WO1993000684A1 - Appareil produisant de la chaleur a partir d'alliages de palladium deuterise - Google Patents
Appareil produisant de la chaleur a partir d'alliages de palladium deuterise Download PDFInfo
- Publication number
- WO1993000684A1 WO1993000684A1 PCT/US1992/004259 US9204259W WO9300684A1 WO 1993000684 A1 WO1993000684 A1 WO 1993000684A1 US 9204259 W US9204259 W US 9204259W WO 9300684 A1 WO9300684 A1 WO 9300684A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrolyte
- cathode
- palladium
- boron
- deuterium
- Prior art date
Links
- 229910001252 Pd alloy Inorganic materials 0.000 title claims abstract description 15
- 150000002940 palladium Chemical class 0.000 title description 3
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims abstract description 86
- 239000003792 electrolyte Substances 0.000 claims abstract description 48
- 229910052796 boron Inorganic materials 0.000 claims abstract description 39
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims abstract description 38
- YZCKVEUIGOORGS-OUBTZVSYSA-N Deuterium Chemical compound [2H] YZCKVEUIGOORGS-OUBTZVSYSA-N 0.000 claims abstract description 36
- 229910052805 deuterium Inorganic materials 0.000 claims abstract description 36
- 229910052763 palladium Inorganic materials 0.000 claims abstract description 36
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 claims abstract description 7
- 239000004327 boric acid Substances 0.000 claims abstract description 5
- 229910045601 alloy Inorganic materials 0.000 claims description 10
- 239000000956 alloy Substances 0.000 claims description 10
- 239000013078 crystal Substances 0.000 claims description 8
- 229910001009 interstitial alloy Inorganic materials 0.000 claims description 5
- SWELZOZIOHGSPA-UHFFFAOYSA-N palladium silver Chemical compound [Pd].[Ag] SWELZOZIOHGSPA-UHFFFAOYSA-N 0.000 claims description 4
- 229910052799 carbon Inorganic materials 0.000 claims description 3
- 229910002066 substitutional alloy Inorganic materials 0.000 claims description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 2
- 150000002500 ions Chemical class 0.000 claims 10
- 150000001875 compounds Chemical class 0.000 claims 2
- XLYOFNOQVPJJNP-ZSJDYOACSA-N Heavy water Chemical compound [2H]O[2H] XLYOFNOQVPJJNP-ZSJDYOACSA-N 0.000 abstract description 19
- 238000004519 manufacturing process Methods 0.000 abstract description 15
- WMFOQBRAJBCJND-DYCDLGHISA-M 12159-20-5 Chemical compound [Li+].[2H][O-] WMFOQBRAJBCJND-DYCDLGHISA-M 0.000 abstract description 8
- 238000005868 electrolysis reaction Methods 0.000 abstract description 7
- 229910000521 B alloy Inorganic materials 0.000 abstract description 3
- 230000020169 heat generation Effects 0.000 abstract description 2
- 238000002474 experimental method Methods 0.000 description 13
- 239000000463 material Substances 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 230000004927 fusion Effects 0.000 description 6
- 229910052739 hydrogen Inorganic materials 0.000 description 6
- 239000001257 hydrogen Substances 0.000 description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 6
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 6
- 239000004810 polytetrafluoroethylene Substances 0.000 description 6
- YZCKVEUIGOORGS-NJFSPNSNSA-N Tritium Chemical compound [3H] YZCKVEUIGOORGS-NJFSPNSNSA-N 0.000 description 5
- 125000004429 atom Chemical group 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 229910052722 tritium Inorganic materials 0.000 description 5
- 238000007707 calorimetry Methods 0.000 description 4
- 125000004431 deuterium atom Chemical group 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- QZPSXPBJTPJTSZ-UHFFFAOYSA-N aqua regia Chemical class Cl.O[N+]([O-])=O QZPSXPBJTPJTSZ-UHFFFAOYSA-N 0.000 description 3
- 238000007600 charging Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 3
- INHCSSUBVCNVSK-UHFFFAOYSA-L lithium sulfate Inorganic materials [Li+].[Li+].[O-]S([O-])(=O)=O INHCSSUBVCNVSK-UHFFFAOYSA-L 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- -1 AS2O3 Inorganic materials 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000012300 argon atmosphere Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000012447 hatching Effects 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical group [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- HEMHJVSKTPXQMS-DYCDLGHISA-M Sodium hydroxide-d Chemical compound [Na+].[2H][O-] HEMHJVSKTPXQMS-DYCDLGHISA-M 0.000 description 1
- 239000005864 Sulphur Substances 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910052770 Uranium Inorganic materials 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000010406 cathode material Substances 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000010325 electrochemical charging Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000000155 isotopic effect Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- UKVIEHSSVKSQBA-UHFFFAOYSA-N methane;palladium Chemical compound C.[Pd] UKVIEHSSVKSQBA-UHFFFAOYSA-N 0.000 description 1
- 238000002250 neutron powder diffraction Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- JFALSRSLKYAFGM-UHFFFAOYSA-N uranium(0) Chemical compound [U] JFALSRSLKYAFGM-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21B—FUSION REACTORS
- G21B3/00—Low temperature nuclear fusion reactors, e.g. alleged cold fusion reactors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/10—Nuclear fusion reactors
Definitions
- This invention pertains generally to the field of devices for producing heat energy by charging alloys of palladium with deuterium, and more particularly, to such devices where this charging is carried out by electrochemical means .
- Cathodes have been fabricated from titanium and a variety of palladium alloys, besides pure palladium. These alloys include palladium-silver, palladium-lithium, palladium-carbon, palladium-lithium-carbon, palladium-beryllium, and palladium-sulphur. Reference is made to the paper by E. Storms and C. Talbott entitled “A Study of Electrolytic Tritium Production", on page 149 of the above-mentioned conference proceedings, summarizing the results obtained from cells using a variety of cathode materials.
- the present invention provides an electrolysis system 1 for generating excess heat, having a direct current source 11 coupled between an anode 9. and a cathode 1_, with both electrodes immersed in an electrolyte 5. in container 3..
- the current source 1JL drives electric current through the electrolyte 5. from anode 9. to cathode 7..
- the electrolyte 5 is a solution of lithium deuteroxide and boric acid in heavy water (D2O) .
- the cathode 7 is comprised primarily of palladium. The current flow through the cell causes the palladium to become loaded with boron and deuterium. It is found that this charging of boron into the cathode 7.
- the cathode 1_ may include other elements besides palladium, deuterium and boron. Generally the cathode 1 also contains lithium from the LiOD in the electrolyte 5_- Other alloys of palladium such as Pd-Ag may be used as the host material.
- Pd-Ag alloys of palladium
- the distinctive feature of boron is that in the palladium crystal lattice it occupies octahedral interstitial sites which might otherwise be occupied by deuterium. This enhances the excess heat production process.
- a second object of this invention is to provide a device for generating excess heat having an improved efficiency for the production of such excess heat.
- Another object of this invention is to provide a device for generating excess heat in which the current threshold for excess heat production is substantially decreased.
- Figure 1 is a schematic diagram of an electrolysis system 1 for generating excess heat according to the present invention, showing a partially cross sectioned elevational view of an electrolytic cell J 2. embodying the invention.
- Figure 2 is a diagram of the face centered cubic
- FIG. 3 is a cross sectional front view of an electrolytic cell ⁇ j_ embodying the present invention.
- FIG. 1 is a schematic diagram of an electrolysis system 1 for generating excess heat according to the present invention, for loading deuterium into a palladium alloy cathode 1_ .
- This cathode J and an anode 9. are immersed in an electrolyte 5. in container 3..
- the cathode 1_ and anode _ are coupled to a current generator 1_1 which drives a direct current from the anode 9. to the cathode 7 within the electrolyte 5..
- the entire system may be enclosed in a sealed enclosure 2_, which may also serve as a heat exchanger or may comprise various heat exchange devices, well known in the art, for extracting and transferring heat from the system.
- the electrolyte 5. contains heavy water, specifically D2O, and also preferably LiOD, typically a 1 molar solution.
- boric acid, H3BO3 is added to this solution to provide a source of boron for loading into the cathode 1_.
- This cathode 1_ is preferably fabricated from palladium; however various alloys of palladium may also be used, such as palladium-silver.
- boron may be preloaded into the cathode 1_, in which case Pd-B is the alloy.
- the active region of the cathode 1_ is in the vicinity of the surface, the cathode 7.
- the anode 9. is preferably fabricated from palladium, platinum, or some stable non-elemental metallic conductor material.
- the bulk palladium used in practicing the invention should be of high purity. It is desirable to anneal out crystal imperfections and volatilize impurities, and to minimize stresses that may lead to cracks in the palladium surface which will limit the attainable amount of deuterium loading. Oxidation of the surface by O2 or H2O should also be avoided for the same reason.
- the palladium is annealed in a vacuum furnace at 800°C for three hours and then allowed to cool in 1 atmosphere of D2 gas or argon. After cooling, the Pd surface is etched in deuterated aqua regia, and then rinsed in D 2 0.
- the solution is formed by allowing pure Li metal or Li2 ⁇ to react with D->0 of high isotopic purity in an inert gas environment.
- the electrolyte container 3. should be fabricated from materials that will not form deposits on the surface of the cathode 2 that inhibit the degree of deuterium loading. Two examples of materials that are satisfactory are quartz glass and polytetrafluoroethylene (PTFE) .
- the cathode 7. is preferably precharged at a moderate current density (between 10 and 100 mA/cm ⁇ ) for a time corresponding to several diffusion periods of deuterium in palladium. This time is typically 3 to 10 days. This precharging period facilitates the subsequent accumulation of deuterium in the cathode. The production of excess heat is then initiated by increasing the current density continuously up to a threshold level.
- FCC face centered cubic
- the FCC lattice sites are indicated by the circles having horizontal hatchings. These sites are the locations of the palladium atoms in the crystal.
- Palladium-silver is a substitutional alloy, in which the silver atoms occupy FCC lattice sites that would otherwise be occupied by palladium atoms.
- the distinctive feature of deuterium (hydrogen) and boron is that these elements form interstitial alloys in palladium.
- alloys The palladium-hydrogen system has been extensively studied, and it is known that palladium has a propensity to absorb hydrogen, and that the hydrogen atoms preferably occupy the octahedral interstitial sites in the palladium lattice. These sites lie in the horizontal and vertical planes defined by the lattice sites, and each octahedral site lies midway between two neighboring lattice sites, as indicated in Figure 2 by the open circles .
- the octahedral sites are not the only available sites for interstitial atoms to occupy.
- the circles with diagonal hatching define the tetrahedral sites in the lattice.
- the names of these sites refer to the symmetry of their atomic environment.
- the "nearest neighbor" palladium atoms i.e. the palladium atoms closest to the site
- these sites have "octahedral symmetry”.
- the tetrahedral sites have a lower symmetry than the octahedral sites, and atoms at these sites have a higher energy.
- the octahedral sites are preferably occupied by the interstitial atoms, but at any finite temperature there is always some occupation of tetrahedral sites as well.
- hydrogen can be loaded at an atomic ratio of H/Pd greater than unity.
- the palladium-boron system has also been studied, and reference is made to the article by H. A. Brodowsky and H.-J. Schaller, "Thermodynamics of Nonstoichiometric Interstitial Alloys. I. Boron in Palladium", Transactions of the Metallurgical Society of AIME, Vol. 246, p. 1015 (May 1969) . These authors have analyzed the thermodynamic measurements of the palladium-boron system up to concentrations of 23 percent boron, and determined that the boron atoms also occupy the octahedral interstitial sites in the palladium lattice. Their analysis further indicated that the energy gap between the octahedral sites and the tetrahedral sites is substantially greater for boron than for hydrogen (deuterium) .
- the increased occupancy of non-octahedral sites by deuterium atoms decreases the average distance between neighboring deuterium atoms in the lattice, according to the diagram in Figure 2.
- the nearest neighbor octahedral sites are at a distance of 0.28 nanometers apart, while the corresponding nearest neighbor tetrahedral sites are at a distance of 0.19 nm from each other, and the corresponding nearest neighbor octahedral-tetrahedral distance is 0.17 nm.
- FIG. 3 is a cross sectional front view of an electrolytic cell 61_ embodying the present invention.
- This cell operates at approximately atmospheric pressure.
- Vessel j59_ is constructed of aluminum and has a cylindrical sleeve shape with an internal surface of PTFE.
- the palladium cathode 5_5_ is disposed along the central axis of the vessel .69..
- This cathode 5_5_ is a 3 mm diameter 3 cm long rod, machined from 1/8" pure Pd wire.
- the cathode 5_5_ Prior to insertion, the cathode 5_5_ is solvent cleaned, vacuum annealed at 800°C for between 2 and 3 hours, and slowly cooled in an argon atmosphere. Finally it is dipped in heavy aqua regia for 20 seconds and rinsed with heavy water.
- Anode 65. consists of a 1 meter long, 0.5 mm diameter, Pt wire wound around a cage 73 of five quartz glass rods held in place by two PTFE disks 75. The wire .65. is held in place by attachment to 2 mm Pd mounting posts 7_9 mounted on the top PTFE disk 75.
- the electrolyte 7JL separates the cathode 5_5_ and anode 65.
- Reference electrode .63. is adjacent to cathode 55. All surfaces of the cell 62. are solvent cleaned and rinsed.
- the cell 62. is assembled with minimum exposure to air or moisture.
- the electrolyte 21 is preferably prepared immediately prior to use and added to the vessel .69. before sealing the cell 61_.
- tube 8_1 is a 1/8" outside diameter nickel tube.
- the vessel j59 is preferably pressurized with deuterium.
- the boron-free electrolyte was a 1.0 M solution of LiOD in heavy water with 200 pp (molar) Al, manufactured by adding 0.175 g of Li metal and approximately 7 mg of pure Al foil to 25 ml D2O. This procedure was carried out under a nitrogen atmosphere.
- the second experiment was performed using the same apparatus but with boric acid added to the electrolyte 21-
- the addition of the order of 0.2 millimoles of H3BO3 produced surface regions in the cathode that were loaded with boron to at least 10 atomic percent.
- This experiment was carried out over a total duration of 1287 hours. Excess heat was first observed after 658 hours of electrolysis and was observed on three separate occasions. The maximum excess power observed was 0.8 watts (300% in excess of the input power) ; the total excess of energy was 0.25 MJ, or 11 MJ/mole of Pd.
- the addition of boron to the electrolyte 21 coincided with the following effects:
- the cathode may be fabricated as a palladium-boron alloy before assembly into the cell 12., 62.
- other palladium alloys such as Pd/Ag, having a similar FCC crystal structure can be used in place of pure palladium for loading with boron and deuterium.
- the use of boron per se is not intended to be limiting, since other materials that occupy octahedral interstitial sites in the palladium lattice could accomplish the same result.
- the alloy PdCn ir contains carbon atoms on octahedral interstitial sites, as demonstrated experimentally using powder neutron diffraction [S. B. Siemecki, G. A. Jones, D. G. Swartzfager and R. L. Harlow, Journal of the American Chemical Society, Vol. 107, pp. 4547-4548 (1985)] . Therefore carbon is a good candidate to substitute for boron.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- General Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
Abstract
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US72209491A | 1991-06-27 | 1991-06-27 | |
| US722,094 | 1991-06-27 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO1993000684A1 true WO1993000684A1 (fr) | 1993-01-07 |
Family
ID=24900480
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US1992/004259 WO1993000684A1 (fr) | 1991-06-27 | 1992-05-20 | Appareil produisant de la chaleur a partir d'alliages de palladium deuterise |
Country Status (2)
| Country | Link |
|---|---|
| AU (1) | AU2010492A (fr) |
| WO (1) | WO1993000684A1 (fr) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5409060A (en) * | 1993-09-10 | 1995-04-25 | Weatherford U.S., Inc. | Wellbore tool orientation |
Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE1467078A1 (de) * | 1962-04-17 | 1969-01-09 | Johnson Matthey Co Ltd | Verfahren zum Abtrennen von Wasserstoff aus Wasserstoff enthaltenden Gasgemischen |
| US4048383A (en) * | 1976-02-09 | 1977-09-13 | Battelle Memorial Institute | Combination cell |
| US4132619A (en) * | 1976-08-06 | 1979-01-02 | State Of Israel, Ministry Of Industry, Commerce And Tourism, National Physical Laboratory Of Israel | Electrocatalyst |
| US4894302A (en) * | 1985-06-14 | 1990-01-16 | The Dow Chemical Company | Alkaline earth metal anode-containing cell having electrolyte of organometallic alkaline earth metal salt and organic solvent |
| JPH02268288A (ja) * | 1989-04-10 | 1990-11-01 | Koji Okada | 核融合用電解液 |
| WO1990015415A1 (fr) * | 1989-06-02 | 1990-12-13 | Johnson Matthey Public Limited Company | Ameliorations apportees a des matieres |
| US4986887A (en) * | 1989-03-31 | 1991-01-22 | Sankar Das Gupta | Process and apparatus for generating high density hydrogen in a matrix |
-
1992
- 1992-05-20 WO PCT/US1992/004259 patent/WO1993000684A1/fr active Application Filing
- 1992-05-20 AU AU20104/92A patent/AU2010492A/en not_active Abandoned
Patent Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE1467078A1 (de) * | 1962-04-17 | 1969-01-09 | Johnson Matthey Co Ltd | Verfahren zum Abtrennen von Wasserstoff aus Wasserstoff enthaltenden Gasgemischen |
| US4048383A (en) * | 1976-02-09 | 1977-09-13 | Battelle Memorial Institute | Combination cell |
| US4132619A (en) * | 1976-08-06 | 1979-01-02 | State Of Israel, Ministry Of Industry, Commerce And Tourism, National Physical Laboratory Of Israel | Electrocatalyst |
| US4894302A (en) * | 1985-06-14 | 1990-01-16 | The Dow Chemical Company | Alkaline earth metal anode-containing cell having electrolyte of organometallic alkaline earth metal salt and organic solvent |
| US4986887A (en) * | 1989-03-31 | 1991-01-22 | Sankar Das Gupta | Process and apparatus for generating high density hydrogen in a matrix |
| JPH02268288A (ja) * | 1989-04-10 | 1990-11-01 | Koji Okada | 核融合用電解液 |
| WO1990015415A1 (fr) * | 1989-06-02 | 1990-12-13 | Johnson Matthey Public Limited Company | Ameliorations apportees a des matieres |
Non-Patent Citations (3)
| Title |
|---|
| ORNL/FTR-3341, 31 July 1989, COOKE, see pages 3-5. * |
| PHYSICAL REVIEW B, Vol. 42, No. 14, 15 November 1990, pages 9143-9146, (SILVERA et al.). * |
| THE FIRST ANNUAL CONFERENCE ON COLD FUSION, (Conf. Proceedings), March 1990, Salt Lake City, Utah, pages 149-163, Article by STORMS et al. * |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5409060A (en) * | 1993-09-10 | 1995-04-25 | Weatherford U.S., Inc. | Wellbore tool orientation |
Also Published As
| Publication number | Publication date |
|---|---|
| AU2010492A (en) | 1993-01-25 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Fleischmann et al. | Electrochemically induced nuclear fusion of deuterium | |
| EP0463089B1 (fr) | Procede et appareil de production de puissance | |
| US6793799B2 (en) | Method of separating and recovering rare FP in spent nuclear fuels and cooperation system for nuclear power generation and fuel cell power generation utilizing the same | |
| JPH04505505A (ja) | 材料の改良 | |
| WO2001063979A2 (fr) | Fusion nucleaire froide dans des conditions de non-equilibre | |
| WO1993000683A1 (fr) | Appareil de production de chaleur a partir de palladium deuterise revetu d'un film | |
| WO1994015342A1 (fr) | Appareil de stockage d'isotopes d'hydrogene | |
| WO1993000684A1 (fr) | Appareil produisant de la chaleur a partir d'alliages de palladium deuterise | |
| Storms | How to produce the Pons-Fleischmann effect | |
| WO1991006959A2 (fr) | Milieux pour fusion a l'etat solide | |
| JPH05501305A (ja) | 熱発生装置で使用するための電極の準備方法 | |
| EP0461690A2 (fr) | Générateur de chaleur utilisant la fusion nucléaire froide | |
| WO1994014163A1 (fr) | Methodes de formation de films sur des cathodes | |
| Chartouni et al. | Phase transitions in LaNi4Co during electrochemical cycling an in situ X-ray diffraction study | |
| EP0431152A1 (fr) | Appareil ELECTROCHIMIQUE NUCLEAIRE DE PRODUCTION DE TRITIUM, DE CHALEUR, ET DE RAYONNEMENT | |
| WO1992022907A1 (fr) | Methode permettant de deposer un film sur des cathodes | |
| WO1992022908A1 (fr) | Appareil produisant de la chaleur a partir de palladium deuterise | |
| WO1993014503A1 (fr) | Procede de production d'energie fonde sur l'affaissement gravitationnel | |
| WO1992022905A1 (fr) | Methodes de production de chaleur a partir de palladium deuterise | |
| WO1992022906A1 (fr) | Procedes de nettoyage de cathodes | |
| WO1993001601A1 (fr) | Methode de reproduction constante d'une charge elevee de deuterium et d'obtention de tritium dans des electrodes de palladium | |
| Guruswamy et al. | Metallurgical aspects in cold fusion experiments | |
| DEN BROK et al. | REPORT ON COLD FUSION EXPERIMENTS | |
| JPH06148366A (ja) | 重水素の封じ込め方法及び常温核融合方法 | |
| WO1996006434A1 (fr) | Procede de condensation d'un hydrure |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AK | Designated states |
Kind code of ref document: A1 Designated state(s): AT AU BB BG BR CA CH CS DE DK ES FI GB HU JP KP KR LK LU MG MN MW NL NO PL RO RU SD SE |
|
| AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IT LU MC NL SE BF BJ CF CG CI CM GA GN ML MR SN TD TG |
|
| DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
| LE32 | Later election for international application filed prior to expiration of 19th month from priority date or according to rule 32.2 (b) |
Ref country code: UA |
|
| EX32 | Extension under rule 32 effected after completion of technical preparation for international publication |
Ref country code: UA |
|
| REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
| 122 | Ep: pct application non-entry in european phase | ||
| NENP | Non-entry into the national phase |
Ref country code: CA |