WO1992005642A1 - Amplificateur de fibre optique a couplage d'energie de pompage provenant de differentes sources de pompage - Google Patents
Amplificateur de fibre optique a couplage d'energie de pompage provenant de differentes sources de pompage Download PDFInfo
- Publication number
- WO1992005642A1 WO1992005642A1 PCT/DK1991/000267 DK9100267W WO9205642A1 WO 1992005642 A1 WO1992005642 A1 WO 1992005642A1 DK 9100267 W DK9100267 W DK 9100267W WO 9205642 A1 WO9205642 A1 WO 9205642A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical
- pump
- signal
- energy
- fibre
- Prior art date
Links
- 239000013307 optical fiber Substances 0.000 title claims abstract description 33
- 230000008878 coupling Effects 0.000 title description 7
- 238000010168 coupling process Methods 0.000 title description 7
- 238000005859 coupling reaction Methods 0.000 title description 7
- 230000003287 optical effect Effects 0.000 claims abstract description 61
- 230000005540 biological transmission Effects 0.000 claims abstract description 8
- 239000000835 fiber Substances 0.000 claims description 46
- 238000001514 detection method Methods 0.000 claims description 6
- 230000001105 regulatory effect Effects 0.000 claims description 2
- 230000010287 polarization Effects 0.000 claims 2
- 229940000425 combination drug Drugs 0.000 claims 1
- 230000003321 amplification Effects 0.000 description 13
- 238000003199 nucleic acid amplification method Methods 0.000 description 13
- 238000005086 pumping Methods 0.000 description 6
- 238000010521 absorption reaction Methods 0.000 description 4
- 229910052691 Erbium Inorganic materials 0.000 description 3
- UYAHIZSMUZPPFV-UHFFFAOYSA-N erbium Chemical compound [Er] UYAHIZSMUZPPFV-UHFFFAOYSA-N 0.000 description 2
- -1 erbium ions Chemical class 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 125000000205 L-threonino group Chemical group [H]OC(=O)[C@@]([H])(N([H])[*])[C@](C([H])([H])[H])([H])O[H] 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 239000000727 fraction Substances 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/29—Repeaters
- H04B10/291—Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
- H04B10/2912—Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form characterised by the medium used for amplification or processing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/09—Processes or apparatus for excitation, e.g. pumping
- H01S3/091—Processes or apparatus for excitation, e.g. pumping using optical pumping
- H01S3/094—Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
- H01S3/094003—Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light the pumped medium being a fibre
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/29—Repeaters
- H04B10/291—Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/09—Processes or apparatus for excitation, e.g. pumping
- H01S3/091—Processes or apparatus for excitation, e.g. pumping using optical pumping
- H01S3/094—Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
- H01S3/09408—Pump redundancy
Definitions
- the invention concerns an optical fibre amplifier, and in particular the part that concerns coupling of pump energy from a plurality of pump sources. '
- optical fibre amplifiers may e.g. be used in a fibre-optical ringnet accessed by a plurality of transmitter/receiver units, and it may be used for in ⁇ creasing the distance over which a receiver can receive and re-form a signal from a transmitter.
- it may e.g. be used as an in-line amplifier, it being positioned at a great distance from both transmitter and receiver.
- an optical amplifier may be used as a pre-ampli- fier of a receiver.
- it may be used as a booster amplifier, i.e. the fibre amplifier amplifies the optical signal immediately after it is transmitted from the transmitter.
- Optical fibre amplifiers are usually made by doping an optical fibre with rare earths, such as erbium, d'- ⁇ ng the manufacturing process. Amplification takes place addi ⁇ tion of energy that excites electrons to a higher energy level. When stimulated with light energy from e.g. the arriving signal, the electrons will fall to a lower energy level, transmitting light at the frequency in question. This is analogous to the behaviour of a laser.
- the active fibre is pumped optically with a plurality of pump lasers to provide the desired amplification.
- the reliability of these pump lasers is a problem since their life is limited considerably when providing maximum power.
- the threshold value also depends upon the ion concentration, said threshold value being the pump energy amount to be added to the active fibre for this to contribute with amplification which corresponds precisely to the fibre absorption of signal energy.
- the threshold value being the pump energy amount to be added to the active fibre for this to contribute with amplification which corresponds precisely to the fibre absorption of signal energy.
- the object of the invention is to provide a reliable opti- cal fibre amplifier without the prior art sensitivity to drop-out of pump lasers. This object is achieved as stated in the characterizing portion of claim 1.
- the advantage is that the pump signal from a laser is divided on a plurality of active fibres so that the signal from there just contributes with a frac- tion of the pump power to each fibre, so that even though missing contribution from a laser is still noticeable, the active fibre nevertheless continues to contribute actively to amplification of an optical signal.
- An optical fibre amplifier may e.g. be pumped with pump energy with a variety of wavelengths, which may e.g. be those stated in claim 4.
- the advantage of pumping at two different wavelengths is that two pump sources can be coupled into a fibre, so that four pumps may be used for an active fibre.
- the combination network may consist of a fibre-optical network with fibre couplers, thereby minimizing the coupling losses.
- fig. 2 schematically shows the structure of a fibre ampli ⁇ bomb according to the prior art
- fig. 3 schematically shows a preferred embodiment of the structure of an optical fibre amplifier according to the invention
- fig. 4 schematically shows an alternative embodiment of an optical fibre amplifier according to the invention.
- fig. 5 schematically shows an embodiment of compensation circuits for use in an optical fibre amplifier according to the invention.
- Fig. la shows a transmitter 5 which transmits an optical signal to a receiver 9 through an optical transmission line 6.
- the transmitted signal must be amplified en route. This is done by coupling a fibre end suitably spaced from the transmitter 5 into an optical fibre amplifier 7, which amplifies the signal and passes the signal thus amplified back to the transmission line 6 and further on to the receiver 9.
- an optical bandpass filter 8 is po ⁇ sitioned before a receiver 9.
- An optical fibre amplifier used in this manner is usually called an in-line ampli ⁇ fier.
- lb shows an optical fibre amplifier used as a pre-amplifier, it being used for amplifying the optical signal on the transmission line 6 prior to signal detec ⁇ tion. Since, here too, the noise is amplified by the opti ⁇ cal amplifier, a bandpass filter 8 is positioned before the receiver 9.
- Fig. lc shows an optical fibre amplifier used as a booster amplifier, said fibre amplifier being thus connected to the output on the transmitter 5.
- Fig. 2 shows the structure of an optical fibre amplifier according to the prior art, where an optical signal is introduced via an optical transmission line 13 and coupled into an active fibre.
- an active fibre 12 may e.g. be doped with erbium and have a length of typically 10-100 m.
- an optical sig ⁇ nal is again passed back to an optical transmission path 14.
- amplification takes place by exciting electrons in an active medium to a higher energy level, from which the electrons can fall back to a lower energy level at stimulated emission, thereby transmitting light in a given wavelength range.
- ac- tive pump sources 10 in the form of laser diodes are ordi ⁇ narily used in optical fibre amplifiers. Energy from the pump sources 10 is coupled into the active fibre 3 through respective dichromatic couplers 11.
- Fig. 3 shows an optical fibre network connecting four pump sources 20, 21, 22, 23 to four active fibres 30, 31, 32, 33, which are coupled in series (cascade coupling) and are adapted to receive an optical signal on an input 34, to amplify this signal and to apply the amplified signal on an output 35.
- Each of the pump sources 20, 23 emit optical power P, which will usually be the same for the four pump sources. This optical power will be marked by an index A, B, C, D below, so that the origin of the power will be visible from the expressions used.
- the output signal from the pump source 20 and the pump source 21, respectively, is passed to a fibre coupler 25 (3 dB coupler) designed so that there will be a signal with the power (P + P B )/2 on each of the outputs of the fibre coupler.
- a fibre coupler 26 divides the optical energy from the pump sources 22, 23, so that there will be an optical sig ⁇ nal with the power (P_ + P_)/2 on each of the outputs of the fibre coupler 26.
- Each of two additional fibre coup ⁇ lers 27, 28 receives a signal from respective outputs of the fibre couplers 25, 26, whereby the optical energy from each of the pump sources 20-23 is combined so that there will be an optical signal with the power (P + P + P_ + P )/4 on each output of the fibre couplers 27, 28.
- Each of the four active fibres 30-33 will thus receive an optical signal combined so that the output signal from a pump source 20-23 is passed to several pump inputs. Drop-out of a pump source 20-23 will thus entail that approximately 25% less optical power will be added to each of the active fibres 30-33. This loss may be compensated by increasing the pump power of the other pump sources by 33%, as will be explained in connection with fig. 5.
- Fig. 4 shows a corresponding configuration, where an opti ⁇ cal signal on an input 52 is amplified in two active fibres 50, 51 and is passed to an output 53.
- Four pump sources 40, 41, 42, 43 emit optical power P like in the previous example.
- the pump power from the pump sources 40, 41 is passed to a fibre coupler 45 having a signal with the power (P A + P ⁇ )/2 on each of its outputs.
- a fibre coupler 46 has an optical signal with the power (P_ + P D )/2 on each of its outputs.
- the two active fibres 50, 51 are pumped bi-directionally, i.e.
- each active fibre 50, 51 are pumped from their respective ends with a signal from each of the fibre couplers 45, 46.
- each fibre receives an optical signal having the power (P ⁇ + P réelle + P + P )/2. It is noted that each active fibre 50, 51 receives a pump signal which is twice as great as in the above-mentioned example.
- Fig. 5 shows a drive circuit 90 which drives a plurality of laser diodes 102 A-N which are coupled to respective fibre ends 103 A-N. From there, the optical pump energy from respective laser diodes 102 A-N is passed to an opti ⁇ cal combination network, such as the one shown in fig. 3 or 4, through a fibre section 104 A-N.
- the fibre 103 A-N is moreover coupled to an optical fibre coupler 100 A-N, which may e.g. be designed so that 1% of the energy on the optical fibre is passed through the fibre branch 106 A-N, while the rest of the op- ⁇ ical energy is passed through the fibre branch 104 A-N.
- the fibre coup ⁇ lers 100 A-N are terminated in respective adaptations 101 A-N.
- the optical energy on the fibre 106 A-N is passed to respective photodiodes 108 A-N, where the optical signal is converted to an electrical signal passed to respective amplifiers 110 A-N and from there further on to respective detection circuits 112 A-N.
- These detection circuits 112 A-N apply a signal on the output which is passed through respective wires 114 A-N to respective inputs 116 A-N on the drive circuit.
- the detection circuit 112 A-N detect whether the photo ⁇ diodes 108 A-N receive an optical signal and thus whether the laser diodes 102 A-N apply a signal. If one of the laser diodes 102 A-N.drops out and thus stops emitting op ⁇ tical energy, this can be detected by the detection cir ⁇ cuit 112 A-N which applies a signal to the drive circuit 90 in response to this, said signal indicating whether the laser diode 102 A-N associated with the individual detec ⁇ tion circuit 112 A-N operates correctly or is faulty.
- the laser diodes 102 A-N do not emit maximum po ⁇ were, but is driven at a smaller load owing to reliability and life.
- the drive circuit 90 can increase the output power of the remaining laser dio ⁇ des 102 A-N, thereby fully compensating for the missing power from one or more laser diodes which have dropped out.
- drop out of a single laser diode may be compensated by increas ⁇ ing the pump power of the other pump sources by 33%.
- the drive circuit 90 may simultaneously be designed to apply a signal to a central monitoring unit, which will then be informed that there is a faulty laser diode in the optical amplifier, and that this laser diode should be replaced at a later time.
- the principle of combining an optical pump power in a com ⁇ bination network before the pump signals are applied to a variety of optical fibres can b developed in simple manner. If, e.g. amplification of an optical signal is needed on a not very accessible locality, the number of pump sources may expediently be increased to e.g. 16.
- the pump signals are combined and passed to a plurality of active fibres, of which there may e.g. be 4. Pump power corresponding to (P 1 + P 2 + ... + P_ 6 )/4 may then be added to the fibres.
- the output power from each individual pump source is then regulated so that the optical amplifier is dimensioned to be able to still provide an acceptable amplification, even though a number of pump sources drop out en route (e.g. 5).
- the amplifier may thus be dimen- sioned so that it is attempted to limit the output power of the individual pump sources in the same manner as in the prior art, thereby increasing their life while making the system immune to the possibility that a not insignifi ⁇ cant number of the pump sources eventually become defec- tive.
- the invention has been explained with reference to a fibre optical network consisting of optical fibres having fibre couplers of the 2:2 type, i.e. couplers with two inputs and two outputs. None prevents the invention from being performed with other coupling configurations, such as 4:4 couplers, or configurations where the number of inputs and outputs is not the same.
- the active fibres may be pumped to va ⁇ rious atomic energy levels.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Plasma & Fusion (AREA)
- Optics & Photonics (AREA)
- Lasers (AREA)
- Optical Communication System (AREA)
Abstract
Amplificateur de fibre optique possédant une ou plusieurs fibres actives couplées à une ligne de transmission optique afin que chacune des fibres actives ait au moins une entrée de signal de pompage. Les fibres actives sont conçues pour amplifier un signal optique à une première longueur d'onde pour une émission stimulée, quand l'énergie optique est ajoutée sous forme d'un signal de pompage à une deuxième longueur d'onde. Les signaux de pompage sont produits au moyen de lasers de pompage conçus pour émettre de l'énergie à la deuxième longueur d'onde. L'amplificateur de fibre optique possède un réseau optique combiné pourvu d'une pluralité d'entrées couplées aux lasers de pompage respectifs et conçues pour en recevoir de l'énergie. Les sorties du réseau combiné sont couplées aux entrées des signaux de pompage situées sur les fibres actives, ledit réseau étant conçu pour combiner l'énergie optique ajoutée, provenant des lasers de pompage pour que l'énergie optique de chacune des sorties du réseau combiné provienne de plusieurs lasers de pompage. La désexcitation d'un laser de pompage provoquera la diminution du signal optique sur plusieurs sorties du réseau combiné mais la mise au repos complète de l'énergie optique sur une sortie est évitée.
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DK220690A DK220690A (da) | 1990-09-14 | 1990-09-14 | Optisk fiberforstaerker med kobling af pumpeenergi fra flere pumpekilder |
| DK2206/90 | 1990-09-14 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO1992005642A1 true WO1992005642A1 (fr) | 1992-04-02 |
Family
ID=8110792
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/DK1991/000267 WO1992005642A1 (fr) | 1990-09-14 | 1991-09-13 | Amplificateur de fibre optique a couplage d'energie de pompage provenant de differentes sources de pompage |
Country Status (3)
| Country | Link |
|---|---|
| AU (1) | AU8612991A (fr) |
| DK (1) | DK220690A (fr) |
| WO (1) | WO1992005642A1 (fr) |
Cited By (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0585005A1 (fr) * | 1992-08-21 | 1994-03-02 | AT&T Corp. | Système d'amplificateur optique à tolérance de fautes |
| EP0588557A1 (fr) * | 1992-09-15 | 1994-03-23 | AT&T Corp. | Amplificateur optique équilibré |
| EP0621663A1 (fr) * | 1993-04-22 | 1994-10-26 | Sumitomo Electric Industries, Limited | Amplificateur à fibre optique |
| GB2279194A (en) * | 1993-05-24 | 1994-12-21 | Northern Telecom Ltd | Optical transmission system |
| EP0652653A1 (fr) * | 1993-11-09 | 1995-05-10 | Alcatel N.V. | Procédé de télécommunication à fibres optiques, liaison appliquant ce procédé et système de pompage pour mélange à quatre ondes, notamment pour cette liaison |
| US5506723A (en) * | 1993-02-26 | 1996-04-09 | Alcatel N.V. | Multistage fiber-optic amplifier |
| WO1998053564A1 (fr) * | 1997-05-24 | 1998-11-26 | N.V. Raychem S.A. | Appareil de telecommunication comportant un amplificateur optique |
| US6008934A (en) * | 1997-11-07 | 1999-12-28 | Lucent Technologies Inc. | Shared-pump multi-fiber optical amplifier |
| US6016219A (en) * | 1996-12-31 | 2000-01-18 | Lucent Technologies Inc. | Optical protection switching system |
| WO2000049687A1 (fr) * | 1999-02-19 | 2000-08-24 | University Of Southampton | Emetteur mrl |
| US6236777B1 (en) | 1997-05-13 | 2001-05-22 | Pirelli Cavi E Sistemi S.P.A. | Reliability of an optical communication system and of an optical amplifying system, and a method suitable to this aim |
| EP1535411A4 (fr) * | 2002-08-20 | 2006-02-01 | Red Sky Systems Inc | Procede et appareil de partage de l'energie de pompage d'un agencement a une seule pompe vers des fibres optiques placees dans differentes paires de fibres |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0215711A2 (fr) * | 1985-09-10 | 1987-03-25 | Alcatel N.V. | Système de distribution pour la parole et les données comportant un réseau à fibres optiques en étoile à plusieurs noeuds |
| EP0339840A2 (fr) * | 1988-04-25 | 1989-11-02 | AT&T Corp. | Système de communication optique comportant des moyens d'amplification à effet Raman |
| EP0395277A1 (fr) * | 1989-04-22 | 1990-10-31 | Nortel Networks Corporation | Amplificateur optique avec commande de gain |
| EP0408394A1 (fr) * | 1989-07-13 | 1991-01-16 | BRITISH TELECOMMUNICATIONS public limited company | Réseau de communication optique |
-
1990
- 1990-09-14 DK DK220690A patent/DK220690A/da unknown
-
1991
- 1991-09-13 AU AU86129/91A patent/AU8612991A/en not_active Abandoned
- 1991-09-13 WO PCT/DK1991/000267 patent/WO1992005642A1/fr unknown
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0215711A2 (fr) * | 1985-09-10 | 1987-03-25 | Alcatel N.V. | Système de distribution pour la parole et les données comportant un réseau à fibres optiques en étoile à plusieurs noeuds |
| EP0339840A2 (fr) * | 1988-04-25 | 1989-11-02 | AT&T Corp. | Système de communication optique comportant des moyens d'amplification à effet Raman |
| EP0395277A1 (fr) * | 1989-04-22 | 1990-10-31 | Nortel Networks Corporation | Amplificateur optique avec commande de gain |
| EP0408394A1 (fr) * | 1989-07-13 | 1991-01-16 | BRITISH TELECOMMUNICATIONS public limited company | Réseau de communication optique |
Cited By (16)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0585005A1 (fr) * | 1992-08-21 | 1994-03-02 | AT&T Corp. | Système d'amplificateur optique à tolérance de fautes |
| EP0588557A1 (fr) * | 1992-09-15 | 1994-03-23 | AT&T Corp. | Amplificateur optique équilibré |
| US5506723A (en) * | 1993-02-26 | 1996-04-09 | Alcatel N.V. | Multistage fiber-optic amplifier |
| EP0621663A1 (fr) * | 1993-04-22 | 1994-10-26 | Sumitomo Electric Industries, Limited | Amplificateur à fibre optique |
| GB2279194A (en) * | 1993-05-24 | 1994-12-21 | Northern Telecom Ltd | Optical transmission system |
| EP0652653A1 (fr) * | 1993-11-09 | 1995-05-10 | Alcatel N.V. | Procédé de télécommunication à fibres optiques, liaison appliquant ce procédé et système de pompage pour mélange à quatre ondes, notamment pour cette liaison |
| FR2712445A1 (fr) * | 1993-11-09 | 1995-05-19 | Alcatel Nv | Procédé de télécommunication à fibres optiques, liaison appliquant ce procédé et système de pompage pour mélange à quatre ondes notamment pour cette liaison. |
| AU668324B2 (en) * | 1993-11-09 | 1996-04-26 | Alcatel N.V. | An optical fiber telecommunications method, a link using the method, and a pumping system for four-wave mixing in particular for the link |
| US6016219A (en) * | 1996-12-31 | 2000-01-18 | Lucent Technologies Inc. | Optical protection switching system |
| US6236777B1 (en) | 1997-05-13 | 2001-05-22 | Pirelli Cavi E Sistemi S.P.A. | Reliability of an optical communication system and of an optical amplifying system, and a method suitable to this aim |
| WO1998053564A1 (fr) * | 1997-05-24 | 1998-11-26 | N.V. Raychem S.A. | Appareil de telecommunication comportant un amplificateur optique |
| AU740988B2 (en) * | 1997-05-24 | 2001-11-22 | N.V. Raychem S.A. | Communications apparatus comprising optical amplifier |
| US6008934A (en) * | 1997-11-07 | 1999-12-28 | Lucent Technologies Inc. | Shared-pump multi-fiber optical amplifier |
| WO2000049687A1 (fr) * | 1999-02-19 | 2000-08-24 | University Of Southampton | Emetteur mrl |
| US6993258B2 (en) | 1999-02-19 | 2006-01-31 | University Of Southampton | WDM transmitter |
| EP1535411A4 (fr) * | 2002-08-20 | 2006-02-01 | Red Sky Systems Inc | Procede et appareil de partage de l'energie de pompage d'un agencement a une seule pompe vers des fibres optiques placees dans differentes paires de fibres |
Also Published As
| Publication number | Publication date |
|---|---|
| DK220690D0 (da) | 1990-09-14 |
| AU8612991A (en) | 1992-04-15 |
| DK220690A (da) | 1992-03-15 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US5506723A (en) | Multistage fiber-optic amplifier | |
| US6147794A (en) | Raman amplifier with pump source for improved performance | |
| US8135274B2 (en) | System and method for fault identification in optical communication systems | |
| CA2071406C (fr) | Redondance de pompage pour amplificateurs optiques | |
| US5510931A (en) | Optical amplifier and optical communication system with optical amplifier using pumping right beam | |
| TW387993B (en) | Method and apparatus for an optical fiber amplifier | |
| EP0535590A2 (fr) | Répéteur bidirectionnel utilisant l'amplification optique | |
| EP0778682B1 (fr) | Système de répéteur à amplificateur à fibre optique | |
| US6304371B1 (en) | Optical amplifier and an optical amplification method | |
| WO1992005642A1 (fr) | Amplificateur de fibre optique a couplage d'energie de pompage provenant de differentes sources de pompage | |
| US5260819A (en) | Digital telemetry system and method for fault detection in optical transmission system | |
| US11664901B2 (en) | System, apparatus and method for efficient optical signal amplification with system monitoring features | |
| US7428354B2 (en) | System for detecting fault in optical-transmission path | |
| US6441952B1 (en) | Apparatus and method for channel monitoring in a hybrid distributed Raman/EDFA optical amplifier | |
| US7079313B2 (en) | Optical amplifying apparatus which routes pumping light to a raman amplification medium and a rare-earth-doped optical amplification medium | |
| US20040207912A1 (en) | Method and apparatus for distributing pump energy to an optical amplifier array in an asymmetric manner | |
| US6714715B2 (en) | Optical device, system and method for detecting a condition in an optical device | |
| US6229936B1 (en) | Optical amplifier, optical transmission equipment, optical transmission system, and method thereof | |
| CA2069567C (fr) | Appareil d'amplification optique | |
| JP4095159B2 (ja) | 光通信システム及び光増幅システム | |
| JPH04340933A (ja) | 光増幅器 | |
| JPH10107350A (ja) | 光ファイバ増幅器 | |
| WO2021129576A1 (fr) | Amplificateur optique | |
| JPH08149084A (ja) | 光伝送装置 | |
| JPH11317706A (ja) | 光送信装置および監視情報の送信方法 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AK | Designated states |
Kind code of ref document: A1 Designated state(s): AT AU BB BG BR CA CH CS DE DK ES FI GB HU JP KP KR LK LU MC MG MN MW NL NO PL RO SD SE SU US |
|
| AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE BF BJ CF CG CH CI CM DE DK ES FR GA GB GN GR IT LU ML MR NL SE SN TD TG |
|
| REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
| NENP | Non-entry into the national phase |
Ref country code: CA |