US7995253B2 - Image reading device and control method thereof - Google Patents
Image reading device and control method thereof Download PDFInfo
- Publication number
- US7995253B2 US7995253B2 US12/041,848 US4184808A US7995253B2 US 7995253 B2 US7995253 B2 US 7995253B2 US 4184808 A US4184808 A US 4184808A US 7995253 B2 US7995253 B2 US 7995253B2
- Authority
- US
- United States
- Prior art keywords
- image
- reading
- dirt
- scanning direction
- image reading
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related, expires
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N1/00—Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
- H04N1/04—Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa
- H04N1/12—Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa using the sheet-feed movement or the medium-advance or the drum-rotation movement as the slow scanning component, e.g. arrangements for the main-scanning
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N1/00—Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
- H04N1/04—Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa
- H04N1/10—Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa using flat picture-bearing surfaces
- H04N1/1013—Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa using flat picture-bearing surfaces with sub-scanning by translatory movement of at least a part of the main-scanning components
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N1/00—Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
- H04N1/04—Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa
- H04N1/19—Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa using multi-element arrays
- H04N1/191—Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa using multi-element arrays the array comprising a one-dimensional array, or a combination of one-dimensional arrays, or a substantially one-dimensional array, e.g. an array of staggered elements
- H04N1/192—Simultaneously or substantially simultaneously scanning picture elements on one main scanning line
- H04N1/193—Simultaneously or substantially simultaneously scanning picture elements on one main scanning line using electrically scanned linear arrays, e.g. linear CCD arrays
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N2201/00—Indexing scheme relating to scanning, transmission or reproduction of documents or the like, and to details thereof
- H04N2201/0077—Types of the still picture apparatus
- H04N2201/0081—Image reader
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N2201/00—Indexing scheme relating to scanning, transmission or reproduction of documents or the like, and to details thereof
- H04N2201/04—Scanning arrangements
- H04N2201/0402—Arrangements not specific to a particular one of the scanning methods covered by groups H04N1/04 - H04N1/207
- H04N2201/0458—Additional arrangements for improving or optimising scanning resolution or quality
Definitions
- the present invention relates to an image reading device including a line image sensor and a control method thereof.
- the existing so-called sheet-scan type (also known as sheet-through type) document readers feed a document original in the sub-scanning direction over an exposure glass.
- they are equipped with a line image sensor that reads one line of an image in the main scanning direction at a reading position on the exposure glass. If dirt happens to be adhering to the exposure glass, the document reader reads the dirt as well, and the resulting image includes a vertical streak, which is the image of the dirt.
- Japanese Patent Application Laid-open No. 2002-251605 discloses a technology to address the problem.
- a conveyor belt is read without placing the document original on the exposure glass. Whether dirt is on the conveyor belt or on the reading surface is determined by whether or not the image of the streak is continuous in the sub-scanning direction.
- the carriage If it is determined that dirt is present on the reading surface, the carriage is moved by a specific amount until no dirt is detected. However, if no position is dirt-free, it is determined that sheet-through reading is not possible, and a message indicating that there is presence of dirt is output.
- an image reading device that feeds a document original along a sub-scanning direction over an exposure glass.
- the image reading device includes a moving unit that moves to and fro in the sub-scanning direction over the exposure glass thereby causing an image reading position on the exposure glass to move; a line image sensor that reads one line of an image of the document original at the image reading position in a main scanning direction, while the moving unit is moving, thereby obtaining image data; and a dirt determining unit that determines, when a straight line appears in the main scanning direction in the image data, that there is dirt on the exposure glass.
- a method of controlling an image reading device that feeds a document original along a sub-scanning direction over an exposure glass.
- the method includes moving a moving unit to and fro in the sub-scanning direction over the exposure glass thereby causing an image reading position on the exposure glass to move; reading by a line image sensor one line of an image of the document original at the image reading position in a main scanning direction, while the moving unit is moving, thereby obtaining image data; and determining, when a straight line appears in the main scanning direction in the image data, that there is dirt on the exposure glass.
- FIG. 1 is a schematic diagram of an image reading device according to an embodiment of the present invention.
- FIG. 2 is a block diagram of a control system of the image reading device according to the embodiment.
- FIG. 3 is a schematic diagram of a scanner reading unit
- FIG. 4 is a schematic diagram of a control and display panel
- FIG. 5 is a block diagram of an aspect of how a scanner-motor driving unit drives a scanner motor
- FIG. 6 is a schematic diagram of a plurality of signals applied to the scanner motor driving unit
- FIGS. 7A and 7B are schematic diagrams for explaining movement of a reading position
- FIGS. 8A and 8B are schematic diagrams for explaining formation of vertical streaks
- FIGS. 9A and 9B are tables for explaining the relation between a carriage velocity and length of the vertical streak appearing on an image when there is presence of dirt;
- FIGS. 10A and 10B are schematic diagrams for explaining how the length of the vertical streak varies when reading is carried out in a direction opposite to a document conveying direction and when conveyed in a process direction;
- FIG. 11 is a flowchart of one example of main processes in a reading operation performed by the image reading device in a reading mode with dirt detection;
- FIG. 12 is a flowchart of another example of main processes in the reading operation performed by the image reading device in the reading mode with dirt detection.
- FIG. 13 is a continuation of the flowchart shown in FIG. 12 .
- FIG. 1 is a schematic diagram of an image reading device 1 according to an embodiment of the present invention.
- the image reading device 1 includes an automatic document feeder (ADF) unit 1 a and an image reading unit 1 b .
- the ADF unit 1 a feeds document originals one by one from a document tray 2 to a reading position RL.
- the image reading unit 1 b reads one line of the document original at the reading position RL, and is equipped with two types of document reading functions, namely, sheet-scan type document reading function and book-scan type document reading function.
- the present invention principally relates the sheet-scan type document reading function. Hence, book-scan type document reading function is not described here.
- a pickup roller 3 takes the topmost documents from document originals PP stacked up on the document tray 2 , conveys the documents to a separating unit 4 , which separates the documents and conveys it one by one to a pair of first conveying rollers 5 .
- the first conveying rollers 5 convey one sheet of document original at a time towards a document conveying direction through a guiding member GG.
- the document original PP is then conveyed between a second conveying roller 6 and a conveying drum 7 , coming in tight contact with the conveying drum 7 , and is conveyed past the reading position RL to a pair of ejection rollers 8 , and is finally ejected onto an ejection tray 9 .
- an exposure glass 10 of sheet-scan type is arranged opposed to the reading position RL.
- the exposure glass 10 has a dimension of 4 mm in a sub-scanning direction.
- a book-scan type exposure glass 11 is arranged right of the exposure glass 10 .
- a white reference board WW is provided for forming a white reference image for shading correction.
- a lamp 12 illuminates the surface of the document original PP at the reading position RL.
- the light reflected back from the reading position is reflected in sequence by a first mirror 13 , a second mirror 14 , and a third mirror 15 , is passed through a lens 18 to be condensed, and illuminates a charge-coupled device (CCD) line-image sensor 20 set on a base 19 .
- CCD charge-coupled device
- the lamp 12 and the first mirror 13 are mounted on a first carriage 16 and are shifted to and fro in a sub-scanning direction SS.
- the second mirror 14 and the third mirror 15 are mounted on a second carriage 17 and are shifted to and fro in the sub-scanning direction SS.
- the second carriage 17 is shifted at half the velocity of the first carriage 16 to maintain an optical path length from the exposure glass 10 to the CCD line-image sensor 20 .
- a scanner motor 21 drives the first carriage 16 and the second carriage 17 .
- FIG. 2 is a block diagram of a control system of the image reading device 1 according to the embodiment. For reasons mentioned earlier, only the sheet-scan type document reading function is shown in FIG. 2 .
- a main control unit 31 controls the functioning of all the parts of the image reading device 1 .
- a scanner reading unit 32 reads the CCD line-image sensor 20 .
- a control and display panel 33 includes keys to enable the user to operate the image reading device 1 and a display device for providing information to the user by way of displaying.
- a scanner-motor driving unit 34 controls the way the scanner motor 21 is driven.
- An ADF-motor driving unit 35 controls the way an ADF motor 36 (not shown in FIG. 1 ) is driven.
- the ADF motor 36 drives each of the conveying units of the ADF unit 1 a .
- An external interface (I/F) 37 connects the image reading device 1 to an external device.
- FIG. 3 is a schematic diagram of the scanner reading unit 32 .
- a CCD driver 32 b controls the reading operation of the CCD line-image sensor 20 .
- Read signals read by the CCD line-image sensor 20 are applied to an analog processing unit 32 c.
- the analog processing unit 32 c performs a predetermined analog process.
- the outcome of the analog process is applied to an analog-to-digital converter 32 d .
- the analog-to-digital converter 32 d performs pixel-by-pixel sampling of the read signal of one line output by the analog processing unit 32 c and converts the analog signal of each pixel into a digital signal of a corresponding digit, and applies the resulting digital signal to an image processing unit 32 e and a dirt detecting unit 32 f.
- the image processing unit 32 e performs a predetermined imaging process based on the digital signal applied by the analog-to-digital converter 32 d , and outputs an image reading digital signal PP to a device at the next level.
- the dirt detecting unit 32 f determines whether the read image data includes image caused by dirt based on the digital signal received from the analog-to-digital converter 32 d , and outputs a detection signal DT to the main control unit 31 .
- FIG. 4 is a schematic diagram of the control and display panel 33 .
- the control and display panel 33 includes a start key 33 a , a stop key 33 b , mode keys 33 c to 33 e , and a liquid-crystal display unit 33 f .
- the start key 33 a is an operation input key for commencing the document reading operation.
- the stop key 33 b is an operation input key for stopping the document reading operation.
- the mode keys 33 c to 33 e are setting input keys for selecting reading modes.
- the liquid-crystal display unit 33 f displays various data (such as error warning) for the benefit of the user.
- FIG. 5 is a block diagram of an aspect of how the scanner-motor driving unit 34 drives the scanner motor 21 .
- the scanner motor 21 is a stepping motor. Accordingly, the scanner-motor driving unit 34 outputs to the scanner motor 21 an enable signal EN (see (a) in FIG. 6 , non-logical) indicating a drive instruction, a clock signal CLK (see (b) in FIG. 6 ) for driving the scanner motor 21 , and a control signal CW/CCW (see (c) in FIG. 6 ) for controlling a rotation direction.
- EN see (a) in FIG. 6 , non-logical) indicating a drive instruction
- CLK see (b) in FIG. 6
- CW/CCW see (c) in FIG. 6
- the scanner motor 21 If the control signal CW/CCW is in a logical state L when the enable signal EN is in a logical state L, the scanner motor 21 is driven step-wise in a clockwise direction, synchronous with the clock signal CLK. The clockwise rotation of the scanner motor 21 moves the first carriage 16 and the second carriage 17 along the sub-scanning direction SS.
- the scanner motor 21 If the control signal CW/CCW is in a logical state H when the enable signal EN is in a logical state L, the scanner motor 21 is driven step-wise in a counter-clockwise direction, synchronous with the clock signal CLK. The counter-clockwise rotation of the scanner motor 21 moves the first carriage 16 and the second carriage 17 along the sub-scanning direction SS in the opposite direction.
- the reading operation of the CCD line-image sensor 20 is performed while shifting the reading position RL illuminated by the lamp 12 from a downstream end (hereinafter, “right end” or “reference position”) of the exposure glass 10 along sub-scanning direction SS to an upstream end (hereinafter, “left end” or “terminal position”) of the exposure glass 10 along the sub-scanning direction SS at a velocity Vb.
- the shifting of the reading position RL is in effect accomplished by shifting the first carriage 16 and the second carriage 17 .
- shifting and the reading position can also be called shifting of the carriages.
- the dirt adhering to the exposure glass 10 is read as a vertical streak LN as shown in FIG. 8A when a pageful is read.
- the vertical streak gets shorter, as shown in FIG. 8B . If dirt is present at the reading position, a vertical streak LN′ is produced. As the reading position recedes from the dirt, the vertical streak LN′ is no longer formed.
- dirt produces a much shorter vertical streak LN′ as against the vertical streak LN that extends the entire length of the page in the conventional device. Therefore, there is significant reduction in image degradation.
- image degradation is still much less compared to the conventional device.
- the position of the vertical streak caused by dirt adhering to the exposure glass 10 in the embodiment in the main scanning direction is unvarying.
- the position of a vertical line (line parallel to the sub-scanning direction or perpendicular to the main scanning direction) in the document original PP varies mildly in the main scanning direction most of the time. There are instances when the position of the vertical line in the document original PP varies significantly in the main scanning direction.
- the reason for the variation of the position of the vertical line in the document original PP even if very precise control is exerted by the ADF unit 1 a is because of skew occurring in the document original PP when transiting the exposure glass 10 and the edge of the document original PP not being perfectly parallel to the sub-scanning direction.
- an unambiguous detection of dirt on the exposure glass 10 can be made.
- the velocity at which the first carriage 16 (read line) is moved is described first.
- FIG. 9A is a table for explaining the relation between the document size of the document original PP, an image reading magnification, and the velocity of read line (carriage) (hereinafter, “carriage velocity”).
- M denotes the image reading magnification (%) and S denotes a reading size (mm).
- S denotes a reading size (mm).
- FIG. 9B is a table for explaining the lengths of the vertical streak corresponding to the carriage velocities shown in FIG. 9A .
- Length of vertical streak 400 ⁇ 100 /M /(4 ⁇ 100 /M ⁇ 210 /S ⁇ (size of dirt) (2)
- M denotes the image reading magnification (%)
- S denotes the reading size (mm).
- FIG. 9B these conditions, namely, the image reading magnification and the reading size, are the same as in FIG. 9A . It can be surmised from FIG. 9A that the length of the vertical streak is not affected by the image reading magnification but is varies with the reading size.
- the relative velocity of the document original PP and optical elements vary according to the movement velocity of the reading position.
- the reading cycle When a reading cycle is set for the CCD line-image sensor 20 , taking as reading operation reference a state when the reading position is fixed, the reading cycle will need to be adjusted according to the relative velocity of the document original PP and the optical elements. For example, if the relative velocity increases by 1%, the reading cycle would need to be reduced (or increased) by 1%, and similarly, if the relative velocity decreases by 1%, the reading cycle would need to be increased (or reduced) by 1%, so that a constant sampling distance (sampling width) of the image in the sub-scanning direction can be maintained by the CCD line-image sensor 20 .
- the feature of enabling reading cycle adjustment is provided to enhance user-friendliness of the image reading device 1 so that the user has the option of selecting the reading mode in which the image reading device 1 is to be operated, namely, with or without dirt detection.
- the dimension of the dirt adhering to the exposure glass 10 does not vary in the sub-scanning direction. However, controlling the reading cycle of the CCD line-image sensor 20 produces different lengths of the vertical streak due to the dirt when the reading position moves in the reverse direction and when the reading position moves in the process direction.
- the reading position is moved in the reverse direction to perform a blank reading without placing the document original PP on the document tray 2 prior to the reading operation and then the document original PP is placed on the document tray 2 and read by moving the reading position in the process direction.
- the vertical streaks produced in the two reading operations are compared, the vertical streak produced during blank reading will obviously be found to be longer than the vertical streak produced in the latter. Consequently, it can be surmised that the longer vertical streak is produced by the presence of dirt, and therefore, there is presence of dirt on the exposure glass 10 .
- the positions of vertical streaks that appear in the read image during the forward and reverse movement of the reading position will vary if the distance from the read commencement position to the dirt during the forward movement varies from the distance from the read commencement position to the dirt during the reverse movement.
- the user can select the reading mode with dirt detection. Otherwise, the user can select the reading mode without dirt detection.
- the user be notified by a message if presence of dirt is detected in the reading mode with dirt detection.
- the message displayed should preferably urge the user to clean the exposure glass 10 . If, as instructed by the message, the user cleans the exposure glass 10 and allows the reading operation to be performed once again, the resulting image is bound to be of high quality without the adverse effect caused by dirt.
- FIG. 11 is a flowchart of one example of main processes in the reading operation performed by the image reading device 1 in the reading mode with dirt detection.
- the image reading device 1 first moves the carriage (reading position) to the reference position (step S 101 ), and commences the reading of one page (step S 102 ).
- the carriage is moved in the reverse direction at a velocity determined according to the size of the document original and the image reading magnification until the reading operation of the entire page is completed (step S 103 , and No at step S 104 ).
- the image reading device 1 checks the read image data for presence of a vertical line whose position remains unvarying in the main scanning direction (step S 105 ). If the outcome of decision at step S 105 is positive, the image reading device 1 checks by applying the conditions described above whether the length of the vertical line falls in the dirt determination range (step S 106 ).
- step S 106 determines that there is presence of dirt (step S 107 ), and displays a warning on the control and display panel 33 (step S 108 ). If the outcome of decision at step S 106 is negative, the image reading device 1 determines that there no presence of dirt (step S 109 ). The image reading device 1 then checks whether there is another page to be read (step S 110 ). If the outcome of decision at step S 110 is positive, the process control returns to step S 101 , and the image reading device 1 performs the reading operation of the next page. If the outcome of decision at step S 110 is negative, the process control ends the reading operation.
- FIGS. 12 and 13 are a flowchart of another example of main processes in the reading operation performed by the image reading device 1 in the reading mode with dirt detection.
- the image reading device 1 first moves the carriage (reading position) to the reference position (step S 201 ) and commences a blank reading operation of the document original (step S 202 ) while moving the carriage from the reference position to the terminal position at a predetermined reference velocity (for example, a velocity corresponding to a document of A4 portrait size, see FIG. 9 A) (step S 203 , and No at step S 204 ).
- a predetermined reference velocity for example, a velocity corresponding to a document of A4 portrait size, see FIG. 9 A
- step S 204 After the blank reading is completed, if the outcome of decision at step S 204 is positive, the image reading device 1 stops the reading operation (step S 205 ), and temporarily saves the image data obtained by blank reading (step S 206 ).
- the image reading device 1 then commences the reading of one page (step S 207 ).
- the carriage is moved in the process direction at a velocity determined according to the size of the document original and the image reading magnification until the reading operation of the entire page is completed (step S 208 , and No at step S 209 ).
- the image reading device 1 checks the read image data for presence of a vertical line whose position remains unvarying in the main scanning direction (step S 210 ). If the outcome of decision at step S 210 is positive, the image reading device 1 checks whether the positions of the vertical line in the image data obtained by document reading and the vertical line in the image data obtained by blank reading are different (step S 211 ).
- step S 211 If the outcome of decision at step S 211 is negative, that is, if the positions of the vertical line in the image data obtained by document reading and the vertical line in the image data obtained by blank reading are aligned, the image reading device 1 checks whether the lengths of the vertical line in the image data obtained by document reading and the vertical line in the image data obtained by blank reading are different (step S 212 ).
- step S 212 determines that there is presence of dirt (step S 213 ). Also, if the outcome of decision at step S 211 is positive, the image reading device 1 proceeds to process 213 , and surmises that there is presence of dirt.
- the image reading device 1 displays the warning on the control and display panel 33 (step S 214 ).
- step S 212 determines that there is no presence of dirt (step S 215 ), and checks whether there is another page to be read (step S 216 ). If the outcome of decision at step S 216 is positive, the image reading device 1 returns to process 201 to perform the reading operation of the next page. If the outcome of decision at step S 216 is negative, the image reading device 1 ends the reading operation.
- the movement velocity of the reading position (carriage) (for a document of A4 portrait size) is much smaller than the conveying velocity 400 mm/sec of the document original PP (being 1% of the conveying velocity of the document original). Consequently, there is no adverse effect on the quality of the read image even if the driving period of the CCD line-image sensor 20 is not adjusted. Therefore, the adjustment of the driving period of the CCD line-image sensor 20 can be done away with.
- the present invention is implemented on an independent image reading device as shown in FIG. 1 .
- the present invention can equally be implemented on an image processing device equipped with a reading function such as a copier or a multifunction peripheral.
- the size of the dirt adhering to the exposure glass 10 is not limited to the range of 0.05 mm to 0.2 mm described in the embodiment.
- the length of the vertical line formed due to dirt can also be suitably set according to the size range of the dirt.
- an unambiguous detection of dirt adhering to an exposure glass can be made. Consequently, the user can take appropriate measures such as cleaning the exposure glass, and as a result obtain good quality image.
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Facsimile Scanning Arrangements (AREA)
- Image Input (AREA)
Abstract
Description
Carriage velocity=4×100/M×210/S (1)
Length of vertical streak=400×100/M/(4×100/M×210/S×(size of dirt) (2)
Claims (4)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007062907A JP2008227889A (en) | 2007-03-13 | 2007-03-13 | Image reading apparatus and control method thereof |
JP2007-062907 | 2007-03-13 |
Publications (2)
Publication Number | Publication Date |
---|---|
US20080225355A1 US20080225355A1 (en) | 2008-09-18 |
US7995253B2 true US7995253B2 (en) | 2011-08-09 |
Family
ID=39762378
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/041,848 Expired - Fee Related US7995253B2 (en) | 2007-03-13 | 2008-03-04 | Image reading device and control method thereof |
Country Status (2)
Country | Link |
---|---|
US (1) | US7995253B2 (en) |
JP (1) | JP2008227889A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8804201B1 (en) * | 2012-04-04 | 2014-08-12 | Banctec, Inc. | System and method for characterizing a scanned image artifact and modifying a scanned image based thereon |
US9001398B2 (en) * | 2013-03-14 | 2015-04-07 | Ricoh Company, Ltd. | Image reading device and vertical stripe determination method |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4498149B2 (en) * | 2005-01-17 | 2010-07-07 | キヤノン株式会社 | Image reading device |
JP4312726B2 (en) * | 2005-02-17 | 2009-08-12 | シャープ株式会社 | Image reading device |
JP5328379B2 (en) * | 2008-03-04 | 2013-10-30 | キヤノン株式会社 | Image forming apparatus |
JP2009267499A (en) * | 2008-04-22 | 2009-11-12 | Kyocera Mita Corp | Image reader |
JP4889766B2 (en) * | 2009-06-15 | 2012-03-07 | シャープ株式会社 | Image reading apparatus and image forming apparatus having the same |
JP2015080104A (en) * | 2013-10-17 | 2015-04-23 | キヤノン株式会社 | Image reading apparatus, method for controlling image reading apparatus, program, and storage medium |
CN107085850B (en) * | 2017-03-24 | 2019-10-01 | 大连成者科技有限公司 | Marker body for shielding foreign matter in captured image, method for identifying foreign matter marker body in image, and book scanning method |
JP6883283B2 (en) * | 2018-01-16 | 2021-06-09 | ブラザー工業株式会社 | Image reader |
JP7654993B2 (en) * | 2021-02-15 | 2025-04-02 | セイコーエプソン株式会社 | Flatbed scanner, how to produce scan data |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000287031A (en) | 1999-03-31 | 2000-10-13 | Minolta Co Ltd | Image reader |
JP2001085722A (en) | 1999-09-17 | 2001-03-30 | Mitsubishi Heavy Ind Ltd | Method for manufacturing transparent electrode film and solar battery |
JP2001333253A (en) | 2000-05-19 | 2001-11-30 | Ricoh Co Ltd | Image reading device |
US6393161B1 (en) * | 1999-04-26 | 2002-05-21 | Xerox Corporation | Software system for minimizing image defects in a hard-copy input scanner |
JP2002185723A (en) | 2000-12-12 | 2002-06-28 | Canon Inc | Image reading apparatus and method |
JP2002185721A (en) | 2000-12-12 | 2002-06-28 | Canon Inc | Image reading apparatus and method |
JP2002185705A (en) | 2000-12-18 | 2002-06-28 | Canon Inc | Image reading apparatus and method |
JP2002251605A (en) | 2001-02-22 | 2002-09-06 | Canon Inc | Image reading method and apparatus |
JP2002320077A (en) | 2001-04-20 | 2002-10-31 | Ricoh Co Ltd | Document reading device |
JP2002330268A (en) | 2001-04-27 | 2002-11-15 | Ricoh Co Ltd | Image reading device |
JP2002354262A (en) | 2001-05-30 | 2002-12-06 | Ricoh Co Ltd | Image reading device |
JP2003008874A (en) | 2001-06-22 | 2003-01-10 | Fuji Photo Film Co Ltd | System and device for image compositing and control method therefor |
US6522431B1 (en) * | 1999-04-26 | 2003-02-18 | Xerox Corporation | System for minimizing image defects in a hard-copy input scanner |
JP2003078722A (en) | 2001-08-31 | 2003-03-14 | Fuji Xerox Co Ltd | Image reader and image reading method |
US6563938B1 (en) * | 1998-12-25 | 2003-05-13 | Kyocera Mita Corporation | Sheet-through type document reader |
-
2007
- 2007-03-13 JP JP2007062907A patent/JP2008227889A/en active Pending
-
2008
- 2008-03-04 US US12/041,848 patent/US7995253B2/en not_active Expired - Fee Related
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6563938B1 (en) * | 1998-12-25 | 2003-05-13 | Kyocera Mita Corporation | Sheet-through type document reader |
JP2000287031A (en) | 1999-03-31 | 2000-10-13 | Minolta Co Ltd | Image reader |
US6522431B1 (en) * | 1999-04-26 | 2003-02-18 | Xerox Corporation | System for minimizing image defects in a hard-copy input scanner |
US6393161B1 (en) * | 1999-04-26 | 2002-05-21 | Xerox Corporation | Software system for minimizing image defects in a hard-copy input scanner |
JP2001085722A (en) | 1999-09-17 | 2001-03-30 | Mitsubishi Heavy Ind Ltd | Method for manufacturing transparent electrode film and solar battery |
JP2001333253A (en) | 2000-05-19 | 2001-11-30 | Ricoh Co Ltd | Image reading device |
JP2002185723A (en) | 2000-12-12 | 2002-06-28 | Canon Inc | Image reading apparatus and method |
JP2002185721A (en) | 2000-12-12 | 2002-06-28 | Canon Inc | Image reading apparatus and method |
JP2002185705A (en) | 2000-12-18 | 2002-06-28 | Canon Inc | Image reading apparatus and method |
JP2002251605A (en) | 2001-02-22 | 2002-09-06 | Canon Inc | Image reading method and apparatus |
JP2002320077A (en) | 2001-04-20 | 2002-10-31 | Ricoh Co Ltd | Document reading device |
JP2002330268A (en) | 2001-04-27 | 2002-11-15 | Ricoh Co Ltd | Image reading device |
JP2002354262A (en) | 2001-05-30 | 2002-12-06 | Ricoh Co Ltd | Image reading device |
JP2003008874A (en) | 2001-06-22 | 2003-01-10 | Fuji Photo Film Co Ltd | System and device for image compositing and control method therefor |
JP2003078722A (en) | 2001-08-31 | 2003-03-14 | Fuji Xerox Co Ltd | Image reader and image reading method |
Non-Patent Citations (1)
Title |
---|
Office Action dated Mar. 29, 2011, Japanese Application No. 2007-062907, filed Mar. 13, 2007. pp. 1-2. |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8804201B1 (en) * | 2012-04-04 | 2014-08-12 | Banctec, Inc. | System and method for characterizing a scanned image artifact and modifying a scanned image based thereon |
US9001398B2 (en) * | 2013-03-14 | 2015-04-07 | Ricoh Company, Ltd. | Image reading device and vertical stripe determination method |
Also Published As
Publication number | Publication date |
---|---|
JP2008227889A (en) | 2008-09-25 |
US20080225355A1 (en) | 2008-09-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7995253B2 (en) | Image reading device and control method thereof | |
US7813005B2 (en) | Method and apparatus for processing image data | |
JP4442272B2 (en) | Image reading device and foreign material detection method for reference member | |
US20020050520A1 (en) | Image reading apparatus and copier | |
JP4412070B2 (en) | Image reading apparatus and image data correction method | |
JP2005277752A (en) | Image reader | |
JP3417723B2 (en) | Image reading device | |
JP4232698B2 (en) | Image reading device | |
JP2009111812A (en) | Image reader | |
JP4367079B2 (en) | Image reading device | |
JP2007195009A (en) | Image reading apparatus | |
JP2006148677A (en) | Image reading device | |
JP2004228654A (en) | Image reading device | |
JP2006080941A (en) | Image reading apparatus | |
JP2007166207A (en) | Original reader | |
JP7556256B2 (en) | Reading device, image forming device and method | |
JP4367115B2 (en) | Image reading device | |
JPH07273952A (en) | Image reader | |
JP3181404B2 (en) | Document reading device | |
JPH1020631A (en) | Image forming device | |
JP2007124100A (en) | Photoelectric conversion device | |
JP2004343190A (en) | Image reading apparatus | |
JP2009200599A (en) | Image processing apparatus and image forming apparatus | |
JP2003060859A (en) | Image reader and image forming apparatus | |
JP2007124098A (en) | Photoelectric conversion device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: RICOH COMPANY, LTD., JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KAGAMI, YOSHINOBU;REEL/FRAME:020596/0104 Effective date: 20080222 |
|
AS | Assignment |
Owner name: RICOH COMPANY, LIMITED, JAPAN Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE ASSIGNEE'S NAME PREVIOUSLY RECORDED ON REEL 020596 FRAME 0104;ASSIGNOR:KAGAMI, YOSHINOBU;REEL/FRAME:020672/0683 Effective date: 20080222 Owner name: RICOH COMPANY, LIMITED, JAPAN Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE ASSIGNEE'S NAME PREVIOUSLY RECORDED ON REEL 020596 FRAME 0104. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNOR:KAGAMI, YOSHINOBU;REEL/FRAME:020672/0683 Effective date: 20080222 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20150809 |