEK-ZEQKJWHPSA-N (2S,4R)-ketoconazole Chemical compound C1CN(C(=O)C)CCN1C(C=C1)=CC=C1OC[C@H]1O[C@](CN2C=NC=C2)(C=2C(=CC(Cl)=CC=2)Cl)OC1 XMAYWYJOQHXEEK-ZEQKJWHPSA-N 0.000 description 12
- 229920002451 polyvinyl alcohol Polymers 0.000 description 12
- STJLVHWMYQXCPB-UHFFFAOYSA-N propiconazole Chemical compound O1C(CCC)COC1(C=1C(=CC(Cl)=CC=1)Cl)CN1N=CN=C1 STJLVHWMYQXCPB-UHFFFAOYSA-N 0.000 description 12
- 239000004372 Polyvinyl alcohol Substances 0.000 description 11
- 239000005822 Propiconazole Substances 0.000 description 11
- SMVRDGHCVNAOIN-UHFFFAOYSA-L disodium;1-dodecoxydodecane;sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O.CCCCCCCCCCCCOCCCCCCCCCCCC SMVRDGHCVNAOIN-UHFFFAOYSA-L 0.000 description 11
- 239000000417 fungicide Substances 0.000 description 11
- 229960004125 ketoconazole Drugs 0.000 description 11
- 229940068984 polyvinyl alcohol Drugs 0.000 description 11
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 11
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 10
- 239000002198 insoluble material Substances 0.000 description 10
- 150000003839 salts Chemical class 0.000 description 10
- 230000000694 effects Effects 0.000 description 9
- 230000000855 fungicidal effect Effects 0.000 description 9
- WFDXOXNFNRHQEC-GHRIWEEISA-N azoxystrobin Chemical compound CO\C=C(\C(=O)OC)C1=CC=CC=C1OC1=CC(OC=2C(=CC=CC=2)C#N)=NC=N1 WFDXOXNFNRHQEC-GHRIWEEISA-N 0.000 description 8
- 238000009472 formulation Methods 0.000 description 8
- 239000000523 sample Substances 0.000 description 8
- 239000005730 Azoxystrobin Substances 0.000 description 7
- 229920000463 Poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) Polymers 0.000 description 7
- 229940121375 antifungal agent Drugs 0.000 description 7
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 7
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 7
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 7
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 241000196324 Embryophyta Species 0.000 description 6
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 6
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 6
- RVGRUAULSDPKGF-UHFFFAOYSA-N Poloxamer Chemical compound C1CO1.CC1CO1 RVGRUAULSDPKGF-UHFFFAOYSA-N 0.000 description 6
- 230000000844 anti-bacterial effect Effects 0.000 description 6
- 239000008346 aqueous phase Substances 0.000 description 6
- 238000000889 atomisation Methods 0.000 description 6
- 238000004945 emulsification Methods 0.000 description 6
- 238000004108 freeze drying Methods 0.000 description 6
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 6
- 239000002917 insecticide Substances 0.000 description 6
- PUIYMUZLKQOUOZ-UHFFFAOYSA-N isoproturon Chemical compound CC(C)C1=CC=C(NC(=O)N(C)C)C=C1 PUIYMUZLKQOUOZ-UHFFFAOYSA-N 0.000 description 6
- 239000011159 matrix material Substances 0.000 description 6
- 239000000725 suspension Substances 0.000 description 6
- ZXQYGBMAQZUVMI-RDDWSQKMSA-N (1S)-cis-(alphaR)-cyhalothrin Chemical compound CC1(C)[C@H](\C=C(/Cl)C(F)(F)F)[C@@H]1C(=O)O[C@@H](C#N)C1=CC=CC(OC=2C=CC=CC=2)=C1 ZXQYGBMAQZUVMI-RDDWSQKMSA-N 0.000 description 5
- JNYAEWCLZODPBN-JGWLITMVSA-N (2r,3r,4s)-2-[(1r)-1,2-dihydroxyethyl]oxolane-3,4-diol Chemical compound OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O JNYAEWCLZODPBN-JGWLITMVSA-N 0.000 description 5
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 5
- XEFQLINVKFYRCS-UHFFFAOYSA-N Triclosan Chemical compound OC1=CC(Cl)=CC=C1OC1=CC=C(Cl)C=C1Cl XEFQLINVKFYRCS-UHFFFAOYSA-N 0.000 description 5
- 230000008901 benefit Effects 0.000 description 5
- 239000006184 cosolvent Substances 0.000 description 5
- 150000002148 esters Chemical class 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 5
- 238000000265 homogenisation Methods 0.000 description 5
- 239000005910 lambda-Cyhalothrin Substances 0.000 description 5
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 4
- 241000222122 Candida albicans Species 0.000 description 4
- 150000001298 alcohols Chemical class 0.000 description 4
- 235000010443 alginic acid Nutrition 0.000 description 4
- 229920000615 alginic acid Polymers 0.000 description 4
- 150000001412 amines Chemical class 0.000 description 4
- 239000011324 bead Substances 0.000 description 4
- 229940095731 candida albicans Drugs 0.000 description 4
- 125000002091 cationic group Chemical group 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 4
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 4
- 229940071676 hydroxypropylcellulose Drugs 0.000 description 4
- 230000005764 inhibitory process Effects 0.000 description 4
- 229910010272 inorganic material Inorganic materials 0.000 description 4
- 239000011147 inorganic material Substances 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 238000011068 loading method Methods 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 239000002195 soluble material Substances 0.000 description 4
- 229960003500 triclosan Drugs 0.000 description 4
- 239000005631 2,4-Dichlorophenoxyacetic acid Substances 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 3
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 125000000217 alkyl group Chemical group 0.000 description 3
- 230000000843 anti-fungal effect Effects 0.000 description 3
- 239000003429 antifungal agent Substances 0.000 description 3
- 238000009835 boiling Methods 0.000 description 3
- 210000004027 cell Anatomy 0.000 description 3
- RLGQACBPNDBWTB-UHFFFAOYSA-N cetyltrimethylammonium ion Chemical compound CCCCCCCCCCCCCCCC[N+](C)(C)C RLGQACBPNDBWTB-UHFFFAOYSA-N 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 239000004064 cosurfactant Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 229940079593 drug Drugs 0.000 description 3
- 239000003814 drug Substances 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 239000002105 nanoparticle Substances 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- 229910052708 sodium Inorganic materials 0.000 description 3
- 159000000000 sodium salts Chemical class 0.000 description 3
- 235000000346 sugar Nutrition 0.000 description 3
- 150000008163 sugars Chemical class 0.000 description 3
- QPFMBZIOSGYJDE-UHFFFAOYSA-N 1,1,2,2-tetrachloroethane Chemical compound ClC(Cl)C(Cl)Cl QPFMBZIOSGYJDE-UHFFFAOYSA-N 0.000 description 2
- PXMNMQRDXWABCY-UHFFFAOYSA-N 1-(4-chlorophenyl)-4,4-dimethyl-3-(1H-1,2,4-triazol-1-ylmethyl)pentan-3-ol Chemical compound C1=NC=NN1CC(O)(C(C)(C)C)CCC1=CC=C(Cl)C=C1 PXMNMQRDXWABCY-UHFFFAOYSA-N 0.000 description 2
- OVSKIKFHRZPJSS-UHFFFAOYSA-N 2,4-D Chemical compound OC(=O)COC1=CC=C(Cl)C=C1Cl OVSKIKFHRZPJSS-UHFFFAOYSA-N 0.000 description 2
- WNZQDUSMALZDQF-UHFFFAOYSA-N 2-benzofuran-1(3H)-one Chemical compound C1=CC=C2C(=O)OCC2=C1 WNZQDUSMALZDQF-UHFFFAOYSA-N 0.000 description 2
- NOWKCMXCCJGMRR-UHFFFAOYSA-N Aziridine Chemical compound C1CN1 NOWKCMXCCJGMRR-UHFFFAOYSA-N 0.000 description 2
- 229920000858 Cyclodextrin Polymers 0.000 description 2
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 2
- 206010017533 Fungal infection Diseases 0.000 description 2
- 241000233866 Fungi Species 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- 239000005800 Kresoxim-methyl Substances 0.000 description 2
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Chemical compound C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 description 2
- 208000031888 Mycoses Diseases 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- AMQJEAYHLZJPGS-UHFFFAOYSA-N N-Pentanol Chemical compound CCCCCO AMQJEAYHLZJPGS-UHFFFAOYSA-N 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- DLRVVLDZNNYCBX-UHFFFAOYSA-N Polydextrose Polymers OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(O)O1 DLRVVLDZNNYCBX-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- 229930182692 Strobilurin Natural products 0.000 description 2
- 239000005839 Tebuconazole Substances 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 241000700605 Viruses Species 0.000 description 2
- 239000003905 agrochemical Substances 0.000 description 2
- 150000001335 aliphatic alkanes Chemical class 0.000 description 2
- 150000003863 ammonium salts Chemical class 0.000 description 2
- 239000003242 anti bacterial agent Substances 0.000 description 2
- 229940088710 antibiotic agent Drugs 0.000 description 2
- 239000004599 antimicrobial Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- TWFZGCMQGLPBSX-UHFFFAOYSA-N carbendazim Chemical compound C1=CC=C2NC(NC(=O)OC)=NC2=C1 TWFZGCMQGLPBSX-UHFFFAOYSA-N 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 210000002421 cell wall Anatomy 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- SNRUBQQJIBEYMU-UHFFFAOYSA-N dodecane Chemical compound CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 2
- 238000002296 dynamic light scattering Methods 0.000 description 2
- 235000013399 edible fruits Nutrition 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- XDDAORKBJWWYJS-UHFFFAOYSA-N glyphosate Chemical compound OC(=O)CNCP(O)(O)=O XDDAORKBJWWYJS-UHFFFAOYSA-N 0.000 description 2
- 230000012010 growth Effects 0.000 description 2
- CPBQJMYROZQQJC-UHFFFAOYSA-N helium neon Chemical compound [He].[Ne] CPBQJMYROZQQJC-UHFFFAOYSA-N 0.000 description 2
- ZSIAUFGUXNUGDI-UHFFFAOYSA-N hexan-1-ol Chemical compound CCCCCCO ZSIAUFGUXNUGDI-UHFFFAOYSA-N 0.000 description 2
- 229920001519 homopolymer Polymers 0.000 description 2
- 150000002460 imidazoles Chemical class 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 2
- ZXEKIIBDNHEJCQ-UHFFFAOYSA-N isobutanol Chemical compound CC(C)CO ZXEKIIBDNHEJCQ-UHFFFAOYSA-N 0.000 description 2
- 150000002576 ketones Chemical class 0.000 description 2
- ZOTBXTZVPHCKPN-HTXNQAPBSA-N kresoxim-methyl Chemical compound CO\N=C(\C(=O)OC)C1=CC=CC=C1COC1=CC=CC=C1C ZOTBXTZVPHCKPN-HTXNQAPBSA-N 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- FQPSGWSUVKBHSU-UHFFFAOYSA-N methacrylamide Chemical compound CC(=C)C(N)=O FQPSGWSUVKBHSU-UHFFFAOYSA-N 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 2
- 230000017095 negative regulation of cell growth Effects 0.000 description 2
- 239000011368 organic material Substances 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 235000021317 phosphate Nutrition 0.000 description 2
- 150000004291 polyenes Chemical class 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 2
- 150000003856 quaternary ammonium compounds Chemical class 0.000 description 2
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 2
- 238000004513 sizing Methods 0.000 description 2
- 239000000344 soap Substances 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 150000003871 sulfonates Chemical class 0.000 description 2
- 230000009885 systemic effect Effects 0.000 description 2
- 150000003852 triazoles Chemical class 0.000 description 2
- 239000002023 wood Substances 0.000 description 2
- XERJKGMBORTKEO-VZUCSPMQSA-N (1e)-2-(ethylcarbamoylamino)-n-methoxy-2-oxoethanimidoyl cyanide Chemical compound CCNC(=O)NC(=O)C(\C#N)=N\OC XERJKGMBORTKEO-VZUCSPMQSA-N 0.000 description 1
- BLSQLHNBWJLIBQ-OZXSUGGESA-N (2R,4S)-terconazole Chemical compound C1CN(C(C)C)CCN1C(C=C1)=CC=C1OC[C@@H]1O[C@@](CN2N=CN=C2)(C=2C(=CC(Cl)=CC=2)Cl)OC1 BLSQLHNBWJLIBQ-OZXSUGGESA-N 0.000 description 1
- MQHLMHIZUIDKOO-OKZBNKHCSA-N (2R,6S)-2,6-dimethyl-4-[(2S)-2-methyl-3-[4-(2-methylbutan-2-yl)phenyl]propyl]morpholine Chemical compound C1=CC(C(C)(C)CC)=CC=C1C[C@H](C)CN1C[C@@H](C)O[C@@H](C)C1 MQHLMHIZUIDKOO-OKZBNKHCSA-N 0.000 description 1
- ZMYFCFLJBGAQRS-IAGOWNOFSA-N (2S,3R)-epoxiconazole Chemical compound C1=CC(F)=CC=C1[C@]1(CN2N=CN=C2)[C@@H](C=2C(=CC=CC=2)Cl)O1 ZMYFCFLJBGAQRS-IAGOWNOFSA-N 0.000 description 1
- RYAUSSKQMZRMAI-ALOPSCKCSA-N (2S,6R)-4-[3-(4-tert-butylphenyl)-2-methylpropyl]-2,6-dimethylmorpholine Chemical compound C=1C=C(C(C)(C)C)C=CC=1CC(C)CN1C[C@H](C)O[C@H](C)C1 RYAUSSKQMZRMAI-ALOPSCKCSA-N 0.000 description 1
- CXNPLSGKWMLZPZ-GIFSMMMISA-N (2r,3r,6s)-3-[[(3s)-3-amino-5-[carbamimidoyl(methyl)amino]pentanoyl]amino]-6-(4-amino-2-oxopyrimidin-1-yl)-3,6-dihydro-2h-pyran-2-carboxylic acid Chemical compound O1[C@@H](C(O)=O)[C@H](NC(=O)C[C@@H](N)CCN(C)C(N)=N)C=C[C@H]1N1C(=O)N=C(N)C=C1 CXNPLSGKWMLZPZ-GIFSMMMISA-N 0.000 description 1
- LDVVMCZRFWMZSG-OLQVQODUSA-N (3ar,7as)-2-(trichloromethylsulfanyl)-3a,4,7,7a-tetrahydroisoindole-1,3-dione Chemical compound C1C=CC[C@H]2C(=O)N(SC(Cl)(Cl)Cl)C(=O)[C@H]21 LDVVMCZRFWMZSG-OLQVQODUSA-N 0.000 description 1
- MPIPASJGOJYODL-SFHVURJKSA-N (R)-isoconazole Chemical compound ClC1=CC(Cl)=CC=C1[C@@H](OCC=1C(=CC=CC=1Cl)Cl)CN1C=NC=C1 MPIPASJGOJYODL-SFHVURJKSA-N 0.000 description 1
- QNBTYORWCCMPQP-JXAWBTAJSA-N (Z)-dimethomorph Chemical compound C1=C(OC)C(OC)=CC=C1C(\C=1C=CC(Cl)=CC=1)=C/C(=O)N1CCOCC1 QNBTYORWCCMPQP-JXAWBTAJSA-N 0.000 description 1
- JWUCHKBSVLQQCO-UHFFFAOYSA-N 1-(2-fluorophenyl)-1-(4-fluorophenyl)-2-(1H-1,2,4-triazol-1-yl)ethanol Chemical compound C=1C=C(F)C=CC=1C(C=1C(=CC=CC=1)F)(O)CN1C=NC=N1 JWUCHKBSVLQQCO-UHFFFAOYSA-N 0.000 description 1
- OWEGWHBOCFMBLP-UHFFFAOYSA-N 1-(4-chlorophenoxy)-1-(1H-imidazol-1-yl)-3,3-dimethylbutan-2-one Chemical compound C1=CN=CN1C(C(=O)C(C)(C)C)OC1=CC=C(Cl)C=C1 OWEGWHBOCFMBLP-UHFFFAOYSA-N 0.000 description 1
- WURBVZBTWMNKQT-UHFFFAOYSA-N 1-(4-chlorophenoxy)-3,3-dimethyl-1-(1,2,4-triazol-1-yl)butan-2-one Chemical compound C1=NC=NN1C(C(=O)C(C)(C)C)OC1=CC=C(Cl)C=C1 WURBVZBTWMNKQT-UHFFFAOYSA-N 0.000 description 1
- AFNXATANNDIXLG-SFHVURJKSA-N 1-[(2r)-2-[(4-chlorophenyl)methylsulfanyl]-2-(2,4-dichlorophenyl)ethyl]imidazole Chemical compound C1=CC(Cl)=CC=C1CS[C@H](C=1C(=CC(Cl)=CC=1)Cl)CN1C=NC=C1 AFNXATANNDIXLG-SFHVURJKSA-N 0.000 description 1
- ZCJYUTQZBAIHBS-UHFFFAOYSA-N 1-[2-(2,4-dichlorophenyl)-2-{[4-(phenylsulfanyl)benzyl]oxy}ethyl]imidazole Chemical compound ClC1=CC(Cl)=CC=C1C(OCC=1C=CC(SC=2C=CC=CC=2)=CC=1)CN1C=NC=C1 ZCJYUTQZBAIHBS-UHFFFAOYSA-N 0.000 description 1
- HMPVOJKSNHJJPH-UHFFFAOYSA-N 1-[2-(4,5-dichloro-1H-imidazol-2-yl)phenyl]ethanone Chemical compound C(C)(=O)C1=C(C=CC=C1)C=1NC(=C(N=1)Cl)Cl HMPVOJKSNHJJPH-UHFFFAOYSA-N 0.000 description 1
- OCAPBUJLXMYKEJ-UHFFFAOYSA-N 1-[biphenyl-4-yl(phenyl)methyl]imidazole Chemical compound C1=NC=CN1C(C=1C=CC(=CC=1)C=1C=CC=CC=1)C1=CC=CC=C1 OCAPBUJLXMYKEJ-UHFFFAOYSA-N 0.000 description 1
- OSSNTDFYBPYIEC-UHFFFAOYSA-N 1-ethenylimidazole Chemical compound C=CN1C=CN=C1 OSSNTDFYBPYIEC-UHFFFAOYSA-N 0.000 description 1
- BMVXCPBXGZKUPN-UHFFFAOYSA-N 1-hexanamine Chemical compound CCCCCCN BMVXCPBXGZKUPN-UHFFFAOYSA-N 0.000 description 1
- LEZWWPYKPKIXLL-UHFFFAOYSA-N 1-{2-(4-chlorobenzyloxy)-2-(2,4-dichlorophenyl)ethyl}imidazole Chemical compound C1=CC(Cl)=CC=C1COC(C=1C(=CC(Cl)=CC=1)Cl)CN1C=NC=C1 LEZWWPYKPKIXLL-UHFFFAOYSA-N 0.000 description 1
- QXHHHPZILQDDPS-UHFFFAOYSA-N 1-{2-[(2-chloro-3-thienyl)methoxy]-2-(2,4-dichlorophenyl)ethyl}imidazole Chemical compound S1C=CC(COC(CN2C=NC=C2)C=2C(=CC(Cl)=CC=2)Cl)=C1Cl QXHHHPZILQDDPS-UHFFFAOYSA-N 0.000 description 1
- JLGKQTAYUIMGRK-UHFFFAOYSA-N 1-{2-[(7-chloro-1-benzothiophen-3-yl)methoxy]-2-(2,4-dichlorophenyl)ethyl}imidazole Chemical compound ClC1=CC(Cl)=CC=C1C(OCC=1C2=CC=CC(Cl)=C2SC=1)CN1C=NC=C1 JLGKQTAYUIMGRK-UHFFFAOYSA-N 0.000 description 1
- FRPZMMHWLSIFAZ-UHFFFAOYSA-N 10-undecenoic acid Chemical compound OC(=O)CCCCCCCCC=C FRPZMMHWLSIFAZ-UHFFFAOYSA-N 0.000 description 1
- VGVRPFIJEJYOFN-UHFFFAOYSA-N 2,3,4,6-tetrachlorophenol Chemical class OC1=C(Cl)C=C(Cl)C(Cl)=C1Cl VGVRPFIJEJYOFN-UHFFFAOYSA-N 0.000 description 1
- HXKWSTRRCHTUEC-UHFFFAOYSA-N 2,4-Dichlorophenoxyaceticacid Chemical compound OC(=O)C(Cl)OC1=CC=C(Cl)C=C1 HXKWSTRRCHTUEC-UHFFFAOYSA-N 0.000 description 1
- GDMDOMRUYVLLHM-UHFFFAOYSA-N 2-(1-iodoethyl)pentyl carbamate Chemical compound CCCC(C(C)I)COC(N)=O GDMDOMRUYVLLHM-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- UFNOUKDBUJZYDE-UHFFFAOYSA-N 2-(4-chlorophenyl)-3-cyclopropyl-1-(1H-1,2,4-triazol-1-yl)butan-2-ol Chemical compound C1=NC=NN1CC(O)(C=1C=CC(Cl)=CC=1)C(C)C1CC1 UFNOUKDBUJZYDE-UHFFFAOYSA-N 0.000 description 1
- NUPJIGQFXCQJBK-UHFFFAOYSA-N 2-(4-isopropyl-4-methyl-5-oxo-4,5-dihydro-1H-imidazol-2-yl)-5-(methoxymethyl)nicotinic acid Chemical compound OC(=O)C1=CC(COC)=CN=C1C1=NC(C)(C(C)C)C(=O)N1 NUPJIGQFXCQJBK-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- VHVPQPYKVGDNFY-DFMJLFEVSA-N 2-[(2r)-butan-2-yl]-4-[4-[4-[4-[[(2r,4s)-2-(2,4-dichlorophenyl)-2-(1,2,4-triazol-1-ylmethyl)-1,3-dioxolan-4-yl]methoxy]phenyl]piperazin-1-yl]phenyl]-1,2,4-triazol-3-one Chemical compound O=C1N([C@H](C)CC)N=CN1C1=CC=C(N2CCN(CC2)C=2C=CC(OC[C@@H]3O[C@](CN4N=CN=C4)(OC3)C=3C(=CC(Cl)=CC=3)Cl)=CC=2)C=C1 VHVPQPYKVGDNFY-DFMJLFEVSA-N 0.000 description 1
- UWHURBUBIHUHSU-UHFFFAOYSA-N 2-[(4-methoxy-6-methyl-1,3,5-triazin-2-yl)carbamoylsulfamoyl]benzoic acid Chemical compound COC1=NC(C)=NC(NC(=O)NS(=O)(=O)C=2C(=CC=CC=2)C(O)=O)=N1 UWHURBUBIHUHSU-UHFFFAOYSA-N 0.000 description 1
- NLMKTBGFQGKQEV-UHFFFAOYSA-N 2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-(2-hexadecoxyethoxy)ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethanol Chemical compound CCCCCCCCCCCCCCCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCO NLMKTBGFQGKQEV-UHFFFAOYSA-N 0.000 description 1
- IAJOBQBIJHVGMQ-UHFFFAOYSA-N 2-amino-4-[hydroxy(methyl)phosphoryl]butanoic acid Chemical compound CP(O)(=O)CCC(N)C(O)=O IAJOBQBIJHVGMQ-UHFFFAOYSA-N 0.000 description 1
- ISPYQTSUDJAMAB-UHFFFAOYSA-N 2-chlorophenol Chemical compound OC1=CC=CC=C1Cl ISPYQTSUDJAMAB-UHFFFAOYSA-N 0.000 description 1
- NYEZZYQZRQDLEH-UHFFFAOYSA-N 2-ethyl-4,5-dihydro-1,3-oxazole Chemical compound CCC1=NCCO1 NYEZZYQZRQDLEH-UHFFFAOYSA-N 0.000 description 1
- OMIGHNLMNHATMP-UHFFFAOYSA-N 2-hydroxyethyl prop-2-enoate Chemical compound OCCOC(=O)C=C OMIGHNLMNHATMP-UHFFFAOYSA-N 0.000 description 1
- LQAQMOIBXDELJX-UHFFFAOYSA-N 2-methoxyprop-2-enoic acid Chemical class COC(=C)C(O)=O LQAQMOIBXDELJX-UHFFFAOYSA-N 0.000 description 1
- AGBXYHCHUYARJY-UHFFFAOYSA-N 2-phenylethenesulfonic acid Chemical class OS(=O)(=O)C=CC1=CC=CC=C1 AGBXYHCHUYARJY-UHFFFAOYSA-N 0.000 description 1
- KGIGUEBEKRSTEW-UHFFFAOYSA-N 2-vinylpyridine Chemical compound C=CC1=CC=CC=N1 KGIGUEBEKRSTEW-UHFFFAOYSA-N 0.000 description 1
- ABOOPXYCKNFDNJ-UHFFFAOYSA-N 2-{4-[(6-chloroquinoxalin-2-yl)oxy]phenoxy}propanoic acid Chemical compound C1=CC(OC(C)C(O)=O)=CC=C1OC1=CN=C(C=C(Cl)C=C2)C2=N1 ABOOPXYCKNFDNJ-UHFFFAOYSA-N 0.000 description 1
- XMTQQYYKAHVGBJ-UHFFFAOYSA-N 3-(3,4-DICHLOROPHENYL)-1,1-DIMETHYLUREA Chemical compound CN(C)C(=O)NC1=CC=C(Cl)C(Cl)=C1 XMTQQYYKAHVGBJ-UHFFFAOYSA-N 0.000 description 1
- GPUHJQHXIFJPGN-UHFFFAOYSA-N 3-(3,5-dichlorophenyl)-1-(3-methylbutanoyl)imidazolidine-2,4-dione Chemical compound O=C1N(C(=O)CC(C)C)CC(=O)N1C1=CC(Cl)=CC(Cl)=C1 GPUHJQHXIFJPGN-UHFFFAOYSA-N 0.000 description 1
- FSCWZHGZWWDELK-UHFFFAOYSA-N 3-(3,5-dichlorophenyl)-5-ethenyl-5-methyl-2,4-oxazolidinedione Chemical compound O=C1C(C)(C=C)OC(=O)N1C1=CC(Cl)=CC(Cl)=C1 FSCWZHGZWWDELK-UHFFFAOYSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- QCPASDYEQAVIJF-UHFFFAOYSA-N 4-chloro-3-methyl-1,3-benzothiazol-2-one Chemical compound C1=CC=C2SC(=O)N(C)C2=C1Cl QCPASDYEQAVIJF-UHFFFAOYSA-N 0.000 description 1
- NRTLIYOWLVMQBO-UHFFFAOYSA-N 5-chloro-1,3-dimethyl-N-(1,1,3-trimethyl-1,3-dihydro-2-benzofuran-4-yl)pyrazole-4-carboxamide Chemical compound C=12C(C)OC(C)(C)C2=CC=CC=1NC(=O)C=1C(C)=NN(C)C=1Cl NRTLIYOWLVMQBO-UHFFFAOYSA-N 0.000 description 1
- PCCSBWNGDMYFCW-UHFFFAOYSA-N 5-methyl-5-(4-phenoxyphenyl)-3-(phenylamino)-1,3-oxazolidine-2,4-dione Chemical compound O=C1C(C)(C=2C=CC(OC=3C=CC=CC=3)=CC=2)OC(=O)N1NC1=CC=CC=C1 PCCSBWNGDMYFCW-UHFFFAOYSA-N 0.000 description 1
- FHVDTGUDJYJELY-UHFFFAOYSA-N 6-{[2-carboxy-4,5-dihydroxy-6-(phosphanyloxy)oxan-3-yl]oxy}-4,5-dihydroxy-3-phosphanyloxane-2-carboxylic acid Chemical compound O1C(C(O)=O)C(P)C(O)C(O)C1OC1C(C(O)=O)OC(OP)C(O)C1O FHVDTGUDJYJELY-UHFFFAOYSA-N 0.000 description 1
- VTNQPKFIQCLBDU-UHFFFAOYSA-N Acetochlor Chemical compound CCOCN(C(=O)CCl)C1=C(C)C=CC=C1CC VTNQPKFIQCLBDU-UHFFFAOYSA-N 0.000 description 1
- 239000002890 Aclonifen Substances 0.000 description 1
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- XKJMBINCVNINCA-UHFFFAOYSA-N Alfalone Chemical compound CON(C)C(=O)NC1=CC=C(Cl)C(Cl)=C1 XKJMBINCVNINCA-UHFFFAOYSA-N 0.000 description 1
- 229930183010 Amphotericin Natural products 0.000 description 1
- QGGFZZLFKABGNL-UHFFFAOYSA-N Amphotericin A Natural products OC1C(N)C(O)C(C)OC1OC1C=CC=CC=CC=CCCC=CC=CC(C)C(O)C(C)C(C)OC(=O)CC(O)CC(O)CCC(O)C(O)CC(O)CC(O)(CC(O)C2C(O)=O)OC2C1 QGGFZZLFKABGNL-UHFFFAOYSA-N 0.000 description 1
- 108010064760 Anidulafungin Proteins 0.000 description 1
- 241000221198 Basidiomycota Species 0.000 description 1
- 239000005476 Bentazone Substances 0.000 description 1
- KWIUHFFTVRNATP-UHFFFAOYSA-N Betaine Natural products C[N+](C)(C)CC([O-])=O KWIUHFFTVRNATP-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical class OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- ZOGDSYNXUXQGHF-XIEYBQDHSA-N Butroxydim Chemical compound CCCC(=O)C1=C(C)C=C(C)C(C2CC(=O)C(\C(CC)=N\OCC)=C(O)C2)=C1C ZOGDSYNXUXQGHF-XIEYBQDHSA-N 0.000 description 1
- 239000005745 Captan Substances 0.000 description 1
- KXDHJXZQYSOELW-UHFFFAOYSA-N Carbamic acid Chemical class NC(O)=O KXDHJXZQYSOELW-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 108010020326 Caspofungin Proteins 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 239000005944 Chlorpyrifos Substances 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- 239000005756 Cymoxanil Substances 0.000 description 1
- 239000005946 Cypermethrin Substances 0.000 description 1
- 239000005757 Cyproconazole Substances 0.000 description 1
- 239000005758 Cyprodinil Substances 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- 208000001840 Dandruff Diseases 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- 239000005759 Diethofencarb Substances 0.000 description 1
- 239000005760 Difenoconazole Substances 0.000 description 1
- 239000005507 Diflufenican Substances 0.000 description 1
- IIUZTXTZRGLYTI-UHFFFAOYSA-N Dihydrogriseofulvin Natural products COC1CC(=O)CC(C)C11C(=O)C(C(OC)=CC(OC)=C2Cl)=C2O1 IIUZTXTZRGLYTI-UHFFFAOYSA-N 0.000 description 1
- 239000005761 Dimethomorph Substances 0.000 description 1
- 239000005762 Dimoxystrobin Substances 0.000 description 1
- 239000005510 Diuron Substances 0.000 description 1
- 241000221785 Erysiphales Species 0.000 description 1
- 239000005895 Esfenvalerate Substances 0.000 description 1
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical compound OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 description 1
- 239000001859 Ethyl hydroxyethyl cellulose Substances 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- 239000001116 FEMA 4028 Substances 0.000 description 1
- 239000005772 Famoxadone Substances 0.000 description 1
- 239000005778 Fenpropimorph Substances 0.000 description 1
- 239000005781 Fludioxonil Substances 0.000 description 1
- 239000005784 Fluoxastrobin Substances 0.000 description 1
- 239000005786 Flutolanil Substances 0.000 description 1
- 239000005787 Flutriafol Substances 0.000 description 1
- 239000005789 Folpet Substances 0.000 description 1
- 239000005561 Glufosinate Substances 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- UXWOXTQWVMFRSE-UHFFFAOYSA-N Griseoviridin Natural products O=C1OC(C)CC=C(C(NCC=CC=CC(O)CC(O)C2)=O)SCC1NC(=O)C1=COC2=N1 UXWOXTQWVMFRSE-UHFFFAOYSA-N 0.000 description 1
- 229920002907 Guar gum Polymers 0.000 description 1
- CTETYYAZBPJBHE-UHFFFAOYSA-N Haloprogin Chemical compound ClC1=CC(Cl)=C(OCC#CI)C=C1Cl CTETYYAZBPJBHE-UHFFFAOYSA-N 0.000 description 1
- 241000282414 Homo sapiens Species 0.000 description 1
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 1
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 1
- WOBHKFSMXKNTIM-UHFFFAOYSA-N Hydroxyethyl methacrylate Chemical compound CC(=C)C(=O)OCCO WOBHKFSMXKNTIM-UHFFFAOYSA-N 0.000 description 1
- 229920001479 Hydroxyethyl methyl cellulose Polymers 0.000 description 1
- 239000005566 Imazamox Substances 0.000 description 1
- 102000004877 Insulin Human genes 0.000 description 1
- 108090001061 Insulin Proteins 0.000 description 1
- 239000005867 Iprodione Substances 0.000 description 1
- NHTMVDHEPJAVLT-UHFFFAOYSA-N Isooctane Chemical compound CC(C)CC(C)(C)C NHTMVDHEPJAVLT-UHFFFAOYSA-N 0.000 description 1
- 239000005571 Isoxaflutole Substances 0.000 description 1
- 239000005573 Linuron Substances 0.000 description 1
- 229920000161 Locust bean gum Polymers 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical class [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 239000005949 Malathion Substances 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 239000005805 Mepanipyrim Substances 0.000 description 1
- 239000005578 Mesotrione Substances 0.000 description 1
- 239000005807 Metalaxyl Substances 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- 108010021062 Micafungin Proteins 0.000 description 1
- BYBLEWFAAKGYCD-UHFFFAOYSA-N Miconazole Chemical compound ClC1=CC(Cl)=CC=C1COC(C=1C(=CC(Cl)=CC=1)Cl)CN1C=NC=C1 BYBLEWFAAKGYCD-UHFFFAOYSA-N 0.000 description 1
- KWIUHFFTVRNATP-UHFFFAOYSA-O N,N,N-trimethylglycinium Chemical compound C[N+](C)(C)CC(O)=O KWIUHFFTVRNATP-UHFFFAOYSA-O 0.000 description 1
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 1
- DDUHZTYCFQRHIY-UHFFFAOYSA-N Negwer: 6874 Natural products COC1=CC(=O)CC(C)C11C(=O)C(C(OC)=CC(OC)=C2Cl)=C2O1 DDUHZTYCFQRHIY-UHFFFAOYSA-N 0.000 description 1
- 239000005586 Nicosulfuron Substances 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 241000233654 Oomycetes Species 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- KYGZCKSPAKDVKC-UHFFFAOYSA-N Oxolinic acid Chemical compound C1=C2N(CC)C=C(C(O)=O)C(=O)C2=CC2=C1OCO2 KYGZCKSPAKDVKC-UHFFFAOYSA-N 0.000 description 1
- 239000005590 Oxyfluorfen Substances 0.000 description 1
- OQMBBFQZGJFLBU-UHFFFAOYSA-N Oxyfluorfen Chemical compound C1=C([N+]([O-])=O)C(OCC)=CC(OC=2C(=CC(=CC=2)C(F)(F)F)Cl)=C1 OQMBBFQZGJFLBU-UHFFFAOYSA-N 0.000 description 1
- 239000005591 Pendimethalin Substances 0.000 description 1
- 241000233679 Peronosporaceae Species 0.000 description 1
- 239000005594 Phenmedipham Substances 0.000 description 1
- 239000005818 Picoxystrobin Substances 0.000 description 1
- 241000209504 Poaceae Species 0.000 description 1
- 229920002845 Poly(methacrylic acid) Polymers 0.000 description 1
- 229920001100 Polydextrose Polymers 0.000 description 1
- 229930182764 Polyoxin Natural products 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical class [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 241000221535 Pucciniales Species 0.000 description 1
- 239000005869 Pyraclostrobin Substances 0.000 description 1
- 239000005828 Pyrimethanil Substances 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- ULUAUXLGCMPNKK-UHFFFAOYSA-N Sulfobutanedioic acid Chemical class OC(=O)CC(C(O)=O)S(O)(=O)=O ULUAUXLGCMPNKK-UHFFFAOYSA-N 0.000 description 1
- 239000005842 Thiophanate-methyl Substances 0.000 description 1
- 239000005843 Thiram Substances 0.000 description 1
- 239000005845 Tolclofos-methyl Substances 0.000 description 1
- 239000005625 Tri-allate Substances 0.000 description 1
- MWBPRDONLNQCFV-UHFFFAOYSA-N Tri-allate Chemical compound CC(C)N(C(C)C)C(=O)SCC(Cl)=C(Cl)Cl MWBPRDONLNQCFV-UHFFFAOYSA-N 0.000 description 1
- 239000005857 Trifloxystrobin Substances 0.000 description 1
- 229930195482 Validamycin Natural products 0.000 description 1
- TVXBFESIOXBWNM-UHFFFAOYSA-N Xylitol Natural products OCCC(O)C(O)C(O)CCO TVXBFESIOXBWNM-UHFFFAOYSA-N 0.000 description 1
- 229920002000 Xyloglucan Polymers 0.000 description 1
- 230000000895 acaricidal effect Effects 0.000 description 1
- 239000000642 acaricide Substances 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 229940022682 acetone Drugs 0.000 description 1
- UELITFHSCLAHKR-UHFFFAOYSA-N acibenzolar-S-methyl Chemical compound CSC(=O)C1=CC=CC2=C1SN=N2 UELITFHSCLAHKR-UHFFFAOYSA-N 0.000 description 1
- DDBMQDADIHOWIC-UHFFFAOYSA-N aclonifen Chemical compound C1=C([N+]([O-])=O)C(N)=C(Cl)C(OC=2C=CC=CC=2)=C1 DDBMQDADIHOWIC-UHFFFAOYSA-N 0.000 description 1
- 150000003926 acrylamides Chemical class 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- XCSGPAVHZFQHGE-UHFFFAOYSA-N alachlor Chemical compound CCC1=CC=CC(CC)=C1N(COC)C(=O)CCl XCSGPAVHZFQHGE-UHFFFAOYSA-N 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 239000003619 algicide Substances 0.000 description 1
- 229940072056 alginate Drugs 0.000 description 1
- 125000005599 alkyl carboxylate group Chemical group 0.000 description 1
- 150000008051 alkyl sulfates Chemical class 0.000 description 1
- 229940045714 alkyl sulfonate alkylating agent Drugs 0.000 description 1
- 150000008052 alkyl sulfonates Chemical class 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- RQVYBGPQFYCBGX-UHFFFAOYSA-N ametryn Chemical compound CCNC1=NC(NC(C)C)=NC(SC)=N1 RQVYBGPQFYCBGX-UHFFFAOYSA-N 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 229960003204 amorolfine Drugs 0.000 description 1
- 229940009444 amphotericin Drugs 0.000 description 1
- APKFDSVGJQXUKY-INPOYWNPSA-N amphotericin B Chemical compound O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1/C=C/C=C/C=C/C=C/C=C/C=C/C=C/[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 APKFDSVGJQXUKY-INPOYWNPSA-N 0.000 description 1
- JHVAMHSQVVQIOT-MFAJLEFUSA-N anidulafungin Chemical compound C1=CC(OCCCCC)=CC=C1C1=CC=C(C=2C=CC(=CC=2)C(=O)N[C@@H]2C(N[C@H](C(=O)N3C[C@H](O)C[C@H]3C(=O)N[C@H](C(=O)N[C@H](C(=O)N3C[C@H](C)[C@H](O)[C@H]3C(=O)N[C@H](O)[C@H](O)C2)[C@@H](C)O)[C@H](O)[C@@H](O)C=2C=CC(O)=CC=2)[C@@H](C)O)=O)C=C1 JHVAMHSQVVQIOT-MFAJLEFUSA-N 0.000 description 1
- 229960003348 anidulafungin Drugs 0.000 description 1
- 150000008059 anilinopyrimidines Chemical class 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 239000003945 anionic surfactant Substances 0.000 description 1
- 239000000010 aprotic solvent Substances 0.000 description 1
- MXWJVTOOROXGIU-UHFFFAOYSA-N atrazine Chemical compound CCNC1=NC(Cl)=NC(NC(C)C)=N1 MXWJVTOOROXGIU-UHFFFAOYSA-N 0.000 description 1
- 150000003851 azoles Chemical class 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 239000003899 bactericide agent Substances 0.000 description 1
- RIOXQFHNBCKOKP-UHFFFAOYSA-N benomyl Chemical compound C1=CC=C2N(C(=O)NCCCC)C(NC(=O)OC)=NC2=C1 RIOXQFHNBCKOKP-UHFFFAOYSA-N 0.000 description 1
- PPWBRCCBKOWDNB-UHFFFAOYSA-N bensulfuron Chemical compound COC1=CC(OC)=NC(NC(=O)NS(=O)(=O)CC=2C(=CC=CC=2)C(O)=O)=N1 PPWBRCCBKOWDNB-UHFFFAOYSA-N 0.000 description 1
- ZOMSMJKLGFBRBS-UHFFFAOYSA-N bentazone Chemical compound C1=CC=C2NS(=O)(=O)N(C(C)C)C(=O)C2=C1 ZOMSMJKLGFBRBS-UHFFFAOYSA-N 0.000 description 1
- CNBGNNVCVSKAQZ-UHFFFAOYSA-N benzidamine Natural products C12=CC=CC=C2C(OCCCN(C)C)=NN1CC1=CC=CC=C1 CNBGNNVCVSKAQZ-UHFFFAOYSA-N 0.000 description 1
- 150000001556 benzimidazoles Chemical class 0.000 description 1
- MITFXPHMIHQXPI-UHFFFAOYSA-N benzoxaprofen Natural products N=1C2=CC(C(C(O)=O)C)=CC=C2OC=1C1=CC=C(Cl)C=C1 MITFXPHMIHQXPI-UHFFFAOYSA-N 0.000 description 1
- UCMIRNVEIXFBKS-UHFFFAOYSA-N beta-alanine Chemical compound NCCC(O)=O UCMIRNVEIXFBKS-UHFFFAOYSA-N 0.000 description 1
- WHGYBXFWUBPSRW-FOUAGVGXSA-N beta-cyclodextrin Chemical compound OC[C@H]([C@H]([C@@H]([C@H]1O)O)O[C@H]2O[C@@H]([C@@H](O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O3)[C@H](O)[C@H]2O)CO)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@@H]3O[C@@H]1CO WHGYBXFWUBPSRW-FOUAGVGXSA-N 0.000 description 1
- 235000011175 beta-cyclodextrine Nutrition 0.000 description 1
- 229960004853 betadex Drugs 0.000 description 1
- 229960003237 betaine Drugs 0.000 description 1
- 229960002206 bifonazole Drugs 0.000 description 1
- VEMKTZHHVJILDY-UXHICEINSA-N bioresmethrin Chemical compound CC1(C)[C@H](C=C(C)C)[C@H]1C(=O)OCC1=COC(CC=2C=CC=CC=2)=C1 VEMKTZHHVJILDY-UXHICEINSA-N 0.000 description 1
- OIPMQULDKWSNGX-UHFFFAOYSA-N bis[[ethoxy(oxo)phosphaniumyl]oxy]alumanyloxy-ethoxy-oxophosphanium Chemical compound [Al+3].CCO[P+]([O-])=O.CCO[P+]([O-])=O.CCO[P+]([O-])=O OIPMQULDKWSNGX-UHFFFAOYSA-N 0.000 description 1
- CXNPLSGKWMLZPZ-UHFFFAOYSA-N blasticidin-S Natural products O1C(C(O)=O)C(NC(=O)CC(N)CCN(C)C(N)=N)C=CC1N1C(=O)N=C(N)C=C1 CXNPLSGKWMLZPZ-UHFFFAOYSA-N 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- ABJKWBDEJIDSJZ-UHFFFAOYSA-N butenafine Chemical compound C=1C=CC2=CC=CC=C2C=1CN(C)CC1=CC=C(C(C)(C)C)C=C1 ABJKWBDEJIDSJZ-UHFFFAOYSA-N 0.000 description 1
- 229960002962 butenafine Drugs 0.000 description 1
- SWLMUYACZKCSHZ-UHFFFAOYSA-N butoconazole Chemical compound C1=CC(Cl)=CC=C1CCC(SC=1C(=CC=CC=1Cl)Cl)CN1C=NC=C1 SWLMUYACZKCSHZ-UHFFFAOYSA-N 0.000 description 1
- 229960005074 butoconazole Drugs 0.000 description 1
- 229940041514 candida albicans extract Drugs 0.000 description 1
- KHAVLLBUVKBTBG-UHFFFAOYSA-N caproleic acid Natural products OC(=O)CCCCCCCC=C KHAVLLBUVKBTBG-UHFFFAOYSA-N 0.000 description 1
- 229940117949 captan Drugs 0.000 description 1
- DKVNPHBNOWQYFE-UHFFFAOYSA-N carbamodithioic acid Chemical compound NC(S)=S DKVNPHBNOWQYFE-UHFFFAOYSA-N 0.000 description 1
- 239000006013 carbendazim Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 229940105329 carboxymethylcellulose Drugs 0.000 description 1
- JYIKNQVWKBUSNH-WVDDFWQHSA-N caspofungin Chemical compound C1([C@H](O)[C@@H](O)[C@H]2C(=O)N[C@H](C(=O)N3CC[C@H](O)[C@H]3C(=O)N[C@H](NCCN)[C@H](O)C[C@@H](C(N[C@H](C(=O)N3C[C@H](O)C[C@H]3C(=O)N2)[C@@H](C)O)=O)NC(=O)CCCCCCCC[C@@H](C)C[C@@H](C)CC)[C@H](O)CCN)=CC=C(O)C=C1 JYIKNQVWKBUSNH-WVDDFWQHSA-N 0.000 description 1
- 229960003034 caspofungin Drugs 0.000 description 1
- 239000003093 cationic surfactant Substances 0.000 description 1
- 230000030833 cell death Effects 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- RIUXZHMCCFLRBI-UHFFFAOYSA-N chlorimuron Chemical compound COC1=CC(Cl)=NC(NC(=O)NS(=O)(=O)C=2C(=CC=CC=2)C(O)=O)=N1 RIUXZHMCCFLRBI-UHFFFAOYSA-N 0.000 description 1
- UHZZMRAGKVHANO-UHFFFAOYSA-M chlormequat chloride Chemical compound [Cl-].C[N+](C)(C)CCCl UHZZMRAGKVHANO-UHFFFAOYSA-M 0.000 description 1
- JXCGFZXSOMJFOA-UHFFFAOYSA-N chlorotoluron Chemical compound CN(C)C(=O)NC1=CC=C(C)C(Cl)=C1 JXCGFZXSOMJFOA-UHFFFAOYSA-N 0.000 description 1
- SBPBAQFWLVIOKP-UHFFFAOYSA-N chlorpyrifos Chemical compound CCOP(=S)(OCC)OC1=NC(Cl)=C(Cl)C=C1Cl SBPBAQFWLVIOKP-UHFFFAOYSA-N 0.000 description 1
- VJYIFXVZLXQVHO-UHFFFAOYSA-N chlorsulfuron Chemical compound COC1=NC(C)=NC(NC(=O)NS(=O)(=O)C=2C(=CC=CC=2)Cl)=N1 VJYIFXVZLXQVHO-UHFFFAOYSA-N 0.000 description 1
- SCKYRAXSEDYPSA-UHFFFAOYSA-N ciclopirox Chemical compound ON1C(=O)C=C(C)C=C1C1CCCCC1 SCKYRAXSEDYPSA-UHFFFAOYSA-N 0.000 description 1
- 229960003749 ciclopirox Drugs 0.000 description 1
- 229960003344 climbazole Drugs 0.000 description 1
- 229960004022 clotrimazole Drugs 0.000 description 1
- VNFPBHJOKIVQEB-UHFFFAOYSA-N clotrimazole Chemical compound ClC1=CC=CC=C1C(N1C=NC=C1)(C=1C=CC=CC=1)C1=CC=CC=C1 VNFPBHJOKIVQEB-UHFFFAOYSA-N 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- 229940097362 cyclodextrins Drugs 0.000 description 1
- 229960005424 cypermethrin Drugs 0.000 description 1
- KAATUXNTWXVJKI-UHFFFAOYSA-N cypermethrin Chemical compound CC1(C)C(C=C(Cl)Cl)C1C(=O)OC(C#N)C1=CC=CC(OC=2C=CC=CC=2)=C1 KAATUXNTWXVJKI-UHFFFAOYSA-N 0.000 description 1
- HAORKNGNJCEJBX-UHFFFAOYSA-N cyprodinil Chemical compound N=1C(C)=CC(C2CC2)=NC=1NC1=CC=CC=C1 HAORKNGNJCEJBX-UHFFFAOYSA-N 0.000 description 1
- DIOQZVSQGTUSAI-NJFSPNSNSA-N decane Chemical compound CCCCCCCCC[14CH3] DIOQZVSQGTUSAI-NJFSPNSNSA-N 0.000 description 1
- 239000002781 deodorant agent Substances 0.000 description 1
- SWXVUIWOUIDPGS-UHFFFAOYSA-N diacetone alcohol Natural products CC(=O)CC(C)(C)O SWXVUIWOUIDPGS-UHFFFAOYSA-N 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- JXSJBGJIGXNWCI-UHFFFAOYSA-N diethyl 2-[(dimethoxyphosphorothioyl)thio]succinate Chemical compound CCOC(=O)CC(SP(=S)(OC)OC)C(=O)OCC JXSJBGJIGXNWCI-UHFFFAOYSA-N 0.000 description 1
- BQYJATMQXGBDHF-UHFFFAOYSA-N difenoconazole Chemical compound O1C(C)COC1(C=1C(=CC(OC=2C=CC(Cl)=CC=2)=CC=1)Cl)CN1N=CN=C1 BQYJATMQXGBDHF-UHFFFAOYSA-N 0.000 description 1
- WYEHFWKAOXOVJD-UHFFFAOYSA-N diflufenican Chemical compound FC1=CC(F)=CC=C1NC(=O)C1=CC=CN=C1OC1=CC=CC(C(F)(F)F)=C1 WYEHFWKAOXOVJD-UHFFFAOYSA-N 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 229960001760 dimethyl sulfoxide Drugs 0.000 description 1
- JVSWJIKNEAIKJW-UHFFFAOYSA-N dimethyl-hexane Natural products CCCCCC(C)C JVSWJIKNEAIKJW-UHFFFAOYSA-N 0.000 description 1
- 150000004656 dimethylamines Chemical class 0.000 description 1
- WXUZAHCNPWONDH-DYTRJAOYSA-N dimoxystrobin Chemical compound CNC(=O)C(=N\OC)\C1=CC=CC=C1COC1=CC(C)=CC=C1C WXUZAHCNPWONDH-DYTRJAOYSA-N 0.000 description 1
- FBOUIAKEJMZPQG-BLXFFLACSA-N diniconazole-M Chemical compound C1=NC=NN1/C([C@H](O)C(C)(C)C)=C/C1=CC=C(Cl)C=C1Cl FBOUIAKEJMZPQG-BLXFFLACSA-N 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 239000012990 dithiocarbamate Substances 0.000 description 1
- 229960003913 econazole Drugs 0.000 description 1
- 230000008029 eradication Effects 0.000 description 1
- NYPJDWWKZLNGGM-RPWUZVMVSA-N esfenvalerate Chemical compound C=1C([C@@H](C#N)OC(=O)[C@@H](C(C)C)C=2C=CC(Cl)=CC=2)=CC=CC=1OC1=CC=CC=C1 NYPJDWWKZLNGGM-RPWUZVMVSA-N 0.000 description 1
- 229960004756 ethanol Drugs 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- PQKBPHSEKWERTG-LLVKDONJSA-N ethyl (2r)-2-[4-[(6-chloro-1,3-benzoxazol-2-yl)oxy]phenoxy]propanoate Chemical group C1=CC(O[C@H](C)C(=O)OCC)=CC=C1OC1=NC2=CC=C(Cl)C=C2O1 PQKBPHSEKWERTG-LLVKDONJSA-N 0.000 description 1
- 235000019326 ethyl hydroxyethyl cellulose Nutrition 0.000 description 1
- 239000001761 ethyl methyl cellulose Substances 0.000 description 1
- 235000010944 ethyl methyl cellulose Nutrition 0.000 description 1
- 229940093476 ethylene glycol Drugs 0.000 description 1
- 229920003089 ethylhydroxy ethyl cellulose Polymers 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 150000002191 fatty alcohols Chemical class 0.000 description 1
- 150000002193 fatty amides Chemical class 0.000 description 1
- FKLFBQCQQYDUAM-UHFFFAOYSA-N fenpiclonil Chemical compound ClC1=CC=CC(C=2C(=CNC=2)C#N)=C1Cl FKLFBQCQQYDUAM-UHFFFAOYSA-N 0.000 description 1
- 229960001274 fenticonazole Drugs 0.000 description 1
- NYPJDWWKZLNGGM-UHFFFAOYSA-N fenvalerate Aalpha Natural products C=1C=C(Cl)C=CC=1C(C(C)C)C(=O)OC(C#N)C(C=1)=CC=CC=1OC1=CC=CC=C1 NYPJDWWKZLNGGM-UHFFFAOYSA-N 0.000 description 1
- GOWLARCWZRESHU-AQTBWJFISA-N ferimzone Chemical compound C=1C=CC=C(C)C=1C(/C)=N\NC1=NC(C)=CC(C)=N1 GOWLARCWZRESHU-AQTBWJFISA-N 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- UZCGKGPEKUCDTF-UHFFFAOYSA-N fluazinam Chemical compound [O-][N+](=O)C1=CC(C(F)(F)F)=C(Cl)C([N+]([O-])=O)=C1NC1=NC=C(C(F)(F)F)C=C1Cl UZCGKGPEKUCDTF-UHFFFAOYSA-N 0.000 description 1
- 229960004884 fluconazole Drugs 0.000 description 1
- RFHAOTPXVQNOHP-UHFFFAOYSA-N fluconazole Chemical compound C1=NC=NN1CC(C=1C(=CC(F)=CC=1)F)(O)CN1C=NC=N1 RFHAOTPXVQNOHP-UHFFFAOYSA-N 0.000 description 1
- 229960004413 flucytosine Drugs 0.000 description 1
- XRECTZIEBJDKEO-UHFFFAOYSA-N flucytosine Chemical compound NC1=NC(=O)NC=C1F XRECTZIEBJDKEO-UHFFFAOYSA-N 0.000 description 1
- MUJOIMFVNIBMKC-UHFFFAOYSA-N fludioxonil Chemical compound C=12OC(F)(F)OC2=CC=CC=1C1=CNC=C1C#N MUJOIMFVNIBMKC-UHFFFAOYSA-N 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- UFEODZBUAFNAEU-NLRVBDNBSA-N fluoxastrobin Chemical compound C=1C=CC=C(OC=2C(=C(OC=3C(=CC=CC=3)Cl)N=CN=2)F)C=1C(=N/OC)\C1=NOCCO1 UFEODZBUAFNAEU-NLRVBDNBSA-N 0.000 description 1
- OQZCSNDVOWYALR-UHFFFAOYSA-N flurochloridone Chemical compound FC(F)(F)C1=CC=CC(N2C(C(Cl)C(CCl)C2)=O)=C1 OQZCSNDVOWYALR-UHFFFAOYSA-N 0.000 description 1
- FQKUGOMFVDPBIZ-UHFFFAOYSA-N flusilazole Chemical compound C=1C=C(F)C=CC=1[Si](C=1C=CC(F)=CC=1)(C)CN1C=NC=N1 FQKUGOMFVDPBIZ-UHFFFAOYSA-N 0.000 description 1
- PTCGDEVVHUXTMP-UHFFFAOYSA-N flutolanil Chemical compound CC(C)OC1=CC=CC(NC(=O)C=2C(=CC=CC=2)C(F)(F)F)=C1 PTCGDEVVHUXTMP-UHFFFAOYSA-N 0.000 description 1
- HKIOYBQGHSTUDB-UHFFFAOYSA-N folpet Chemical compound C1=CC=C2C(=O)N(SC(Cl)(Cl)Cl)C(=O)C2=C1 HKIOYBQGHSTUDB-UHFFFAOYSA-N 0.000 description 1
- BGZZWXTVIYUUEY-UHFFFAOYSA-N fomesafen Chemical compound C1=C([N+]([O-])=O)C(C(=O)NS(=O)(=O)C)=CC(OC=2C(=CC(=CC=2)C(F)(F)F)Cl)=C1 BGZZWXTVIYUUEY-UHFFFAOYSA-N 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 244000000004 fungal plant pathogen Species 0.000 description 1
- 230000001408 fungistatic effect Effects 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 229920000578 graft copolymer Polymers 0.000 description 1
- DDUHZTYCFQRHIY-RBHXEPJQSA-N griseofulvin Chemical compound COC1=CC(=O)C[C@@H](C)[C@@]11C(=O)C(C(OC)=CC(OC)=C2Cl)=C2O1 DDUHZTYCFQRHIY-RBHXEPJQSA-N 0.000 description 1
- 229960002867 griseofulvin Drugs 0.000 description 1
- 239000000665 guar gum Substances 0.000 description 1
- 235000010417 guar gum Nutrition 0.000 description 1
- 229960002154 guar gum Drugs 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 229960001906 haloprogin Drugs 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 1
- 229940071826 hydroxyethyl cellulose Drugs 0.000 description 1
- MTNDZQHUAFNZQY-UHFFFAOYSA-N imidazoline Chemical class C1CN=CN1 MTNDZQHUAFNZQY-UHFFFAOYSA-N 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 229940125396 insulin Drugs 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- ONUFESLQCSAYKA-UHFFFAOYSA-N iprodione Chemical compound O=C1N(C(=O)NC(C)C)CC(=O)N1C1=CC(Cl)=CC(Cl)=C1 ONUFESLQCSAYKA-UHFFFAOYSA-N 0.000 description 1
- 229960004849 isoconazole Drugs 0.000 description 1
- JJWLVOIRVHMVIS-UHFFFAOYSA-N isopropylamine Chemical compound CC(C)N JJWLVOIRVHMVIS-UHFFFAOYSA-N 0.000 description 1
- OYIKARCXOQLFHF-UHFFFAOYSA-N isoxaflutole Chemical compound CS(=O)(=O)C1=CC(C(F)(F)F)=CC=C1C(=O)C1=C(C2CC2)ON=C1 OYIKARCXOQLFHF-UHFFFAOYSA-N 0.000 description 1
- 229940088649 isoxaflutole Drugs 0.000 description 1
- 229960004130 itraconazole Drugs 0.000 description 1
- PVTHJAPFENJVNC-MHRBZPPQSA-N kasugamycin Chemical compound N[C@H]1C[C@H](NC(=N)C(O)=O)[C@@H](C)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@H](O)[C@@H]1O PVTHJAPFENJVNC-MHRBZPPQSA-N 0.000 description 1
- 235000010420 locust bean gum Nutrition 0.000 description 1
- 239000000711 locust bean gum Substances 0.000 description 1
- 239000006210 lotion Substances 0.000 description 1
- 239000011777 magnesium Chemical class 0.000 description 1
- 229910052749 magnesium Chemical class 0.000 description 1
- 238000003760 magnetic stirring Methods 0.000 description 1
- 229960000453 malathion Drugs 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 229960001855 mannitol Drugs 0.000 description 1
- 229940039092 medicated shampoos Drugs 0.000 description 1
- CIFWZNRJIBNXRE-UHFFFAOYSA-N mepanipyrim Chemical compound CC#CC1=CC(C)=NC(NC=2C=CC=CC=2)=N1 CIFWZNRJIBNXRE-UHFFFAOYSA-N 0.000 description 1
- BCTQJXQXJVLSIG-UHFFFAOYSA-N mepronil Chemical compound CC(C)OC1=CC=CC(NC(=O)C=2C(=CC=CC=2)C)=C1 BCTQJXQXJVLSIG-UHFFFAOYSA-N 0.000 description 1
- HEBKCHPVOIAQTA-UHFFFAOYSA-N meso ribitol Natural products OCC(O)C(O)C(O)CO HEBKCHPVOIAQTA-UHFFFAOYSA-N 0.000 description 1
- KPUREKXXPHOJQT-UHFFFAOYSA-N mesotrione Chemical compound [O-][N+](=O)C1=CC(S(=O)(=O)C)=CC=C1C(=O)C1C(=O)CCCC1=O KPUREKXXPHOJQT-UHFFFAOYSA-N 0.000 description 1
- VLCAYQIMSMPEBW-UHFFFAOYSA-N methyl 3-hydroxy-2-methylidenebutanoate Chemical compound COC(=O)C(=C)C(C)O VLCAYQIMSMPEBW-UHFFFAOYSA-N 0.000 description 1
- ZQEIXNIJLIKNTD-UHFFFAOYSA-N methyl N-(2,6-dimethylphenyl)-N-(methoxyacetyl)alaninate Chemical compound COCC(=O)N(C(C)C(=O)OC)C1=C(C)C=CC=C1C ZQEIXNIJLIKNTD-UHFFFAOYSA-N 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- WUXWWSDWRUVSNE-UHFFFAOYSA-N methyl propane-1-sulfonate;prop-2-enamide Chemical class NC(=O)C=C.CCCS(=O)(=O)OC WUXWWSDWRUVSNE-UHFFFAOYSA-N 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- 229920003087 methylethyl cellulose Polymers 0.000 description 1
- HIIRDDUVRXCDBN-OBGWFSINSA-N metominostrobin Chemical compound CNC(=O)C(=N\OC)\C1=CC=CC=C1OC1=CC=CC=C1 HIIRDDUVRXCDBN-OBGWFSINSA-N 0.000 description 1
- VAOCPAMSLUNLGC-UHFFFAOYSA-N metronidazole Chemical compound CC1=NC=C([N+]([O-])=O)N1CCO VAOCPAMSLUNLGC-UHFFFAOYSA-N 0.000 description 1
- 229960000282 metronidazole Drugs 0.000 description 1
- 229960002159 micafungin Drugs 0.000 description 1
- KOOAFHGJVIVFMZ-WZPXRXMFSA-M micafungin sodium Chemical compound [Na+].C1=CC(OCCCCC)=CC=C1C1=CC(C=2C=CC(=CC=2)C(=O)N[C@@H]2C(N[C@H](C(=O)N3C[C@H](O)C[C@H]3C(=O)N[C@H](C(=O)N[C@H](C(=O)N3C[C@H](C)[C@H](O)[C@H]3C(=O)N[C@H](O)[C@H](O)C2)[C@H](O)CC(N)=O)[C@H](O)[C@@H](O)C=2C=C(OS([O-])(=O)=O)C(O)=CC=2)[C@@H](C)O)=O)=NO1 KOOAFHGJVIVFMZ-WZPXRXMFSA-M 0.000 description 1
- 229960002509 miconazole Drugs 0.000 description 1
- 230000011278 mitosis Effects 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 239000003750 molluscacide Substances 0.000 description 1
- 230000002013 molluscicidal effect Effects 0.000 description 1
- 239000002324 mouth wash Substances 0.000 description 1
- 239000010813 municipal solid waste Substances 0.000 description 1
- DIOQZVSQGTUSAI-UHFFFAOYSA-N n-butylhexane Natural products CCCCCCCCCC DIOQZVSQGTUSAI-UHFFFAOYSA-N 0.000 description 1
- QNILTEGFHQSKFF-UHFFFAOYSA-N n-propan-2-ylprop-2-enamide Chemical compound CC(C)NC(=O)C=C QNILTEGFHQSKFF-UHFFFAOYSA-N 0.000 description 1
- 229960004313 naftifine Drugs 0.000 description 1
- OZGNYLLQHRPOBR-DHZHZOJOSA-N naftifine Chemical compound C=1C=CC2=CC=CC=C2C=1CN(C)C\C=C\C1=CC=CC=C1 OZGNYLLQHRPOBR-DHZHZOJOSA-N 0.000 description 1
- 229920005615 natural polymer Polymers 0.000 description 1
- RTCOGUMHFFWOJV-UHFFFAOYSA-N nicosulfuron Chemical compound COC1=CC(OC)=NC(NC(=O)NS(=O)(=O)C=2C(=CC=CN=2)C(=O)N(C)C)=N1 RTCOGUMHFFWOJV-UHFFFAOYSA-N 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 150000002826 nitrites Chemical class 0.000 description 1
- 229940064438 nizoral Drugs 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 229960000988 nystatin Drugs 0.000 description 1
- VQOXZBDYSJBXMA-NQTDYLQESA-N nystatin A1 Chemical compound O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1/C=C/C=C/C=C/C=C/CC/C=C/C=C/[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 VQOXZBDYSJBXMA-NQTDYLQESA-N 0.000 description 1
- GLDOVTGHNKAZLK-UHFFFAOYSA-N octadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCCCO GLDOVTGHNKAZLK-UHFFFAOYSA-N 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000007935 oral tablet Substances 0.000 description 1
- 229940096978 oral tablet Drugs 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 229960003483 oxiconazole Drugs 0.000 description 1
- QRJJEGAJXVEBNE-MOHJPFBDSA-N oxiconazole Chemical compound ClC1=CC(Cl)=CC=C1CO\N=C(C=1C(=CC(Cl)=CC=1)Cl)\CN1C=NC=C1 QRJJEGAJXVEBNE-MOHJPFBDSA-N 0.000 description 1
- 229960000321 oxolinic acid Drugs 0.000 description 1
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- FIKAKWIAUPDISJ-UHFFFAOYSA-L paraquat dichloride Chemical compound [Cl-].[Cl-].C1=C[N+](C)=CC=C1C1=CC=[N+](C)C=C1 FIKAKWIAUPDISJ-UHFFFAOYSA-L 0.000 description 1
- 238000010951 particle size reduction Methods 0.000 description 1
- CHIFOSRWCNZCFN-UHFFFAOYSA-N pendimethalin Chemical compound CCC(CC)NC1=C([N+]([O-])=O)C=C(C)C(C)=C1[N+]([O-])=O CHIFOSRWCNZCFN-UHFFFAOYSA-N 0.000 description 1
- 239000000575 pesticide Substances 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- 229940127557 pharmaceutical product Drugs 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- IDOWTHOLJBTAFI-UHFFFAOYSA-N phenmedipham Chemical compound COC(=O)NC1=CC=CC(OC(=O)NC=2C=C(C)C=CC=2)=C1 IDOWTHOLJBTAFI-UHFFFAOYSA-N 0.000 description 1
- PWXJULSLLONQHY-UHFFFAOYSA-N phenylcarbamic acid Chemical class OC(=O)NC1=CC=CC=C1 PWXJULSLLONQHY-UHFFFAOYSA-N 0.000 description 1
- XYFCBTPGUUZFHI-UHFFFAOYSA-O phosphonium Chemical compound [PH4+] XYFCBTPGUUZFHI-UHFFFAOYSA-O 0.000 description 1
- 231100000208 phytotoxic Toxicity 0.000 description 1
- 230000000885 phytotoxic effect Effects 0.000 description 1
- IBSNKSODLGJUMQ-SDNWHVSQSA-N picoxystrobin Chemical compound CO\C=C(\C(=O)OC)C1=CC=CC=C1COC1=CC=CC(C(F)(F)F)=N1 IBSNKSODLGJUMQ-SDNWHVSQSA-N 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 229920001983 poloxamer Polymers 0.000 description 1
- 229920002006 poly(N-vinylimidazole) polymer Polymers 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 239000001259 polydextrose Substances 0.000 description 1
- 235000013856 polydextrose Nutrition 0.000 description 1
- 229940035035 polydextrose Drugs 0.000 description 1
- YEBIHIICWDDQOL-YBHNRIQQSA-N polyoxin Polymers O[C@@H]1[C@H](O)[C@@H](C(C=O)N)O[C@H]1N1C(=O)NC(=O)C(C(O)=O)=C1 YEBIHIICWDDQOL-YBHNRIQQSA-N 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920002717 polyvinylpyridine Polymers 0.000 description 1
- RAGOYPUPXAKGKH-XAKZXMRKSA-N posaconazole Chemical compound O=C1N([C@H]([C@H](C)O)CC)N=CN1C1=CC=C(N2CCN(CC2)C=2C=CC(OC[C@H]3C[C@@](CN4N=CN=C4)(OC3)C=3C(=CC(F)=CC=3)F)=CC=2)C=C1 RAGOYPUPXAKGKH-XAKZXMRKSA-N 0.000 description 1
- 229960001589 posaconazole Drugs 0.000 description 1
- 239000011591 potassium Chemical class 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 150000003138 primary alcohols Chemical class 0.000 description 1
- WHHIPMZEDGBUCC-UHFFFAOYSA-N probenazole Chemical compound C1=CC=C2C(OCC=C)=NS(=O)(=O)C2=C1 WHHIPMZEDGBUCC-UHFFFAOYSA-N 0.000 description 1
- QXJKBPAVAHBARF-BETUJISGSA-N procymidone Chemical compound O=C([C@]1(C)C[C@@]1(C1=O)C)N1C1=CC(Cl)=CC(Cl)=C1 QXJKBPAVAHBARF-BETUJISGSA-N 0.000 description 1
- WHMZYGMQWIBNOC-UHFFFAOYSA-N propan-2-yl n-(3,4-dimethoxyphenyl)carbamate Chemical compound COC1=CC=C(NC(=O)OC(C)C)C=C1OC WHMZYGMQWIBNOC-UHFFFAOYSA-N 0.000 description 1
- LFULEKSKNZEWOE-UHFFFAOYSA-N propanil Chemical compound CCC(=O)NC1=CC=C(Cl)C(Cl)=C1 LFULEKSKNZEWOE-UHFFFAOYSA-N 0.000 description 1
- 239000003586 protic polar solvent Substances 0.000 description 1
- HZRSNVGNWUDEFX-UHFFFAOYSA-N pyraclostrobin Chemical compound COC(=O)N(OC)C1=CC=CC=C1COC1=NN(C=2C=CC(Cl)=CC=2)C=C1 HZRSNVGNWUDEFX-UHFFFAOYSA-N 0.000 description 1
- JOOMJVFZQRQWKR-UHFFFAOYSA-N pyrazophos Chemical compound N1=C(C)C(C(=O)OCC)=CN2N=C(OP(=S)(OCC)OCC)C=C21 JOOMJVFZQRQWKR-UHFFFAOYSA-N 0.000 description 1
- ZLIBICFPKPWGIZ-UHFFFAOYSA-N pyrimethanil Chemical compound CC1=CC(C)=NC(NC=2C=CC=CC=2)=N1 ZLIBICFPKPWGIZ-UHFFFAOYSA-N 0.000 description 1
- XRJLAOUDSILTFT-UHFFFAOYSA-N pyroquilon Chemical compound O=C1CCC2=CC=CC3=C2N1CC3 XRJLAOUDSILTFT-UHFFFAOYSA-N 0.000 description 1
- 229920005604 random copolymer Polymers 0.000 description 1
- OPAHEYNNJWPQPX-RCDICMHDSA-N ravuconazole Chemical compound C=1SC([C@H](C)[C@](O)(CN2N=CN=C2)C=2C(=CC(F)=CC=2)F)=NC=1C1=CC=C(C#N)C=C1 OPAHEYNNJWPQPX-RCDICMHDSA-N 0.000 description 1
- 229950004154 ravuconazole Drugs 0.000 description 1
- 239000012925 reference material Substances 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 229960004889 salicylic acid Drugs 0.000 description 1
- 229960005429 sertaconazole Drugs 0.000 description 1
- ODCWYMIRDDJXKW-UHFFFAOYSA-N simazine Chemical compound CCNC1=NC(Cl)=NC(NCC)=N1 ODCWYMIRDDJXKW-UHFFFAOYSA-N 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 235000017550 sodium carbonate Nutrition 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 239000008247 solid mixture Substances 0.000 description 1
- 238000000527 sonication Methods 0.000 description 1
- 229920006301 statistical copolymer Polymers 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
- 229960002607 sulconazole Drugs 0.000 description 1
- FZMKKCQHDROFNI-UHFFFAOYSA-N sulfometuron Chemical compound CC1=CC(C)=NC(NC(=O)NS(=O)(=O)C=2C(=CC=CC=2)C(O)=O)=N1 FZMKKCQHDROFNI-UHFFFAOYSA-N 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-O sulfonium Chemical compound [SH3+] RWSOTUBLDIXVET-UHFFFAOYSA-O 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- DOMXUEMWDBAQBQ-WEVVVXLNSA-N terbinafine Chemical compound C1=CC=C2C(CN(C\C=C\C#CC(C)(C)C)C)=CC=CC2=C1 DOMXUEMWDBAQBQ-WEVVVXLNSA-N 0.000 description 1
- 229960002722 terbinafine Drugs 0.000 description 1
- 229960000580 terconazole Drugs 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 239000004308 thiabendazole Substances 0.000 description 1
- 229960004546 thiabendazole Drugs 0.000 description 1
- WJCNZQLZVWNLKY-UHFFFAOYSA-N thiabendazole Chemical compound S1C=NC(C=2NC3=CC=CC=C3N=2)=C1 WJCNZQLZVWNLKY-UHFFFAOYSA-N 0.000 description 1
- 235000010296 thiabendazole Nutrition 0.000 description 1
- LOQQVLXUKHKNIA-UHFFFAOYSA-N thifensulfuron Chemical compound COC1=NC(C)=NC(NC(=O)NS(=O)(=O)C2=C(SC=C2)C(O)=O)=N1 LOQQVLXUKHKNIA-UHFFFAOYSA-N 0.000 description 1
- QGHREAKMXXNCOA-UHFFFAOYSA-N thiophanate-methyl Chemical compound COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC QGHREAKMXXNCOA-UHFFFAOYSA-N 0.000 description 1
- 229960002447 thiram Drugs 0.000 description 1
- KUAZQDVKQLNFPE-UHFFFAOYSA-N thiram Chemical compound CN(C)C(=S)SSC(=S)N(C)C KUAZQDVKQLNFPE-UHFFFAOYSA-N 0.000 description 1
- 229960004214 tioconazole Drugs 0.000 description 1
- OBZIQQJJIKNWNO-UHFFFAOYSA-N tolclofos-methyl Chemical compound COP(=S)(OC)OC1=C(Cl)C=C(C)C=C1Cl OBZIQQJJIKNWNO-UHFFFAOYSA-N 0.000 description 1
- FUSNMLFNXJSCDI-UHFFFAOYSA-N tolnaftate Chemical compound C=1C=C2C=CC=CC2=CC=1OC(=S)N(C)C1=CC=CC(C)=C1 FUSNMLFNXJSCDI-UHFFFAOYSA-N 0.000 description 1
- HYVWIQDYBVKITD-UHFFFAOYSA-N tolylfluanid Chemical compound CN(C)S(=O)(=O)N(SC(F)(Cl)Cl)C1=CC=C(C)C=C1 HYVWIQDYBVKITD-UHFFFAOYSA-N 0.000 description 1
- 239000000606 toothpaste Substances 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 150000003626 triacylglycerols Chemical class 0.000 description 1
- CYRMSUTZVYGINF-UHFFFAOYSA-N trichlorofluoromethane Chemical compound FC(Cl)(Cl)Cl CYRMSUTZVYGINF-UHFFFAOYSA-N 0.000 description 1
- DQJCHOQLCLEDLL-UHFFFAOYSA-N tricyclazole Chemical compound CC1=CC=CC2=C1N1C=NN=C1S2 DQJCHOQLCLEDLL-UHFFFAOYSA-N 0.000 description 1
- ONCZDRURRATYFI-TVJDWZFNSA-N trifloxystrobin Chemical compound CO\N=C(\C(=O)OC)C1=CC=CC=C1CO\N=C(/C)C1=CC=CC(C(F)(F)F)=C1 ONCZDRURRATYFI-TVJDWZFNSA-N 0.000 description 1
- ZSDSQXJSNMTJDA-UHFFFAOYSA-N trifluralin Chemical compound CCCN(CCC)C1=C([N+]([O-])=O)C=C(C(F)(F)F)C=C1[N+]([O-])=O ZSDSQXJSNMTJDA-UHFFFAOYSA-N 0.000 description 1
- NRZWQKGABZFFKE-UHFFFAOYSA-N trimethylsulfonium Chemical compound C[S+](C)C NRZWQKGABZFFKE-UHFFFAOYSA-N 0.000 description 1
- 229960002703 undecylenic acid Drugs 0.000 description 1
- JARYYMUOCXVXNK-IMTORBKUSA-N validamycin Chemical compound N([C@H]1C[C@@H]([C@H]([C@H](O)[C@H]1O)O[C@H]1[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O1)O)CO)[C@H]1C=C(CO)[C@H](O)[C@H](O)[C@H]1O JARYYMUOCXVXNK-IMTORBKUSA-N 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- BCEHBSKCWLPMDN-MGPLVRAMSA-N voriconazole Chemical compound C1([C@H](C)[C@](O)(CN2N=CN=C2)C=2C(=CC(F)=CC=2)F)=NC=NC=C1F BCEHBSKCWLPMDN-MGPLVRAMSA-N 0.000 description 1
- 229960004740 voriconazole Drugs 0.000 description 1
- 229920003169 water-soluble polymer Polymers 0.000 description 1
- 239000000230 xanthan gum Substances 0.000 description 1
- 235000010493 xanthan gum Nutrition 0.000 description 1
- 229920001285 xanthan gum Polymers 0.000 description 1
- 229940082509 xanthan gum Drugs 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 239000000811 xylitol Substances 0.000 description 1
- 235000010447 xylitol Nutrition 0.000 description 1
- HEBKCHPVOIAQTA-SCDXWVJYSA-N xylitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)CO HEBKCHPVOIAQTA-SCDXWVJYSA-N 0.000 description 1
- 229960002675 xylitol Drugs 0.000 description 1
- 239000012138 yeast extract Substances 0.000 description 1
- 239000002888 zwitterionic surfactant Substances 0.000 description 1
- 239000004711 α-olefin Substances 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/14—Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
- A61K9/16—Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
- A61K9/1605—Excipients; Inactive ingredients
- A61K9/1617—Organic compounds, e.g. phospholipids, fats
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N25/00—Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
- A01N25/02—Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing liquids as carriers, diluents or solvents
- A01N25/04—Dispersions, emulsions, suspoemulsions, suspension concentrates or gels
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/16—Amides, e.g. hydroxamic acids
- A61K31/165—Amides, e.g. hydroxamic acids having aromatic rings, e.g. colchicine, atenolol, progabide
- A61K31/167—Amides, e.g. hydroxamic acids having aromatic rings, e.g. colchicine, atenolol, progabide having the nitrogen of a carboxamide group directly attached to the aromatic ring, e.g. lidocaine, paracetamol
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/10—Dispersions; Emulsions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/14—Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
- A61K9/16—Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
- A61K9/1605—Excipients; Inactive ingredients
- A61K9/1629—Organic macromolecular compounds
- A61K9/1635—Organic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyvinyl pyrrolidone, poly(meth)acrylates
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/14—Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
- A61K9/16—Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
- A61K9/1605—Excipients; Inactive ingredients
- A61K9/1629—Organic macromolecular compounds
- A61K9/1641—Organic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, poloxamers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/14—Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
- A61K9/16—Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
- A61K9/1605—Excipients; Inactive ingredients
- A61K9/1629—Organic macromolecular compounds
- A61K9/1652—Polysaccharides, e.g. alginate, cellulose derivatives; Cyclodextrin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/14—Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
- A61K9/19—Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles lyophilised, i.e. freeze-dried, solutions or dispersions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/08—Drugs for disorders of the alimentary tract or the digestive system for nausea, cinetosis or vertigo; Antiemetics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/10—Laxatives
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/12—Antidiarrhoeals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/14—Prodigestives, e.g. acids, enzymes, appetite stimulants, antidyspeptics, tonics, antiflatulents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/04—Centrally acting analgesics, e.g. opioids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/06—Antimigraine agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/28—Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P27/00—Drugs for disorders of the senses
- A61P27/02—Ophthalmic agents
- A61P27/12—Ophthalmic agents for cataracts
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/10—Antimycotics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P33/00—Antiparasitic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P33/00—Antiparasitic agents
- A61P33/02—Antiprotozoals, e.g. for leishmaniasis, trichomoniasis, toxoplasmosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P33/00—Antiparasitic agents
- A61P33/02—Antiprotozoals, e.g. for leishmaniasis, trichomoniasis, toxoplasmosis
- A61P33/06—Antimalarials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/10—Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/12—Antihypertensives
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/30—Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
Definitions
- the present invention concerns improvements relating to biocidal compositions.
- biocidal compositions and precursors thereof which contains a water-insoluble biocidal substance.
- Biocidal agents are widely used in agriculture, sanitation and cleaning, wood and paper preservation and various other human, animal and plant health and industrial applications.
- the present invention is believed to be generally applicable to biocidal compositions but will be described with particular reference to antimicrobial agents, i.e. anti-bacterial and anti-fungal agents and also herbicides, although other and broader aspects of the invention are not intended to be excluded.
- WO 2005/011636 discloses a non-emulsion based spray drying process for forming ‘solid amorphous dispersions’ of drugs in polymers.
- a polymer and a low-solubility drug are dissolved in a solvent and spray-dried to form dispersions in which the drug is mostly present in an amorphous form rather than in a crystalline form.
- GB 0613925 the water-insoluble materials are dissolved in a mixed solvent system and co-exist in the same phase as a water-soluble structuring agent.
- Our GB 0613925 application makes it clear that a TriclosanTM nano-dispersion has the additional benefit that weight for weight it is more effective than is normally expected of TriclosanTM even at very low concentrations.
- ambient temperature means 20 degrees Celsius and all percentages are percentages by weight unless otherwise specified.
- a first aspect of the present invention provides a biocidal preparation of improved efficacy comprising at least one water insoluble biocide and a water-soluble carrier material, wherein the water-insoluble biocide is dispersed through the carrier material in nano-disperse form having a peak diameter of the nano-disperse form below 1000 nm.
- the present invention further provides a process for improving the efficacy of a water insoluble biocide which comprises the step of spray drying a solution of the biocide and a solution of a water-soluble carrier to obtain a solvent free dispersion of the biocide in the carrier, which, when dissolved in water produces a nano-disperse biocide with a peak particle diameter of below 1000 nm.
- the preferred method of particle sizing for the dispersed products of the present invention employs a dynamic light scattering instrument (Nano S, manufactured by Malvern Instruments UK). Specifically, the Malvern Instruments Nano S uses a red (633 nm) 4 mW Helium-Neon laser to illuminate a standard optical quality UV curvette containing a suspension of material. The particle sizes quoted in this application are those obtained with that apparatus using the standard protocol.
- the peak diameter of the water-insoluble biocide is below 800 nm. More preferably the peak diameter of the water-insoluble biocide is below 500 nm. In a particularly preferred embodiment of the invention the peak diameter of the water-insoluble biocide is below 200 nm, most preferably below 100 nm.
- water insoluble as applied to the biocide means that its solubility in water is less than 10 g/L.
- the water insoluble biocide has solubility in water at ambient temperature (20 Celsius) of less than 5 g/L preferably of less than 1 g/L, especially preferably less than 120 mg/L, even more preferably less than 15 mg/L and most preferably less than 5 mg/L.
- This solubility level provides the intended interpretation of what is meant by water-insoluble in the present specification.
- the present invention is applicable to a broad range of biocides.
- Preferred water-insoluble biocides for use in the present invention are antibacterials (for example chlorophenols including Triclosan), antifungals (for example organochlorines including Chlorothalonil and imidazoles such as Ketoconazole and Propiconazole), insecticides (for example pyrethroids, including ⁇ -cyhalothrin) and/or herbicides (for example phenol-ureas including Isoproturon).
- the invention is also envisaged to be applicable to acaricides, algicides, molluscicides and nematacides.
- Triclosan (5-chloro-2-(2,4-dichlorophenoxy)-phenol) is an chlorophenol antibacterial used in soaps, deodorants, toothpastes, mouthwashes, and cleaning supplies and is infused in an increasing number of consumer products, such as kitchen utensils, toys, bedding, socks, and trash bags. It has a poor solubility in water of 17 mg/L and is a suitable antibacterial biocide for use in the present invention.
- Ketoconazole acetyl-dichlorophenyl-imidazole
- Creams, lotions and medicated shampoos are available for topical infections such as dandruff, whilst an oral tablet is used to treat systemic fungal infections.
- Janssen-Cilag Ltd produce a variety of ketoconazole based formulations under the trade name “Nizoral®”. It has a solubility of less than 0.1 mg/L.
- Propiconazole (1-(2-(2,4-dichlorophenyl)-4-propyl-1-1,3-dioxolan-2-ylmethyl)-1H-1,2,4-tri azole) is another broad spectrum antifungal agent. Propiconazole is predominantly used in antifungal agrochemical formulations such as “Tilt®” manufactured by Ciba. It has a solubility of around 100 mg/L.
- Azoxystrobin (methyl(E)-2- ⁇ 2-[6-(2-cyanophenoxy)pyrimidin-4-yloxy]phenyl ⁇ -3-methoxyacrylate) is a systemic, broad-spectrum strobilurin fungicide with activity against the four major groups of plant pathogenic fungi including Ascomcetes (e.g. powdery mildews), Basidiomycetes (e.g. rusts), Deutoromycetes (e.g. rice blast) and Oomycetes (e.g. downy mildew).
- Ascomcetes e.g. powdery mildews
- Basidiomycetes e.g. rusts
- Deutoromycetes e.g. rice blast
- Oomycetes e.g. downy mildew
- strobilurins are azoxystrobin, kresoxim-methyl, picoxystrobin, fluoxastrobin, oryzastrobin, dimoxystrobin, pyraclostrobin and trifloxystrobin.
- Azoxystrobin has a very poor solubility in water of ⁇ 6 mg/L
- Chlorothalonil (2,4,5,6-tetrachloroisophthalonitrile) is a broad-spectrum organo-chlorine fungicide used to control fungi that threaten vegetables, trees, small fruits, turf, ornamentals, and other agricultural crops. It has an exceptionally low solubility in water of ⁇ 0.6 mg/L.
- Ketoconazole, propiconazole, azoxystrobin and chlorothalonil are each suitable antifungal biocides for use in the present invention.
- Isoproturon (3-(4-isopropylphenyl)-1,1-dimethylurea) is a common herbicide with a low solubility in water ( ⁇ 65 mg/L) and is widely used for the control of broad leaved weeds that grow in various annual grasses. It is a suitable herbicide for use in the present invention.
- ⁇ -cyhalothrin is a suitable insecticide for use in the present invention and has an aqueous solubility of 0.005 mg/L
- Preferred carrier materials are selected from the group consisting of water-soluble inorganic materials, surfactants, polymers, sugars and mixtures thereof.
- a further aspect of the present invention provides an aqueous dispersion of a water insoluble biocide and a water-soluble carrier material, wherein the biocide is in nano-disperse form having a peak diameter of the nano-disperse form below 1000 nm, preferably below 800 nm, more preferably below 500 nm, even more preferably below 200 nm and especially below 100 nm. As noted above, it is particularly advantageous when the particle size of the biocide is below 40 nm.
- a further aspect of the present invention provides a method for preparing a biocide composition comprising a water insoluble biocide and a water-soluble carrier, which comprises the steps of:
- this class of method is referred to herein as the “emulsion” method.
- a further aspect of the present invention provides a method for preparing a biocide composition comprising a water insoluble biocide and a water-soluble carrier which comprises the steps of:
- this class of method is referred to herein as the “single-phase” method.
- substantially solvent free means that the free solvent content of the product is less than 15% wt, preferably below 10% wt and more preferably below 5% wt.
- both the carrier material and the biocide are essentially fully dissolved in their respective solvents prior to the drying step. It is not within the ambit of the present specification to teach the drying of slurries. For the avoidance of any doubt, it is therefore the case that the solids content of the emulsion or the mixture is such that over 90% wt, preferably over 95%, and more preferably over 98% of the soluble materials present is in solution prior to the drying step.
- the preferred biocide and the preferred carrier materials are as described above and as elaborated on in further detail below.
- the “single phase” method where both the biocide and the carrier material are dissolved in a phase comprising at least one non-aqueous solvent (and optional water) is preferred. This is believed to give a smaller particle size for the nano-disperse biocide.
- drying simultaneously removes essentially all solvents and, more preferably, is accomplished by spray drying at above ambient temperature.
- a further aspect of the present invention provides a method for the preparation of a biocide composition for use in the prophylaxis or treatment of infections or infestations which comprises the step of preparing a composition according to the present invention.
- the method is one in which the particle size of the water-insoluble biocide is reduced to below 100 nm, more preferably below 40 nm.
- Such compositions are suitable for use in methods of medical treatment.
- a still further aspect of the present invention provides for the treatment of a substrate other than a medical treatment which comprises the step of contacting the substrate with a composition according to the present invention.
- a method might comprise, for example, a method for preserving wood or other materials of natural origin.
- biocides are non-animal biocides, particularly fungicides, bactericides and herbicides.
- these biocides have solubility in water of less than 120 mg/L and more preferably less than 15 mg/L.
- biocide also includes biostats.
- propiconazole is “fungistatic” rather than “fungicidal” as its mode of action involves inhibition of cell mitosis, rather than causing cell death.
- Some known water-insoluble herbicides are listed in U.S. Pat. No. 6,849,577 and include diuron, linuron, sulfometuron, chlorsulphuron, metsulfuron, chlorimuron, atrazine, simazine, quizalofop, butroxydim, nicosulfuron, primsulfuron, bensulfuron, ametryn, pendimethalin, isoproturon, chlortoluron, diflufenican, mesotrione, aclonifen, fluorochloridone, oxyfluorfen, isoxaflutole, imazamox and thifensulfuron.
- herbicides include trifluralin, fluoroxypyr, phenmedipham, fenoxaprop-P-ethyl, acetochlor, alachlor, tri-allate and propanil.
- the present invention does not depend critically on the nature of the water-insoluble herbicide.
- the invention is suitable for application with the insoluble form of those herbicides, as mentioned above, which are currently used in salt form.
- those herbicides include glyphosphate (N-phosphonomethylglycine), which is commonly used in the form of its water-soluble salts such as trimethylsulphonium, isopropylamine, sodium, or ammonium salts, fomesafen which is commonly used in the form of its water-soluble sodium salt, glufosinate which is commonly used in the form of its water-soluble ammonium salt, paraquat dichloride and bentazone which is commonly used in the form of its water-soluble sodium salt.
- glyphosphate N-phosphonomethylglycine
- water-soluble salts such as trimethylsulphonium, isopropylamine, sodium, or ammonium salts
- fomesafen which is commonly used in the form of its water-soluble sodium salt
- glufosinate
- Some known water-insoluble fungicides are disclosed in, for example, U.S. Pat. Nos. 6,355,675 and 6,113,936 and include benzimidazole compounds such as benomyl, carbendazim, thiabendazole and thiophanate-methyl; phenylcarbamate compounds such as diethofencarb; dicarboxyimide compounds such as procymidone, iprodione and vinclozolin; azole compounds such as diniconazole, epoxyconazole, tebuconazole, difenoconazole, cyproconazole, flusilazole, flutriafol and triadimefon; acylalanine compounds such as metalaxyl; carboxyamide compounds such as furametpyr, mepronil, flutolanil and tolyfluanid; organophosphate compounds such as tolclofos-methyl, fosetyl aluminum and pyrazophos; anilinopyrim
- Preferred fungicides include those of the polyene, imidazole and triazole types.
- Particular preferred polyenes include Amphotericin, Nystatin and mixtures thereof.
- Preferred imidazoles include: Bifonazole, Butoconazole, Clotrimazole, Econazole, Fenticonazole, Isoconazole, Ketoconazole, Metronidazole, Oxiconazole, Sertaconazole, Sulconazole, Tioconazole, Miconazole and mixtures thereof.
- Preferred triazole types include: Fluconazole, Itraconazole, Posaconazole, propiconazole, Ravuconazole, tebuconazole, Terconazole, Voriconazole and mixtures thereof.
- antifungal biocides for use in the present invention include: Amorolfine, Anidulafungin, Butenafine, Naftifine, Caspofungin, Ciclopirox, Flucytosine, Griseofulvin, Haloprogin, Micafungin, Parabens, Salicylic acid, Terbinafine, Thiabenazole, Tolnaflate, Undecylenic acid and mixtures thereof.
- Water insoluble insecticides include cypermethrin, lambda-cyhalothrin, esfenvalerate, malathion, and chlorpyrifos.
- the present invention provides a method for obtaining a rapidly dispersible form of an otherwise essentially water-insoluble material. This is prepared by forming an at least partially non-aqueous intermediate emulsion or solution in which both a water-soluble carrier material and the water-insoluble biocide are dissolved. On removal of solvents the insoluble biocide is left dispersed through the water-soluble carrier material. Suitable carrier materials are described in further detail below.
- the most preferred method for drying of the intermediate emulsion or solution is one which produces a powder directly, such as spray drying.
- Spray drying is particularly effective at removing both the non-aqueous volatile components and any water present to leave the carrier and the ‘payload’ material behind in a powder form. The drying step is described in further detail below.
- the structure of the material obtained after the drying step is not well understood. It is believed that the resulting dry powder materials are not encapsulates, as discrete macroscopic bodies of the water-insoluble materials are not present in the dry product. Neither are the dry materials ‘dry emulsions’ as little or none of the volatile solvent comprising the ‘oil’ phase of the emulsion remains after the drying step. On addition of water to the dry product the emulsion is not reformed, as it would be with a ‘dry emulsion’. It is also believed that the compositions are not so-called solid solutions, as with the present invention the ratios of components present can be varied without loss of the benefits. Also from Xray and DSC studies, it is believed that the compositions of the invention are not solid solutions, but comprise nano-scale, phase-separated mixtures.
- the compositions produced after the drying step will comprise the biocide and the carrier in a weight ratio of from 1:500 to 1:1 as biocide:carrier, with 1:100 to 1:1 being preferred.
- Typical levels of around 10-30% wt water-insoluble biocide and 90-70% carrier can be obtained by spray drying.
- Levels of biocide below 40%, more preferably below 30% wt and most preferably below 25% wt are preferred as they show the improved MIC as discussed above.
- the solvent for the water-insoluble biocide is not miscible with water. On admixture with water it therefore can form an emulsion.
- the non-aqueous phase comprises from about 10% to about 95% v/v of the emulsion, more preferably from about 20% to about 68% v/v.
- the emulsions are typically prepared under conditions which are well known to those skilled in the art, for example, by using a magnetic stirring bar, a homogeniser, or a rotational mechanical stirrer.
- the emulsions need not be particularly stable, provided that they do not undergo extensive phase separation prior to drying.
- Homogenisation using a high-shear mixing device is a particularly preferred way to make an emulsion in which the aqueous phase is the continuous phase. It is believed that this avoidance of coarse emulsion and reduction of the droplet size of the dispersed phase of the emulsion, results in an improved dispersion of the biocide in the dry product.
- a water-continuous emulsion is prepared with an average dispersed-phase droplet size (using the Malvern peak intensity) of between 500 nm and 5000 nm.
- an ‘Ultra-Turrux’T25 type laboratory homogenizer or equivalent gives a suitable emulsion when operated for more than a minute at above 10,000 rpm.
- the re-dissolved particle size can be reduced by nearly one half when the homogenization speed increased from 13,500 rpm to 21,500 rpm.
- the homogenization time is also believed to play a role in controlling re-dissolved particle size.
- the particle size again decreases with increase in the homogenization time, and the particle size distribution become broader at the same time.
- Such intensive mixing is not an essential step in the method of the present invention but it is advantageous.
- Sonication is also a particularly preferred way of reducing the droplet size for emulsion systems.
- a Hert Systems Sonicator XL operated at level 10 for two minutes is suitable.
- the ‘single-phase’ method is generally believed to give a better nano-dispersion with a smaller particle size than the emulsion method. As noted above, the smaller particle sizes give enhanced biocidal effects.
- ratios of components which decrease the relative concentration of the biocide to the solvents and/or the carrier give a smaller particle size.
- Spray drying the most preferred method of drying the emulsion or solution, is well known to those versed in the art. In the case of the present invention some care must be taken due to the presence of a volatile non-aqueous solvent in the material being dried.
- an inert gas for example nitrogen, can be employed as the drying medium in a so-called closed spray-drying system. The solvent can be recovered and re-used.
- the drying temperature should be at or above 100 Celsius, preferably above 120 Celsius and most preferably above 140 Celsius. Elevated drying temperatures have been found to give smaller particles in the re-dissolved nano-disperse material.
- Freeze drying can also be used. It is preferred to use a non-aqueous solvent with a melting point above ⁇ 120 Celsius, preferably above ⁇ 80 Celsius. Chloroform is a particularly preferred solvent due to it physical characteristics. It a relatively high melting point (approx. ⁇ 63.5° C.). Freeze drying can be employed both with the emulsion method and the single phase method.
- the carrier material is water soluble, which includes the formation of structured aqueous phases as well as true ionic solution of molecularly mono-disperse species.
- the carrier material preferably comprises an inorganic material, surfactant, a polymer or may be a mixture of two or more of these.
- Suitable carrier materials include preferred water-soluble polymers, preferred water-soluble surfactants and preferred water-soluble inorganic materials. Particularly preferred materials are solids, as opposed to soft solids or semi-solids at ambient temperature such that good powder properties are obtained in the spray-dried product.
- carrier material will depend on the proposed end-use of the composition and carriers should be selected such that they are not detrimentally reactive towards the biocide and compatible with the proposed use.
- the carrier can also have an activity in its own right or contain water soluble materials which have such an activity.
- the carrier may comprise materials having an agrochemical activity.
- Suitable water-soluble polymeric carrier materials include:
- suitable and preferred homopolymers include poly-vinylalcohol, poly-acrylic acid, poly-methacrylic acid, poly-acrylamides (such as poly-N-isopropylacrylamide), poly-methacrylamide; poly-acrylamines, poly-methyl-acrylamines, (such as polydimethylaminoethylmethacrylate and poly-N-morpholinoethylmethacrylate), polyvinylpyrrolidone, poly-styrenesulphonate, polyvinylimidazole, polyvinylpyridine, poly-2-ethyl-oxazoline poly-ethyleneimine and ethoxylated derivatives thereof.
- Polyethylene glycol PEG
- polyvinylpyrrolidone PVP
- polyvinyl alcohol PVA
- HPMC hydroxypropyl-methyl cellulose
- alginates are preferred polymeric carrier materials.
- the surfactant may be non-ionic, anionic, cationic, amphoteric or zwitterionic.
- non-ionic surfactants include ethoxylated triglycerides; fatty alcohol ethoxylates; alkylphenol ethoxylates; fatty acid ethoxylates; fatty amide ethoxylates; fatty amine ethoxylates; sorbitan alkanoates; ethylated sorbitan alkanoates; alkyl ethoxylates; PluronicsTM; alkyl polyglucosides; stearol ethoxylates; alkyl polyglycosides.
- anionic surfactants include alkylether sulfates; alkylether carboxylates; alkylbenzene sulfonates; alkylether phosphates; dialkyl sulfosuccinates; sarcosinates; alkyl sulfonates; soaps; alkyl sulfates; alkyl carboxylates; alkyl phosphates; paraffin sulfonates; secondary n-alkane sulfonates; alpha-olefin sulfonates; isethionate sulfonates.
- Suitable cationic surfactants include fatty amine salts; fatty diamine salts; quaternary ammonium compounds; phosphonium surfactants; sulfonium surfactants; sulfonxonium surfactants.
- Suitable zwitterionic surfactants include N-alkyl derivatives of amino acids (such as glycine, betaine, aminopropionic acid); imidazoline surfactants; amine oxides; amidobetaines.
- Mixtures of surfactants may be used.
- Alkoxyayed nonionic's (especially the PEG/PPG e.g. PluronicTM materials and/or the PEG/alcohol nonionics), phenol-ethoxylates (especially TRITONTM materials), alkyl sulphonates (especially SDS), ether-sulphates (including SLES), ester surfactants (preferably sorbitan esters of the SpanTM and TweenTM types) and cationics (especially cetyltrimethylammonium bromide—CTAB) are particularly preferred as surfactant carrier materials.
- PEG/PPG e.g. PluronicTM materials and/or the PEG/alcohol nonionics
- phenol-ethoxylates especially TRITONTM materials
- alkyl sulphonates especially SDS
- ether-sulphates including SLES
- ester surfactants preferably sorbitan esters of the SpanTM and TweenTM types
- cationics especially cetyltrimethylammonium bromid
- Surfactant carrier materials are particularly suitable for embodiments of the invention in which the re-dispersed particle size in water is below 100 nm, and particularly below 40 nm.
- Preferred mixtures include combinations of inorganic salts and surfactants and polymers and surfactants.
- Particularly preferred mixtures include combinations of surfactants and polymers. Which include at least one of:
- the carrier material can also be a water-soluble small organic material which is neither a surfactant, a polymer nor an inorganic carrier material.
- Simple organic sugars have been found to be suitable, particularly in admixture with a polymeric and/or surfactant carrier material as described above.
- Suitable small organic materials include mannitol, polydextrose, xylitol and insulin etc.
- the level of surfactant carrier is such that at least 50% of the total carrier is surfactant. Mixtures having a majority of surfactant present over the other carriers exhibit better biocidal effects.
- compositions of the invention comprise a volatile, non-aqueous solvent.
- a volatile, non-aqueous solvent As noted above this can be a mixture of solvents. This may either be miscible with such other solvents (including water) which may be present in the pre-mix before drying or, together with those solvents may form an emulsion.
- Particularly preferred solvents are selected from the group consisting of haloforms (preferably di-chloromethane, chloroform), lower (C1-C10) alcohols (preferably methanol, ethanol, isopropanol, isobutanol), organic acids (preferably formic acid, acetic acid), amides (preferably formamide, N,N-dimethylformamide), nitrites (preferably aceto-nitrile), esters (preferably ethyl acetate) aldehydes and ketones (preferably methyl ethyl ketone, acetone), and other water miscible species comprising heteroatom bond with a suitably large dipole (preferably tetrahydrofuran, dialkylsulphoxide). Mixtures of the aforementioned may also be employed.
- haloforms preferably di-chloromethane, chloroform
- lower (C1-C10) alcohols preferably methanol, ethanol, isopropanol, isobutanol
- the non-aqueous solvent is not miscible with water and forms an emulsion.
- the non-aqueous phase of the emulsion is preferably selected from one or more from the following group of volatile organic solvents:
- Preferred solvents include dichloromethane, chloroform, ethanol, acetone and dimethyl sulphoxide.
- Preferred non-aqueous solvents whether miscible or not have a boiling point of less than 150 Celsius and, more preferably, have a boiling point of less than 100 Celsius, so as to facilitate drying, particularly spray-drying under practical conditions and without use of specialised equipment.
- they are non-flammable, or have a flash point above the temperatures encountered in the method of the invention.
- Particularly preferred solvents are alcohols, particularly ethanol and halogenated solvents, more preferably chlorine-containing solvents, most preferably solvents selected from (di- or tri-chloromethane).
- an optional co-surfactant may be employed in the composition prior to the drying step.
- a relatively small quantity of a volatile cosurfactant reduced the particle diameter of the material produced. This can have a significant impact on particle volume. For example, reduction from 297 nm to 252 nm corresponds to a particle size reduction of approximately 40%.
- the addition of a small quantity of co-surfactant offers a simple and inexpensive method for reducing the particle size of materials according to the present invention without changing the final product formulation.
- Preferred co-surfactants are short chain alcohols or amine with a boiling point of ⁇ 220° C.
- the co-surfactant is present in a quantity (by volume) less than the solvent preferably the volume ratio between the solvent and the co-surfactant falls in the range 100:40 to 100:2, more preferably 100:30 to 100:5.
- drying feed-stocks used in the present invention are either emulsions or solutions which preferably do not contain solid matter and in particular preferably do not contain any undissolved biocide.
- the level of the biocide in the composition should be such that the loading in the dried composition is below 40% wt, and more preferably below 30% wt.
- Such compositions have the advantages of a small particle size and high effectiveness as discussed above.
- Typical spray drying feedstocks comprise:
- the particle size of the water-insoluble materials in the dry product is preferably such that, on solution in water the water-insoluble materials have a particle size of less than 1 micron as determined by the Malvern method described herein.
- the determined particle size is less than 800 nm, more preferably less than 500 nm.
- the particle size is in the range 250-50 nm and is most preferably in the range 200-75 nm.
- the broader range is analogous to the size of a virus particle (which typically range from 450-20 nm). Diameters of less than 200 nm are most preferred. It is believed that there is no significant reduction of particle size for the biocidal agent on dispersion of the solid form in water.
- Very small particle sizes of as low as 4 nm can be obtained by the method of the invention.
- the compositions of the invention show a further improvement in efficacy.
- solution form will be a form suitable for use either ‘as is’ or following further dilution or admixture with other components.
- the present invention therefore also relates to a method for the delivery of a water-insoluble biocide which comprises the steps of:
- the substrate can be the subject to be treated directly with the biocide (such as a plant, where the object is the eradication of, for example, fungi, or a wooden object requiring rot prevention treatment) or can be associated with the subject (such as bedding or soil).
- Preferred substrates are selected from a plant (or part thereof, including seeds, bulbs, fruits, roots, leaves), soil, an animal, bedding for animals, fodder or an article manufactured from a plant or an animal.
- Preferred treatment methods include spraying, dipping and washing.
- a method of particle sizing for the dispersed products of the present invention used in the following examples employs a dynamic light scattering instrument (Nano S, manufactured by Malvern Instruments UK). Specifically, the Malvern Instruments Nano S uses a red (633 nm) 4 mW Helium-Neon laser to illuminate a standard optical quality UV curvette containing a suspension of material.
- the solution was spray dried using a Buchi B-290TM bench top spray-dryer, operated in a negative pressure mode. Air drawn from the lab was used as the drying medium and the operating conditions were as follows:
- a dry white powder was obtained. This material was redispersed in demineralised water at a concentration of 10 mg/ml (1.0 wt %, 0.1 wt % chlorothalonil). This produced an opaque white dispersion. At this concentration, the material was relatively slow to disperse (approx. 5 minutes).
- the solution was spray dried using a Buchi B-290 bench top spray dryer, operated in a negative pressure mode. Air drawn from the lab was used as the drying medium.
- a dry white powder was obtained. This material was redispersed in demineralised water at a concentration of 1 mg/ml (0.1 wt %, 0.01 wt % chlorothalonil). This produced an opaque white dispersion. At this concentration, the material was considerably quicker (than example 1) to disperse (less than 30 seconds).
- the solution was spray dried using a Buchi B-290 bench top spray dryer, operated in a negative pressure mode. Air drawn from the lab was used as the drying medium.
- a dry white powder was obtained. This material was redispersed in demineralised water at a concentration of 1 mg/ml (0.1 wt %, 0.01 wt % chlorothalonil). This produced an opaque white dispersion. At this concentration, the material dispersed at a similar rate to example 2 (less than 30 seconds).
- Ketoconazole 100 mg (10%) Ketoconazole, 500 mg (50%) poly(ethylene glycol) (10 kDa, Fluka) and 400 mg (40%) sodium lauryl ether sulfate (SLES) were dissolved in 60 ml ethanol and 60 ml water. The resulting solution was spray dried at an inlet temperature of 180° C. and a pump rate of approximately 3.6 ml/minute. The recovered dry white powder redispersed in water to give a clear suspension of average particle size 16.1 nm (Z-ave).
- SLES sodium lauryl ether sulfate
- MIC Minimum Inhibitory Concentration
- CA Candida albicans
- YEME yeast extract malt extract media
- concentrations of the active material and blanks contained in a 96 well plate were incubated at 37° C. overnight, and then examined with a UV plate reader at a wavelength of 550 nm. Concentrations of biocide that inhibited cell growth resulted in a well with very low optical density (visually clear), whereas wells in which cells growth occurred had a very high optical density (visually opaque).
- the MIC was defined as the lowest concentration of biocide that resulted in total inhibition of cell growth, when incubated overnight.
- Particle size Material Initial concentration (Z-ave, nm) MIC (mg/L) 13/28/20 equivalent to 0.15 mg/ml n/a no inhibition (SLES/PEG active observed blank matrix) As Example 5 0.15 mg/ml active 16.1 ⁇ 14 As Example 4 0.15 mg/ml active 24.2 ⁇ 38 DMSO 25% v/v n/a ⁇ 9.25% v/v PVA (blank) equivalent to 0.15 mg/ml n/a no inhibition active observed Ketoconazole 0.15 mg/ml in 25% v/v n/a 65 in DMSO solvent
- biocidal activity of the materials according to the present invention is influenced by the composition of its matrix.
- the activity of the formulation increased 3 fold when the proportion of surfactant is increased from 10 wt. % to 80 wt. %.
- the solution was spray dried using a Buchi B-290 bench top spray dryer, operated in a negative pressure mode. Air drawn from the lab was used as the drying medium.
- Phase 1 10% ISP (28) 500 mg in 10 ml Chloroform Phase 2: 60% PVA (10 kDa) 3000 mg 30% SDS 1500 mg in 75 ml water
- Emulsification was achieved by sonicating for 5 minutes at 50% power, then for a further 2 minutes at 100% power (using a 1 kW probe type sonicator).
- the resulting emulsion was spray dried at an inlet temperature of 150° C. and a pump rate of 5.6 ml/min. Aspiration and atomisation gas were set to maximum.
- the resulting dry white powder redispersed to give a slightly cloudy suspension at a concentration of 1 mg/ml.
- the particle size was measured as 297+/ ⁇ 8.66 nm
- Formulation was as Example 13, but contained a small quantity of additional volatile cosurfactant (n-butanol).
- Phase 1 10% ISP (28) 500 mg in 10 ml Chloroform and 2 ml n-butanol Phase 2: 60% PVA (10 kDa) 3000 mg 30% SDS 1500 mg in 75 ml water
- the two phases were continuously cooled using a water jacketed beaker whilst being emulsified. Emulsification was achieved by sonicating for 5 minutes at 50% power, then for a further 2 minutes at 100% power (using a 1 kW probe type sonicator).
- the resulting emulsion was spray dried at an inlet temperature of 150° C. and a pump rate of 5.6 ml/min. Aspiration and atomisation gas were set to maximum.
- the resulting dry white powder redispersed to give a slightly cloudy suspension at a concentration of 1 mg/ml, although noticeably clearer than that of example 13.
- the particle size was measured as 252+/ ⁇ 14.0 nm.
- a single phase solution of the insecticide ⁇ -cyhalothrin, PEG and the PEG based surfactants PluronicTM F68 and PluronicTM F127 was prepared in chloroform. This was freeze dried using a “Christ alpha 2-4 LSC” freeze dryer in single batches on a 5 ml per sample scale (i.e. 250 mg solids in each sample).
- Example Particle 17 F68 F127 PEG active size A 0.9 0 0 0.1 66.19 B 0 0.9 0 0.1 44.24 C 0 0 0.9 0.1 168.2 D 0.7 0 0 0.3 102 E 0 0.7 0 0.3 80.99 F 0 0 0.7 0.3 240.5 G 0 0.4 0.4 0.2 94.59 H 0.4 0 0.4 0.2 127.5 I 0.3 0.3 0.3 0.1 51.87 J 0.26667 0.26667 0.2667 0.2 90.92 K 0.26667 0.26667 0.2667 0.2 93.54 L 0.26667 0.26667 0.2667 0.2 72.5
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Veterinary Medicine (AREA)
- Engineering & Computer Science (AREA)
- Pharmacology & Pharmacy (AREA)
- Public Health (AREA)
- Medicinal Chemistry (AREA)
- Animal Behavior & Ethology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Epidemiology (AREA)
- Pain & Pain Management (AREA)
- Neurosurgery (AREA)
- Biomedical Technology (AREA)
- Neurology (AREA)
- Dispersion Chemistry (AREA)
- Tropical Medicine & Parasitology (AREA)
- Heart & Thoracic Surgery (AREA)
- Cardiology (AREA)
- Wood Science & Technology (AREA)
- Agronomy & Crop Science (AREA)
- Plant Pathology (AREA)
- Pest Control & Pesticides (AREA)
- Dentistry (AREA)
- Zoology (AREA)
- Environmental Sciences (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Toxicology (AREA)
- Communicable Diseases (AREA)
- Hospice & Palliative Care (AREA)
- Ophthalmology & Optometry (AREA)
- Oncology (AREA)
- Urology & Nephrology (AREA)
- Rheumatology (AREA)
Abstract
Description
- The present invention concerns improvements relating to biocidal compositions.
- In particular it relates to biocidal compositions and precursors thereof which contains a water-insoluble biocidal substance.
- Biocidal agents are widely used in agriculture, sanitation and cleaning, wood and paper preservation and various other human, animal and plant health and industrial applications. The present invention is believed to be generally applicable to biocidal compositions but will be described with particular reference to antimicrobial agents, i.e. anti-bacterial and anti-fungal agents and also herbicides, although other and broader aspects of the invention are not intended to be excluded.
- Many effective biocides have poor water solubility and various proposals have been made for how these materials can be made more effective. For example, many agricultural formulations contain water soluble salts of insoluble or poorly soluble biocides. These salts, such as alkylamine salts, are generally not as active as their acid equivalents. As an illustration of this, 2,4-Dichlorophenoxyacetic acid (2,4-D acid) is known to be more herbicidally active than the corresponding dimethylamine salt of 2,4-D. However, the 2,4-D acid is not soluble in water. Solvents used to formulate, 2,4-D in its acid form are known to be phytotoxic to plants and enhance herbicide volatility and subsequent drift to non-target areas.
- Our co-pending international patent application PCT/GB03/03226 describes the formation of solid, porous beads comprising a three dimensional open-cell lattice of a water-soluble polymeric material. These are typically ‘templated’ materials formed by the removal of both water and a non-aqueous dispersed phase from a high internal phase emulsion (HIPE) which has a polymer dissolved in the aqueous phase. The macroscopic beads are formed by dropping the HIPE emulsion into a low temperature fluid such as liquid nitrogen, then freeze-drying the particles formed to remove the bulk of the aqueous phase and the dispersed phase. This leaves behind the polymer in the form of a ‘skeletal’ structure. The beads dissolve rapidly in water and have the remarkable property that a water-insoluble component dispersed in the dispersed phase of the emulsion prior to freezing and drying can also be dispersed in water on solution of the polymer skeleton of the beads.
- WO 2005/011636 discloses a non-emulsion based spray drying process for forming ‘solid amorphous dispersions’ of drugs in polymers. In this method a polymer and a low-solubility drug are dissolved in a solvent and spray-dried to form dispersions in which the drug is mostly present in an amorphous form rather than in a crystalline form.
- Our co-pending applications GB 0501835 (filed 28th Jan. 2005, published 3rd Aug. 2006) and GB 0613925 (filed 13th Jul. 2006) describe how materials which will form a nano-dispersion in water can be prepared, preferably by a spray-drying process. In both cases the liquid is dried above ambient temperature (above 20 Celsius), such as by spray drying, to produce particles of the structuring agent, as a carrier, with the water-insoluble materials dispersed therein. When these particles are placed in water they dissolve, forming a nano-dispersion of the water-insoluble material with particles typically below 300 nm. This size scale is similar to that of virus particles, and the water-insoluble material behaves as though it were in solution.
- In the process described in GB 0501835 the water insoluble material is dissolved in the solvent-phase of an emulsion. This earlier, prior published application states that the process can be applied to antimicrobial agents, for example: Triclosan™, climbazole, octapyrox, ketoconizole, phthalimoperoxyhexanoic acid (PAP) and quaternary ammonium compounds, or to insecticides, pesticides and herbicides. Our prior published GB 0501835 application also showed that fluorescer materials prepared by the method disclosed exhibited better performance than those prepared by a known freeze-drying method.
- In GB 0613925 the water-insoluble materials are dissolved in a mixed solvent system and co-exist in the same phase as a water-soluble structuring agent. Our GB 0613925 application makes it clear that a Triclosan™ nano-dispersion has the additional benefit that weight for weight it is more effective than is normally expected of Triclosan™ even at very low concentrations.
- In the present application the term ‘ambient temperature’ means 20 degrees Celsius and all percentages are percentages by weight unless otherwise specified.
- We have now determined that both the emulsion-based and the single-phase method can be used to produce a water-soluble form of biocidal substances which show improved efficacy.
- Accordingly, a first aspect of the present invention provides a biocidal preparation of improved efficacy comprising at least one water insoluble biocide and a water-soluble carrier material, wherein the water-insoluble biocide is dispersed through the carrier material in nano-disperse form having a peak diameter of the nano-disperse form below 1000 nm.
- The present invention further provides a process for improving the efficacy of a water insoluble biocide which comprises the step of spray drying a solution of the biocide and a solution of a water-soluble carrier to obtain a solvent free dispersion of the biocide in the carrier, which, when dissolved in water produces a nano-disperse biocide with a peak particle diameter of below 1000 nm.
- The preferred method of particle sizing for the dispersed products of the present invention employs a dynamic light scattering instrument (Nano S, manufactured by Malvern Instruments UK). Specifically, the Malvern Instruments Nano S uses a red (633 nm) 4 mW Helium-Neon laser to illuminate a standard optical quality UV curvette containing a suspension of material. The particle sizes quoted in this application are those obtained with that apparatus using the standard protocol.
- Preferably, the peak diameter of the water-insoluble biocide is below 800 nm. More preferably the peak diameter of the water-insoluble biocide is below 500 nm. In a particularly preferred embodiment of the invention the peak diameter of the water-insoluble biocide is below 200 nm, most preferably below 100 nm.
- We have determined that for smaller particle sizes, in particular for particle sizes below 40 nm there is a further significant improvement in the MIC of the water insoluble biocides. This effect is not well-understood (by comparison, the thickness of a Gram-negative bacterial cell wall is around 10 nm) and it may involve some specific interaction of the biocide nano-particles with the cell wall. This size range is also close to a miscellar scale and another possible explanation is that only a few molecules or in some cases a single molecule of certain biocides are needed to achieve an effect and therefore delivering a very small package of water-insoluble biocide vastly increases it's efficiency.
- In the context of the present invention, “water insoluble” as applied to the biocide means that its solubility in water is less than 10 g/L.
- Preferably, the water insoluble biocide has solubility in water at ambient temperature (20 Celsius) of less than 5 g/L preferably of less than 1 g/L, especially preferably less than 120 mg/L, even more preferably less than 15 mg/L and most preferably less than 5 mg/L. This solubility level provides the intended interpretation of what is meant by water-insoluble in the present specification.
- The present invention is applicable to a broad range of biocides. Preferred water-insoluble biocides for use in the present invention are antibacterials (for example chlorophenols including Triclosan), antifungals (for example organochlorines including Chlorothalonil and imidazoles such as Ketoconazole and Propiconazole), insecticides (for example pyrethroids, including λ-cyhalothrin) and/or herbicides (for example phenol-ureas including Isoproturon). The invention is also envisaged to be applicable to acaricides, algicides, molluscicides and nematacides.
- Triclosan (5-chloro-2-(2,4-dichlorophenoxy)-phenol) is an chlorophenol antibacterial used in soaps, deodorants, toothpastes, mouthwashes, and cleaning supplies and is infused in an increasing number of consumer products, such as kitchen utensils, toys, bedding, socks, and trash bags. It has a poor solubility in water of 17 mg/L and is a suitable antibacterial biocide for use in the present invention.
- Ketoconazole (acetyl-dichlorophenyl-imidazole) is a broad spectrum imidazole antifungal agent that is used in a variety of formats to treat fungal infections. Creams, lotions and medicated shampoos are available for topical infections such as dandruff, whilst an oral tablet is used to treat systemic fungal infections. Janssen-Cilag Ltd produce a variety of ketoconazole based formulations under the trade name “Nizoral®”. It has a solubility of less than 0.1 mg/L.
- Propiconazole (1-(2-(2,4-dichlorophenyl)-4-propyl-1-1,3-dioxolan-2-ylmethyl)-1H-1,2,4-tri azole) is another broad spectrum antifungal agent. Propiconazole is predominantly used in antifungal agrochemical formulations such as “Tilt®” manufactured by Ciba. It has a solubility of around 100 mg/L.
- Azoxystrobin (methyl(E)-2-{2-[6-(2-cyanophenoxy)pyrimidin-4-yloxy]phenyl}-3-methoxyacrylate) is a systemic, broad-spectrum strobilurin fungicide with activity against the four major groups of plant pathogenic fungi including Ascomcetes (e.g. powdery mildews), Basidiomycetes (e.g. rusts), Deutoromycetes (e.g. rice blast) and Oomycetes (e.g. downy mildew). Other strobilurins are azoxystrobin, kresoxim-methyl, picoxystrobin, fluoxastrobin, oryzastrobin, dimoxystrobin, pyraclostrobin and trifloxystrobin. Azoxystrobin has a very poor solubility in water of ˜6 mg/L Chlorothalonil (2,4,5,6-tetrachloroisophthalonitrile) is a broad-spectrum organo-chlorine fungicide used to control fungi that threaten vegetables, trees, small fruits, turf, ornamentals, and other agricultural crops. It has an exceptionally low solubility in water of ˜0.6 mg/L.
- Ketoconazole, propiconazole, azoxystrobin and chlorothalonil are each suitable antifungal biocides for use in the present invention.
- Isoproturon (3-(4-isopropylphenyl)-1,1-dimethylurea) is a common herbicide with a low solubility in water (˜65 mg/L) and is widely used for the control of broad leaved weeds that grow in various annual grasses. It is a suitable herbicide for use in the present invention.
- λ-cyhalothrin, is a suitable insecticide for use in the present invention and has an aqueous solubility of 0.005 mg/L
- As noted above, it is believed that reduction of the particle size in the eventual nano-dispersion has significant advantages in improving the effectiveness of the otherwise water-insoluble material. This is believed to be particularly advantageous where an significantly improved bio-availability is sought, or, in similar applications where high local concentrations of the material are to be avoided. Moreover it is believed that nano-dispersions with a small particle size are more stable than those with a larger particle size.
- Preferred carrier materials are selected from the group consisting of water-soluble inorganic materials, surfactants, polymers, sugars and mixtures thereof.
- A further aspect of the present invention provides an aqueous dispersion of a water insoluble biocide and a water-soluble carrier material, wherein the biocide is in nano-disperse form having a peak diameter of the nano-disperse form below 1000 nm, preferably below 800 nm, more preferably below 500 nm, even more preferably below 200 nm and especially below 100 nm. As noted above, it is particularly advantageous when the particle size of the biocide is below 40 nm. A further aspect of the present invention provides a method for preparing a biocide composition comprising a water insoluble biocide and a water-soluble carrier, which comprises the steps of:
- a) forming an emulsion comprising:
- i) a solution of the biocide in at least one water-immiscible solvent for the same, and
- ii) an aqueous solution of the carrier, and,
- b) drying the emulsion to remove water and the water-immiscible solvent to obtain a substantially solvent-free nano-dispersion of the biocide in the carrier
- For convenience, this class of method is referred to herein as the “emulsion” method.
- A further aspect of the present invention provides a method for preparing a biocide composition comprising a water insoluble biocide and a water-soluble carrier which comprises the steps of:
- a) providing a mixture comprising:
- i) at least one non-aqueous solvent,
- ii) optionally, water,
- iii) a water-soluble carrier material soluble in the mixture of (i) and (ii) and
- iv) a water-insoluble biocide agent which is soluble in the mixture of (i) and (ii), and,
- b) drying said mixture to remove the non-aqueous solvent and any water present to obtain a substantially solvent-free a nano-dispersion of the biocide in the carrier.
- For convenience, this class of method is referred to herein as the “single-phase” method.
- In the context of the present invention substantially solvent free means that the free solvent content of the product is less than 15% wt, preferably below 10% wt and more preferably below 5% wt.
- In the context of the present invention it is essential that both the carrier material and the biocide are essentially fully dissolved in their respective solvents prior to the drying step. It is not within the ambit of the present specification to teach the drying of slurries. For the avoidance of any doubt, it is therefore the case that the solids content of the emulsion or the mixture is such that over 90% wt, preferably over 95%, and more preferably over 98% of the soluble materials present is in solution prior to the drying step.
- In relation to the methods mentioned above, the preferred biocide and the preferred carrier materials are as described above and as elaborated on in further detail below.
- Similarly the preferred physical characteristics of the material are as described above.
- The “single phase” method where both the biocide and the carrier material are dissolved in a phase comprising at least one non-aqueous solvent (and optional water) is preferred. This is believed to give a smaller particle size for the nano-disperse biocide. Preferably, drying simultaneously removes essentially all solvents and, more preferably, is accomplished by spray drying at above ambient temperature.
- A further aspect of the present invention provides a method for the preparation of a biocide composition for use in the prophylaxis or treatment of infections or infestations which comprises the step of preparing a composition according to the present invention. Preferably, the method is one in which the particle size of the water-insoluble biocide is reduced to below 100 nm, more preferably below 40 nm. Such compositions are suitable for use in methods of medical treatment.
- A still further aspect of the present invention provides for the treatment of a substrate other than a medical treatment which comprises the step of contacting the substrate with a composition according to the present invention. Such a method might comprise, for example, a method for preserving wood or other materials of natural origin.
- Various preferred features and embodiments of the present invention are described in further detail below.
- As noted above, the present invention is applicable to a broad range of water-insoluble biocides. Preferred biocides are non-animal biocides, particularly fungicides, bactericides and herbicides. Preferably these biocides have solubility in water of less than 120 mg/L and more preferably less than 15 mg/L.
- In the context of the present invention the term biocide also includes biostats. For example propiconazole is “fungistatic” rather than “fungicidal” as its mode of action involves inhibition of cell mitosis, rather than causing cell death.
- Some known water-insoluble herbicides are listed in U.S. Pat. No. 6,849,577 and include diuron, linuron, sulfometuron, chlorsulphuron, metsulfuron, chlorimuron, atrazine, simazine, quizalofop, butroxydim, nicosulfuron, primsulfuron, bensulfuron, ametryn, pendimethalin, isoproturon, chlortoluron, diflufenican, mesotrione, aclonifen, fluorochloridone, oxyfluorfen, isoxaflutole, imazamox and thifensulfuron.
- Other suitable herbicides include trifluralin, fluoroxypyr, phenmedipham, fenoxaprop-P-ethyl, acetochlor, alachlor, tri-allate and propanil.
- The present invention, in its broadest sense, does not depend critically on the nature of the water-insoluble herbicide. The invention is suitable for application with the insoluble form of those herbicides, as mentioned above, which are currently used in salt form. These include glyphosphate (N-phosphonomethylglycine), which is commonly used in the form of its water-soluble salts such as trimethylsulphonium, isopropylamine, sodium, or ammonium salts, fomesafen which is commonly used in the form of its water-soluble sodium salt, glufosinate which is commonly used in the form of its water-soluble ammonium salt, paraquat dichloride and bentazone which is commonly used in the form of its water-soluble sodium salt.
- Some known water-insoluble fungicides are disclosed in, for example, U.S. Pat. Nos. 6,355,675 and 6,113,936 and include benzimidazole compounds such as benomyl, carbendazim, thiabendazole and thiophanate-methyl; phenylcarbamate compounds such as diethofencarb; dicarboxyimide compounds such as procymidone, iprodione and vinclozolin; azole compounds such as diniconazole, epoxyconazole, tebuconazole, difenoconazole, cyproconazole, flusilazole, flutriafol and triadimefon; acylalanine compounds such as metalaxyl; carboxyamide compounds such as furametpyr, mepronil, flutolanil and tolyfluanid; organophosphate compounds such as tolclofos-methyl, fosetyl aluminum and pyrazophos; anilinopyrimidine compounds such as pyrimethanil, mepanipyrim and cyprodinil; cyanopyrrrole compounds such as fludioxonil and fenpiclonil; antibiotics such as blasticidin-S, kasugamycin, polyoxin and validamycin; methoxyacrylate compounds such as azoxystrobin, kresoxim-methyl and metominostrobin; chlorothalonil; manzeb; captan; folpet; tricyclazole; pyroquilon; probenazole; phthalide; cymoxanil; dimethomorph; S-methylbenzo[1,2,3]thiadiazol-7-carbothioate; famoxadone; oxolinic acid; fluaziname; ferimzone; chlobenthiazone; isovaledione; tetrachloroisophthalonitrile; thiophthalimideoxybisphenoxyarsine; 3-iodo-2-propylbutylcarbamate; parahydroxy benzoic ester. Others such as fenpropimorph (morpholine based) and thiram (dithiocarbamate) are also believed suitable.
- Preferred fungicides include those of the polyene, imidazole and triazole types.
- Particular preferred polyenes include Amphotericin, Nystatin and mixtures thereof.
- Preferred imidazoles include: Bifonazole, Butoconazole, Clotrimazole, Econazole, Fenticonazole, Isoconazole, Ketoconazole, Metronidazole, Oxiconazole, Sertaconazole, Sulconazole, Tioconazole, Miconazole and mixtures thereof.
- Preferred triazole types include: Fluconazole, Itraconazole, Posaconazole, propiconazole, Ravuconazole, tebuconazole, Terconazole, Voriconazole and mixtures thereof.
- Other suitable antifungal biocides for use in the present invention include: Amorolfine, Anidulafungin, Butenafine, Naftifine, Caspofungin, Ciclopirox, Flucytosine, Griseofulvin, Haloprogin, Micafungin, Parabens, Salicylic acid, Terbinafine, Thiabenazole, Tolnaflate, Undecylenic acid and mixtures thereof.
- Water insoluble insecticides include cypermethrin, lambda-cyhalothrin, esfenvalerate, malathion, and chlorpyrifos.
- The present invention provides a method for obtaining a rapidly dispersible form of an otherwise essentially water-insoluble material. This is prepared by forming an at least partially non-aqueous intermediate emulsion or solution in which both a water-soluble carrier material and the water-insoluble biocide are dissolved. On removal of solvents the insoluble biocide is left dispersed through the water-soluble carrier material. Suitable carrier materials are described in further detail below.
- The most preferred method for drying of the intermediate emulsion or solution is one which produces a powder directly, such as spray drying. Spray drying is particularly effective at removing both the non-aqueous volatile components and any water present to leave the carrier and the ‘payload’ material behind in a powder form. The drying step is described in further detail below.
- The structure of the material obtained after the drying step is not well understood. It is believed that the resulting dry powder materials are not encapsulates, as discrete macroscopic bodies of the water-insoluble materials are not present in the dry product. Neither are the dry materials ‘dry emulsions’ as little or none of the volatile solvent comprising the ‘oil’ phase of the emulsion remains after the drying step. On addition of water to the dry product the emulsion is not reformed, as it would be with a ‘dry emulsion’. It is also believed that the compositions are not so-called solid solutions, as with the present invention the ratios of components present can be varied without loss of the benefits. Also from Xray and DSC studies, it is believed that the compositions of the invention are not solid solutions, but comprise nano-scale, phase-separated mixtures.
- Preferably, the compositions produced after the drying step will comprise the biocide and the carrier in a weight ratio of from 1:500 to 1:1 as biocide:carrier, with 1:100 to 1:1 being preferred. Typical levels of around 10-30% wt water-insoluble biocide and 90-70% carrier can be obtained by spray drying. Levels of biocide below 40%, more preferably below 30% wt and most preferably below 25% wt are preferred as they show the improved MIC as discussed above.
- In one preferred method according to the invention the solvent for the water-insoluble biocide is not miscible with water. On admixture with water it therefore can form an emulsion.
- Preferably, the non-aqueous phase comprises from about 10% to about 95% v/v of the emulsion, more preferably from about 20% to about 68% v/v.
- The emulsions are typically prepared under conditions which are well known to those skilled in the art, for example, by using a magnetic stirring bar, a homogeniser, or a rotational mechanical stirrer. The emulsions need not be particularly stable, provided that they do not undergo extensive phase separation prior to drying.
- Homogenisation using a high-shear mixing device is a particularly preferred way to make an emulsion in which the aqueous phase is the continuous phase. It is believed that this avoidance of coarse emulsion and reduction of the droplet size of the dispersed phase of the emulsion, results in an improved dispersion of the biocide in the dry product. In a preferred method according to the invention a water-continuous emulsion is prepared with an average dispersed-phase droplet size (using the Malvern peak intensity) of between 500 nm and 5000 nm. We have found that an ‘Ultra-Turrux’T25 type laboratory homogenizer (or equivalent) gives a suitable emulsion when operated for more than a minute at above 10,000 rpm.
- There is a directional relation between the emulsion droplet size and the size of the particles of the biocide, which can be detected after dispersion of the materials of the invention in aqueous solution. We have determined that an increase in the speed of homogenization for precursor emulsions can decrease final particle size after re-dissolution.
- It is believed that the re-dissolved particle size can be reduced by nearly one half when the homogenization speed increased from 13,500 rpm to 21,500 rpm. The homogenization time is also believed to play a role in controlling re-dissolved particle size. The particle size again decreases with increase in the homogenization time, and the particle size distribution become broader at the same time. Such intensive mixing is not an essential step in the method of the present invention but it is advantageous.
- Sonication is also a particularly preferred way of reducing the droplet size for emulsion systems. We have found that a Hert Systems Sonicator XL operated at level 10 for two minutes is suitable.
- In an alternative method according to the present invention both the carrier and the biocide are soluble in either a non-aqueous solvent or in a mixture of water and a non-aqueous solvent. Both here and elsewhere in the specification the non-aqueous solvent can be a mixture of non-aqueous solvents. In this case the feedstock of the drying step comprises a single phase material in which both the water-soluble carrier and the water-insoluble biocide are dissolved. It is also possible for this feedstock to be an emulsion, provided that both the carrier and the biocide are dissolved in the same phase.
- The ‘single-phase’ method is generally believed to give a better nano-dispersion with a smaller particle size than the emulsion method. As noted above, the smaller particle sizes give enhanced biocidal effects.
- It is believed that ratios of components which decrease the relative concentration of the biocide to the solvents and/or the carrier give a smaller particle size.
- Spray drying, the most preferred method of drying the emulsion or solution, is well known to those versed in the art. In the case of the present invention some care must be taken due to the presence of a volatile non-aqueous solvent in the material being dried. In order to reduce the risk of explosion when a flammable solvent is being used, an inert gas, for example nitrogen, can be employed as the drying medium in a so-called closed spray-drying system. The solvent can be recovered and re-used.
- We have found that the ‘Buchi’ B-290 type laboratory spray drying apparatus is suitable for the performance of the present invention.
- It is preferable that the drying temperature should be at or above 100 Celsius, preferably above 120 Celsius and most preferably above 140 Celsius. Elevated drying temperatures have been found to give smaller particles in the re-dissolved nano-disperse material.
- Freeze drying can also be used. It is preferred to use a non-aqueous solvent with a melting point above −120 Celsius, preferably above −80 Celsius. Chloroform is a particularly preferred solvent due to it physical characteristics. It a relatively high melting point (approx. −63.5° C.). Freeze drying can be employed both with the emulsion method and the single phase method.
- The carrier material is water soluble, which includes the formation of structured aqueous phases as well as true ionic solution of molecularly mono-disperse species. The carrier material preferably comprises an inorganic material, surfactant, a polymer or may be a mixture of two or more of these.
- It is envisaged that other non-polymeric, organic, water-soluble materials such as sugars can be used as the carrier. However the carrier materials specifically mentioned herein are preferred.
- Suitable carrier materials (referred to herein as ‘water soluble carrier materials’) include preferred water-soluble polymers, preferred water-soluble surfactants and preferred water-soluble inorganic materials. Particularly preferred materials are solids, as opposed to soft solids or semi-solids at ambient temperature such that good powder properties are obtained in the spray-dried product.
- The particular choice of carrier material will depend on the proposed end-use of the composition and carriers should be selected such that they are not detrimentally reactive towards the biocide and compatible with the proposed use. The carrier can also have an activity in its own right or contain water soluble materials which have such an activity. For example, in agricultural applications of the present invention, the carrier may comprise materials having an agrochemical activity.
- Examples of suitable water-soluble polymeric carrier materials include:
- (a) natural polymers (for example naturally occurring gums such as guar gum, alginate, locust bean gum or a polysaccharide such as dextran;
- (b) cellulose derivatives for example xanthan gum, xyloglucan, cellulose acetate, methylcellulose, methylethylcellulose, hydroxy-ethylcellulose, hydroxy-ethylmethyl-cellulose, hydroxy-propylcellulose, hydroxy-propylmethylcellulose, hydroxy-propylbutylcellulose, ethylhydroxy-ethylcellulose, carboxy-methylcellulose and its salts (e.g. the sodium salt—SCMC), or carboxy-methylhydroxyethylcellulose and its salts (for example the sodium salt);
- (c) homopolymers of or copolymers prepared from two or more monomers selected from: vinyl alcohol, acrylic acid, methacrylic acid, acrylamide, methacrylamide, acrylamide methylpropane sulphonates, aminoalkylacrylates, aminoalkyl-methacrylates, hydroxyethylacrylate, hydroxyethylmethylacrylate, vinyl pyrrolidone, vinyl imidazole, vinyl amines, vinyl pyridine, ethyleneglycol and other alkylene glycols, ethylene oxide and other alkylene oxides, ethyleneimine, styrenesulphonates, ethyleneglycolacrylates and ethyleneglycol methacrylate
- (d) cyclodextrins, for example beta-cyclodextrin
- (e) mixtures thereof.
- When the polymeric material is a copolymer it may be a statistical copolymer (heretofore also known as a random copolymer), a block copolymer, a graft copolymer or a hyperbranched copolymer. Co-monomers other than those listed above may also be included in addition to those listed if their presence does not destroy the water soluble or water dispersible nature of the resulting polymeric material.
- Examples of suitable and preferred homopolymers include poly-vinylalcohol, poly-acrylic acid, poly-methacrylic acid, poly-acrylamides (such as poly-N-isopropylacrylamide), poly-methacrylamide; poly-acrylamines, poly-methyl-acrylamines, (such as polydimethylaminoethylmethacrylate and poly-N-morpholinoethylmethacrylate), polyvinylpyrrolidone, poly-styrenesulphonate, polyvinylimidazole, polyvinylpyridine, poly-2-ethyl-oxazoline poly-ethyleneimine and ethoxylated derivatives thereof.
- Polyethylene glycol (PEG), polyvinylpyrrolidone (PVP), poly(2-ethyl-2-oxazaline), polyvinyl alcohol (PVA) hydroxypropyl cellulose and hydroxypropyl-methyl cellulose (HPMC) and alginates are preferred polymeric carrier materials.
- Where the carrier material is a surfactant, the surfactant may be non-ionic, anionic, cationic, amphoteric or zwitterionic.
- Examples of suitable non-ionic surfactants include ethoxylated triglycerides; fatty alcohol ethoxylates; alkylphenol ethoxylates; fatty acid ethoxylates; fatty amide ethoxylates; fatty amine ethoxylates; sorbitan alkanoates; ethylated sorbitan alkanoates; alkyl ethoxylates; Pluronics™; alkyl polyglucosides; stearol ethoxylates; alkyl polyglycosides.
- Examples of suitable anionic surfactants include alkylether sulfates; alkylether carboxylates; alkylbenzene sulfonates; alkylether phosphates; dialkyl sulfosuccinates; sarcosinates; alkyl sulfonates; soaps; alkyl sulfates; alkyl carboxylates; alkyl phosphates; paraffin sulfonates; secondary n-alkane sulfonates; alpha-olefin sulfonates; isethionate sulfonates.
- Examples of suitable cationic surfactants include fatty amine salts; fatty diamine salts; quaternary ammonium compounds; phosphonium surfactants; sulfonium surfactants; sulfonxonium surfactants.
- Examples of suitable zwitterionic surfactants include N-alkyl derivatives of amino acids (such as glycine, betaine, aminopropionic acid); imidazoline surfactants; amine oxides; amidobetaines.
- Mixtures of surfactants may be used. In such mixtures there may be individual components which are liquid, provided that the carrier material overall, is a solid.
- Alkoxyayed nonionic's (especially the PEG/PPG e.g. Pluronic™ materials and/or the PEG/alcohol nonionics), phenol-ethoxylates (especially TRITON™ materials), alkyl sulphonates (especially SDS), ether-sulphates (including SLES), ester surfactants (preferably sorbitan esters of the Span™ and Tween™ types) and cationics (especially cetyltrimethylammonium bromide—CTAB) are particularly preferred as surfactant carrier materials.
- Surfactant carrier materials are particularly suitable for embodiments of the invention in which the re-dispersed particle size in water is below 100 nm, and particularly below 40 nm.
- The carrier material can also be a water-soluble inorganic material which is neither a surfactant not a polymer. Simple organic salts have been found suitable, particularly in admixture with polymeric and/or surfactant carrier materials as described above. Suitable salts include carbonate, bicarbonates, halides, sulphates, nitrates and acetates, particularly soluble salts of sodium, potassium and magnesium. Preferred materials include, sodium carbonate, sodium bicarbonate and sodium sulphate. These materials have the advantage that they are cheap and physiologically acceptable. They are also relatively inert as well as compatible with many materials found in household and pharmaceutical products.
- Mixtures of carrier materials are advantageous. Preferred mixtures include combinations of inorganic salts and surfactants and polymers and surfactants.
- Particularly preferred mixtures include combinations of surfactants and polymers. Which include at least one of:
- a) Polyethylene glycol (PEG), polyvinylpyrrolidone (PVP), poly(2-ethyl-2-oxazaline), polyvinyl alcohol (PVA) hydroxypropyl cellulose and hydroxypropyl-methyl cellulose (HPMC) and alginates and, at least one of;
- b) alkoxylated nonionic's (especially the PEG/PPG Pluronic™ materials), phenol-ethoxylates (especially TRITON™ materials), alkyl sulphonates (especially SDS), ether-sulphates (including SLES), ester surfactants (preferably sorbitan esters of the Span™ and Tween™ types) and cationics (especially cetyltrimethylammonium bromide—CTAB)
- The carrier material can also be a water-soluble small organic material which is neither a surfactant, a polymer nor an inorganic carrier material. Simple organic sugars have been found to be suitable, particularly in admixture with a polymeric and/or surfactant carrier material as described above. Suitable small organic materials include mannitol, polydextrose, xylitol and insulin etc.
- In preferred forms of the invention the level of surfactant carrier is such that at least 50% of the total carrier is surfactant. Mixtures having a majority of surfactant present over the other carriers exhibit better biocidal effects.
- The compositions of the invention comprise a volatile, non-aqueous solvent. As noted above this can be a mixture of solvents. This may either be miscible with such other solvents (including water) which may be present in the pre-mix before drying or, together with those solvents may form an emulsion.
- In one alternative form of the invention a non-aqueous solvent is employed in which can form a single phase with water in the presence of the biocide, and the carrier. Preferred solvents for these embodiments are polar, protic or aprotic solvents. Generally preferred solvents have a dipole moment greater than 1 and a dielectric constant greater than 4.5.
- Particularly preferred solvents are selected from the group consisting of haloforms (preferably di-chloromethane, chloroform), lower (C1-C10) alcohols (preferably methanol, ethanol, isopropanol, isobutanol), organic acids (preferably formic acid, acetic acid), amides (preferably formamide, N,N-dimethylformamide), nitrites (preferably aceto-nitrile), esters (preferably ethyl acetate) aldehydes and ketones (preferably methyl ethyl ketone, acetone), and other water miscible species comprising heteroatom bond with a suitably large dipole (preferably tetrahydrofuran, dialkylsulphoxide). Mixtures of the aforementioned may also be employed.
- In another alternative form of the invention the non-aqueous solvent is not miscible with water and forms an emulsion.
- The non-aqueous phase of the emulsion is preferably selected from one or more from the following group of volatile organic solvents:
-
- alkanes, such as heptane, n-hexane, isooctane, dodecane, decane;
- cyclic hydrocarbons, such as toluene, xylene, cyclohexane;
- halogenated alkanes, such as dichloromethane, dichoroethane, trichloromethane (chloroform), fluoro-trichloromethane and tetrachloroethane;
- esters such as ethyl acetate;
- ketones such as 2-butanone;
- ethers such as diethyl ether;
- volatile cyclic silicones such as either linear or cyclomethicones containing from 4 to 6 silicon units. Suitable examples include DC245 and DC345, both of which are available from Dow Corning Inc.
- Preferred solvents include dichloromethane, chloroform, ethanol, acetone and dimethyl sulphoxide.
- Preferred non-aqueous solvents, whether miscible or not have a boiling point of less than 150 Celsius and, more preferably, have a boiling point of less than 100 Celsius, so as to facilitate drying, particularly spray-drying under practical conditions and without use of specialised equipment. Preferably they are non-flammable, or have a flash point above the temperatures encountered in the method of the invention.
- Preferably, the non-aqueous solvent comprises from about 10% to about 95% v/v of any emulsion formed, more preferably from about 20% to about 80% v/v. In the single phase method the level of solvent is preferably 20-100% v/v.
- Particularly preferred solvents are alcohols, particularly ethanol and halogenated solvents, more preferably chlorine-containing solvents, most preferably solvents selected from (di- or tri-chloromethane).
- In addition to the non-aqueous solvent an optional co-surfactant may be employed in the composition prior to the drying step. We have determined that the addition of a relatively small quantity of a volatile cosurfactant reduced the particle diameter of the material produced. This can have a significant impact on particle volume. For example, reduction from 297 nm to 252 nm corresponds to a particle size reduction of approximately 40%. Thus, the addition of a small quantity of co-surfactant offers a simple and inexpensive method for reducing the particle size of materials according to the present invention without changing the final product formulation.
- Preferred co-surfactants are short chain alcohols or amine with a boiling point of <220° C.
- Preferred co-surfactants are linear alcohols. Preferred co-surfactants are primary alcohols and amines. Particularly preferred co-surfactants are selected from the group consisting of the 3-6 carbon alcohols. Suitable alcohol co-surfactants include n-propanol, n-butanol, n-pentanol, n-hexanol, hexylamine and mixtures thereof.
- Preferably the co-surfactant is present in a quantity (by volume) less than the solvent preferably the volume ratio between the solvent and the co-surfactant falls in the range 100:40 to 100:2, more preferably 100:30 to 100:5.
- The drying feed-stocks used in the present invention are either emulsions or solutions which preferably do not contain solid matter and in particular preferably do not contain any undissolved biocide.
- It is particularly preferable that the level of the biocide in the composition should be such that the loading in the dried composition is below 40% wt, and more preferably below 30% wt. Such compositions have the advantages of a small particle size and high effectiveness as discussed above.
- Typical spray drying feedstocks comprise:
- a) a surfactant,
- b) at least one lower alcohol,
- c) more than 0.1% of at least one water-insoluble biocide dissolved in the feedstock,
- d) a polymer, and,
- e) optional water
- Preferred spray-drying feedstocks comprise:
- a) at least one non-aqueous solvent selected from dichloromethane, chloroform, ethanol, acetone, and mixtures thereof,
- b) a surfactant selected from alkoxylated nonionic's (especially the PEG/PPG Pluronic™ materials), phenol-ethoxylates (especially TRITON™ materials), alkyl sulphonates (especially SDS), ether-sulphates (including SLES), ester surfactants (preferably sorbitan esters of the Span™ and Tween™ types) and cationics (especially cetyltrimethylammonium bromide—CTAB), and mixtures thereof,
- c) more than 0.1% of at least one water-insoluble biocidal agent,
- d) a polymer selected from Polyethylene glycol (PEG), Polyvinyl alcohol (PVA), polyvinyl-pyrrolidone (PVP), hydroxypropyl cellulose and hydroxypropyl-methyl cellulose (HPMC), alginates and mixtures thereof, and
- e) optionally water.
- Solid compositions according to the present invention (preferably those obtained by spray drying) are suitable for use in the treatment of an infestation. They can be used “as-is” in the solid form, but it is preferred that they are dissolved in water prior to use.
- On admixture of the water-soluble carrier material with water, the carrier dissolves and the water-insoluble biocide is dispersed through the water in sufficiently fine form that it behaves like a soluble material in many respects. The particle size of the water-insoluble materials in the dry product is preferably such that, on solution in water the water-insoluble materials have a particle size of less than 1 micron as determined by the Malvern method described herein. Preferably the determined particle size is less than 800 nm, more preferably less than 500 nm. In typical embodiments of the invention the particle size is in the range 250-50 nm and is most preferably in the range 200-75 nm. For comparative purposes, the broader range is analogous to the size of a virus particle (which typically range from 450-20 nm). Diameters of less than 200 nm are most preferred. It is believed that there is no significant reduction of particle size for the biocidal agent on dispersion of the solid form in water.
- Very small particle sizes of as low as 4 nm can be obtained by the method of the invention. In the size range 4-40 nm the compositions of the invention show a further improvement in efficacy.
- By applying the present invention significant levels of ‘water-insoluble’ materials can be brought into a state which is in many respects equivalent to true solution. When the dry product is dissolved in water it is also possible to achieve visually clear, transparent “solutions” comprising more than 0.1%, preferably more than 0.5% and more preferably more than 1% of the ‘water-insoluble’ material. For translucent and opaque ‘solutions’ higher levels of nano-disperse material can be tolerated.
- Advantageously, these “solutions” can be made up using water and need not contain other solvents. This means that “insoluble” biocides can be delivered by aqueous spraying, washing or infusion, without the target of the biocide being exposed to solvents.
- It is envisaged that the solution form will be a form suitable for use either ‘as is’ or following further dilution or admixture with other components.
- The present invention therefore also relates to a method for the delivery of a water-insoluble biocide which comprises the steps of:
- a) dissolving in water a nano-dispersion of a water-insoluble biocide in a water soluble carrier material, wherein the water-insoluble biocide is dispersed in the carrier material in particles having an average particle size below one micron,
- b) optionally, adding other components to the dispersion, and,
- c) treating a substrate with the aqueous nano-dispersion of the biocide.
- The substrate can be the subject to be treated directly with the biocide (such as a plant, where the object is the eradication of, for example, fungi, or a wooden object requiring rot prevention treatment) or can be associated with the subject (such as bedding or soil). Preferred substrates are selected from a plant (or part thereof, including seeds, bulbs, fruits, roots, leaves), soil, an animal, bedding for animals, fodder or an article manufactured from a plant or an animal. Preferred treatment methods include spraying, dipping and washing.
- In order that the present invention may be further understood and carried forth into practice it is further described below with reference to non-limiting examples.
- A method of particle sizing for the dispersed products of the present invention used in the following examples employs a dynamic light scattering instrument (Nano S, manufactured by Malvern Instruments UK). Specifically, the Malvern Instruments Nano S uses a red (633 nm) 4 mW Helium-Neon laser to illuminate a standard optical quality UV curvette containing a suspension of material.
- A solution was prepared of the following:
-
-
Chlorothalonil 0.2 g (10 wt. %) PEG-PPG-PEG 0.4 g (20 wt. %) PVP (90 kDa) 1.4 g (70 wt. %) Chloroform 40 ml - At these concentrations, the solid components were readily soluble in the chloroform at the measured room temperature (21.5° C.)
- The solution was spray dried using a Buchi B-290™ bench top spray-dryer, operated in a negative pressure mode. Air drawn from the lab was used as the drying medium and the operating conditions were as follows:
-
Pump rate 10% (3.6 ml/min) Inlet temperature 105° C. Aspiration 100% N2 flow (atomisation) Max (approx. 55 L/hr) - A dry white powder was obtained. This material was redispersed in demineralised water at a concentration of 10 mg/ml (1.0 wt %, 0.1 wt % chlorothalonil). This produced an opaque white dispersion. At this concentration, the material was relatively slow to disperse (approx. 5 minutes).
- The resulting solution had the following properties:
-
Viscosity 1.95 cP Particle size 437 nm (diameter) Standard deviation ±25.5 nm PdI 0.385 -
-
Chlorothalonil 0.2 g (10 wt. %) PEG-PPG-PEG 0.4 g (20 wt. %) PVP (55 kDa) 1.4 g (70 wt. %) Chloroform 40 ml - At these concentrations, the solid components are readily soluble in chloroform at room temperature (21.5° C.).
- The solution was spray dried using a Buchi B-290 bench top spray dryer, operated in a negative pressure mode. Air drawn from the lab was used as the drying medium.
-
Pump rate 15% (5.4 ml/min) Inlet temperature 90° C. Aspiration 100% N2 flow (atomisation) Max (approx. 55 L/hr) - A dry white powder was obtained. This material was redispersed in demineralised water at a concentration of 1 mg/ml (0.1 wt %, 0.01 wt % chlorothalonil). This produced an opaque white dispersion. At this concentration, the material was considerably quicker (than example 1) to disperse (less than 30 seconds).
-
Viscosity 1.0 cP Particle size 452 nm (diameter) Standard deviation ±5.72 nm PdI 0.181 -
-
Chlorothalonil 0.05 g (10 wt. %) PEG-PPG-PEG 0.1 g (20 wt. %) PVP (55 kDa) 0.35 g (70 wt. %) Chloroform 30 ml - At these concentrations, the solid components are readily soluble in chloroform at room temperature (21.5° C.).
- The solution was spray dried using a Buchi B-290 bench top spray dryer, operated in a negative pressure mode. Air drawn from the lab was used as the drying medium.
-
Pump rate 15% (5.4 ml/min) Inlet temperature 90° C. Aspiration 100% N2 flow (atomisation) Max (approx. 55 L/hr) - A dry white powder was obtained. This material was redispersed in demineralised water at a concentration of 1 mg/ml (0.1 wt %, 0.01 wt % chlorothalonil). This produced an opaque white dispersion. At this concentration, the material dispersed at a similar rate to example 2 (less than 30 seconds).
-
Viscosity 0.93 cP Particle size 402 nm (diameter) Standard deviation ±15.1 nm PdI 0.228 - 2 g (10%) Ketoconazole and 18 g (90%) poly(vinyl alcohol) (10 kDa, Aldrich) were dissolved in 500 ml ethanol and 360 ml water. The resulting solution was spray dried at an inlet temperature of 150° C. and a pump rate of approximately 3.6 ml/minute. The recovered dry white powder redispersed in water to give a clear suspension of average particle size 24.2 nm (Z-ave).
- 100 mg (10%) Ketoconazole, 500 mg (50%) poly(ethylene glycol) (10 kDa, Fluka) and 400 mg (40%) sodium lauryl ether sulfate (SLES) were dissolved in 60 ml ethanol and 60 ml water. The resulting solution was spray dried at an inlet temperature of 180° C. and a pump rate of approximately 3.6 ml/minute. The recovered dry white powder redispersed in water to give a clear suspension of average particle size 16.1 nm (Z-ave).
- Typically between 20 mg and 800 mg (between 1% and 40%) propiconazole, between 600 mg and 1100 mg (between 32% and 55%) poly(ethylene glycol) (10 kDa, Fluka), and between 600 mg and 880 mg (between 28% and 44%) sodium lauryl ether sulfate (SLES) were dissolved in between 30 ml and 80 ml of ethanol and 30 ml of water. The resulting solutions were spray dried at an inlet temperature of 180° C. and an approximate pump rate of 3.6 ml/minute. The products were recovered as dry white powders.
- These materials produced according to Examples 4-6 were examined for their biocidal efficacy by following a standardised Minimum Inhibitory Concentration (MIC) test. The test consisted of known number of cells of a strain of Candida albicans (CA) in YEME (yeast extract malt extract media), inoculating concentrations of the active material and blanks contained in a 96 well plate. The plates were incubated at 37° C. overnight, and then examined with a UV plate reader at a wavelength of 550 nm. Concentrations of biocide that inhibited cell growth resulted in a well with very low optical density (visually clear), whereas wells in which cells growth occurred had a very high optical density (visually opaque). The MIC was defined as the lowest concentration of biocide that resulted in total inhibition of cell growth, when incubated overnight.
- Equivalent experiments were also conducted to determine the MIC for the biocide active dissolved in a water miscible solvent. In these cases the “blank” reference material was simply a sample of the solvent containing no active compound.
- All experiments were repeated 4 times. Results are presented in the tables below.
-
-
Particle size Material Initial concentration (Z-ave, nm) MIC (mg/L) 13/28/20 equivalent to 0.15 mg/ml n/a no inhibition (SLES/PEG active observed blank matrix) As Example 5 0.15 mg/ml active 16.1 ~14 As Example 4 0.15 mg/ml active 24.2 ~38 DMSO 25% v/v n/a ~9.25% v/v PVA (blank) equivalent to 0.15 mg/ml n/a no inhibition active observed Ketoconazole 0.15 mg/ml in 25% v/v n/a 65 in DMSO solvent - From these results it can be seen that the materials of the present invention (shown in bold in the table) were more effective at inhibiting the growth of CA in YEME than an equivalent solution of the active in DMSO. It was determined that at the concentrations involved, the MIC recorded was attributable to the active and not the solvent. It was also shown that the preparation with a smaller particle size was more active than an equivalent dispersion of larger particles. In both cases the matrix material was not found to exhibit any biocidal activity at these concentrations.
- All experiments were conducted in YEME media against a CA culture.
-
Initial concentration Particle Material Ref (mg/ml of Loading of size MIC (14/22/. . . ) active) active (%) (Z-ave, nm) (mg/L) 16 0.25 1 6.45 4 17 0.25 3 4.97 11 11 0.25 5 6.08 14 04 0.25 10 4.84 23 12 0.25 15 6.90 27 13 0.25 20 4.66 32 14 0.25 25 6.85 31 15 0.25 30 16.4 38 18 0.25 35 40.8 46 19 0.25 40 245 46 - The MIC of propiconazole dissolved in a water/propylene glycol cosolvent mixture is for comparison 91.6 mg/L. In all cases it was shown that the biocidal activity of the preparations according to the present invention was much greater than that of the equivalent solution of active in water miscible solvent.
- At the equivalent concentrations, no inhibition of cell growth was observed for the blank matrix material, with the exception of the very low loadings of active. In these cases, some inhibition was attributable to the matrix material, but at orders of magnitude lower than the active formulation.
- The greatest efficacy was observed with material 14/22/16, which was more than 20 times more effective than the equivalent preparation of soluble active.
-
-
Initial Material Ref concentration PEG SLES MIC (14/22/. . . ) (mg/ml of active) (wt. %) (wt. %) (mg/L) 34 0.25 0 90 16 28 0.25 10 80 14 29 0.25 20 70 16 30 0.25 30 60 16 31 0.25 40 50 23 04 0.25 50 40 23 32 0.25 60 30 27 33 0.25 70 20 31 35 0.25 80 10 46 - It has also been demonstrated that biocidal activity of the materials according to the present invention is influenced by the composition of its matrix. In this case, the activity of the formulation (and hence efficacy of the active) increased 3 fold when the proportion of surfactant is increased from 10 wt. % to 80 wt. %.
-
-
Composition Triclosan 2.0 g (20 wt. %) SDS 8.0 g (80 wt. %) Water miscible solvent 125 ml (50/50 v/v mixture) - Three different water miscible organic solvents were employed (ethanol, acetone and isopropyl alcohol). At these concentrations, the solid components are readily soluble in the cosolvent mixture at room temperature (21.5° C.).
- The solution was spray dried using a Buchi B-290 bench top spray dryer, operated in a negative pressure mode. Air drawn from the lab was used as the drying medium.
-
Pump rate 7% (2.5 ml/min) Inlet temperature 120° C. Aspiration 100% N2 flow (atomisation) Max (approx. 55 L/hr) - For each different cosolvent system, a dry white powder was obtained. These material was redispersed in demineralised water at a concentration of 1 mg/ml (0.1 wt %), rapidly producing a crystal clear dispersion that remained stable for more than 12 hours. All the dispersions appeared to produce particles of the similar sizes and distributions.
- Details concerning these experiments and their results are given in the table below:
-
particle size SD Poly Particle size SD Poly Residual TCN Viscosity peak 1 peak 1 dispersityindex peak 2 peak 2 dispersityindex wt. % Cosolvent (cP) (d · nm) (d · nm) peak 1 (d · nm) (d · nm) peak 2 (UV) Ethanol 0.9 3.5 0.088 0.0674 187 28.2 0.1829 13.6 Acetone 0.9 3.01 0.061 0.0504 127 15.8 0.2605 14.8 IPA 0.9 3.06 0.045 0.0487 179 16.5 0.1957 17 - The formulation consisted of:
-
Phase 1: 10% ISP (28) 500 mg in 10 ml Chloroform Phase 2: 60% PVA (10 kDa) 3000 mg 30% SDS 1500 mg in 75 ml water - The two phases were continuously cooled using a water jacketed beaker whilst being emulsified. Emulsification was achieved by sonicating for 5 minutes at 50% power, then for a further 2 minutes at 100% power (using a 1 kW probe type sonicator).
- The resulting emulsion was spray dried at an inlet temperature of 150° C. and a pump rate of 5.6 ml/min. Aspiration and atomisation gas were set to maximum.
- The resulting dry white powder redispersed to give a slightly cloudy suspension at a concentration of 1 mg/ml. The particle size was measured as 297+/−8.66 nm
- Formulation was as Example 13, but contained a small quantity of additional volatile cosurfactant (n-butanol).
-
Phase 1: 10% ISP (28) 500 mg in 10 ml Chloroform and 2 ml n-butanol Phase 2: 60% PVA (10 kDa) 3000 mg 30% SDS 1500 mg in 75 ml water - The two phases were continuously cooled using a water jacketed beaker whilst being emulsified. Emulsification was achieved by sonicating for 5 minutes at 50% power, then for a further 2 minutes at 100% power (using a 1 kW probe type sonicator). The resulting emulsion was spray dried at an inlet temperature of 150° C. and a pump rate of 5.6 ml/min. Aspiration and atomisation gas were set to maximum.
- The resulting dry white powder redispersed to give a slightly cloudy suspension at a concentration of 1 mg/ml, although noticeably clearer than that of example 13. The particle size was measured as 252+/−14.0 nm.
- 1.10 g Azoxystrobin™, 2.00 g Brij® 58 (Aldrich), and 6.90 g Polyvinylpyrrolidone (Mw 45,000, Aldrich) were all dissolved into 200 ml DCM. The solution was then spray dried at 70° C.
- The dry powder was then dispersed into distilled water giving 1 wt % AzB in dispersion and the nanoparticle size was measured with Malvern Nano-S. (SG-15)
- 5.00 g Azoxystrobin, 10.00 g Poly(ethylene glycol)-block-poly(propylene glycol)-block-poly (ethylene glycol) (Mw 8,400, Aldrich), and 35.00 g Polyvinylpyrrolidone (Mw 45,000, Aldrich) were all dissolved into 1.0 litre DCM. The solution was then spray dried at 70° C.
- The dry powder was then dispersed into distilled water giving 1 wt % AzB in dispersion and the nanoparticle size was measured with Malvern Nano-S. (SG-16)
- Details concerning these experiments and their results are given in the table below.
-
AzB, Surfactant, PVP, Solvent, Spray dry PS, Ex. mg/ml mg/ml mg/ml ml temp., ° C. nm 15 5.5 Brij 58, 10.0 34.5 DCM, 200 70 532 16 5.0 Pluronic, 35.0 DCM, 1000 70 356 10.0 Spray drying conditions: Aspiration rate: 100%; Pump rate: 1.80 ml/min. - A single phase solution of the insecticide λ-cyhalothrin, PEG and the PEG based surfactants Pluronic™ F68 and Pluronic™ F127 was prepared in chloroform. This was freeze dried using a “Christ alpha 2-4 LSC” freeze dryer in single batches on a 5 ml per sample scale (i.e. 250 mg solids in each sample).
- Both the sample and the freeze drying shelf were pre-cooled in liquid nitrogen, to a final temperature below −140° C. (operating limit of the freeze dryers temperature probes). Once the vacuum had been achieved (˜0.080 mbar) the samples remained frozen due to the self-cooling effect produced by the sample's own sublimation. Results and compositions are given in the table below:
-
Example Particle 17 F68 F127 PEG active size A 0.9 0 0 0.1 66.19 B 0 0.9 0 0.1 44.24 C 0 0 0.9 0.1 168.2 D 0.7 0 0 0.3 102 E 0 0.7 0 0.3 80.99 F 0 0 0.7 0.3 240.5 G 0 0.4 0.4 0.2 94.59 H 0.4 0 0.4 0.2 127.5 I 0.3 0.3 0.3 0.1 51.87 J 0.26667 0.26667 0.2667 0.2 90.92 K 0.26667 0.26667 0.2667 0.2 93.54 L 0.26667 0.26667 0.2667 0.2 72.5
Claims (17)
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| GB0613925.7 | 2006-07-13 | ||
| GBGB0613925.7A GB0613925D0 (en) | 2006-07-13 | 2006-07-13 | Improvements relating to nanodispersions |
| PCT/EP2007/056562 WO2008006714A2 (en) | 2006-07-13 | 2007-06-29 | Improvements relating to biocidal compositions |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20090239749A1 true US20090239749A1 (en) | 2009-09-24 |
Family
ID=36955583
Family Applications (10)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/309,293 Abandoned US20090239749A1 (en) | 2006-07-13 | 2007-06-29 | Biocidal compositions |
| US12/309,295 Abandoned US20100015233A1 (en) | 2006-07-13 | 2007-06-29 | anti-parasitic compositions |
| US12/309,292 Active 2030-01-29 US9060937B2 (en) | 2006-07-13 | 2007-06-29 | Pharmaceutical compositions |
| US12/309,306 Abandoned US20090175953A1 (en) | 2006-07-13 | 2007-06-29 | Nanodispersions |
| US12/309,294 Active 2028-07-27 US8821932B2 (en) | 2006-07-13 | 2007-06-29 | Pharmaceutical compositions |
| US12/309,343 Abandoned US20100008995A1 (en) | 2006-07-13 | 2007-07-13 | Processes for preparing pharmaceutical compositions |
| US12/309,344 Expired - Fee Related US8945626B2 (en) | 2006-07-13 | 2007-07-13 | Preparation of pharmaceutical compositions |
| US12/309,341 Expired - Fee Related US7691873B2 (en) | 2006-07-13 | 2007-07-13 | Preparation of pharmaceutical formulations |
| US13/365,826 Abandoned US20120134940A1 (en) | 2006-07-13 | 2012-02-03 | Nanodispersions |
| US13/365,830 Abandoned US20120135058A1 (en) | 2006-07-13 | 2012-02-03 | Nanodispersions |
Family Applications After (9)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/309,295 Abandoned US20100015233A1 (en) | 2006-07-13 | 2007-06-29 | anti-parasitic compositions |
| US12/309,292 Active 2030-01-29 US9060937B2 (en) | 2006-07-13 | 2007-06-29 | Pharmaceutical compositions |
| US12/309,306 Abandoned US20090175953A1 (en) | 2006-07-13 | 2007-06-29 | Nanodispersions |
| US12/309,294 Active 2028-07-27 US8821932B2 (en) | 2006-07-13 | 2007-06-29 | Pharmaceutical compositions |
| US12/309,343 Abandoned US20100008995A1 (en) | 2006-07-13 | 2007-07-13 | Processes for preparing pharmaceutical compositions |
| US12/309,344 Expired - Fee Related US8945626B2 (en) | 2006-07-13 | 2007-07-13 | Preparation of pharmaceutical compositions |
| US12/309,341 Expired - Fee Related US7691873B2 (en) | 2006-07-13 | 2007-07-13 | Preparation of pharmaceutical formulations |
| US13/365,826 Abandoned US20120134940A1 (en) | 2006-07-13 | 2012-02-03 | Nanodispersions |
| US13/365,830 Abandoned US20120135058A1 (en) | 2006-07-13 | 2012-02-03 | Nanodispersions |
Country Status (17)
| Country | Link |
|---|---|
| US (10) | US20090239749A1 (en) |
| EP (8) | EP2040679A2 (en) |
| JP (9) | JP2009542762A (en) |
| CN (11) | CN101849911A (en) |
| AP (1) | AP2008004713A0 (en) |
| AR (4) | AR061990A1 (en) |
| AU (9) | AU2007271830B2 (en) |
| BR (8) | BRPI0714230A2 (en) |
| CA (8) | CA2656229C (en) |
| CL (4) | CL2007002030A1 (en) |
| ES (2) | ES2741124T3 (en) |
| GB (1) | GB0613925D0 (en) |
| IL (2) | IL195911A0 (en) |
| MX (2) | MX2009000307A (en) |
| TW (1) | TW200812694A (en) |
| WO (8) | WO2008006714A2 (en) |
| ZA (7) | ZA200900031B (en) |
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20080262100A1 (en) * | 2005-01-28 | 2008-10-23 | Andrew Ian Cooper | Method of Preparing Carrier Liquids |
| US8084397B2 (en) | 2008-09-25 | 2011-12-27 | Vive Nano, Inc. | Methods to produce polymer nanoparticles and formulations of active ingredients |
| US20130196852A1 (en) * | 2010-10-05 | 2013-08-01 | Iota Nanosolutions Limited | Processes for preparing improved compositions |
| US10315330B2 (en) * | 2014-12-23 | 2019-06-11 | Dow Global Technologies Llc | Treated porous material |
| US10455830B2 (en) | 2011-08-23 | 2019-10-29 | Vive Crop Protection Inc. | Pyrethroid formulations |
| US11344028B2 (en) | 2011-12-22 | 2022-05-31 | Vive Crop Protection Inc. | Strobilurin formulations |
| US11517013B2 (en) | 2017-08-25 | 2022-12-06 | Vive Crop Protection Inc. | Multi-component, soil-applied, pesticidal compositions |
Families Citing this family (91)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20090130212A1 (en) * | 2006-05-15 | 2009-05-21 | Physical Pharmaceutica, Llc | Composition and improved method for preparation of small particles |
| GB0613925D0 (en) * | 2006-07-13 | 2006-08-23 | Unilever Plc | Improvements relating to nanodispersions |
| WO2008022651A1 (en) | 2006-08-21 | 2008-02-28 | Antoine Turzi | Process and device for the preparation of platelet rich plasma for extemporaneous use and combination thereof with skin and bone cells |
| AR063704A1 (en) * | 2006-09-14 | 2009-02-11 | Makhteshim Chem Works Ltd | PESTICIDE NANOPARTICLES OBTAINED OBTAINED FROM MICROEMULSIONS AND NANOEMULSIONS |
| EP2124556B1 (en) | 2006-10-09 | 2014-09-03 | Charleston Laboratories, Inc. | Pharmaceutical compositions |
| AR067047A1 (en) * | 2007-06-18 | 2009-09-30 | Combino Pharm Sl | ACETAMINOFEN WATERY FORMULATIONS FOR INJECTION. |
| WO2009047634A2 (en) * | 2007-06-18 | 2009-04-16 | Combino Pharm, S.L. | Aqueous formulations of acetaminophen for injection |
| ES2731881T3 (en) | 2007-09-25 | 2019-11-19 | Formulex Pharma Innovations Ltd | Compositions comprising lipophilic active compounds and method for their preparation |
| WO2009089494A2 (en) | 2008-01-09 | 2009-07-16 | Charleston Laboratories, Inc. | Pharmaceutical compositions |
| TR200800634A2 (en) * | 2008-01-30 | 2009-02-23 | Takka Sevgi̇ | Fluvastatin tablet for extended release. |
| US8372432B2 (en) * | 2008-03-11 | 2013-02-12 | Depomed, Inc. | Gastric retentive extended-release dosage forms comprising combinations of a non-opioid analgesic and an opioid analgesic |
| EP2262484B1 (en) * | 2008-03-11 | 2013-01-23 | Depomed, Inc. | Gastric retentive extended-release dosage forms comprising combinations of a non-opioid analgesic and an opioid analgesic |
| US20110117157A1 (en) * | 2008-07-11 | 2011-05-19 | Nippon Soda Co., Ltd. | Method of manufacture of sustained-release formulation composition |
| GB0814953D0 (en) * | 2008-08-18 | 2008-09-24 | Unilever Plc | Improvements relating to nanodisperse compositions |
| FR2938433B1 (en) * | 2008-11-19 | 2011-09-09 | Francois Fauran | PHARMACEUTICAL COMPOSITIONS USING INULIN AS A GRANULATING EXCIPIENT |
| AU2009337187B2 (en) * | 2008-12-12 | 2014-10-23 | Azelis New Zealand Limited | Compositions for the treatment of timber and other wood substrates |
| EP2243477A1 (en) | 2009-04-22 | 2010-10-27 | Fresenius Kabi Deutschland GmbH | Paracetamol for parenteral application |
| CA2763465C (en) | 2009-05-27 | 2015-05-05 | Samyang Biopharmaceuticals Corporation | A poorly soluble drug containing microsphere with improved bioavailability and method of preparing the same |
| HUP0900376A2 (en) * | 2009-06-19 | 2011-01-28 | Nangenex Nanotechnologiai Zartkoerueen Muekoedoe Reszvenytarsasag | Nanoparticulate candesartan cilexetil composition |
| HUP0900384A2 (en) * | 2009-06-19 | 2011-01-28 | Nangenex Nanotechnologiai Zartkoerueen Muekoedoe Reszvenytarsasag | Nanoparticulate olmesartan medoxomil compositions |
| JP5442116B2 (en) * | 2009-06-25 | 2014-03-12 | ジン ヤン ファーム カンパニー リミテッド | Pharmaceutical composition containing losartan carboxylic acid and method for producing the same |
| EP3311667A1 (en) | 2009-07-08 | 2018-04-25 | Charleston Laboratories, Inc. | Pharmaceutical compositions |
| BR112012004525A2 (en) * | 2009-08-31 | 2016-03-22 | Depomed Inc | gastric-profitable pharmaceutical compositions for immediate or prolonged release of acetaminophen |
| JP5498769B2 (en) * | 2009-12-04 | 2014-05-21 | 花王株式会社 | Method for producing lipid-soluble drug-encapsulating nanoparticles |
| US8597681B2 (en) | 2009-12-22 | 2013-12-03 | Mallinckrodt Llc | Methods of producing stabilized solid dosage pharmaceutical compositions containing morphinans |
| US9198861B2 (en) | 2009-12-22 | 2015-12-01 | Mallinckrodt Llc | Methods of producing stabilized solid dosage pharmaceutical compositions containing morphinans |
| WO2011102702A2 (en) | 2010-02-16 | 2011-08-25 | Krka, D. D., Novo Mesto | Process for the preparation of oral solid dosage forms comprising valsartan |
| RU2539855C2 (en) | 2010-03-29 | 2015-01-27 | Фирмениш Са | Crystalline active ingredient dried with spray drying |
| GB201006038D0 (en) | 2010-04-12 | 2010-05-26 | Unilever Plc | Improvements relating to antiviral compositions |
| UA111167C2 (en) * | 2010-08-05 | 2016-04-11 | ДАУ АГРОСАЙЄНСІЗ ЕлЕлСі | PESTICIDIC COMPOSITIONS OF MECHANIZED PARTICLES WITH STRENGTH |
| US9107983B2 (en) | 2010-10-27 | 2015-08-18 | Warsaw Orthopedic, Inc. | Osteoconductive matrices comprising statins |
| US8877221B2 (en) | 2010-10-27 | 2014-11-04 | Warsaw Orthopedic, Inc. | Osteoconductive matrices comprising calcium phosphate particles and statins and methods of using the same |
| WO2012082765A2 (en) | 2010-12-16 | 2012-06-21 | The United State Of America. As Represented By The Secretary Department Of Health And Human Services | Methods for decreasing body weight and treating diabetes |
| EP2696869B1 (en) | 2011-04-12 | 2017-08-23 | Rigel Pharmaceuticals, Inc. | Methods for inhibiting allograft rejection |
| US8741885B1 (en) | 2011-05-17 | 2014-06-03 | Mallinckrodt Llc | Gastric retentive extended release pharmaceutical compositions |
| US8858963B1 (en) | 2011-05-17 | 2014-10-14 | Mallinckrodt Llc | Tamper resistant composition comprising hydrocodone and acetaminophen for rapid onset and extended duration of analgesia |
| US8658631B1 (en) | 2011-05-17 | 2014-02-25 | Mallinckrodt Llc | Combination composition comprising oxycodone and acetaminophen for rapid onset and extended duration of analgesia |
| US9308190B2 (en) | 2011-06-06 | 2016-04-12 | Warsaw Orthopedic, Inc. | Methods and compositions to enhance bone growth comprising a statin |
| JP2013001771A (en) * | 2011-06-14 | 2013-01-07 | Neos Co Ltd | Liquid mold control detergent composition |
| RU2469536C1 (en) * | 2011-06-16 | 2012-12-20 | Государственное бюджетное учреждение Республики Башкортостан "Научно-исследовательский технологический институт гербицидов и регуляторов роста растений с опытно-экспериментальным производством Академии наук Республики Башкортостан" | Fungicidal agent and method of its production |
| WO2012177986A2 (en) | 2011-06-22 | 2012-12-27 | Vyome Biosciences | Conjugate-based antifungal and antibacterial prodrugs |
| GB201115079D0 (en) | 2011-08-31 | 2011-10-19 | Iota Nanosolutions Ltd | Method of preparing carrier liquids |
| GB201115633D0 (en) | 2011-09-09 | 2011-10-26 | Univ Liverpool | Compositions of efavirenz |
| GB201115634D0 (en) | 2011-09-09 | 2011-10-26 | Univ Liverpool | Compositions of lopinavir |
| GB201115635D0 (en) | 2011-09-09 | 2011-10-26 | Univ Liverpool | Compositions of lopinavir and ritonavir |
| US8609684B2 (en) * | 2011-12-12 | 2013-12-17 | PruGen IP Holdings, Inc. | Solubilization and bioavailability of acetaminophen |
| MX374014B (en) * | 2012-05-16 | 2020-07-24 | Mewa Singh | Pharmaceutical compositions for the delivery of substantially water-insoluble drugs |
| MX362838B (en) | 2012-07-12 | 2019-02-19 | SpecGx LLC | Extended release, abuse deterrent pharmaceutical compositions. |
| US20140073678A1 (en) * | 2012-09-12 | 2014-03-13 | Monosol Rx, Llc | Anti-pain and anti-nausea and/or vomiting combinatorial compositions |
| KR101814895B1 (en) | 2013-06-04 | 2018-01-04 | 바이옴 바이오사이언스 피브이티. 엘티디. | Coated particles and compositions comprising same |
| US10195153B2 (en) | 2013-08-12 | 2019-02-05 | Pharmaceutical Manufacturing Research Services, Inc. | Extruded immediate release abuse deterrent pill |
| AU2014340241B2 (en) | 2013-10-21 | 2018-11-01 | Salk Institute For Biological Studies | Mutated fibroblast growth factor (FGF) 1 and methods of use |
| WO2015070396A1 (en) * | 2013-11-13 | 2015-05-21 | 财团法人国防教育研究基金会 | New acetaminophen compound composition without side effect to liver |
| US9492444B2 (en) | 2013-12-17 | 2016-11-15 | Pharmaceutical Manufacturing Research Services, Inc. | Extruded extended release abuse deterrent pill |
| WO2015095391A1 (en) | 2013-12-17 | 2015-06-25 | Pharmaceutical Manufacturing Research Services, Inc. | Extruded extended release abuse deterrent pill |
| US10287334B2 (en) | 2014-03-07 | 2019-05-14 | The Arizona Board Of Regents On Behalf Of The University Of Arizona | Non-narcotic CRMP2 peptides targeting sodium channels for chronic pain |
| EP2952208A1 (en) * | 2014-06-04 | 2015-12-09 | Universidade de Santiago de Compostela | Hydroalcoholic system for nail treatment |
| PT3154528T (en) | 2014-06-11 | 2023-06-22 | SpecGx LLC | Spray dried compositions having different dissolution profiles and processes for their preparation |
| CN104042626A (en) * | 2014-07-01 | 2014-09-17 | 李绍明 | Bactericidal and bacteriostatic agent |
| AU2015290098B2 (en) | 2014-07-17 | 2018-11-01 | Pharmaceutical Manufacturing Research Services, Inc. | Immediate release abuse deterrent liquid fill dosage form |
| CA2964628A1 (en) | 2014-10-20 | 2016-04-28 | Pharmaceutical Manufacturing Research Services, Inc. | Extended release abuse deterrent liquid fill dosage form |
| JP6730315B2 (en) * | 2015-01-20 | 2020-07-29 | メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung | Solid dispersion of compounds using polyvinyl alcohol as carrier polymer |
| CN104798772B (en) * | 2015-03-13 | 2017-05-24 | 中国农业科学院农业环境与可持续发展研究所 | Pesticide nano-solid dispersion and preparation method thereof |
| US10034857B2 (en) | 2015-07-02 | 2018-07-31 | Civitas Therapeutics, Inc. | Triptan powders for pulmonary delivery |
| ES2952606T3 (en) * | 2015-07-17 | 2023-11-02 | Univ Oklahoma | Licophelone derivatives and methods of use |
| CN105145553A (en) * | 2015-10-12 | 2015-12-16 | 广西田园生化股份有限公司 | Indissolvable pesticide solid dispersion composition |
| LT3410851T (en) * | 2016-02-02 | 2021-01-11 | Evonik Operations Gmbh | Powder formulations of surface active agents on solid, water-soluble carriers, method for their preparation and their use |
| WO2017152130A1 (en) | 2016-03-04 | 2017-09-08 | Charleston Laboratories, Inc. | Pharmaceutical compositions |
| WO2017216564A1 (en) | 2016-06-16 | 2017-12-21 | The University Of Liverpool | Chemical composition |
| RU2619249C1 (en) * | 2016-11-07 | 2017-05-12 | Федеральное государственное бюджетное учреждение науки Институт химии твердого тела и механохимии Сибирского отделения Российской академии наук (ИХТТМ СО РАН) | Composition for seed treatment and method of its production |
| WO2018160772A1 (en) | 2017-02-28 | 2018-09-07 | The United State Of America, As Represented By The Secretary, Department Of Health & Human Services | Method of treating obesity, insulin resistance, non-alcoholic fatty liver disease including non-alcoholic steatohepatitis |
| WO2018178722A1 (en) | 2017-03-31 | 2018-10-04 | The University Of Liverpool | Prodrug compositions |
| WO2018232053A2 (en) * | 2017-06-15 | 2018-12-20 | Savior Lifetec Corporation | Methods for producing particles of an active ingredient |
| US20190269662A1 (en) | 2018-03-02 | 2019-09-05 | The University Of Liverpool | Solid compositions of actives, processes for preparing same and uses of such solid compositions |
| JP6858729B2 (en) * | 2018-05-25 | 2021-04-14 | ▲財▼▲団▼法人国防教育研究基金会National Defense Education And Research Foundation | New acetaminophen complex composition with no side effects on the liver |
| CN113164552B (en) | 2018-10-04 | 2025-06-06 | 新泽西州立罗格斯大学 | Methods of reducing type 2 cytokine-mediated inflammation using neuromedin peptides |
| WO2020135600A1 (en) * | 2018-12-28 | 2020-07-02 | 南京善思生物科技有限公司 | Nano pesticide formulation and preparation method therefor |
| CN109846821B (en) * | 2019-01-03 | 2021-07-06 | 昆药集团股份有限公司 | Artemether nano preparation and preparation method thereof |
| WO2020186187A1 (en) | 2019-03-13 | 2020-09-17 | University Of Pittsburgh - Of The Commonwealth System Of Higher Education | Methods for treating bladder and urethra dysfunction and disease |
| CN110074993A (en) * | 2019-06-05 | 2019-08-02 | 山东大学 | A method of preparing ultraviolet absorber nano particle |
| JP2022540064A (en) * | 2019-06-28 | 2022-09-14 | ソルスター ファーマ | Sustained release gastric retention preparation for Helicobacter pylori |
| WO2021062012A1 (en) | 2019-09-25 | 2021-04-01 | Emory University | Use of klk10 and engineered derivatizations thereof |
| KR20220090524A (en) * | 2019-10-28 | 2022-06-29 | 구미아이 가가쿠 고교 가부시키가이샤 | Agrochemical composition and its manufacturing method |
| CA3165922A1 (en) | 2020-01-17 | 2021-07-22 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Gene therapy for treatment of crx-autosomal dominant retinopathies |
| US20230181672A1 (en) | 2020-05-07 | 2023-06-15 | The U.S.A., As Represented By The Secretary, Department Of Health And Human Services | Aberrant post-translational modifications (ptms) in methyl- and propionic acidemia and a mutant sirtuin (sirt) to metabolize ptms |
| IT202000022789A1 (en) | 2020-09-28 | 2020-12-28 | Vitop Moulding Srl | Dispenser tap equipped with positioning, blocking and orientation system on Bag-In-Box type boxes |
| GB202115049D0 (en) | 2021-10-20 | 2021-12-01 | Univ Liverpool | Chemical Compositions |
| WO2023196898A1 (en) | 2022-04-07 | 2023-10-12 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Beta globin mimetic peptides and their use |
| CN114732009B (en) * | 2022-06-13 | 2022-08-23 | 山东百农思达生物科技有限公司 | Preparation method of water dispersible granules containing pyraclostrobin and dimethomorph |
| AU2024240009A1 (en) | 2023-03-17 | 2025-09-18 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Methods for treatment of age-related macular degeneration |
| GB202304657D0 (en) | 2023-03-29 | 2023-05-10 | Univ Liverpool | Atovaquine compositions |
Citations (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3720703A (en) * | 1969-07-10 | 1973-03-13 | Nat Res Dev | Insecticides |
| US4230687A (en) * | 1978-05-30 | 1980-10-28 | Griffith Laboratories U.S.A., Inc. | Encapsulation of active agents as microdispersions in homogeneous natural polymeric matrices |
| US4830858A (en) * | 1985-02-11 | 1989-05-16 | E. R. Squibb & Sons, Inc. | Spray-drying method for preparing liposomes and products produced thereby |
| US5317004A (en) * | 1989-01-24 | 1994-05-31 | Griffin Corporation | Microencapsulated yellow polymorphic form of trifluralin |
| US5532205A (en) * | 1993-03-03 | 1996-07-02 | Zeneca Limited | Herbicidal composition containing glyphosate or a salt thereof |
| WO1997001277A1 (en) * | 1995-06-29 | 1997-01-16 | Novartis Ag | Crop protection products |
| US20020041896A1 (en) * | 1999-05-27 | 2002-04-11 | Acusphere, Inc. | Porous paclitaxel matrices and methods of manufacture thereof |
| US6395300B1 (en) * | 1999-05-27 | 2002-05-28 | Acusphere, Inc. | Porous drug matrices and methods of manufacture thereof |
| US20020142050A1 (en) * | 1999-05-27 | 2002-10-03 | Acusphere Inc. | Porous drug matrices and methods of manufacture thereof |
| US20040242427A1 (en) * | 2001-11-07 | 2004-12-02 | Sebastian Koltzenburg | Cinidon-ethyl containing solid crop protection formulations and corresponding dispersions |
| US20040266626A1 (en) * | 2001-11-07 | 2004-12-30 | Wolfgang Schrof | Solid crop protection formulations and dispersion formulations and their use in agriculture |
| WO2005046328A1 (en) * | 2003-10-30 | 2005-05-26 | Basf Aktiengesellschaft | Nanoparticulate active substance formulations |
Family Cites Families (80)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB501835A (en) | 1936-05-29 | 1939-03-02 | Siemens Ag | Process and apparatus for reducing the power required for the mechanical treatment of movable masses |
| GB1554662A (en) * | 1976-05-05 | 1979-10-24 | Inverni Della Beffa Spa | Polyhydroxyphenylchromanones |
| DE3439482A1 (en) | 1984-10-27 | 1986-05-07 | Röhm GmbH, 6100 Darmstadt | METHOD FOR COATING SUBSTRATES WITH SCRATCH-RESISTANT, NON-REFLECTIVE COVERS |
| GB8918807D0 (en) * | 1989-08-17 | 1989-09-27 | Shell Int Research | A solid pesticidal formulation,a process for its preparation and the use thereof |
| JP3067810B2 (en) * | 1990-12-21 | 2000-07-24 | 中外製薬株式会社 | Method for producing dry powder of O / W emulsion for oral administration |
| DE4329446A1 (en) * | 1993-09-01 | 1995-03-02 | Basf Ag | Process for the production of finely divided color or active substance preparations |
| US5858398A (en) * | 1994-11-03 | 1999-01-12 | Isomed Inc. | Microparticular pharmaceutical compositions |
| EP0862420A4 (en) | 1995-10-13 | 1999-11-03 | Penn State Res Found | Synthesis of drug nanoparticles by spray drying |
| GB9606188D0 (en) | 1996-03-23 | 1996-05-29 | Danbiosyst Uk | Pollysaccharide microspheres for the pulmonary delivery of drugs |
| US5858409A (en) * | 1996-04-17 | 1999-01-12 | Fmc Corporation | Hydrolyzed cellulose granulations for pharmaceuticals |
| US5985248A (en) * | 1996-12-31 | 1999-11-16 | Inhale Therapeutic Systems | Processes for spray drying solutions of hydrophobic drugs and compositions thereof |
| JP4183279B2 (en) * | 1997-04-15 | 2008-11-19 | アール ピー シェーラー テクノロジーズ インコーポレーテッド | Hydrolyzed cellulose granules for pharmaceutical use |
| WO1999044594A1 (en) * | 1998-03-05 | 1999-09-10 | Nippon Shinyaku Co., Ltd. | Fat emulsions for inhalational administration |
| JPH11322587A (en) | 1998-05-18 | 1999-11-24 | Sumitomo Chem Co Ltd | Method for microencapsulating a physiologically active substance solid at room temperature and microcapsule composition obtained by this method |
| JP2002534371A (en) * | 1999-01-06 | 2002-10-15 | コリア リサーチ インスティテュート オブ ケミカル テクノロジー | Method for producing pharmaceutically active ingredient containing water-insoluble drug and pharmaceutical composition for oral administration containing the same |
| EP1027886B1 (en) * | 1999-02-10 | 2008-07-09 | Pfizer Products Inc. | Pharmaceutical solid dispersions |
| GB9904012D0 (en) | 1999-02-22 | 1999-04-14 | Zeneca Ltd | Agrochemical formulation |
| IL146659A0 (en) * | 1999-05-27 | 2002-07-25 | Acusphere Inc | Porous drug matrices and method of manufacture thereof |
| GB9915231D0 (en) | 1999-06-29 | 1999-09-01 | Pfizer Ltd | Pharmaceutical complex |
| GB9920148D0 (en) * | 1999-08-25 | 1999-10-27 | Smithkline Beecham Plc | Novel composition |
| CA2392810A1 (en) | 1999-12-01 | 2001-06-07 | Natco Pharma Limited | A rapid acting freeze dired oral pharmaceutical composition for treating migraine |
| KR100694667B1 (en) * | 1999-12-08 | 2007-03-14 | 동아제약주식회사 | Itraconazole-containing antifungal agents that improve bioavailability and reduce absorption variation between and in individuals |
| US6207674B1 (en) * | 1999-12-22 | 2001-03-27 | Richard A. Smith | Dextromethorphan and oxidase inhibitor for weaning patients from narcotics and anti-depressants |
| US20020044969A1 (en) | 2000-05-22 | 2002-04-18 | Jerome Harden | Method for increasing the compressibility of poorly binding powder materials |
| US6932963B2 (en) * | 2000-06-23 | 2005-08-23 | Nicholas V. Perricone | Treatment of skin wounds using polyenylphosphatidylcholine and alkanolamines |
| IT1318618B1 (en) * | 2000-07-10 | 2003-08-27 | A C R Applied Coating Res S A | QUICK RELEASE BIOADHESIVE MICROSPHERES FOR SUBLINGUAL ADMINISTRATION OF ACTIVE INGREDIENTS. |
| KR100807650B1 (en) * | 2000-07-24 | 2008-02-28 | 오노 야꾸힝 고교 가부시키가이샤 | Freeze-dried preparation of N-[(-)-pivaloyloxybenzenesulfonylamino) benzoyl] glycine, monosodium salt, tetrahydrate, and its manufacturing method |
| DE10036871A1 (en) * | 2000-07-28 | 2002-02-14 | Pharmasol Gmbh | Dispersions for the formulation of poorly or poorly soluble active ingredients |
| ATE367802T1 (en) * | 2000-09-20 | 2007-08-15 | Jagotec Ag | METHOD FOR SPRAY DRYING COMPOSITIONS CONTAINING FENOFIBRATE |
| US6756062B2 (en) * | 2000-11-03 | 2004-06-29 | Board Of Regents University Of Texas System | Preparation of drug particles using evaporation precipitation into aqueous solutions |
| US8067032B2 (en) * | 2000-12-22 | 2011-11-29 | Baxter International Inc. | Method for preparing submicron particles of antineoplastic agents |
| JP2004517699A (en) * | 2001-01-30 | 2004-06-17 | ボード オブ リージェンツ ユニバーシティ オブ テキサス システム | Method for producing nanoparticles and microparticles by spray freezing into liquid |
| US6355675B1 (en) | 2001-05-15 | 2002-03-12 | Isp Investments Inc. | Emulsifiable concentrate of a water-insoluble fungicide |
| EA006398B1 (en) * | 2001-06-01 | 2005-12-29 | Поузен Инк. | Pharmaceutical compositions for coordinated delivery of nsaids |
| IL158991A0 (en) * | 2001-06-22 | 2004-05-12 | Pfizer Prod Inc | Pharmaceutical compositions comprising low-solubility and/or acid sensitive drugs and neutralized acidic polymers |
| KR100425226B1 (en) * | 2001-07-03 | 2004-03-30 | 주식회사 팜트리 | Compositions and preparation methods for bioavailable oral aceclofenac dosage forms |
| WO2003017659A1 (en) * | 2001-08-21 | 2003-02-27 | Sony Corporation | Information processing system, information processing apparatus, and method |
| US20060003012A9 (en) * | 2001-09-26 | 2006-01-05 | Sean Brynjelsen | Preparation of submicron solid particle suspensions by sonication of multiphase systems |
| BR0212833A (en) | 2001-09-26 | 2004-10-13 | Baxter Int | Preparation of submicron sized nanoparticles by dispersion and solvent or liquid phase removal |
| DE10151392A1 (en) * | 2001-10-18 | 2003-05-08 | Bayer Cropscience Ag | Powdery solid formulations |
| PL371416A1 (en) * | 2002-02-01 | 2005-06-13 | Pfizer Products Inc. | Controlled release pharmaceutical dosage forms of a cholesteryl ester transfer protein inhibitor |
| MXPA04007433A (en) * | 2002-02-01 | 2004-10-11 | Pfizer Prod Inc | Method for making homogeneous spray-dried solid amorphous drug dispersions utilizing modified spray-drying apparatus. |
| US6780324B2 (en) * | 2002-03-18 | 2004-08-24 | Labopharm, Inc. | Preparation of sterile stabilized nanodispersions |
| US20040028505A1 (en) * | 2002-06-07 | 2004-02-12 | Bilbrey Robert A. | Document tape binding system with automatic tape feed, tape indicia sensing, spine printing method and post-bind automation mechanisms |
| AU2003245313A1 (en) | 2002-06-10 | 2003-12-22 | Elan Pharma International, Ltd | Nanoparticulate formulations comprising hmg coa reductase inhibitor derivatives (statins), novel combinations thereof as well as manufacturing of these pharmaceutical compositions |
| US20030017208A1 (en) * | 2002-07-19 | 2003-01-23 | Francis Ignatious | Electrospun pharmaceutical compositions |
| DE10244681A1 (en) * | 2002-09-24 | 2004-04-08 | Boehringer Ingelheim International Gmbh | New solid telmisartan-containing pharmaceutical formulations and their preparation |
| JP2006501936A (en) * | 2002-10-04 | 2006-01-19 | エラン ファーマ インターナショナル,リミティド | Gamma irradiation of solid nanoparticle active agents |
| CN1176649C (en) | 2002-10-16 | 2004-11-24 | 上海医药工业研究院 | Sumatriptan dry powder inhalation and preparation method thereof |
| US20040220081A1 (en) * | 2002-10-30 | 2004-11-04 | Spherics, Inc. | Nanoparticulate bioactive agents |
| SI1575566T1 (en) | 2002-12-26 | 2012-08-31 | Pozen Inc | Multilayer dosage forms containing naproxen and triptans |
| EP2263687B1 (en) * | 2002-12-27 | 2015-03-25 | Novartis Vaccines and Diagnostics, Inc. | Immunogenic compositions containing phospholipid |
| WO2004064834A1 (en) * | 2003-01-21 | 2004-08-05 | Ranbaxy Laboratories Limited | Co-precipitated amorphous losartan and dosage forms comprising the same |
| US20040197301A1 (en) * | 2003-02-18 | 2004-10-07 | Zhong Zhao | Hybrid polymers and methods of making the same |
| WO2004073632A2 (en) * | 2003-02-19 | 2004-09-02 | Biovail Laboratories Inc. | Rapid absorption selective 5-ht agonist formulations |
| WO2004075921A1 (en) * | 2003-02-26 | 2004-09-10 | Vrije Universiteit Brussel | Inclusion complex of artemisinin or derivates thereof with cyclodextrins |
| BRPI0409125A (en) * | 2003-04-08 | 2006-03-28 | Progenics Pharm Inc | combination therapy for constipation comprising a laxative and a peripheral opioid antagonist |
| US20040247624A1 (en) * | 2003-06-05 | 2004-12-09 | Unger Evan Charles | Methods of making pharmaceutical formulations for the delivery of drugs having low aqueous solubility |
| CA2465565A1 (en) | 2003-06-12 | 2004-12-12 | Warner-Lambert Company Llc | Pharmaceutical compositions of atorvastatin |
| WO2005014043A1 (en) * | 2003-07-16 | 2005-02-17 | Boehringer Ingelheim International Gmbh | Chlorthalidone combinations |
| US7687167B2 (en) * | 2003-07-18 | 2010-03-30 | Panasonic Corporation | Power supply unit |
| CL2004001884A1 (en) | 2003-08-04 | 2005-06-03 | Pfizer Prod Inc | DRYING PROCEDURE FOR SPRAYING FOR THE FORMATION OF SOLID DISPERSIONS AMORPHES OF A PHARMACO AND POLYMERS. |
| DE10338403A1 (en) * | 2003-08-18 | 2005-03-17 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Powder formulation containing the CGRP antagonist 1- [N 2 - [3,5-dibromo-N - [[4- (3,4-dihydro-2 (1 H) -oxoquinazolin-3-yl] -1-piperidinyl] carbonyl] -D-tyrosyl] -L-lysyl] -4- (4-pyrindinyl) piperazine, process for its preparation and its use as inhalant |
| DE10351087A1 (en) * | 2003-10-31 | 2005-05-25 | Bayer Technology Services Gmbh | Solid active ingredient formulation |
| KR100603974B1 (en) * | 2003-12-05 | 2006-07-25 | 김갑식 | Method for preparing nano-scale or amorphous particle using solid fat as a solvent |
| MXPA06007512A (en) * | 2003-12-31 | 2006-08-31 | Pfizer Prod Inc | Stabilized pharmaceutical solid compositions of low-solubility drugs, poloxamers, and stabilizing polymers. |
| KR100629771B1 (en) * | 2004-01-27 | 2006-09-28 | 씨제이 주식회사 | Method for preparing oltipraz with reduced or amorphous crystallinity |
| IL160095A0 (en) * | 2004-01-28 | 2004-06-20 | Yissum Res Dev Co | Formulations for poorly soluble drugs |
| JP2005298347A (en) * | 2004-04-06 | 2005-10-27 | Yoshiaki Kawashima | Inhalation preparation and method for producing the same |
| KR100598326B1 (en) * | 2004-04-10 | 2006-07-10 | 한미약품 주식회사 | Sustained-release preparations for oral administration of a HMVII-COA reductase inhibitor and preparation method thereof |
| JP2007534328A (en) * | 2004-04-28 | 2007-11-29 | ユニリーバー・ナームローゼ・ベンノートシヤープ | Edible oils containing statins |
| WO2005117834A1 (en) * | 2004-05-27 | 2005-12-15 | Janssen Pharmaceutica N.V. | Solid dispersions of a basic drug compound and a polymer containing acidic groups |
| DK1641438T3 (en) | 2004-06-01 | 2010-06-07 | Teva Gyogyszergyar Zartkoeruen | Process for preparing the amorphous form of a drug |
| DE102004031298A1 (en) | 2004-06-28 | 2006-01-12 | Basf Ag | Aqueous dispersions of poorly water-soluble or water-insoluble active ingredients and dry powders prepared therefrom containing at least one polymer containing polyether groups as protective colloid |
| AU2005290583A1 (en) * | 2004-10-01 | 2006-04-13 | Eisai R & D Management Co., Ltd. | Fine particles-containing composition and manufacturing method therefor |
| US20060105038A1 (en) | 2004-11-12 | 2006-05-18 | Eurand Pharmaceuticals Limited | Taste-masked pharmaceutical compositions prepared by coacervation |
| CA2594332A1 (en) | 2005-01-06 | 2006-07-13 | Elan Pharma International Ltd. | Nanoparticulate candesartan formulations |
| GB0501835D0 (en) * | 2005-01-28 | 2005-03-09 | Unilever Plc | Improvements relating to spray dried compositions |
| GB0613925D0 (en) * | 2006-07-13 | 2006-08-23 | Unilever Plc | Improvements relating to nanodispersions |
| WO2008076780A2 (en) * | 2006-12-14 | 2008-06-26 | Isp Investments Inc. | Amorphous valsartan and the production thereof |
-
2006
- 2006-07-13 GB GBGB0613925.7A patent/GB0613925D0/en not_active Ceased
-
2007
- 2007-06-29 JP JP2009518833A patent/JP2009542762A/en active Pending
- 2007-06-29 ES ES07765733T patent/ES2741124T3/en active Active
- 2007-06-29 US US12/309,293 patent/US20090239749A1/en not_active Abandoned
- 2007-06-29 AU AU2007271830A patent/AU2007271830B2/en not_active Ceased
- 2007-06-29 AP AP2008004713A patent/AP2008004713A0/en unknown
- 2007-06-29 CN CN201010193750A patent/CN101849911A/en active Pending
- 2007-06-29 MX MX2009000307A patent/MX2009000307A/en not_active Application Discontinuation
- 2007-06-29 MX MX2009000309A patent/MX2009000309A/en not_active Application Discontinuation
- 2007-06-29 EP EP07786931A patent/EP2040679A2/en not_active Ceased
- 2007-06-29 ES ES07786932T patent/ES2752460T3/en active Active
- 2007-06-29 JP JP2009518835A patent/JP2009542764A/en active Pending
- 2007-06-29 JP JP2009518832A patent/JP2009542761A/en active Pending
- 2007-06-29 EP EP07765734A patent/EP2040678A2/en not_active Withdrawn
- 2007-06-29 AU AU2007271831A patent/AU2007271831B2/en not_active Ceased
- 2007-06-29 CA CA2656229A patent/CA2656229C/en active Active
- 2007-06-29 ZA ZA200900031A patent/ZA200900031B/en unknown
- 2007-06-29 BR BRPI0714230-7A patent/BRPI0714230A2/en not_active IP Right Cessation
- 2007-06-29 US US12/309,295 patent/US20100015233A1/en not_active Abandoned
- 2007-06-29 BR BRPI0714177-7A patent/BRPI0714177A2/en not_active IP Right Cessation
- 2007-06-29 US US12/309,292 patent/US9060937B2/en active Active
- 2007-06-29 CN CNA2007800262750A patent/CN101489533A/en active Pending
- 2007-06-29 CA CA002659666A patent/CA2659666A1/en not_active Abandoned
- 2007-06-29 EP EP07786933.7A patent/EP2040681B1/en active Active
- 2007-06-29 CN CNA2007800262657A patent/CN101489532A/en active Pending
- 2007-06-29 BR BRPI0714179-3A patent/BRPI0714179A2/en not_active IP Right Cessation
- 2007-06-29 WO PCT/EP2007/056562 patent/WO2008006714A2/en active Application Filing
- 2007-06-29 US US12/309,306 patent/US20090175953A1/en not_active Abandoned
- 2007-06-29 ZA ZA200900030A patent/ZA200900030B/en unknown
- 2007-06-29 CA CA002656223A patent/CA2656223A1/en not_active Abandoned
- 2007-06-29 CN CN2012101088167A patent/CN102671585A/en active Pending
- 2007-06-29 CN CNA2007800263575A patent/CN101489534A/en active Pending
- 2007-06-29 CN CN2012101088434A patent/CN102631874A/en active Pending
- 2007-06-29 WO PCT/EP2007/056563 patent/WO2008006715A2/en active Application Filing
- 2007-06-29 JP JP2009518831A patent/JP2009542760A/en active Pending
- 2007-06-29 WO PCT/EP2007/056561 patent/WO2008006713A2/en active Application Filing
- 2007-06-29 EP EP20100175541 patent/EP2269581A1/en not_active Withdrawn
- 2007-06-29 BR BRPI0714176-9A patent/BRPI0714176A2/en not_active IP Right Cessation
- 2007-06-29 EP EP07765733.6A patent/EP2040677B1/en active Active
- 2007-06-29 BR BRPI0722376-5A patent/BRPI0722376A2/en not_active IP Right Cessation
- 2007-06-29 ZA ZA200900029A patent/ZA200900029B/en unknown
- 2007-06-29 EP EP11005053A patent/EP2387992A1/en not_active Ceased
- 2007-06-29 CA CA002656217A patent/CA2656217A1/en not_active Abandoned
- 2007-06-29 JP JP2009518834A patent/JP2009542763A/en active Pending
- 2007-06-29 CN CNA2007800262267A patent/CN101489531A/en active Pending
- 2007-06-29 ZA ZA200900027A patent/ZA200900027B/en unknown
- 2007-06-29 US US12/309,294 patent/US8821932B2/en active Active
- 2007-06-29 CA CA002656233A patent/CA2656233A1/en not_active Abandoned
- 2007-06-29 AU AU2007271828A patent/AU2007271828B2/en not_active Ceased
- 2007-06-29 WO PCT/EP2007/056564 patent/WO2008006716A2/en active Search and Examination
- 2007-06-29 EP EP07786932.9A patent/EP2040680B1/en active Active
- 2007-06-29 CN CNA2007800263679A patent/CN101489535A/en active Pending
- 2007-06-29 AU AU2007271827A patent/AU2007271827B2/en not_active Ceased
- 2007-06-29 ZA ZA200900028A patent/ZA200900028B/en unknown
- 2007-06-29 EP EP11005052A patent/EP2386292A1/en active Pending
- 2007-06-29 WO PCT/EP2007/056560 patent/WO2008006712A2/en active Search and Examination
- 2007-06-29 AU AU2007271829A patent/AU2007271829B2/en not_active Ceased
- 2007-07-11 TW TW096125298A patent/TW200812694A/en unknown
- 2007-07-12 CL CL2007002030A patent/CL2007002030A1/en unknown
- 2007-07-12 CL CL2007002031A patent/CL2007002031A1/en unknown
- 2007-07-12 CL CL2007002032A patent/CL2007002032A1/en unknown
- 2007-07-13 BR BRPI0714352-4A patent/BRPI0714352A2/en not_active IP Right Cessation
- 2007-07-13 ZA ZA200900347A patent/ZA200900347B/en unknown
- 2007-07-13 US US12/309,343 patent/US20100008995A1/en not_active Abandoned
- 2007-07-13 BR BRPI0714351-6A patent/BRPI0714351A2/en not_active IP Right Cessation
- 2007-07-13 CN CNA2007800338285A patent/CN101516340A/en active Pending
- 2007-07-13 WO PCT/GB2007/050408 patent/WO2008007151A2/en active Application Filing
- 2007-07-13 CA CA002657586A patent/CA2657586A1/en not_active Abandoned
- 2007-07-13 WO PCT/GB2007/050409 patent/WO2008007152A2/en active Application Filing
- 2007-07-13 AR ARP070103116A patent/AR061990A1/en not_active Application Discontinuation
- 2007-07-13 ZA ZA200900345A patent/ZA200900345B/en unknown
- 2007-07-13 JP JP2009518980A patent/JP2009542795A/en active Pending
- 2007-07-13 BR BRPI0714353-2A patent/BRPI0714353A2/en not_active Application Discontinuation
- 2007-07-13 US US12/309,344 patent/US8945626B2/en not_active Expired - Fee Related
- 2007-07-13 CN CNA2007800338942A patent/CN101516342A/en active Pending
- 2007-07-13 AU AU2007274039A patent/AU2007274039A1/en not_active Abandoned
- 2007-07-13 WO PCT/GB2007/050407 patent/WO2008007150A1/en active Application Filing
- 2007-07-13 CA CA002657582A patent/CA2657582A1/en not_active Abandoned
- 2007-07-13 AU AU2007274041A patent/AU2007274041A1/en not_active Abandoned
- 2007-07-13 AR ARP070103118A patent/AR061992A1/en not_active Application Discontinuation
- 2007-07-13 US US12/309,341 patent/US7691873B2/en not_active Expired - Fee Related
- 2007-07-13 AU AU2007274040A patent/AU2007274040A1/en not_active Abandoned
- 2007-07-13 JP JP2009518978A patent/JP2009542793A/en active Pending
- 2007-07-13 CN CNA2007800338444A patent/CN101516341A/en active Pending
- 2007-07-13 CA CA002657548A patent/CA2657548A1/en not_active Abandoned
- 2007-07-13 AR ARP070103117A patent/AR061991A1/en not_active Application Discontinuation
- 2007-07-13 JP JP2009518979A patent/JP2009542794A/en active Pending
-
2008
- 2008-12-11 IL IL195911A patent/IL195911A0/en unknown
- 2008-12-15 IL IL195933A patent/IL195933A/en not_active IP Right Cessation
-
2010
- 2010-05-11 AU AU2010201900A patent/AU2010201900A1/en not_active Abandoned
- 2010-05-19 CL CL2010000516A patent/CL2010000516A1/en unknown
- 2010-06-08 JP JP2010131047A patent/JP2010202665A/en not_active Withdrawn
- 2010-06-23 AR ARP100102205A patent/AR077195A2/en not_active Application Discontinuation
-
2012
- 2012-02-03 US US13/365,826 patent/US20120134940A1/en not_active Abandoned
- 2012-02-03 US US13/365,830 patent/US20120135058A1/en not_active Abandoned
Patent Citations (17)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3720703A (en) * | 1969-07-10 | 1973-03-13 | Nat Res Dev | Insecticides |
| US4230687A (en) * | 1978-05-30 | 1980-10-28 | Griffith Laboratories U.S.A., Inc. | Encapsulation of active agents as microdispersions in homogeneous natural polymeric matrices |
| US4830858A (en) * | 1985-02-11 | 1989-05-16 | E. R. Squibb & Sons, Inc. | Spray-drying method for preparing liposomes and products produced thereby |
| US5317004A (en) * | 1989-01-24 | 1994-05-31 | Griffin Corporation | Microencapsulated yellow polymorphic form of trifluralin |
| US5532205A (en) * | 1993-03-03 | 1996-07-02 | Zeneca Limited | Herbicidal composition containing glyphosate or a salt thereof |
| WO1997001277A1 (en) * | 1995-06-29 | 1997-01-16 | Novartis Ag | Crop protection products |
| US20020142050A1 (en) * | 1999-05-27 | 2002-10-03 | Acusphere Inc. | Porous drug matrices and methods of manufacture thereof |
| US6395300B1 (en) * | 1999-05-27 | 2002-05-28 | Acusphere, Inc. | Porous drug matrices and methods of manufacture thereof |
| US20020041896A1 (en) * | 1999-05-27 | 2002-04-11 | Acusphere, Inc. | Porous paclitaxel matrices and methods of manufacture thereof |
| US6645528B1 (en) * | 1999-05-27 | 2003-11-11 | Acusphere, Inc. | Porous drug matrices and methods of manufacture thereof |
| US20050048116A1 (en) * | 1999-05-27 | 2005-03-03 | Julie Straub | Porous drug matrices and methods of manufacture thereof |
| US20050058710A1 (en) * | 1999-05-27 | 2005-03-17 | Acusphere, Inc. | Porous drug matrices and methods of manufacture thereof |
| US6932983B1 (en) * | 1999-05-27 | 2005-08-23 | Acusphere, Inc. | Porous drug matrices and methods of manufacture thereof |
| US20040242427A1 (en) * | 2001-11-07 | 2004-12-02 | Sebastian Koltzenburg | Cinidon-ethyl containing solid crop protection formulations and corresponding dispersions |
| US20040266626A1 (en) * | 2001-11-07 | 2004-12-30 | Wolfgang Schrof | Solid crop protection formulations and dispersion formulations and their use in agriculture |
| WO2005046328A1 (en) * | 2003-10-30 | 2005-05-26 | Basf Aktiengesellschaft | Nanoparticulate active substance formulations |
| US20070122436A1 (en) * | 2003-10-30 | 2007-05-31 | Sebastian Koltzenburg | Nanoparticulate active substance formulations |
Cited By (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20080262100A1 (en) * | 2005-01-28 | 2008-10-23 | Andrew Ian Cooper | Method of Preparing Carrier Liquids |
| US10070650B2 (en) | 2008-09-25 | 2018-09-11 | Vive Crop Protection Inc. | Methods to produce polymer nanoparticles and formulations of active ingredients |
| US8741808B2 (en) | 2008-09-25 | 2014-06-03 | Vive Crop Protection Inc. | Methods to produce polymer nanoparticles and formulations of active ingredients |
| US9363994B2 (en) | 2008-09-25 | 2016-06-14 | Vive Crop Protection Inc. | Nanoparticle formulations of active ingredients |
| US9648871B2 (en) | 2008-09-25 | 2017-05-16 | Vive Crop Protection Inc. | Methods to produce polymer nanoparticles and formulations of active ingredients |
| US8084397B2 (en) | 2008-09-25 | 2011-12-27 | Vive Nano, Inc. | Methods to produce polymer nanoparticles and formulations of active ingredients |
| US20130196852A1 (en) * | 2010-10-05 | 2013-08-01 | Iota Nanosolutions Limited | Processes for preparing improved compositions |
| US10455830B2 (en) | 2011-08-23 | 2019-10-29 | Vive Crop Protection Inc. | Pyrethroid formulations |
| US10966422B2 (en) | 2011-08-23 | 2021-04-06 | Vive Crop Protection Inc. | Pyrethroid formulations |
| US11503825B2 (en) | 2011-08-23 | 2022-11-22 | Vive Crop Protection Inc. | Pyrethroid formulations |
| US11344028B2 (en) | 2011-12-22 | 2022-05-31 | Vive Crop Protection Inc. | Strobilurin formulations |
| US10315330B2 (en) * | 2014-12-23 | 2019-06-11 | Dow Global Technologies Llc | Treated porous material |
| US11517013B2 (en) | 2017-08-25 | 2022-12-06 | Vive Crop Protection Inc. | Multi-component, soil-applied, pesticidal compositions |
Also Published As
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| AU2007271829B2 (en) | Improvements relating to biocidal compositions | |
| Hayles et al. | Nanopesticides: a review of current research and perspectives | |
| US20170112125A1 (en) | Processes for preparing improved compositions | |
| EP3269243B1 (en) | Preparation method for pesticide nano solid dispersion | |
| De et al. | Targeted delivery of pesticides using biodegradable polymeric nanoparticles | |
| US20070081947A1 (en) | Solid active ingredient formulation | |
| Shah et al. | Nanotechnology and insecticidal formulations | |
| CN108124861A (en) | Stable composition pesticide | |
| JP2005507427A5 (en) | ||
| CN101941675A (en) | Nanoparticles and preparation method thereof | |
| CN105360115A (en) | Method for preparing nanoscale pesticide preparation by means of silicon dioxide aerogel | |
| CN102150678A (en) | Sterilization composition containing prochloraz | |
| Rehman et al. | Nano-enabled agrochemicals for sustainable agriculture | |
| Rehman et al. | Application of nanopesticides and its toxicity evaluation through Drosophila model | |
| US8901037B2 (en) | Composition having a germination-preventing activity, processes for obtaining said compositions and use thereof | |
| JP5092291B2 (en) | Aqueous suspension pesticide composition and method for producing the same | |
| US20240130360A1 (en) | Nano-dispersion comprising cellulose nanocrystal as pesticide/fungicide carriers for agriculture and aquaculture | |
| CN102150660B (en) | Sterilization composition containing tetraconazole | |
| Sheeja et al. | Nano-enabled Pesticides: Status and Perspectives | |
| Derbalah et al. | Comparative efficacy of solid nano-dispersions and conventional formulations of some insecticides against Spodoptera littoralis,(Boisd.) under laboratory and field conditions | |
| JP2018197209A (en) | Agrochemical composition | |
| Purkait et al. | International Journal of Green and Herbal Chemistry | |
| JP2009256279A (en) | Phytotoxicity-reducing agent and herbicidal composition |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: CONOPCO, INC. D/B/A UNILEVER, NEW JERSEY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DUNCALF, DAVID JOHN;FOSTER, ALISON JAYNE;LONG, JAMES;AND OTHERS;REEL/FRAME:022869/0754 Effective date: 20070726 |
|
| AS | Assignment |
Owner name: IOTA NANOSOLUTIONS LIMITED, UNITED KINGDOM Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CONOPCO, INC. D/B/A UNILEVER;REEL/FRAME:025886/0924 Effective date: 20110225 |
|
| AS | Assignment |
Owner name: IOTA NANOSOLUTIONS LIMITED, UNITED KINGDOM Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CONOPCO, INC. D/B/A UNILEVER;REEL/FRAME:026485/0885 Effective date: 20110610 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |