[go: up one dir, main page]

WO1992007250A1 - Verfahren und vorrichtung zur automatisierten überwachung der herstellung von halbleiterbauteilen - Google Patents

Verfahren und vorrichtung zur automatisierten überwachung der herstellung von halbleiterbauteilen Download PDF

Info

Publication number
WO1992007250A1
WO1992007250A1 PCT/EP1991/001648 EP9101648W WO9207250A1 WO 1992007250 A1 WO1992007250 A1 WO 1992007250A1 EP 9101648 W EP9101648 W EP 9101648W WO 9207250 A1 WO9207250 A1 WO 9207250A1
Authority
WO
WIPO (PCT)
Prior art keywords
lighting
light
directions
semiconductor components
camera
Prior art date
Application number
PCT/EP1991/001648
Other languages
English (en)
French (fr)
Inventor
Antonius Beckmann
Bernd Sommer
Original Assignee
Abos Automation, Bildverarbeitung Optische System Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Abos Automation, Bildverarbeitung Optische System Gmbh filed Critical Abos Automation, Bildverarbeitung Optische System Gmbh
Publication of WO1992007250A1 publication Critical patent/WO1992007250A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • G01N21/95684Patterns showing highly reflecting parts, e.g. metallic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/78Apparatus for connecting with wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • G01N2021/8809Adjustment for highlighting flaws
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • G01N2021/8887Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges based on image processing techniques
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/859Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector involving monitoring, e.g. feedback loop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details

Definitions

  • the invention relates to a method for the automatic monitoring of the production of semiconductor components according to the preamble of claim 1 and a corresponding device according to the preamble of claim 6.
  • a major problem in the semiconductor industry is that the reliability of manufactured components must be guaranteed by the manufacturer.
  • the reliability of the components depends on the quality of the installation of the chip in the housing, provided the chip is correctly manufactured. This includes both the state in which the chip is installed, the position of the chip in the housing and the type and quality of the electrical connections between the chip and the housing connection contacts. For this reason, the chip surfaces are checked for mechanical damage or soiling, the position of the chip in the housing, the adhesive points between the chip and the housing, and the bond wire connections between the chip and the housing connection contacts. So far, this inspection has essentially been carried out exclusively by human personnel using microscopes. On the one hand, this process is very tiring for the staff and cost-intensive for the entrepreneur, on the other hand, at today's high production speeds, only spot checks of the components are possible.
  • REPLACEMENT LEAF allow about the spatial shape of the object surface.
  • the invention is based on the object of further developing methods and devices of the type mentioned at the outset such that the essential data for detecting errors in the production of semiconductor components can be derived and checked in a simple manner.
  • An essential idea of the invention is that for each individual point (not in the mathematical sense) an optimal direction of illumination and / or illumination intensity is possible in such a way that this point can be seen with high contrast above the background. This means that either the point is bright (highly reflective) and the background dark all around or - conversely - the background in this area is well illuminated, but the point on the bond wire appears dark. These useful lighting directions are obtained by varying the possible lighting directions with simultaneous evaluation of the image signals.
  • the lighting can be varied so that a currently selected lighting direction is recognized as the useful lighting direction whenever the corresponding light source or Illumination from precisely this direction produces a point of high contrast which immediately adjoins the previously found point (or starting point).
  • the pattern recognition can be limited to a narrowly limited area following the line point just found, with only the lighting directions as useful lighting directions in To be considered are those which do not differ too much from the previously found useful lighting direction, since one can assume a certain continuity of the line course (bond wire course) and exclude discontinuous or abrupt transitions.
  • a field between a known start point and a known end point of the contour to be examined (bonding wire) can also be defined, within which the pattern recognition method evaluates image signals and outside which all information is rejected as "uninteresting".
  • the further checking of series components can take place on the basis of the "lighting setting" defined in this way.
  • the illuminance can furthermore be set in such a way that, on the one hand, a sufficient contrast to the background is guaranteed, and, on the other hand, a blooming effect is avoided, in which overexposure and thus a type of optical enlargement or blurring of the reflective point occurs.
  • the illuminance can take place via a pulse duration, pulse frequency or pulse number control of the light sources for the individual directions of illumination.
  • lighting is simultaneously carried out from all the lighting directions provided in the corresponding device, but each lighting direction is assigned a specific light color or color combination.
  • a useful lighting direction is then defined on the basis of one color, so that (when using a color camera) other colors are "hidden" in the pattern recognition.
  • REPLACEMENTB early advantage that diffusely reflecting surfaces, such as the chip surface, appear white, since a mixture of all colors takes place there. A corresponding signal can be derived from a color camera, so that the pattern recognition process is simplified.
  • Individually controllable light sources are suitable as lighting sources, e.g. LEDs, which are then controlled by a computer. If a different color or color combination is assigned to each of the different directions of illumination, this can be done via suitable color filters which are illuminated by a (single) light source which emits at least the essential spectral components transmitted by the color filter.
  • a color filter can e.g. be produced from a slide positive film with which a standardized color spectrum (from blue to red) was photographed.
  • light emitted by a white light source is broken down into its spectral components (e.g. through a prism), with a corresponding number behind the prism of light guides with their input ends is arranged such that each light guide is assigned a defined color.
  • the other ends of the light guides then represent "light sources" which, with a corresponding arrangement, illuminate a component to be examined with a specific color from a corresponding direction of illumination.
  • FIG. 1 shows an embodiment of the invention in a schematic representation
  • Fig. 2 AC schematic image sections for bond wire localization
  • FIG. 3 shows a perspective partial illustration of a chip with bond wire
  • FIG. 6 shows a further embodiment of the invention in a schematic representation similar to that of FIG. 1;
  • Fig. 7 is a partial perspective view along the line VIII-VIII of Fig. 6;
  • FIG 8 shows an embodiment of a light guide illumination with light of different colors.
  • FIG. 1 schematically shows an embodiment of a device for monitoring the production of semiconductor components.
  • This comprises a holder 22 to which a number of individual light sources 16a to 16n are attached.
  • the individual light sources 16a-16n are arranged at certain angular distances from one another and directed towards a common center.
  • a holder (not shown) is provided under the holder 22 with the light sources 16a-16n, on which a semiconductor component to be examined can be positioned.
  • the semiconductor component is indicated in the drawing by the schematic representation of a chip 10, the connection points of which are connected via bond wires 12 and connection contacts 13 of a housing (not shown).
  • a (CCD) camera 14 is held above the semiconductor component such that the optical axis O of its objective 25 is essentially perpendicular to the surface 11 of the chip 10.
  • a beam splitter 24 is attached behind the lens 25 of the camera 14 in such a way that a light source 23 arranged next to the camera 14 can illuminate the semiconductor component coaxially to the optical axis O.
  • All the illumination sources 16a-16n and 23 are in a controlled connection with a processing device 17, to which the image output signals of the camera 14 are also fed. With this arrangement it is possible to illuminate the component to be examined from different directions in accordance with the light sources controlled by the processing device 17 and to record the image signals generated in the camera 14 for further processing.
  • FIGS. 3 and 4 are intended to explain the description of the method according to the invention made at the beginning.
  • 3 shows a schematic representation of a semiconductor component in which a chip 10 is mounted (glued) on a substrate 15. Terminal contacts on the surface 11 of the chip 10 are connected via bonding wires 12 to terminal contacts 13, which are connected to contact pins (not shown) protruding outwards (out of the housing).
  • each bonding wire 12 is guided in an arc between the corresponding connection point on the chip 10 and the contact 3, so that the bonding wire 12 runs essentially in a plane A which is practically perpendicular to the surface 11 of the chip 10 is.
  • the surface 11 runs in an X-Y plane, the bond wires thus extend upwards in a direction Z beyond the surface 11 of the chip 10.
  • a first light beam In from a first useful lighting direction is required.
  • a subsequent point or region 28b of the bonding wire 12 must be illuminated from another direction of illumination by means of a light beam Im, as shown in FIG. 4.
  • the illumination from almost all (possible) directions of illumination also leads to the fact that light from the chip surface enters the lens of the camera 14, the luminance of the light emitted by the areas 28 on the bonding wire 12 is much higher because the bond wire 12 reflects due to its surface quality with only minor losses, but the chip surface scatters very strongly.
  • FIGS. 2A-C The effect of the illumination of a bond wire from two directions is shown again in FIGS. 2A-C.
  • This results in a brightness pattern 26 for the background, a brightness image 28 for the area in which the respective bonding wire 12 reflects, and a brightness pattern 27 which corresponds to a shadow which the respective bonding wire casts on the background for each of the images .
  • the image according to FIG. 2C results, in which the (dark) shadow region 27, which in the two images according to FIGS. 2A and 2B lies at the same point (in the XY plane), is rich in contrast against the lighter background. This corresponds to a reversal of the image compared to the examples shown above.
  • an illumination unit consisting of a plurality of white light sources 31 is provided, the light of which is transmitted through a color filter 32 attached in a holder 22 to the chip 10 to be examined.
  • the color filter 32 is designed such that a defined color is assigned to each lighting direction. For example, the color filter 32 in FIGS. 6 and 7 can run through the color spectrum from blue to red from bottom to top. It comes here
  • each direction from which the chip 10 is illuminated can be assigned a specific color.
  • the camera 14 is designed as a color camera, so that a signal (analog or digital) can be obtained from its output signal via a color signal converter 30, from which those color values are extracted, which directions of useful lighting, and those color values are suppressed which correspond to unfavorable directions of illumination.
  • hollow spherical lighting device (with camera) can be understood, the color filter then being preferably axially symmetrical to the optical axis 0 of the camera 14.
  • the light from a (single) white light source 31 is sent through a prism 18 and broken down into its spectral components.
  • the spectrum falls on the input ends of light guides L1-Ln, so that each light guide is assigned a color (wavelength)
  • the light guide 30 is ordered and the light guide only emits light of this wavelength at its other end.
  • each light source 16a-16n that is to say each light-guide end, has a light beam 11 -Inn speaks, which is directed to the chip 10.
  • the camera 14 is again a color camera, so that the lighting directions (useful lighting directions) identified as favorable
  • REPLACEMENT LEAF 10 can be defined as color values of the camera output signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

Bei der Herstellung von Halbleiterbauteilen müssen die Oberflächenqualität der Halbleiter-Chips sowie deren Lage relativ zu einem Gehäuse und insbesondere die Bonddrähte zwischen Chip und Anschlußelementen im Gehäuse überwacht werden. Es wird vorgeschlagen, die Halbleiterbauteile mittels einer Beleuchtungseinrichtung zu beleuchten und über eine Kamera zu beobachten, deren Bild-Ausgangssignale einer Bildsignal-Verarbeitungseinrichtung zum Erkennen von Herstellungsfehlern zuführbar sind. Hierbei werden anhand eines Mustererkennungsverfahrens Nutz-Beleuchtungsrichtungen derart festgelegt, daß kontrastreiche Bilder interessierender Strukturen bzw. deren Konturen in reproduzierbarer Weise erkennbar sind.

Description

Verfahren und Vorrichtung zur automatisierten Überwachung der Herstellung von Halbleiterbauteilen
Beschreibung
Die Erfindung betrifft ein Verfahren zur automatischen Über¬ wachung der Herstellung von Halbleiterbauteilen nach dem Oberbegriff des Patentanspruches 1 sowie eine entsprechende Vorrichtung nach dem Oberbegriff des Patentanspruches 6.
Ein wesentliches Problem der Halbleiterindustrie liegt darin, daß die Zuverlässigkeit hergestellter Bauteile vom Hersteller garantiert werden muß. Die Zuverlässigkeit der Bauteile hängt - einen korrekt gefertigten Chip vorausgesetzt - in erster Linie von der Qualität des Einbaus des Chips im Gehäuse ab. Hierunter sind sowohl der Zustand zu verstehen, in welchem der Chip eingebaut wird, als auch die Lage des Chips im Ge¬ häuse sowie Art und Qualität der elektrischen Verbindungen zwischen dem Chip und den Gehäuse-Anschlußkontakten. Aus die¬ sem Grund erfolgt eine Überprüfung der Chip-Oberflächen auf mechanische Beschädigungen oder Verschmutzungen, der Lage des Chips im Gehäuse, der Klebestellen zwischen Chip und Gehäuse sowie der Bonddrahtverbindungen zwischen dem Chip und den Gehäuse-Anschlußkontakten. Diese Inspektion wird bisher im wesentlichen ausschließlich von menschlichem Personal mit Hilfe von Mikroskopen durchgeführt. Dieser Vorgang ist zum einen für das Personal sehr anstrengend und für den Unternehmer kostenintensiv, zum anderen sind bei den heute üblichen hohen Fertigungsgeschwindigkeiten lediglich stich- probenhafte Überprüfungen der Bauteile möglich.
Aus der EP 0 159 354 Bl sind Verfahren und Vorrichtung der eingangs genannten Art bekannt. Die dort gezeigte Anordnung ist außerordentlich kompliziert. Die zu untersuchenden Ob¬ jekte werden nämlich mittels eines Laser-Spiegelsystems punktweise abgetastet, wobei die gewonnenen Daten Aufschluß
ERSATZBLATT über die Raumform der Objektoberfläche zulassen. Bei dieser
Anordnung wird zur Abtastung einer Oberfläche eine be¬ trächtliche Zeit benötigt. Darüber hinaus wird eine so große Fülle von Daten geliefert, die verarbeitet werden müssen, daß selbst bei Verwendung eines sehr schnellen Rechners nur Stichproben aus einer Produktion überprüft werden können.
Aus der DE-OS 24 31 931 ist es bekannt, zur Bestimmung von Raumformdaten von Halbleiterbauteilen gespeicherte Sätze von Bildsignalen mit weiteren Sätzen von Bildsignalen zu verglei¬ chen. Wie die Bildsignale im einzelnen gewonnen werden, ist der Druckschrift nicht im Detail entnehmbar.
Aus der DE 38 06 209 AI ist ein Strukturdefekt-Erfassungs¬ system bekannt, das beispielsweise für eine integrierte Halbleiterschaltung anwendbar ist. Bei diesem System liefert eine Kamera Bildausgangssignale, die in einer Bildsignal- Verarbeitungseinrichtung erfaßt und auf einem Monitor dar¬ gestellt werden. Auch dieser Druckschrift sind keine Einzel¬ heiten darüber zu entnehmen, wie die Bildsignale im einzelnen gewonnen werden können.
Der Erfindung liegt die Aufgabe zugrunde, Verfahren und Vor¬ richtung der eingangs genannten Art dahingehend weiterzu¬ bilden, daß auf einfache Weise die wesentlichen Daten zur Erkennung von Fehlern bei der Herstellung von Halbleiter¬ bauteilen herleitbar und überprüfbar sind.
Diese Aufgabe wird durch die im Kennzeichen des Anspruchs 1 angegebenen Merkmale verfahrensmäßig gelöst. Eine Vorrichtung zur Durchführung des Verfahrens ist im Anspruch 6 angegeben.
Betrachtet man sich das Problem der Begutachtung von Bond¬ draht-Verbindungen bzw. -Verläufen, so genügt oftmals die Kenntnis über den Verlauf in der X-Y-Ebene, obwohl die Drähte bekanntlich im wesentlichen bogenförmig über dieser Ebene verlaufen. Beleuchtet man nun in der bisher bekannten Weise mittels koaxial zur Kamera-Achse verlaufenden Lichtes, so er¬ scheint die Chip-Oberfläche aufgrund ihrer diffus reflektie¬ renden Eigenschaften hell, während der Bonddraht aufgrund
ERSAT seiner Krümmung und seiner sehr glatten Oberfläche praktisch kein Licht in die Kamera zurückwirft - er erscheint schwarz. Nur ein einziger oder einige wenige Oberflächenbereiche des Bonddrahtes verlaufen in einer Ebene, die so zum einfallenden Licht und zur Kamera-Achse gelegen ist, daß eine Reflexion des Beleuchtungslichtes in die Kamera erfolgt. Diese Reflexion allerdings ist dann wieder so intensiv, daß dieser Punkt relativ zur Umgebung sehr hell ist. Ist er zu hell, so kann sich ein Blooming-Effekt ergeben. Nun verläuft aber der Bonddraht nicht ausschließlich über der Chip-Oberfläche, son¬ dern verläuft vom Chip zum Anschlußkontakt über andere Flächenabschnitte des Gehäuses, die bei Betrachtung mittels des zuvor genannten Aufbaus ebenfalls dunkel erscheinen. In diesen Bereichen ist somit der Verlauf des Bonddrahtes über- haupt nicht zu erkennen.
Ein wesentlicher Gedanke der Erfindung liegt darin, daß für jeden Einzelpunkt (nicht im mathematischen Sinn) eine opti¬ male Beleuchtungsrichtung und/oder Beleuchtungsintensität derart möglich ist, daß dieser Punkt kontrastreich über dem Untergrund erkennbar ist. Dies bedeutet, daß entweder der Punkt hell (stark reflektierend) und der Untergrund ringsum dunkel oder aber - umgekehrt - der Untergrund in diesem Be¬ reich gut ausgeleuchtet, der Punkt auf dem Bonddraht aber dunkel erscheint. Diese Nutz-Beleuchtungsrichtungen werden durch Variation der möglichen Beleuchtungsrichtungen unter gleichzeitiger Auswertung der Bildsignale gewonnen. Hierbei kann man beispielsweise von einem bekannten Punkt (z.B. einem Kontaktpunkt auf dem Chip) ausgehend, .die Beleuchtung so va¬ riieren, daß immer dann eine gerade gewählte Beleuch¬ tungsrichtung als Nutz-Beleuchtungsrichtung erkannt wird, wenn sich bei Ansteuerung der entsprechenden Lichtquelle bzw. Beleuchtung aus eben dieser Richtung ein kontrastreicher Punkt ergibt, der sich an den zuvor gefundenen Punkt (bzw. Ausgangspunkt) unmittelbar anschließt. Selbstverständlich kann man die Mustererkennung hierbei auf einen eng begrenzten Bereich im Anschluß an den gerade zuvor gefundenen Linienpunkt beschränken, wobei weiterhin auch nur die Beleuchtungsrichtungen als Nutz-Beleuchtungsrichtungen in Betracht zu ziehen sind, welche sich nicht allzusehr von der zuvor aufgefundenen Nutz-Beleuchtungsrichtung unterscheiden, da man von einer gewissen Stetigkeit des Linienverlaufes (Bonddrahtverlaufes) ausgehen und unstetige bzw. abrupte Übergänge ausschließen kann. Weiterhin kann insgesamt auch ein Feld zwischen einem bekannten Anfangs- und einem bekann¬ ten Endpunkt der zu untersuchenden Kontur (Bonddraht) defi¬ niert werden, innerhalb dessen das Mustererkennungsverfahren Bildsignale auswertet und außerhalb dessen alle Informationen als "uninteressant" verworfen werden.
Sobald aus einem Musterbauteil oder einer gewissen Anzahl von Musterbauteilen die zur Mustererkennung (im Mittel) notwendi¬ gen Nutz-Beleuchtungsrichtungen festgelegt sind, kann die weitere Überprüfung von Serien-Bauteilen anhand der so fest¬ gelegten "Beleuchtungseinstellung" erfolgen.
Für jeden einzelnen Punkt kann weiterhin die Beleuchtungs¬ stärke so eingestellt werden, daß einerseits ein hinrei¬ chender Kontrast zum Untergrund gewährleistet, andererseits ein Blooming-Effekt vermieden wird, bei welchem eine Über¬ strahlung und damit eine Art von optischer Vergrößerung bzw. Unscharfe des reflektierenden Punktes auftritt. Bei Verwen¬ dung einer üblichen Kamera, welche die während eines vorge¬ gebenen längeren Zeitintervalls (ca. 50 ms) in die Kamera fallende Lichtmenge integriert, kann die Beleuchtungsstärke über eine Pulsdauer, Pulsfrequenz oder Pulsanzahlsteuerung der Lichtquellen für die einzelnen Beleuchtungsrichtungen erfolgen.
Bei einer anderen bevorzugten Ausführungsform der Erfindung wird aus allen bei der entsprechenden Vorrichtung vorgese¬ henen Beleuchtungsrichtungen gleichzeitig beleuchtet, wobei aber jeder Beleuchtungsrichtung eine bestimmte Lichtfarbe oder -farbkombination zugeordnet ist. In diesem Fall wird dann eine Nutz-Beleuchtungsrichtung anhand einer Farbe de¬ finiert, so daß (bei Verwendung einer Farb-Kamera) andere Farben bei der Muεtererkennung "ausgeblendet" werden. Bei dieser Ausführungsform des Verfahrens ergibt sich gleich-
ERSATZB zeitig der Vorteil, daß diffus reflektierende Flächen, z.B. die Chip-Oberfläche, weiß erscheinen, da dort eine Mischung aller Farben stattfindet. Ein entsprechendes Signal ist be¬ kanntlich bei einer Farbkamera ableitbar, so daß sich eine Vereinfachung des Mustererkennungsverfahrens ergibt.
Als Beleuchtungsquellen eignen sich einzeln ansteuerbare Lichtquellen, wie z.B. Leuchtdioden, die dann jeweils über einen Computer angesteuert werden. Wird den verschiedenen Beleuchtungsrichtungen jeweils eine andere Farbe bzw. Farb¬ kombination zugeordnet, so kann dies über geeignete Farbfil¬ ter geschehen, die von einer (einzigen) Lichtquelle beleuch¬ tet werden, welche mindestens die vom Farbfilter durchge¬ lassenen wesentlichen Spektralanteile aussendet. Ein solches Farbfilter kann z.B. aus einem Dia-Positivfilm hergestellt werden, mit dem ein genormtes Farbspektrum (von blau bis rot) abfotografiert wurde.
Um eine höhere Effektivität der Beleuchtung zu erzielen (ein Farbfilter bewirkt auch bei der durchgelassenen Wellenlänge eine Dämpfung) , wird bei einer bevorzugten Ausführungsform von einer weißen Lichtquelle ausgesandtes Licht in seine Spektralanteile (z.B. durch ein Prisma) zerlegt, wobei hinter dem Prisma eine entsprechende Anzahl von Lichtleitern mit ih¬ ren Eingangs-Enden so angeordnet ist, daß jedem Lichtleiter eine definierte Farbe zugeordnet wird. Die anderen Enden der Lichtleiter stellen dann "Lichtquellen" dar, die bei einer entsprechenden Anordnung ein zu untersuchendes Bauteil aus einer entsprechenden Beleuchtungsrichtung mit einer bestimm¬ ten Farbe beleuchten.
Besondere Ausführungsarten ergeben sich aus den Unteran¬ sprüchen ur. .er nachfolgenden Beschreibung bevorzugter Ausführungε..._.rmen der Erfindung, die anhand von Abbildungen näher erläutert werden. Hierbei zeigen:
Fig. 1 eine Ausführungsform der Erfindung in schema¬ tisierter Darstellung; Fig. 2 A-C schematisierte Bildausschnitte zur Bonddraht- Lokalisierung;
Fig. 3 eine perspektivische Teil-Darstellung eines Chips mit Bonddraht;
Fig. 4 eine schematisierte Skizze zur Erläuterung des Effektes verschiedener Beleuchtungsrichtungen;
Fig. 5 A, B weitere Abbildungen zur Erläuterung von Bond- draht-Verläufen;
Fig. 6 eine weitere Ausführungsform der Erfindung in schematisierter Darstellung ähnlich der nach Fig. 1; und
Fig. 7 eine perspektivische Teilansicht entlang der Linie VIII-VIII aus Fig. 6;
Fig. 8 eine Ausführungsform einer Lichtleiter-Be¬ leuchtung mit Licht verschiedener Farben.
In Fig. 1 ist eine Ausführungsform einer Vorrichtung zur Überwachung der Herstellung von Halbleiterbauteilen schema¬ tisiert aufgezeigt. Diese umfaßt eine Halterung 22, an wel¬ cher eine Anzahl von Einzel-Lichtquellen 16a bis 16n befe¬ stigt ist. Die Einzel-Lichtquellen 16a - 16n sind in be¬ stimmten Winkelabständen zueinander angeordnet und auf ein gemeinsames Zentrum gerichtet. Unter der Halterung 22 mit den Lichtquellen 16a - 16n ist ein (nicht gezeigter) Halter vor¬ gesehen, auf dem ein zu untersuchendes Halbleiterbauteil po¬ sitioniert werden kann. Das Halbleiterbauteil ist in der Zeichnung durch die schematisierte Darstellung eines Chips 10 angedeutet, dessen Anschlußpunkte über Bonddrähte 12 und An¬ schlußkontakte 13 eines (nicht gezeigten) Gehäuses verbunden sind.
Über dem Halbleiterbauteil ist eine (CCD-) Kamera 14 so ge¬ halten, daß die optische Achse O ihres Objektivs 25 im we¬ sentlichen senkrecht auf der Oberfläche 11 des Chips 10 steht.
ERSATZBLATT Hinter dem Objektiv 25 der Kamera 14 ist ein Strahlteiler 24 so angebracht, daß eine neben der Kamera 14 angeordnete Lichtquelle 23 das Halbleiterbauteil koaxial zur optischen Achse O beleuchten kann.
Alle Beleuchtungsquellen 16a - 16n und 23 stehen in einer ge¬ steuerten Verbindung mit einer Verarbeitungseinrichtung 17, welcher außerdem die Bild-Ausgangssignale der Kamera 14 zuge¬ führt werden. Mit dieser Anordnung ist es möglich, das zu un¬ tersuchende Bauteil aus verschiedenen Richtungen entsprechend den von der Verarbeitungseinrichtung 17 angesteuerten Licht¬ quellen zu beleuchten und die in der Kamera 14 erzeugten Bildsignale zur Weiterverarbeitung aufzunehmen.
Zur Erläuterung der eingangs vorgenommenen Beschreibung des erfindungsgemäßen Verfahrens sollen die beiliegenden Fig. 3 und 4 dienen. Fig. 3 zeigt in schematisierter Darstellung ein Halbleiterbauteil, bei welchem ein Chip 10 auf einem Substrat 15 montiert (aufgeklebt) ist. Anschlußkontakte auf der Oberfläche 11 des Chips 10 sind über Bonddrähte 12 mit An¬ schlußkontakten 13 verbunden, die mit nach außen (aus dem Gehäuse heraus) ragenden Kontaktstiften (nicht gezeigt) ver- ', .en sind. Jeder Bonddraht 12 wird, resultierend aus den an sich bekannten Bondverfahren, bogenförmig zwischen der ent¬ sprechenden Anschlußstelle auf dem Chip 10 und dem Kontakt 3 geführt, so daß der Bonddraht 12 im wesentlichen in einer Ebene A verläuft, die praktisch senkrecht auf der Oberfläche 11 des Chips 10 steht. Die Oberfläche 11 verläuft in einer X- Y-Ebene, die Bonddrähte erstrecken sich somit in einer Richtung Z nach oben über die Oberfläche 11 des Chips 10 hin¬ aus.
Beleuchtet man nun einen solchen Bonddraht 12 aus einem be¬ stimmten, in Fig. 4 mit etwa 10° zur Oberfläche 11 des Chips 10 angenommenen Winkel, so wird, wie in Fig. 4 gezeigt, auf- grund der Krümmung des Bonddrahts 12 nur ein geringer, einem kleinen Oberflächenabschnitt 28a des Bonddrahtes 12 entspre¬ chender Anteil des eingestrahlten Lichtes in das Objektiv der Kamera 14 reflektiert. Die übrigen Lichtanteile werden in an-
ERSATZBLATT dere Richtungen abgestrahlt. Um also einen bestimmten Punkt oder Bereich 28a des Bonddrahtes 12 stark aufleuchten zu las¬ sen, wird ein erstes Lichtbündel In aus einer ersten Nutz- Beleuchtungsrichtung benötigt. Ein daran anschließender Punkt bzw. Bereich 28b des Bonddrahtes 12 muß aus einer anderen Beleuchtungsrichtung mittels eines Lichtbündels Im beleuchtet werden, wie dies in Fig. 4 gezeigt ist. Zwar führt die Beleuchtung aus fast allen (möglichen) Beleuchtungsrichtungen gleichzeitig auch dazu, daß Licht von der Chip-Oberfläche in das Objektiv der Kamera 14 gelangt, jedoch ist die Leuchtdichte des von den Bereichen 28 auf den Bonddraht 12 ausgesandten Lichtes sehr viel höher, da der Bonddraht 12 aufgrund seiner Oberflächenbeschaffenheit mit nur geringen Verlusten reflektiert, die Chip-Oberfläche aber sehr stark streut.
Dieser Sachverhalt ist nochmals in den Fig. 5A und 5B erläu¬ tert, aus welchen hervorgeht, daß je nach Verlauf des Bond¬ drahtes der in die Kamera 14 reflektierende Bereich 28 des Bonddrahtes 12 verschieden lang sein kann.
Die Wirkung der Beleuchtung eines Bonddrahtes aus zwei Rich¬ tungen ist nochmals in den Fig. 2A - C gezeigt. Es ergeben sich dann für jedes der Bilder ein Helligkeitsmuster 26 für den Untergrund, ein Helligkeitsbild 28 für den Bereich, in welchem der jeweilige Bonddraht 12 reflektiert, und ein Hel¬ ligkeitsmuster 27, welches einem Schatten entspricht, den der jeweilige Bonddraht auf den Untergrund wirft. Bei gleichzeitiger Beleuchtung bzw. Differenzmessung ergibt sich das Bild nach Fig. 2C, bei welchem der (dunkle) Schattenbe- reich 27, der bei den beiden Bildern nach Fig. 2A und 2B an derselben Stelle (in der X-Y-Ebene) liegt, kontrastreich gegenüber dem helleren Hintergrund hervortritt. Dies ent¬ spricht also einer Umkehrung des Bildes gegenüber den zuvor gezeigten Beispielen.
Im folgenden wird eine weitere bevorzugte Ausführungsform an¬ hand der Fig. 6 und 7 näher beschrieben.
ERSATZSLATT Bei dieser Ausführungsform ist anstelle einer Vielzahl von Lichtquellen löa - I6n eine aus mehreren weißen Lichtquellen 31 bestehende Beleuchtungseinheit vorgesehen, deren Licht durch ein in einer Halterung 22 angebrachtes Farbfilter 32 auf den zu untersuchenden Chip 10 gesendet wird. Das Farb¬ filter 32 ist so ausgestaltet, daß jeder Beleuchtungsrichtung eine definierte Farbe zugeordnet ist. Beispielsweise kann das Farbfilter 32 in den Fig. 6 und 7 von unten nach oben das Farbspektrum von blau nach rot durchlaufen. Es kommt hierbei
10 darauf an, daß jeder Richtung, aus welcher der Chip 10 be¬ leuchtet wird, eine bestimmte Farbe zugeordnet werden kann.
Die Kamera 14 ist als Farbkamera ausgebildet, so daß aus ih¬ rem Ausgangssignal über einen Farbsignalumsetzer 30 ein Sig- 15 nal (analog oder digital) gewonnen werden kann, aus welchem diejenigen Farbwerte herausgeholt, welche Nutz-Beleuch¬ tungsrichtungen, und diejenigen Farbwerte unterdrückt werden, welche ungünstigen Beleuchtungsrichtungen entsprechen.
Die Anordnung nach Fig. 6 kann auch als Schnitt durch eine
20 hohlkugelförmige Beleuchtungseinrichtung (mit Kamera) ver¬ standen werden, wobei dann das Farbfilter vorzugsweise achsensymmetrisch zur optischen Achse 0 der Kamera 14 aus¬ gebildet ist.
- - Bei der in Fig. 8 gezeigten bevorzugten Ausführungsform wird das Licht einer (einzigen) weißen Lichtquelle 31 durch ein Prisma 18 geschickt und in seine Spektralanteile zerlegt. Das Spektrum fällt auf die Eingangsenden von Lichtleitern Ll - Ln, so daß jedem Lichtleiter eine Farbe (Wellenlänge) zuge¬
30 ordnet ist und der Lichtleiter nur Licht dieser Wellenlänge an seinem anderen Ende aussendet.
Die anderen Enden der Lichtleiter Ll - Ln sind in der Halte¬ rung 22 entsprechend der Vielzahl von Lichtquellen 16a - 16n 35 aus Fig. 1 angeordnet, so daß jeder Lichtquelle 16a - 16n, also jedem Lichtleiter-Ende ein Lichtstrahl 11 - ln ent¬ spricht, der auf den Chip 10 gerichtet ist. Die Kamera 14 ist auch hier wieder eine Farbkamera, so daß die als günstig er¬ kannten Beleuchtungsrichtungen (Nutz-Beleuchtungsrichtungen)
ERSATZBLATT 10 als Farbwerte des Kamera-Ausgangssignals definiert werden können.
Bezu szeichenliste
Figure imgf000012_0001
ln, m Lichtstrahl

Claims

Verfahren und Vorrichtung zur automatisierten Überwachung der Herstellung von HalbleiterbauteilenPatentansprüche
1. Verfahren zur automatischen Überwachung der Herstellung von Halbleiterbauteilen, bei dem die Halbleiterbauteile mittels einer Beleuchtungseinrichtung beleuchtet und über eine Kamera beobachtet werden, deren Bild-Aus¬ gangssignale einer Bildsignal-Verarbeitungseinrichtung zum Erkennen von Herstellungsfehlern zuführbar sind, wobei das zu untersuchende Halbleiterbauteil unter mindestens einem ersten reproduzierbaren Beleuchtungs¬ winkel-Bereich beleuchtet wird und anhand von Bild- bzw. Helligkeits- und/ oder Farbkontrasten linienförmige Bereiche wie Konturen, Kanten, Drähte oder dgl. in einem Mustererkennungsverfahren hinsichtlich ihrer Posi- tionsdaten so bestimmt werden, daß die Positionsdaten mit vorgegebenen Normdaten vergleichbar sind, d a d u r c h g e k e n n z e i c h n e t, daß die Beleuchtung der Halbleiterbauteile bei festste¬ hender Kamera aus einer bestimmten Anzahl von Richtungen erfolgt, wobei aus den Bildsignalen mehrere Nutz- Beleuchtungsrichtungen bestimmt werden, welche jeweils eine Erkennung mindestens eines Abschnitts der linien- för igen Bereiche ermöglichen, und daß zur Aufnahme von Bildsignalen, aus denen die Positionsdaten bestimmbar sind, die Halbleiterbauteile aus den Nutz-Beleuch¬ tungsrichtungen beleuchtet werden.
2. Verfahren nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t, daß die Nutz-Beleuchtungsrichtungen anhand einer be¬ grenzten Anzahl von Muster-Halbleiterbauteilen festge¬ legt und für die Überprüfung weiterer Serien-Bauteile verwendet werden.
3. Verfahren nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, daß die Beleuchtungsintensität (Lichtmenge pro Raumwin¬ kel und Zeiteinheit) für die verschiedenen Beleuch- tungsrichtungen jeweils derart gewählt wird, daß opti¬ male Kontraste zwischen den zu den Abschnitten und den zur Umgebung gehörigen Bildsignalen entstehen.
4. Verfahren nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, daß die Beleuchtung aus den verschiedenen Beleuchtungs¬ richtungen mit Hilfe von Licht verschiedener Wellenlän¬ gen bzw. Farben oder Farbkombinationen erfolgt.
5. Verfahren nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, daß ein begrenztes Feld, insbesondere ein Anfangs- und/ oder ein Endbereich festgelegt wird, innerhalb dessen der linienförmige Bereich liegen muß, und daß das (nachfolgende) Mustererkennungsverfahren auf eine Auswertung von Bildsignalen innerhalb dieses Bereichs begrenzt durchgeführt wird.
6. Vorrichtung zur Durchführung des Verfahrens nach einem der vorhergehenden Ansprüche, mit Beleuchtungseinrich- tungen (16) zur Beleuchtung der Halbleiterbauteile (10) , einer Kamera (14) zur Bildaufnahme und einer Bildsignal- Verarbeitungseinrichtung (17) zur Erkennung von Her¬ stellungsfehlern des Halbleiterbauteils (10) , d a d u r c h g e k e n n z e i c h n e t, daß die Beleuchtungseinrichtungen (16) derart ausgebil¬ det und zu einem zu untersuchenden Halbleiterbauteil angeordnet sind, daß dieses aus definierten Nutz- Beleuchtungsrichtungen beleuchtbar ist, welche anhand eines Mustererkennungsverfahrens mit Hilfe der Bild- signal-Verarbeitungseinrichtung (17) festlegbar sind.
7. Vorrichtung nach Anspruch 6, d a d u r c h g e k e n n z e i c h n e t,
ERSATZ3LATT daß die Beleuchtungseinrichtungen (16) eine Vielzahl von Einzel-Beleuchtungsquellen (16a - 16n) umfassen.
8. Vorrichtung nach Anspruch 7 , d a d u r c h g e k e n n z e i c h n e t, daß die Einzel-Beleuchtungsquellen (16a - 16n) Leuchtdi¬ oden umfassen.
9. Vorrichtung nach einem der Ansprüche 6 oder 7, d a d u r c h g e k e n n z e i c h n e t, daß die Einzel-Beleuchtungsquellen (16a - 16n) erste Enden von Lichtleitern umfassen, in deren zweite Enden Licht verschiedener Farben einführbar ist.
10. Vorrichtung nach Anspruch 6, d a d u r c h g e k e n n z e i c h n e t, daß die Beleuchtungseinrichtungen (16) eine Lichtaus¬ sendefläche (29) umfassen, die derart ausgebildet ist, daß verschiedenen Stellen der Lichtaussendefläche ver¬ schiedene Lichtspektren (Farben) zugeordnet sind, und daß die Kamera (14) zur Erzeugung von Bildsignalen aus¬ gebildet ist, die Farbsignale umfassen.
ERSATZBLATT
PCT/EP1991/001648 1990-10-11 1991-08-30 Verfahren und vorrichtung zur automatisierten überwachung der herstellung von halbleiterbauteilen WO1992007250A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4032327A DE4032327A1 (de) 1990-10-11 1990-10-11 Verfahren und vorrichtung zur automatisierten ueberwachung der herstellung von halbleiterbauteilen
DEP4032327.7 1990-10-11

Publications (1)

Publication Number Publication Date
WO1992007250A1 true WO1992007250A1 (de) 1992-04-30

Family

ID=6416108

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1991/001648 WO1992007250A1 (de) 1990-10-11 1991-08-30 Verfahren und vorrichtung zur automatisierten überwachung der herstellung von halbleiterbauteilen

Country Status (2)

Country Link
DE (1) DE4032327A1 (de)
WO (1) WO1992007250A1 (de)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5825499A (en) * 1995-10-25 1998-10-20 Siemens Aktiengesellschaft Method for checking wafers having a lacquer layer for faults
US5909285A (en) * 1997-05-05 1999-06-01 Beaty; Elwin M. Three dimensional inspection system
US6055054A (en) * 1997-05-05 2000-04-25 Beaty; Elwin M. Three dimensional inspection system
US6072898A (en) * 1998-01-16 2000-06-06 Beaty; Elwin M. Method and apparatus for three dimensional inspection of electronic components
US6915007B2 (en) 1998-01-16 2005-07-05 Elwin M. Beaty Method and apparatus for three dimensional inspection of electronic components
EP1420244A3 (de) * 1992-12-14 2005-09-14 Pressco Technology Inc. Video-Inspektionssystem mit multispektraler Beleuchtung mittels lichtemittierender Dioden (LED)
US7079678B2 (en) 1998-01-16 2006-07-18 Scanner Technologies Corporation Electronic component products made according to a process that includes a method for three dimensional inspection
DE10230891B4 (de) * 2001-07-11 2006-08-17 Samsung Electronics Co., Ltd., Suwon Photolithographisches System und photolithographes Verfahren zur Erfassung von Verunreinigungen aufder Oberfläche von Wafern
US7374744B2 (en) 1994-09-28 2008-05-20 Imcor Pharmaceutical Co. Harmonic ultrasound imaging with microbubbles

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE9401711U1 (de) * 1994-02-02 1995-06-01 Kratzer Automatisierung GmbH, 85716 Unterschleißheim Abbildungsvorrichtung
DE4413832C2 (de) * 1994-04-20 2000-05-31 Siemens Ag Vorrichtungen zur Kontrolle von Halbleiterscheiben
DE4413831C2 (de) * 1994-04-20 2000-05-31 Siemens Ag Verfahren zur Kontrolle von Halbleiterscheiben
US5661249A (en) * 1994-08-11 1997-08-26 Walter Grassle Gmbh Apparatus and method for inspecting small articles
DE19511854A1 (de) * 1994-08-11 1996-02-15 Graessle Walter Gmbh Vorrichtung und Verfahren zum Prüfen von kleinen Gegenständen
DE19511197C2 (de) * 1995-03-27 1999-05-12 Basler Gmbh Verfahren und Vorrichtung zum optischen Prüfen einer Oberfläche, insbesondere einer Compact-Disc
DE19511195C2 (de) * 1995-03-27 1999-01-28 Basler Gmbh Verfahren und Vorrichtung zum optischen Prüfen einer Oberfläche
DE19639892C1 (de) * 1996-09-27 1998-02-12 Siemens Ag Verfahren zur Qualitätssicherung in einer Fertigung
DE19652124C2 (de) * 1996-12-14 2002-10-17 Micronas Gmbh Verfahren und Vorrichtung zum automatischen Überprüfen von Positionsdaten j-förmiger elektrischer Kontaktanschlüsse
DE19754871C2 (de) * 1997-12-10 2003-12-18 Fraunhofer Ges Forschung Verfahren und Vorrichtung zum Überprüfen der Qualität von Drahtverbindungen elektrischer Bauteile
DE19930043A1 (de) * 1999-06-30 2001-01-04 Wolf Systeme Ag Beleuchtungsvorrichtung für die elektronische Bildverarbeitung
EP1400802A1 (de) * 2002-09-23 2004-03-24 Ford Global Technologies, Inc. Verfahren und Vorrichtung zur Erfassung und Evaluierung von Oberflächenunebenheiten
JP2008523521A (ja) * 2004-12-14 2008-07-03 アクゾ ノーベル コーティングス インターナショナル ビー ヴィ 表面の外観特性の解析方法および解析装置
US20120025079A1 (en) * 2010-07-27 2012-02-02 Raulerson David A Infrared led source for thermal imaging

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4604648A (en) * 1984-10-12 1986-08-05 Kley Victor B Electronic viewing system for integrated circuit packages
US4876455A (en) * 1988-02-25 1989-10-24 Westinghouse Electric Corp. Fiber optic solder joint inspection system
US4882498A (en) * 1987-10-09 1989-11-21 Pressco, Inc. Pulsed-array video inspection lighting system
US4893223A (en) * 1989-01-10 1990-01-09 Northern Telecom Limited Illumination devices for inspection systems

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3834819A (en) * 1973-07-05 1974-09-10 Western Electric Co Thickness measuring
DE3116634A1 (de) * 1981-04-27 1982-11-11 Karl Süss KG, Präzisionsgeräte für Wissenschaft und Industrie - GmbH & Co, 8046 Garching Vorrichtung zum automatischen justieren von ebenen gegenstaenden mit zwei bezugspunkten, insbesondere bei der herstellung von halbleiterbauelementen
DE3337251A1 (de) * 1983-10-13 1985-04-25 Gerd Dipl.-Phys. Dr. 8520 Erlangen Häusler Optisches abtastverfahren zur dreidimensionalen vermessung von objekten
DD256021A1 (de) * 1986-11-11 1988-04-20 Elektronische Bauelemente Veb Verfahren und vorrichtung zum automatischen pruefen der bonddrahthoehe
JPH0682102B2 (ja) * 1987-02-27 1994-10-19 三菱電機株式会社 パターン欠陥検査装置及びパターン欠陥検査方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4604648A (en) * 1984-10-12 1986-08-05 Kley Victor B Electronic viewing system for integrated circuit packages
US4882498A (en) * 1987-10-09 1989-11-21 Pressco, Inc. Pulsed-array video inspection lighting system
US4876455A (en) * 1988-02-25 1989-10-24 Westinghouse Electric Corp. Fiber optic solder joint inspection system
US4893223A (en) * 1989-01-10 1990-01-09 Northern Telecom Limited Illumination devices for inspection systems

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
IEEE TRANSACTIONS ON ROBOTICS & AUTOMATION, Vol. 6, No. 2, 1 April 1990, S. NAYAR et al., "Specular Surface Inspection", Part V, pages 208-218. *
PATENT ABSTRACTS OF JAPAN, Vol. 12, No. 415, (P-781)[3263], 4 November 1988; & JP,A,63 151 841 (NIPPON DORAIKEMIKARU K.K.), 24 June 1988. *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1420244A3 (de) * 1992-12-14 2005-09-14 Pressco Technology Inc. Video-Inspektionssystem mit multispektraler Beleuchtung mittels lichtemittierender Dioden (LED)
US7374744B2 (en) 1994-09-28 2008-05-20 Imcor Pharmaceutical Co. Harmonic ultrasound imaging with microbubbles
US5825499A (en) * 1995-10-25 1998-10-20 Siemens Aktiengesellschaft Method for checking wafers having a lacquer layer for faults
US5909285A (en) * 1997-05-05 1999-06-01 Beaty; Elwin M. Three dimensional inspection system
US6055054A (en) * 1997-05-05 2000-04-25 Beaty; Elwin M. Three dimensional inspection system
US6072898A (en) * 1998-01-16 2000-06-06 Beaty; Elwin M. Method and apparatus for three dimensional inspection of electronic components
US6862365B1 (en) 1998-01-16 2005-03-01 Elwin Beaty & Elaine Beaty Method and apparatus for three dimensional inspection of electronic components
US6915007B2 (en) 1998-01-16 2005-07-05 Elwin M. Beaty Method and apparatus for three dimensional inspection of electronic components
US7079678B2 (en) 1998-01-16 2006-07-18 Scanner Technologies Corporation Electronic component products made according to a process that includes a method for three dimensional inspection
US7085411B2 (en) 1998-01-16 2006-08-01 Scanner Technologies Corporation Method of manufacturing electronic components including a method for three dimensional inspection
US7508974B2 (en) 1998-01-16 2009-03-24 Scanner Technologies Corporation Electronic component products and method of manufacturing electronic component products
DE10230891B4 (de) * 2001-07-11 2006-08-17 Samsung Electronics Co., Ltd., Suwon Photolithographisches System und photolithographes Verfahren zur Erfassung von Verunreinigungen aufder Oberfläche von Wafern

Also Published As

Publication number Publication date
DE4032327A1 (de) 1992-04-16
DE4032327C2 (de) 1992-07-23

Similar Documents

Publication Publication Date Title
WO1992007250A1 (de) Verfahren und vorrichtung zur automatisierten überwachung der herstellung von halbleiterbauteilen
DE4003983C1 (en) Automated monitoring of space=shape data for mfg. semiconductors - compares image signals for defined illumination angle range with master signals, to determine defects
DE69223505T2 (de) Eingebaute beleuchtungsvorrichtung fur prufung mit laufzeitintegration
DE69107882T2 (de) Verfahren und Gerät zur Untersuchung eines Oberflächenmusters eines Objektes.
EP1304019B1 (de) Beleuchtungsvorrichtung mit lichtemittierenden dioden (led), beleuchtungsverfahren und verfahren zur bildaufzeichnung mit derartiger led-beleuchtungsvorrichtung
EP3104117B1 (de) Verfahren zur fehleranalyse von drahtverbindungen
DE3540288C2 (de)
DE3123703C2 (de)
EP1532479A1 (de) Vorrichtung und verfahren zur inspektion eines objekts
DE10010213B4 (de) Optische Meßvorrichtung, insbesondere zur Qualitätsüberwachung bei kontinuierlichen Prozessen
DE102005061834B4 (de) Vorrichtung und Verfahren zum optischen Prüfen einer Oberfläche
WO2004093000A1 (de) System zur berührungslosen abbildung von hautleisten mit hohem kontrast
DE102007006525A1 (de) Verfahren und Vorrichtung zur Detektierung von Defekten
DE19809505A1 (de) Einrichtung zum Prüfen optischer Elemente
EP1158460A2 (de) Verfahren und Vorrichtung zur Bildverarbeitung
DE19511197C2 (de) Verfahren und Vorrichtung zum optischen Prüfen einer Oberfläche, insbesondere einer Compact-Disc
EP1346205A2 (de) Verfahren und vorrichtung zur optischen inspektion von flaschen
DE69506348T2 (de) Vorrichtung zur Untersuchung von Kabelenden in Maschinen zum Abisolieren und Anquetschen von Kabeln
DE29819954U1 (de) Vorrichtung zum optischen Prüfen von Hologrammen
DE69421649T3 (de) Optische Prüfvorrichtung für die Füllung von Zigaretten
DE19818069A1 (de) Verfahren und Vorrichtung zum Bestimmen von optischen Merkmalen von Garnen
WO2001023869A1 (de) Vorrichtung und verfahren zur oberflächeninspektion eines kontinuierlich zulaufenden bandmaterials
AT406528B (de) Verfahren und einrichtung zur feststellung, insbesondere zur visualisierung, von fehlern auf der oberfläche von gegenständen
DE69318872T2 (de) Verfahren und Vorrichtung zur Kontrolle eines lötfreien Verbinders durch Bildbearbeitung
DE10359723B4 (de) Vorrichtung und Verfahren zur Inspektion eines Wafers

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LU NL SE