WO1994026414A1 - Recipient de reaction pour essai par liaison specifique et procede d'utilisation - Google Patents
Recipient de reaction pour essai par liaison specifique et procede d'utilisation Download PDFInfo
- Publication number
- WO1994026414A1 WO1994026414A1 PCT/US1994/004849 US9404849W WO9426414A1 WO 1994026414 A1 WO1994026414 A1 WO 1994026414A1 US 9404849 W US9404849 W US 9404849W WO 9426414 A1 WO9426414 A1 WO 9426414A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- chamber
- nucleic acid
- analyte
- channel
- sample
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 85
- 238000006243 chemical reaction Methods 0.000 title description 8
- 230000009870 specific binding Effects 0.000 title description 5
- 238000000159 protein binding assay Methods 0.000 title description 2
- 150000007523 nucleic acids Chemical class 0.000 claims abstract description 110
- 102000039446 nucleic acids Human genes 0.000 claims abstract description 99
- 108020004707 nucleic acids Proteins 0.000 claims abstract description 99
- 239000012491 analyte Substances 0.000 claims abstract description 80
- 239000012530 fluid Substances 0.000 claims abstract description 42
- 238000004891 communication Methods 0.000 claims abstract description 36
- 239000002245 particle Substances 0.000 claims abstract description 36
- 239000003153 chemical reaction reagent Substances 0.000 claims abstract description 28
- -1 if present Substances 0.000 claims abstract description 23
- 238000003556 assay Methods 0.000 claims abstract description 15
- 238000009739 binding Methods 0.000 claims description 25
- 230000027455 binding Effects 0.000 claims description 24
- 230000005291 magnetic effect Effects 0.000 claims description 22
- 239000007788 liquid Substances 0.000 claims description 13
- 238000007789 sealing Methods 0.000 claims description 9
- 229920001296 polysiloxane Polymers 0.000 claims description 3
- 229920000570 polyether Polymers 0.000 claims description 2
- 150000004676 glycans Chemical class 0.000 claims 1
- 229920001282 polysaccharide Polymers 0.000 claims 1
- 239000005017 polysaccharide Substances 0.000 claims 1
- 230000003321 amplification Effects 0.000 abstract description 49
- 238000003199 nucleic acid amplification method Methods 0.000 abstract description 49
- 108091033319 polynucleotide Proteins 0.000 description 70
- 102000040430 polynucleotide Human genes 0.000 description 70
- 239000002157 polynucleotide Substances 0.000 description 70
- 239000000499 gel Substances 0.000 description 42
- 239000000523 sample Substances 0.000 description 36
- 239000013615 primer Substances 0.000 description 35
- 239000002609 medium Substances 0.000 description 29
- 239000002773 nucleotide Substances 0.000 description 21
- 108020004414 DNA Proteins 0.000 description 20
- 125000003729 nucleotide group Chemical group 0.000 description 20
- 238000001514 detection method Methods 0.000 description 19
- 230000000295 complement effect Effects 0.000 description 17
- 239000000463 material Substances 0.000 description 17
- 229920002477 rna polymer Polymers 0.000 description 14
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 12
- 150000001875 compounds Chemical class 0.000 description 12
- 239000006249 magnetic particle Substances 0.000 description 11
- 238000003752 polymerase chain reaction Methods 0.000 description 11
- 102000004190 Enzymes Human genes 0.000 description 10
- 108090000790 Enzymes Proteins 0.000 description 10
- 125000006853 reporter group Chemical group 0.000 description 8
- 239000002585 base Substances 0.000 description 7
- 238000007834 ligase chain reaction Methods 0.000 description 7
- 239000002985 plastic film Substances 0.000 description 7
- 229920006255 plastic film Polymers 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- 238000012546 transfer Methods 0.000 description 7
- 102000053602 DNA Human genes 0.000 description 6
- 108091028043 Nucleic acid sequence Proteins 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- 239000012634 fragment Substances 0.000 description 6
- 238000009396 hybridization Methods 0.000 description 6
- 239000003446 ligand Substances 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 229920003023 plastic Polymers 0.000 description 6
- 239000004033 plastic Substances 0.000 description 6
- 239000011541 reaction mixture Substances 0.000 description 6
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 5
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 5
- 239000003054 catalyst Substances 0.000 description 5
- 238000000338 in vitro Methods 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 238000007899 nucleic acid hybridization Methods 0.000 description 5
- 239000003504 photosensitizing agent Substances 0.000 description 5
- 230000002285 radioactive effect Effects 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- 238000003786 synthesis reaction Methods 0.000 description 5
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 4
- KDCGOANMDULRCW-UHFFFAOYSA-N 7H-purine Chemical compound N1=CNC2=NC=NC2=C1 KDCGOANMDULRCW-UHFFFAOYSA-N 0.000 description 4
- 241000894006 Bacteria Species 0.000 description 4
- 108020004711 Nucleic Acid Probes Proteins 0.000 description 4
- 239000004698 Polyethylene Substances 0.000 description 4
- 108010066717 Q beta Replicase Proteins 0.000 description 4
- ISAKRJDGNUQOIC-UHFFFAOYSA-N Uracil Chemical compound O=C1C=CNC(=O)N1 ISAKRJDGNUQOIC-UHFFFAOYSA-N 0.000 description 4
- 239000000872 buffer Substances 0.000 description 4
- 230000001419 dependent effect Effects 0.000 description 4
- 230000002255 enzymatic effect Effects 0.000 description 4
- 230000001965 increasing effect Effects 0.000 description 4
- NTHXOOBQLCIOLC-UHFFFAOYSA-N iohexol Chemical compound OCC(O)CN(C(=O)C)C1=C(I)C(C(=O)NCC(O)CO)=C(I)C(C(=O)NCC(O)CO)=C1I NTHXOOBQLCIOLC-UHFFFAOYSA-N 0.000 description 4
- 239000002853 nucleic acid probe Substances 0.000 description 4
- 229920000573 polyethylene Polymers 0.000 description 4
- 108090000623 proteins and genes Proteins 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- RWQNBRDOKXIBIV-UHFFFAOYSA-N thymine Chemical compound CC1=CNC(=O)NC1=O RWQNBRDOKXIBIV-UHFFFAOYSA-N 0.000 description 4
- 238000011282 treatment Methods 0.000 description 4
- 239000001226 triphosphate Substances 0.000 description 4
- 235000011178 triphosphate Nutrition 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 229920000936 Agarose Polymers 0.000 description 3
- 102000003960 Ligases Human genes 0.000 description 3
- 108090000364 Ligases Proteins 0.000 description 3
- 108091034117 Oligonucleotide Proteins 0.000 description 3
- 241000700605 Viruses Species 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 239000012620 biological material Substances 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 238000011109 contamination Methods 0.000 description 3
- 238000004925 denaturation Methods 0.000 description 3
- 230000036425 denaturation Effects 0.000 description 3
- 239000000975 dye Substances 0.000 description 3
- 229920001971 elastomer Polymers 0.000 description 3
- 239000002777 nucleoside Substances 0.000 description 3
- 230000005298 paramagnetic effect Effects 0.000 description 3
- 229920000058 polyacrylate Polymers 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 102000004169 proteins and genes Human genes 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- FTOAOBMCPZCFFF-UHFFFAOYSA-N 5,5-diethylbarbituric acid Chemical compound CCC1(CC)C(=O)NC(=O)NC1=O FTOAOBMCPZCFFF-UHFFFAOYSA-N 0.000 description 2
- 229920002307 Dextran Polymers 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 2
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 2
- 241000233866 Fungi Species 0.000 description 2
- 102100034343 Integrase Human genes 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000004677 Nylon Substances 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 2
- 108010092799 RNA-directed DNA polymerase Proteins 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- IQFYYKKMVGJFEH-XLPZGREQSA-N Thymidine Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 IQFYYKKMVGJFEH-XLPZGREQSA-N 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 239000000443 aerosol Substances 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 150000001491 aromatic compounds Chemical class 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 229960002685 biotin Drugs 0.000 description 2
- 235000020958 biotin Nutrition 0.000 description 2
- 239000011616 biotin Substances 0.000 description 2
- DQXBYHZEEUGOBF-UHFFFAOYSA-N but-3-enoic acid;ethene Chemical compound C=C.OC(=O)CC=C DQXBYHZEEUGOBF-UHFFFAOYSA-N 0.000 description 2
- 210000004027 cell Anatomy 0.000 description 2
- 239000004568 cement Substances 0.000 description 2
- 238000003776 cleavage reaction Methods 0.000 description 2
- OPTASPLRGRRNAP-UHFFFAOYSA-N cytosine Chemical compound NC=1C=CNC(=O)N=1 OPTASPLRGRRNAP-UHFFFAOYSA-N 0.000 description 2
- SUYVUBYJARFZHO-RRKCRQDMSA-N dATP Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@H]1C[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 SUYVUBYJARFZHO-RRKCRQDMSA-N 0.000 description 2
- 239000003599 detergent Substances 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000003623 enhancer Substances 0.000 description 2
- 238000006911 enzymatic reaction Methods 0.000 description 2
- 239000005038 ethylene vinyl acetate Substances 0.000 description 2
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 2
- 230000002068 genetic effect Effects 0.000 description 2
- 238000011901 isothermal amplification Methods 0.000 description 2
- 238000002372 labelling Methods 0.000 description 2
- 238000003475 lamination Methods 0.000 description 2
- 229920000126 latex Polymers 0.000 description 2
- 239000004816 latex Substances 0.000 description 2
- 238000004020 luminiscence type Methods 0.000 description 2
- 108010026228 mRNA guanylyltransferase Proteins 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229920001778 nylon Polymers 0.000 description 2
- 230000008520 organization Effects 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 150000002972 pentoses Chemical class 0.000 description 2
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 2
- 229920002401 polyacrylamide Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229920001184 polypeptide Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 2
- 239000004800 polyvinyl chloride Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 102000004196 processed proteins & peptides Human genes 0.000 description 2
- 108090000765 processed proteins & peptides Proteins 0.000 description 2
- 230000007017 scission Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000003856 thermoforming Methods 0.000 description 2
- 229940113082 thymine Drugs 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- 125000002264 triphosphate group Chemical class [H]OP(=O)(O[H])OP(=O)(O[H])OP(=O)(O[H])O* 0.000 description 2
- 229940035893 uracil Drugs 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- CKTSBUTUHBMZGZ-SHYZEUOFSA-N 2'‐deoxycytidine Chemical compound O=C1N=C(N)C=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 CKTSBUTUHBMZGZ-SHYZEUOFSA-N 0.000 description 1
- CYXIKYKBLDZZNW-UHFFFAOYSA-N 2-Chloro-1,1,1-trifluoroethane Chemical compound FC(F)(F)CCl CYXIKYKBLDZZNW-UHFFFAOYSA-N 0.000 description 1
- URDCARMUOSMFFI-UHFFFAOYSA-N 2-[2-[bis(carboxymethyl)amino]ethyl-(2-hydroxyethyl)amino]acetic acid Chemical compound OCCN(CC(O)=O)CCN(CC(O)=O)CC(O)=O URDCARMUOSMFFI-UHFFFAOYSA-N 0.000 description 1
- 229930024421 Adenine Natural products 0.000 description 1
- GFFGJBXGBJISGV-UHFFFAOYSA-N Adenine Chemical compound NC1=NC=NC2=C1N=CN2 GFFGJBXGBJISGV-UHFFFAOYSA-N 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- 102000009027 Albumins Human genes 0.000 description 1
- 108090001008 Avidin Proteins 0.000 description 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 102000053642 Catalytic RNA Human genes 0.000 description 1
- 108090000994 Catalytic RNA Proteins 0.000 description 1
- 108020004998 Chloroplast DNA Proteins 0.000 description 1
- 108020004635 Complementary DNA Proteins 0.000 description 1
- 102000004594 DNA Polymerase I Human genes 0.000 description 1
- 108010017826 DNA Polymerase I Proteins 0.000 description 1
- 239000003155 DNA primer Substances 0.000 description 1
- 230000004568 DNA-binding Effects 0.000 description 1
- CKTSBUTUHBMZGZ-UHFFFAOYSA-N Deoxycytidine Natural products O=C1N=C(N)C=CN1C1OC(CO)C(O)C1 CKTSBUTUHBMZGZ-UHFFFAOYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- UYTPUPDQBNUYGX-UHFFFAOYSA-N Guanine Natural products O=C1NC(N)=NC2=C1N=CN2 UYTPUPDQBNUYGX-UHFFFAOYSA-N 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 108010054477 Immunoglobulin Fab Fragments Proteins 0.000 description 1
- 102000001706 Immunoglobulin Fab Fragments Human genes 0.000 description 1
- 229930010555 Inosine Natural products 0.000 description 1
- UGQMRVRMYYASKQ-KQYNXXCUSA-N Inosine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C2=NC=NC(O)=C2N=C1 UGQMRVRMYYASKQ-KQYNXXCUSA-N 0.000 description 1
- 108090001090 Lectins Proteins 0.000 description 1
- 102000004856 Lectins Human genes 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 108020005196 Mitochondrial DNA Proteins 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 108010002747 Pfu DNA polymerase Proteins 0.000 description 1
- 108091000080 Phosphotransferase Proteins 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 229920001213 Polysorbate 20 Polymers 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 1
- 206010036790 Productive cough Diseases 0.000 description 1
- 102000009661 Repressor Proteins Human genes 0.000 description 1
- 108010034634 Repressor Proteins Proteins 0.000 description 1
- 108091028664 Ribonucleotide Proteins 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 108020004682 Single-Stranded DNA Proteins 0.000 description 1
- 101710137500 T7 RNA polymerase Proteins 0.000 description 1
- 229910052771 Terbium Inorganic materials 0.000 description 1
- 239000004098 Tetracycline Substances 0.000 description 1
- 101000865057 Thermococcus litoralis DNA polymerase Proteins 0.000 description 1
- 102000002248 Thyroxine-Binding Globulin Human genes 0.000 description 1
- 108010000259 Thyroxine-Binding Globulin Proteins 0.000 description 1
- 229920004890 Triton X-100 Polymers 0.000 description 1
- 229910052770 Uranium Inorganic materials 0.000 description 1
- 238000005411 Van der Waals force Methods 0.000 description 1
- 241000726445 Viroids Species 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 229960000643 adenine Drugs 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 238000002820 assay format Methods 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 229960002319 barbital Drugs 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 150000001558 benzoic acid derivatives Chemical class 0.000 description 1
- 239000005312 bioglass Substances 0.000 description 1
- 239000013060 biological fluid Substances 0.000 description 1
- 239000012472 biological sample Substances 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 239000010839 body fluid Substances 0.000 description 1
- AIYUHDOJVYHVIT-UHFFFAOYSA-M caesium chloride Chemical compound [Cl-].[Cs+] AIYUHDOJVYHVIT-UHFFFAOYSA-M 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 210000000349 chromosome Anatomy 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 238000012411 cloning technique Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000005515 coenzyme Substances 0.000 description 1
- 239000006184 cosolvent Substances 0.000 description 1
- 238000012864 cross contamination Methods 0.000 description 1
- 229940104302 cytosine Drugs 0.000 description 1
- NHVNXKFIZYSCEB-XLPZGREQSA-N dTTP Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)[C@@H](O)C1 NHVNXKFIZYSCEB-XLPZGREQSA-N 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 230000005292 diamagnetic effect Effects 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 230000003028 elevating effect Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000005281 excited state Effects 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- 229920002457 flexible plastic Polymers 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- IVSXFFJGASXYCL-UHFFFAOYSA-N guanine Chemical compound O=C1NC(N)=NC2=NC=N[C]21 IVSXFFJGASXYCL-UHFFFAOYSA-N 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 229910052595 hematite Inorganic materials 0.000 description 1
- 239000011019 hematite Substances 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 230000002706 hydrostatic effect Effects 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 229920000592 inorganic polymer Polymers 0.000 description 1
- 229960003786 inosine Drugs 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- LIKBJVNGSGBSGK-UHFFFAOYSA-N iron(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Fe+3].[Fe+3] LIKBJVNGSGBSGK-UHFFFAOYSA-N 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 230000000155 isotopic effect Effects 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 239000002650 laminated plastic Substances 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- 239000002523 lectin Substances 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 229920001684 low density polyethylene Polymers 0.000 description 1
- 239000004702 low-density polyethylene Substances 0.000 description 1
- HWYHZTIRURJOHG-UHFFFAOYSA-N luminol Chemical compound O=C1NNC(=O)C2=C1C(N)=CC=C2 HWYHZTIRURJOHG-UHFFFAOYSA-N 0.000 description 1
- 230000001926 lymphatic effect Effects 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229920001179 medium density polyethylene Polymers 0.000 description 1
- 239000004701 medium-density polyethylene Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- MYWUZJCMWCOHBA-VIFPVBQESA-N methamphetamine Chemical compound CN[C@@H](C)CC1=CC=CC=C1 MYWUZJCMWCOHBA-VIFPVBQESA-N 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 108091064355 mitochondrial RNA Proteins 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 210000003097 mucus Anatomy 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 229940048195 n-(hydroxyethyl)ethylenediaminetriacetic acid Drugs 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 238000007826 nucleic acid assay Methods 0.000 description 1
- 150000003833 nucleoside derivatives Chemical class 0.000 description 1
- 238000002515 oligonucleotide synthesis Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000013610 patient sample Substances 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 150000004713 phosphodiesters Chemical class 0.000 description 1
- OJMIONKXNSYLSR-UHFFFAOYSA-N phosphorous acid Chemical compound OP(O)O OJMIONKXNSYLSR-UHFFFAOYSA-N 0.000 description 1
- 102000020233 phosphotransferase Human genes 0.000 description 1
- 210000002381 plasma Anatomy 0.000 description 1
- 239000013612 plasmid Substances 0.000 description 1
- 229920001281 polyalkylene Polymers 0.000 description 1
- 229920000447 polyanionic polymer Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920000193 polymethacrylate Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 1
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000005033 polyvinylidene chloride Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 238000010424 printmaking Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 1
- 239000002336 ribonucleotide Substances 0.000 description 1
- 125000002652 ribonucleotide group Chemical group 0.000 description 1
- 108091092562 ribozyme Proteins 0.000 description 1
- 125000006413 ring segment Chemical group 0.000 description 1
- 238000007790 scraping Methods 0.000 description 1
- 210000000582 semen Anatomy 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000008279 sol Substances 0.000 description 1
- 210000003802 sputum Anatomy 0.000 description 1
- 208000024794 sputum Diseases 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- GZCRRIHWUXGPOV-UHFFFAOYSA-N terbium atom Chemical compound [Tb] GZCRRIHWUXGPOV-UHFFFAOYSA-N 0.000 description 1
- 229960002180 tetracycline Drugs 0.000 description 1
- 229930101283 tetracycline Natural products 0.000 description 1
- 235000019364 tetracycline Nutrition 0.000 description 1
- 150000003522 tetracyclines Chemical class 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- RYYWUUFWQRZTIU-UHFFFAOYSA-K thiophosphate Chemical compound [O-]P([O-])([O-])=S RYYWUUFWQRZTIU-UHFFFAOYSA-K 0.000 description 1
- XUIIKFGFIJCVMT-UHFFFAOYSA-N thyroxine-binding globulin Natural products IC1=CC(CC([NH3+])C([O-])=O)=CC(I)=C1OC1=CC(I)=C(O)C(I)=C1 XUIIKFGFIJCVMT-UHFFFAOYSA-N 0.000 description 1
- 210000002700 urine Anatomy 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
- B01L3/5027—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
- B01L3/50273—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means or forces applied to move the fluids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
- B01L3/5027—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
- B01L3/502738—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by integrated valves
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/505—Containers for the purpose of retaining a material to be analysed, e.g. test tubes flexible containers not provided for above
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C—MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C1/00—Magnetic separation
- B03C1/005—Pretreatment specially adapted for magnetic separation
- B03C1/01—Pretreatment specially adapted for magnetic separation by addition of magnetic adjuvants
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2200/00—Solutions for specific problems relating to chemical or physical laboratory apparatus
- B01L2200/10—Integrating sample preparation and analysis in single entity, e.g. lab-on-a-chip concept
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/08—Geometry, shape and general structure
- B01L2300/0809—Geometry, shape and general structure rectangular shaped
- B01L2300/0825—Test strips
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/18—Means for temperature control
- B01L2300/1838—Means for temperature control using fluid heat transfer medium
- B01L2300/185—Means for temperature control using fluid heat transfer medium using a liquid as fluid
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2400/00—Moving or stopping fluids
- B01L2400/04—Moving fluids with specific forces or mechanical means
- B01L2400/0403—Moving fluids with specific forces or mechanical means specific forces
- B01L2400/0406—Moving fluids with specific forces or mechanical means specific forces capillary forces
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2400/00—Moving or stopping fluids
- B01L2400/04—Moving fluids with specific forces or mechanical means
- B01L2400/0403—Moving fluids with specific forces or mechanical means specific forces
- B01L2400/043—Moving fluids with specific forces or mechanical means specific forces magnetic forces
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2400/00—Moving or stopping fluids
- B01L2400/04—Moving fluids with specific forces or mechanical means
- B01L2400/0475—Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure
- B01L2400/0481—Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure squeezing of channels or chambers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2400/00—Moving or stopping fluids
- B01L2400/06—Valves, specific forms thereof
- B01L2400/0633—Valves, specific forms thereof with moving parts
- B01L2400/0655—Valves, specific forms thereof with moving parts pinch valves
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2400/00—Moving or stopping fluids
- B01L2400/06—Valves, specific forms thereof
- B01L2400/0677—Valves, specific forms thereof phase change valves; Meltable, freezing, dissolvable plugs; Destructible barriers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2400/00—Moving or stopping fluids
- B01L2400/06—Valves, specific forms thereof
- B01L2400/0677—Valves, specific forms thereof phase change valves; Meltable, freezing, dissolvable plugs; Destructible barriers
- B01L2400/0683—Valves, specific forms thereof phase change valves; Meltable, freezing, dissolvable plugs; Destructible barriers mechanically breaking a wall or membrane within a channel or chamber
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2400/00—Moving or stopping fluids
- B01L2400/06—Valves, specific forms thereof
- B01L2400/0688—Valves, specific forms thereof surface tension valves, capillary stop, capillary break
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L7/00—Heating or cooling apparatus; Heat insulating devices
- B01L7/52—Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C—MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C2201/00—Details of magnetic or electrostatic separation
- B03C2201/18—Magnetic separation whereby the particles are suspended in a liquid
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C—MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C2201/00—Details of magnetic or electrostatic separation
- B03C2201/26—Details of magnetic or electrostatic separation for use in medical or biological applications
Definitions
- This invention relates to reaction containers in which nucleic acids are amplified and detected without exposing the nucleic acid to the environment or the environment to amplified nucleic acid.
- Nucleic acid hybridization has been employed for investigating the identity and establishing the presence of nucleic acids. Hybridization is based on complementary base pairing. When complementary single stranded nucleic acids are incubated together, the complementary base sequences pair to form double stranded hybrid molecules.
- ssDNA single stranded deoxyribonucleic acid
- RNA ribonucleic acid
- nucleic acid hybridization has great potential in diagnosing disease states associated with unique nucleic acid sequences. These unique nucleic acid sequences may result from genetic or environmental change in DNA by insertions, deletions, point mutations, or by acquiring foreign DNA or RNA by means of infection by bacteria, molds, fungi, and viruses. Nucleic acid hybridization has, until now, been employed primarily in academic and industrial molecular biology laboratories.
- nucleic acid hybridization as a diagnostic tool in clinical medicine is limited because of the frequently very low concentrations of disease related DNA or RNA present in a patient's body fluid or tissue and the unavailability of a sufficiently sensitive method of nucleic acid hybridization analysis.
- PCR polymerase chain reaction
- the two different PCR primers which anneal to opposite strands of the DNA, are positioned so that the polymerase catalyzed extension product of one primer can serve as a template strand for the other, leading to the accumulation of a discrete double stranded fragment whose length is defined by the distance between the 5' ends of the oligonucleotide primers.
- -Another method that has recently been described is an amplification of a single stranded polynucleotide using a single polynucleotide primer.
- the single stranded polynucleotide that is to be amplified contains two non-contiguous sequences that are complementary to one another and, thus, are capable of hybridizing together to form a stem-loop structure.
- This single stranded polynucleotide may be already part of a polynucleotide analyte or may be created as the result of the presence of a polynucleotide.
- LCR ligase chain reaction
- NASBA nucleic acid sequence based amplification
- Another method for amplifying nucleic acids is the Q-beta-replicase method, which relies on the ability of Q-beta-replicase to amplify a specific RNA substrate exponentially and is used as a label to detect binding rather than a method to create more target nucleic acid.
- nucleic acid probes One method for detecting nucleic acids is to employ nucleic acid probes.
- One method utilizing such probes is described in U.S. Patent No. 4,868,104, the disclosure of which is incorporated herein by reference.
- a nucleic acid probe may be, or may be capable of being, labeled with a reporter group or may be, or may be capable of becoming, bound to a support.
- Detection of signal depends upon the nature of the label or reporter group. If the label or reporter group is an enzyme, additional members of the signal producing system would include enzyme substrates and so forth.
- the product of the enzyme reaction is preferably a luminescent product, or a fluorescent or non-fluorescent dye, any of which can be detected spectrophotometrically, or a product that can be detected by other spectrometric or electrometric means.
- the label is a fluorescent molecule
- the medium can be irradiated and the fluorescence determined. Where the label is a radioactive group, the medium can be counted to determine the radioactive count.
- the amplification of nucleic acids has been carried out in stoppered containers to obtain the desired number of copies. Then, the container is opened and the amplification medium is withdrawn and transferred to a detection apparatus. Alternatively, the reagents used for detection are added to the container used for the amplification and the detection is carried out in the same container.
- a technique is unsatisfactory for convenient and widespread use of amplification technology because aerosols are produced in the act of opening the containers and during the transfer of fluids. Such aerosols contain a few molecules of the amplified nucleic acid, which are released into the environment. Normally, such few molecules in the environment are not of great concern.
- a containment cuvette for amplification of nucleic acids has been disclosed.
- the cuvette and its method of use are designed to prevent amplified nucleic acid from being released into the atmosphere.
- the need still exists for devices and methods for carrying out assays that avoid false positives caused by cross-contamination of samples, avoid handling of liquid reagents, are* 5 preferably homogeneous and are automatable with relatively simple instrumentation.
- a containment cuvette for conducting PCR is disclosed in European Patent Application publication number 0 381 501 (Schnipelsky, et al.) .
- Detection reagents are either pre-incorporated into compartments in the cuvette or are added after amplification. In the latter situation a check valve prevents amplified nucleic acid from being released. Transfer of liquids between compartments is achieved by the the use of flexible compartment walls and an external pressure source or by pistons that are part of the cuvette and operate on the compartments as a piston within a piston chamber.
- a device for processing biological specimens for analysis of nucleic acids is described in U.S. Patent No. 5,188,963. The device has a hinged compartment facilitating automation of DNA- and RNA-based diagnostics and genetic surveillance and detection. Specimens are embedded in a matrix in the carrier. The matrix is then treated by one or more of the techniques such as amplification, electrophoresis, and hybridization as selected for the desired analysis and then the sample is treated to detect the
- PCR A process for amplifying, detecting and/or cloning nucleic acid sequences otherwise referred to as PCR is disclosed in U.S. Patent No ⁇ . 5,008,182, 4,965,188, 4,800,159, 4,683,195 and 4,683,202. Sequence polymerization by PCR is described by Saiki, et al., (1986) Science, 230 : 1350-1354.
- U.S. Patent Application Serial No. 07/555,323 filed July 19, 1990 discloses methods for producing a polynucleotide for use in single primer amplification.
- U.S. Patent Application Serial No. 07/555,968 filed July 19, 1990 describes a method for producing a molecule containing an intramolecular base-pair structure.
- U.S. Patent Application Serial No. 07/776,538 filed October 11, 1991 discloses methods for producing a polynucleotide for use in single primer amplification.
- U.S. Patent Application Serial No. 07/923,079 filed July 31, 1992 describes a method for introducing sequences at the 3' end of polynucleotides. The disclosures of these six applications are incorporated herein by reference in their entirety.
- LCR ligase chain reaction
- NASBA nucleic acid sequence based amplification
- Q-beta-replicase amplification of RNA is also discussed in European Patent Applications Nos. 439,182 (Backman I) and 473,155 (Backman II) .
- the method comprises treating the reaction mixture suspected of containing the amplified nucleic acid analyte under conditions such that the analyte, if present, causes a photosensitizer and a chemiluminescent compound to come into " close proximity.
- the photosensitizer generates singlet oxygen and activates the chemiluminescent compound when it is in close proximity.
- the activated chemiluminescent compound subsequently produces light.
- the amount of light produced is related to the amount of analyte in the medium.
- the present invention includes devices and methods for using the devices for conducting amplifications of nucleic acids.
- One device in accordance with the present invention comprises (a) a sample receiving chamber, (b) a plurality of additional chambers, at least one of the additional chambers containing reagents for carrying out an assay for the determination of a nucleic acid, (c) means for detecting a signal generated by the reagents, (d) means for permitting fluid communication between the additional chambers, (e) means for introducing a sample into the device, and (f) means for separating the nucleic acid analyte from the remainder of the sample and introducing the nucleic acid analyte into one of the additional chambers, which means comprises suspendible particles.
- Another embodiment in accordance with the present invention is a device for amplifying and detecting a nucleic acid analyte comprising: (a) a port for introducing a sample suspected of containing a nucleic acid analyte into the device, (b) a first chamber, for receiving the sample, in fluid communication with the port, wherein fluid communication between the port and the first chamber is capable of being sealed off, (c) a channel, containing a liquefiable gel, in fluid communication with the first chamber, (d) a second chamber containing reagents for amplifying the nucleic acid analyte, wherein fluid communication between the second chamber and the channel is prevented by a temporary seal, and (e) a third chamber, wherein fluid communication between the second chamber and the third chamber is prevented by a temporary seal.
- Another embodiment in accordance with the present invention is a method for amplifying and detecting a nucleic acid analyte using a sealable device.
- the method comprises the steps of: (a) introducing a sample suspected of containing the nucleic acid analyte into a first chamber of the device preceding or following combining the sample with particles capable of binding the nucleic acid analyte, (b) transporting the particles from the first chamber through a channel containing air or a liquefiable gel into a second chamber, wherein the channel provides fluid communication between the chambers, (c) sealing off the channel, (d) establishing fluid communication between the second chamber and a third chamber of the device, (e) introducing into the third chamber a liquid medium for reagents for amplifying the nucleic acid analyte, when such liquid medium is not already present, (f) transporting the analyte into the third chamber, (g) subjecting the medium to conditions for amplifying nucleic acids, (h)
- kits for conducting an assay for a nucleic acid analyte comprise in packaged combination a device as described above.
- the kits can further comprise in packaged combination particles capable of binding the nucleic acid analyte or reagents for amplification or detection of nucleic acids if not present in the device.
- FIG. 1 is a plan view of a device in accordance with the present invention.
- Fig. 2 is a plan view of the device of Fig. 1 with its top portion folded on itself.
- Fig. 3 is a plan view of another device in accordance with the present invention.
- Fig. 4 is a cross-sectional view of the device of Fig. 3.
- Fig. 5 is a plan view of another device in accordance with the present invention.
- Fig. 6 is a plan view of another device in accordance with the present invention.
- the present invention provides devices and methods for conducting nucleic acid amplification reactions.
- the present invention is particularly useful for the homogeneous assay of nucleic acids used in conjunction with an amplification procedure.
- the present devices differ from known devices by, inter alia, the presence of a liquefiable gel or an air gap for transporting the sample bound to particles within a portion of the device.
- the present device can be utilized to conduct homogeneous nucleic acid assays, that is, assays not requiring a separation step.
- a further distinction is that some of the present devices have a tandem arrangement of channels and chambers.
- the present devices do not include means for separating assay components in a detection chamber as required in some of the prior art devices. .• ⁇
- Nucleic acid or polynucleotide analyte a compound or composition to be measured that is a polymeric nucleotide or a portion of a polymeric nucleotide, which in the intact natural state can have about 200 to 500,000 or more nucleotides and in an isolated state can have about 30 to 50,000 or more nucleotides, usually about 100 to 20,000 nucleotides, more frequently 500 to 10,000 nucleotides. It is thus obvious that isolation of the analyte from the natural state often results in fragmentation of the polymeric nucleotide.
- the polynucleotide analytes include nucleic acids from any source in purified or unpurified form including DNA (dsDNA and ssDNA) and RNA, including t-RNA, m-RNA, r-RNA, mitochondrial DNA and RNA, chloroplast DNA and RNA, DNA-RNA hybrids, or mixtures thereof, genes, chromosomes, plasmids, the genomes of biological material such as microorganisms, e.g., bacteria, yeasts, viruses, viroids, molds, fungi, plants, animals, humans, and fragments thereof, and the like.
- the polynucleotide analyte can be only a minor fraction of a complex mixture such as a biological sample.
- the analyte can be obtained from various biological materials by procedures well-known in the art. Some examples of such biological material by way of illustration and not limitation are disclosed in Table I of U.S. Patent Application Ser. No. 07/923,079 filed July 31, 1992, which Table I is incorporated herein by reference.
- the polynucleotide analyte may be treated to cleave the analyte to obtain a polynucleotide fragment that contains a target polynucleotide sequence. Such cleaving treatments may be accomplished, for example, by shearing or by treatment with a restriction endonuclea ⁇ e or other site specific chemical cleavage method.
- polynucleotide analyte can be used in its isolated state without further cleavage.
- the cleaved and uncleaved polynucleotide fragments may each be referred to herein as a v polynucleotide analyte.
- the polynucleotide analyte, or a cleaved fragment obtained from the polynucleotide analyte may be at least partially denatured or single stranded or treated to render it denatured or single stranded.
- treatments are well-known in the art and include, for instance, heat or alkali treatment.
- double stranded DNA when heated at 90-100° C. for a period of 10-20 seconds or more, produces denatured material.
- Sample the material suspected of containing the nucleic acid analyte.
- samples include biological fluids such as blood, serum, plasma, sputum, lymphatic fluid, semen, vaginal mucus, fece ⁇ , urine, spinal fluid, and the like; biological tissue such as hair and skin; and so forth.
- Other samples include cell cultures and the like, plants, food, forensic samples such as paper, fabrics and scrapings, water, sewage, medicinals, etc..
- the sample may be pretreated with reagents to liquefy the sample and release the nucleic acids from binding substances. Such pretreatments are well-known in the art.
- Polynucleotide primer a polynucleotide, usually a synthetic polynucleotide, usually single stranded and selected in view of the known sequence of the polynucleotide analyte depending on the type of amplification to be conducted.
- the polynucleotide primer(s) are usually comprised of a sequence of at least 10 nucleotides, preferably, 20 to 90 nucleotides, more preferably, 24 to 64 nucleotides.
- polynucleotide primers can be obtained by biological synthesis or by chemical synthesis. For short sequences (up to about 100 nucleotides) chemical synthesis is frequently more economical as compared to biological synthesis. For longer sequences standard replication methods employed in molecular biology can be used such as the use of M13 for single stranded DNA as described by J. Messing, Methods Enzymol(1983) 101 : 20-78.
- in vitro enzymatic methods may be used such as polymerase catalyzed reactions.
- T7 RNA polymerase and a suitable DNA template can be used.
- DNA polymerase chain reaction (PCR) and single primer amplification are convenient.
- Deoxynucleoside triphosphates deoxynucleosides having a 5' -triphosphate substituent.
- the deoxynucleosides are pentose sugar derivatives of nitrogenous bases of either purine or pyrimidine derivation, covalently bonded to the 1' -carbon of the pentose sugar.
- the purine bases include adenine(A) , guanine(G) , inosine, and derivatives and analogs thereof.
- the pyrimidine bases include cytosine (C) , thymine (T) , uracil (U) , and derivatives and analogs thereof.
- the derivatives and analogs include any substrate of a polydeoxynucleotide polymerase that can be incorporated into a polynucleotide through catalysiB by ⁇ uch enzyme.
- the derivates and analogs are exemplified by those that are recognized and polymerized by the enzyme in a similar manner to the underivitized nucleoside triphosphates. Examples of such derivatives or analogs by way of illustration and not limitation are those that are modified with a reporter group, biotinylated, a ine modified, radiolabeled, alkylated, and the like and also include phosphorothioate, phosphite, ring atom modified derivatives, unnatural bases, and the like.
- the reporter group can be a fluorescent group such as fluorescein, a chemiluminescent group such a ⁇ luminol, a terbium chelator such as N- (hydroxyethyl) ethylenediaminetriacetic acid that is capable of detection by delayed fluorescence, and the like.
- Amplification of nucleic acids or polynucleotides any method that results in the formation of one or more copies of a nucleic acid or polynucleotide molecule, usually a nucleic acid or polynucleotide analyte, present in a medium.
- One such method for the enzymatic amplification of specific double stranded sequences of DNA is known a ⁇ the polymerase chain reaction (PCR), as described above.
- This in vitro amplification procedure is ba ⁇ ed on repeated cycles of denaturation, oligonucleotide primer annealing, and primer extension by thermophilic template dependent polynucleotide polymerase, resulting in the exponential increase in copies of the desired sequence of the polynucleotide analyte flanked by the primers.
- the two different PCR primers which anneal to opposite strands of the DNA, are positioned ⁇ o that the polymerase catalyzed extension product of one primer can serve a ⁇ a template strand for the other, leading to the accumulation of a discrete double stranded fragment whose length is defined by the distance between the 5' end ⁇ of the oligonucleotide primer ⁇ .
- the single ⁇ tranded polynucleotide that is to be amplified contains two non-contiguous sequence ⁇ that are complementary to one another and, thu ⁇ , are capable of hybridizing together to form a stem- loop structure.
- This single ⁇ tranded polynucleotide may be already part of a polynucleotide analyte or may be created a ⁇ the re ⁇ ult of the presence of a polynucleotide.
- LCR ligase chain reaction
- NASBA nucleic acid sequence ba ⁇ ed amplification
- Another method for amplifying a specific group of nucleic acids is the Q-beta-replicase method, which relie ⁇ on the ability of Q-beta- replica ⁇ e to amplify it ⁇ RNA ⁇ ub ⁇ trate exponentially.
- the polydeoxynucleotide polymerase is a template dependent polydeoxynucleotide polymerase and utilizes the deoxynucleoside triphosphates as building blocks for extending the 3' end of the polynucleotide primer to provide a sequence complementary with a single stranded polynucleotide sequence.
- the catalysts are enzymes, ⁇ uch as DNA polymerases, for example, prokaryotic DNA polymerase (I, II, or III) , T4 DNA polymerase, T7 DNA polymerase, Klenow fragment, reverse transcriptase.
- Vent DNA polymerase (Vent is a trademark of New England BioLabs, Beverly, MA) , Pfu DNA polymerase, Ta ⁇ DNA polymerase, and the like, derived from any source such as cells, bacteria, for example, E. coli. plants, animals, virus, thermophilic bacteria, and so forth.
- reverse transcriptase is used as at least one of the polynucleotide polymerases to facilitate extension of the primer along the complementary strand ⁇ of the polynucleotide analyte.
- Hybridization and binding -- in the context of nucleotide ⁇ equences these terms are used interchangeably herein.
- the ability of two polynucleotide sequence ⁇ to hybridize with each other is based in a large part on the degree of complementarity of the two polynucleotide sequences, which in turn is based on the fraction of matched complementary nucleotide pairs.
- the more nucleotide ⁇ in a given sequence that are complementary to another sequence the more stringent the conditions can be for hybridization and the more specific will be the binding of the two sequence ⁇ .
- Another factor to be con ⁇ idered i ⁇ the nature of the nucleotide pair ⁇ that are oppo ⁇ ite in the two strand ⁇ .
- Some nucleotide pair ⁇ , such a ⁇ G and C have greater binding affinities for one another than do other pairs.
- Increased stringency is achieved by elevating the temperature, increasing the ratio of cosolvents, lowering the salt concentration, and the like.
- Homologous or substantially identical In general, two polynucleotide sequence ⁇ that are identical, or at least can each hybridize to the same polynucleotide ⁇ equence, are homologous.
- the two sequence ⁇ are h omologous or substantially identical where the sequences each have at least 90%, preferably 100%, of the same or analogous base sequence where thymine (T) and uracil (U) are con ⁇ idered the same.
- T thymine
- U uracil
- the ribonucleotides A, U, C and G are taken a ⁇ analogous to the deoxynucleotides dA, dT, dC, and dG, re ⁇ pectively.
- Homologous ⁇ equences can both be DNA or one can be DNA and the other RNA.
- Complementary--two ⁇ equences are complementary when the sequence of one can bind to the sequence of the other in an anti-parallel sense wherein the 3' end of each sequence bind ⁇ to the 5' end of the other ⁇ equence and, for example, among the natural ba ⁇ es each A, T(U), G, and C of one sequence i ⁇ then aligned with a T(U) , A, C, and G, respectively, of the other ⁇ equence.
- sbp member one of two different molecule ⁇ , having an area on the surface or in a cavity that specifically binds to and is thereby defined as complementary with a particular spatial and polar organization of the other molecule.
- the members of the ⁇ pecific binding pair are referred to a ⁇ ligand and receptor (antiligand) .
- the ⁇ e may be member ⁇ of an immunological pair such as antigen-antibody, or may be operator-repressor, nuclease-nucleotide, biotin-avidin, hormone ⁇ -hormone receptor ⁇ , nucleic acid duplexes, IgG-protein A, DNA-DNA, DNA-RNA, and the like.
- Ligand any compound for which a receptor naturally exi ⁇ ts or can be prepared.
- Receptor any compound or composition capable of recognizing a particular ⁇ patial and polar organization of a molecule, e.g., epitopic or determinant ⁇ ite.
- Illu ⁇ trative receptors include naturally occurring receptors, e.g., thyroxine binding globulin, antibodies, enzyme ⁇ , Fab fragments, lectins, nucleic acid ⁇ , repressors, protection enzyme ⁇ , protein A, complement component Clq, DNA binding protein ⁇ or ligand ⁇ and the like.
- Small organic molecule a compound of molecular weight le ⁇ than
- the small organic molecule can provide a means for attachment of a nucleotide sequence to a label or to a particle.
- the non-magnetic particle ⁇ are u ⁇ ually diamagnetic or paramagnetic with a magnetic susceptibility (x) of less than 1X10' 5 e uj/Oecm 3 .
- the non-magnetic particle ⁇ may be organic or inorganic, swellable or non-swellable, porous or non-porous, usually of a density heavier than water, generally about 1.1 to 13, preferably 2 to 10 g/ml.
- the particles can be, for example, organic an inorganic polymers, latex particles, inorganic powder ⁇ ⁇ uch as silica, magnesium ⁇ ulfate, and alumina; natural polymeric materials, ⁇ ynthetic or modified naturally occurring polymers, such a ⁇ nitrocellulose, cellulose acetate, poly (vinyl chloride) , polyacrylamide, cross linked dextran, agarose, polyacrylate, polyethylene, polypropylene, poly(4-methylbutene) , poly ⁇ tyrene, polymethacrylate, poly(ethylene terephthalate) , nylon, poly(vinyl butyrate) , etc.; either u ⁇ ed by them ⁇ elve ⁇ or in conjunction with other materials; glass available as Bioglass, ceramics, metals, and the like.
- the magnetic particles are intrinsically magnetically responsive or have been rendered magnetic by, for example, attachment to a magnetically responsive substance or by incorporation of such substance into the particles.
- the magnetic particles can be paramagnetic, ferromagnetic, or superparamagnetic, usually paramagnetic or superparamagnetic and have magnetic susceptibilities (x) of at least 5X10' 5 , usually 4X10 e uj/Oecm 3 .
- Exemplary of the magnetic component of particles that are intrinsically magnetic or magnetically responsive are complex salts and oxides, borides and sulfides of iron, cobalt, nickel and rare earth elements having high magnetic susceptibility, e.g., hematite, ferrite and so forth.
- the magnetic component of other ⁇ uch particles includes pure metals or alloys comprising one or more of these elements.
- Binding of sbp member ⁇ to particles may be accomplished by well-known techniques, commonly available in the literature. See, for example,
- Label or reporter group or reporter molecule a member of the signal producing system.
- the label or reporter group or molecule is conjugated to or becomes bound to a polynucleotide probe or a polynucleotide primer and is capable of being detected directly, or indirecting by being bound through a specific binding reaction, to a detectable sub ⁇ tance.
- Label ⁇ able to be detected indirectly include polynucleotide ⁇ such a ⁇ a polynucleotide primer or a specific polynucleotide sequence that can act as a ligand for a complementary polynucleotide or provide a template for amplification or ligation or act a ⁇ a ligand such a ⁇ for a repressor protein; hapten ⁇ ; antibodie ⁇ ; receptors such as avidin; ligands such as biotin and the like.
- Labels able to be detected directly may be isotopic or nonisotopic, u ⁇ ually non-i ⁇ otopic, and can be a catalyst, ⁇ uch as an enzyme, ribozyme, a substrate for a replicase such as QB replicase, promoter, dye, fluore ⁇ cent molecule, chemiluminescer, coenzyme, enzyme sub ⁇ trate, radioactive group, a particle such as latex or carbon particle, metal sol, crystallite, liposome, cell, etc., which may or may not be further labeled with a dye, catalyst or other detectible group, and the like.
- a catalyst ⁇ uch as an enzyme, ribozyme, a substrate for a replicase such as QB replicase, promoter, dye, fluore ⁇ cent molecule, chemiluminescer, coenzyme, enzyme sub ⁇ trate, radioactive group, a particle such as latex or carbon particle, metal sol, crystallite, liposome, cell, etc., which may or
- the label is a member of a ⁇ ignal producing ⁇ y ⁇ tem and can generate a detectable signal either alone or together with other member ⁇ of the signal producing system.
- the label can be bound directly to a nucleotide ⁇ equence or can become bound thereto by being bound to an sbp member complementary to an sbp member that is bound to a nucleotide sequence.
- Method ⁇ for binding of labels to nucleotide ⁇ are well-known and described, for example, in U.S Patent No. 4,948,882 (Ruth), U.S. Patent No. 5,082,830 (Brakel, et al.), U.S. Patent No. 4,894,325 (Koser, et al.) and U.S. Patent No. 4,987,065 (Stavrianopolis, et al.) .
- the signal producing system may have one or more components, at least one component being the label or reporter group.
- the signal producing ⁇ ystem generates a signal that relate ⁇ to the presence or amount of nucleic acid analyte in a sample.
- the signal producing system includes all of the reagents required to produce a measurable signal.
- the label is normally bound to an sbp member complementary to an sbp member that is bound to or part of a nucleotide sequence.
- components of the signal producing system may be included in a developer solution and can include substrates, enhancers, activators, chemilumine ⁇ cent compound ⁇ , cofactors, inhibitors, scavengers, metal ions, specific binding sub ⁇ tances required for binding of signal generating substances, and the like.
- Other components of the signal producing system may be coenzyme ⁇ , subBtance ⁇ that react with enzymic product ⁇ , other enzymes and catalyst ⁇ , and the like.
- the ⁇ ignal producing system provides a signal detectable by external means, such as detection of electromagnetic radiation, de ⁇ irably by visual examination.
- the signal-producing system is de ⁇ cribed more fully in U.S. Patent Application Serial No. 07/555,323, filed July 19, 1990, the relevant disclosure of which is incorporated herein by reference.
- buffers will normally be present in the medium, a ⁇ well as stabilizers for the medium and the reaction components.
- proteins may be included, such as albumins, organic ⁇ olve ⁇ t ⁇ ⁇ uch a ⁇ formamide, quaternary ammonium salts, polyanions ⁇ uch as dextran ⁇ ulfate, ⁇ urfactant ⁇ , particularly non-ionic surfactants, binding enhancers, e.g., polyalkylene glycol ⁇ , or the like.
- Device 10 has a sample receiving channel 12 with port 14 for introduction of sample into device 10.
- Channel 12 is in fluid communication with first chamber 16 and with second channel 18, which is in potential fluid communication with second chamber 20.
- the fluid communication between channel 18 and chamber 20 i ⁇ temporarily prevented by temporary seal 22, thus rendering the fluid communication between channel 18 and chamber 20 potential.
- Both channel 18 and chamber 20 are filled with a heat meltable or liquifiable gel 24.
- Chamber 20 is in potential fluid communication with a third channel 26, having a temporary seal 27.
- Channel 26 is in fluid communication with third chamber 28.
- Device 10 is constructed such that top portion 30 i ⁇ foldable on itself along line 32, thus permitting channel 12 to be sealed off from the environment as seen in Fig. 2.
- This i ⁇ by way of example and not limitation. Sealing of the device after sample has been introduced through port 14 may be accompli ⁇ hed by other mean ⁇ ⁇ uch as heat sealing of the port or of channel 12 at a point adjacent to port 14.
- port 14 may be closed by pinching, stoppering, capping and the like.
- Port 14 may also comprise a ⁇ elf- ⁇ ealing ela ⁇ tomer.
- the liquefiable or heat meltable gel i ⁇ a thermally liquefiable gel that may be a poly ⁇ accharide, polyacrylate, p ⁇ lypeptide, polyvinylalcohol, polyether, poly ⁇ iloxane or the like.
- the thermally liquefiable gel i ⁇ liquefiable at a temperature of about 35 to 105° C, preferably, 45 to 95° C, more preferably, 60 to 70° C. It is important to note that with some gels it is not necessary that the entire gel be liquified to achieve the neces ⁇ ary movement of particle ⁇ with the nucleic acid analyte bound thereto through the gel.
- the thermally liquefiable gel when liquefied, ha ⁇ a vi ⁇ co ⁇ ity that permit ⁇ movement of the nucleic acid bound to particle ⁇ through the gel; usually a viscosity of about 0.005 to 0.5 poise, preferably 0.01 to 0.05 poise.
- the mas ⁇ density of the gel may be adjusted by adding to the gel a heavy metal salt, such as cesium chloride, or polyiodinated aromatic compounds such as those sold under the trade name NYCODENZ, in an amount sufficient to achieve the desired density, preferably 1.05 to 1.2 g/cm 3 .
- the mass density of the gel is greater than that of the sample to ensure that; the sample and the liquified gel are stably stratified, thereby avoiding mixing and sub ⁇ equent contamination of the remainder of the device with the sample.
- the density or vi ⁇ co ⁇ ity of the gel is greater than that of the sample to prevent the liquified gel and the sample from mixing, thereby avoiding contamination of the remainder of the device with the sample.
- thermally liquefiable gel by way of example and not limitation, are the following: polysaccharide ⁇ such as agarose; polyacrylates such as polyacrylamide; polypeptides such as gelatin; polyvinylalcohols; polyether ⁇ ; and polysiloxanes.
- a preferred gel to adjust the density is agarose (0.5% w/v) (e.g., SeaPlaque ® , FMC, Bioproducts, Rockland, ME with a polyiodinated aromatic compound ⁇ uch as Nycodenz ® which is a non-ionic tri-iodinated derivative of benzoic acid with three aliphatic hydrophilic side chains.
- Nycodenz ® The sy ⁇ tematic name of Nycodenz ® is 5- (n-2,3-dihydroxypropylacetamid ⁇ ) -2,4,6-tri-iodo-n, n'- bi ⁇ (2,3 dihydroxypropyl) i ⁇ ophthalamide. (Nycodenz ® , Nycomed AS, O ⁇ lo, Norway) .
- the liquefiable gel ⁇ erve ⁇ as the only solvent for the sample.
- the appropriate channel and chamber of the device can be filled with gel during manufacture of the device by injecting molten gel into the channel or chamber or both. Air pocket formation is preferably avoided.
- the device may be supported vertically on a rigid backing to prevent the gel from being disrupted as the device is handled during the procedure. The gel i ⁇ then cooled to facilitate ⁇ olidification.
- the breaking of a frangible ⁇ eal is one means for permitting the establishment of fluid communication between a channel and a chamber or between chambers.
- Other means for permitting the establishment of fluid communication includes relieving the pressure on a seal produced by pressure on the flexible wall of a channel, applying hydrostatic pressure to a channel sealed by surface tension, charge, and/or Van der Waals forces, unbinding a channel that is sealed as a result of a bend, melting a wax, crystalline, or gel plug in a channel, photodepolymerization of a polymer comprising a gel, etc.
- Fluid communication between a channel and a chamber or between chambers can be terminated by means for sealing off the fluid communication.
- Such means can be, for example, a ⁇ eal produced by application of external pres ⁇ ure, a portion of the device foldable on itself as described above for the port, heatsealing, freezing, photopolymerization of a monomer, and so forth.
- device ⁇ in accordance with the pre ⁇ ent invention are preferably compo ⁇ ed of at least one flexible layer and a second layer that may be flexible or rigid.
- the device can be manufactured from two sheets of flexible plastic sealed together and having interior blisters or bubbles forming the chambers and channels.
- the first chamber i ⁇ larger than the other chambers, but need not be.
- the volume of the sample receiving or first chamber is usually about 0.02 to 2 ml, preferably, 0.1 to 1.0 ml.
- the volume of each of the remaining chambers is usually independently about 0.02 to 1 ml, preferably, 0.1 to .5 ml.
- the volume of the liquefiable gel is usually about 0.1 to 3 ml, preferably, 0.2 to 2 ml. Generally, this volume of gel i ⁇ di ⁇ tributed between the first channel and the second chamber, both of which contain the gel.
- the material for use in manufacturing a device in accordance with the present invention should be thermally stable, provide a moisture barrier, be chemically compatible with the reagents u ⁇ ed for the handling and tran ⁇ fer of ⁇ ample and amplification and detection of amplified nucleic acid and compatible with the variou ⁇ procedure ⁇ such as heatsealing employed in using the device, and be sealable and formable.
- the material for fabrication of the pre ⁇ ent device should be flexible enough to permit the device to be manipulated during liquid transfer steps involving squeezing of parts of the device to force contents from one area of the device to another.
- the material should not soften appreciably at temperature ⁇ up to about 100° C.
- Moi ⁇ ture barrier propertie ⁇ of the material can be quantified by the moisture vapor tran ⁇ mi ⁇ ion rate (MVTR) measured in g-mil/100 sq. in. /24 hour.
- MVTR at room temperature for the material is le ⁇ than about 0.2, preferably le ⁇ than, 0.05 g- mil/100 ⁇ q in /24 hour.
- U ⁇ e of lamination of two or more different sheets of plastic film helps to reduce the MVTR values.
- the thickne ⁇ of the pla ⁇ tic film or ⁇ heet ⁇ used in the manufacture of a device in accordance with the present invention i ⁇ about 1 to 6 mil, preferably, 2 to 4 mil.
- the ⁇ e values apply to the plastic film as a single material or as a laminate.
- Suitable pla ⁇ tic ⁇ that may be u ⁇ ed in the present device are, by way of example and not limitation, polyolefins ⁇ uch as polypropylene and low or medium density polyethylene; ethylene-vinyl acetate; polyvinylidene chloride; chlorotrifluoroethane; and the like and laminations of two or more of the above. It is also within the scope of the present invention to use laminates of one or more of the above plastics with a pla ⁇ tic other than that recited specifically above a ⁇ long as the requisite characteristics of the device are obtained. Frequently, the device is comprised of two plastic films, u ⁇ ually heat sealed together.
- the device may further be mounted on a rigid backing, usually plastic such as polyvinylchloride (PVC) , polycarbonate, nylon, polyethylene, etc., or glas ⁇ or metal.
- a rigid backing usually plastic such as polyvinylchloride (PVC) , polycarbonate, nylon, polyethylene, etc., or glas ⁇ or metal.
- PVC polyvinylchloride
- one plastic film can be sealed directly to a rigid backing, which then usually is. a plastic material.
- one sheet of plastic used to form the device is formed into bubbles or blisters to make the various channels and chambers of the device. This is usually accomplished by stretching the sheet or film of pla ⁇ tic over or into a mold. Thermoforming is the most common method of accomplishing this molding. The film i ⁇ placed on a forming die that ha ⁇ been cut to create the ⁇ hape ⁇ of the blisters. Vacuum and heat are applied during the thermoforming process. The plastic used in this sheet must flow and thin so that it can be formed into the appropriate shape ⁇ . Laminate ⁇ are particularly suitable for this purpose.
- the film is formed into the desired shape, it is joined with another film or sheet of plastic or a backing, which may or may not be of the same composition as the first film.
- Numerous methods are available to join the plastic films together.
- One such method i ⁇ heatsealing using a hot die.
- Many apparatus for heatsealing are commercially available.
- Other methods that are variations of heatsealing include ultrasonic welding, RF sealing and vibration sealing.
- Heatsealing i ⁇ often carried out u ⁇ ing a laminate with a ⁇ pecific heat ⁇ eal layer on the side to be ⁇ ealed, typically polyethylene or ethylene vinyl acetate.
- Other method ⁇ for joining the pla ⁇ tic film ⁇ are ⁇ olvent bonding and adhesive bonding.
- the device is about 2 to 25 cm, preferably, 4 to 15 cm, in length, about 8 to 30 cm, preferably, 10 to 20 mm, in width, and about 0.1 to 4 mm, preferably, 2 to 2 mm, in depth.
- the material used to make the dies for the forming and heat ⁇ ealing step ⁇ should preferably allow low heat flux into the die, thereby decreasing the gradient across the plastic films. Heat seal temperature can then be reached at lower platen temperatures.
- the material preferably should be easy to machine and able to hold its shape after many applications of heat and pre ⁇ ure.
- the material should be slightly compressible under the platen pres ⁇ ure ⁇ employed in the forming and heatsealing step ⁇ .
- Suitable material ⁇ are printmaking linoleum, e.g., ⁇ uch as manufactured by Speedball Printma ⁇ ter ® (Hunt Mfg. Co., Philadelphia, PA) metal ⁇ uch a ⁇ aluminum; ⁇ ilicone rubber; ga ⁇ ket paper; phenolic compo ⁇ ite; laboratory labeling tape; and the like.
- the heat ⁇ ealing step i ⁇ conducted at a platen temperature of about 260 to 320, preferably, 280 to 300°F. with a contact time of about 0.2 to 5, preferably, 0.5 to 2 seconds and at a platen pres ⁇ ure of about 200 to 1200, preferably, 600 to 900 pounds per ⁇ quare inch (p ⁇ i) .
- the heat sealing conditions should be balanced to achieve both a weak frangible seal and a strong seal over the perimeter of the device.
- the frangible seal is formed in a groove that i ⁇ cut ⁇ hallow in the die.
- the interface in this groove heats up more ⁇ lowly than the perimeter ⁇ eal.
- the platen temperature is usually about 290 to 300°C. with a platen pressure of about 600 to 800 p ⁇ i and a contact time of about 0.7 to 0.9 seconds.
- the platen is lifted before the groove seal reaches melt strength.
- the frangible seal in the present device should break with an applied force of about 5 to 15 pounds. A balance must be achieved between breaking the frangible seal and breaking the perimeter seal of the device.
- frangible and perimeter seal ⁇ Another method to achieve the appropriate frangible and perimeter seal ⁇ involve ⁇ interpo ⁇ ing at the point of the frangible seal a substance that interferes with the heatseal. This result ⁇ in a seal at that point that is weaker than the perimeter seal. Upon application of pressure to the channel or chamber containing the frangible seal, the seal breaks more readily than the perimeter seal.
- Such sub ⁇ tance ⁇ are generally oily or tacky and may be, by way of example and not limitation, a ⁇ olvent-ba ⁇ ed adhe ⁇ ive that retains some elasticity upon evaporation of the solvent such as a mixture of transfer tape adhesive (e.g., 3M Company) and silicone fluid di ⁇ olved in xylene and thinned with methylene chloride (1 part adhe ⁇ ive, 1 part ⁇ ilicone fluid, 2 parts xylene and 2 parts methylene chloride) , rubber cement thinned in methylene chloride (1 part rubber cement and 1 part methylene chloride) , a ⁇ ub ⁇ tance contained in the PAP Pen (Daido Sangyo, Japan), and the like.
- a ⁇ olvent-ba ⁇ ed adhe ⁇ ive that retains some elasticity upon evaporation of the solvent
- silicone fluid di ⁇ olved in xylene and thinned with methylene chloride (1 part adhe ⁇
- FIG. 3 and 4 A bli ⁇ ter pack device in accordance with the pre ⁇ ent invention is depicted in Fig ⁇ . 3 and 4.
- Device 40 ha ⁇ entry port 42 for introduction of ⁇ ample into device 40.
- Port 42 is in fluid communication with ⁇ a ple receiving chamber 44.
- the bottom portion 46 of chamber 44, channel 48 and chamber 50 are in fluid communication and are filled with a heat meltable or liquifiable gel 52.
- Neck 51 i ⁇ capable of being sealed off by application of pre ⁇ ure.
- Frangible ⁇ eal 54 in channel 56 prevent ⁇ fluid communication between chamber 50 and chamber 58.
- Chamber 50 may contain one or more reagent ⁇ for conducting an amplification of nucleic acid ⁇ and chamber 58 may contain one or more reagent ⁇ for the detection of amplified nucleic acid ⁇ .
- Another embodiment of the pre ⁇ ent invention i ⁇ a method for amplifying and detecting a nucleic acid analyte u ⁇ ing a ⁇ ealable device.
- the method compri ⁇ e ⁇ the steps of: (a) introducing a sample suspected of containing the nucleic acid analyte into a first chamber of the device preceding or following combining the sample with particles capable of binding the nucleic acid analyte, (b) transporting the particles from the first chamber through a channel containing air or a liquefiable gel into a ⁇ econd chamber, wherein the channel provides fluid communication between the chambers, (c) sealing off the channel, (d) establishing fluid communication between the second chamber and a third chamber of the device, (e) introducing into the third chamber a liquid medium for reagents for amplifying the nucleic acid analyte, when such liquid medium is not already present, (f) transporting the analyte into the third chamber, (g) subjecting the
- a first step the sample is combined with particles capable of binding the nucleic acid analyte.
- particle ⁇ capable of binding the nucleic acid analyte can be present in the first chamber 72 of device 70.
- the sample is introduced into the device through port 74 and top portion 94 is folded along line 92 to seal the port.
- the particles are capable of binding the nucleic acid analyte by virtue of having bound thereto a polynucleotide sequence capable of hybridizing to, and preferably complementary to, the nucleic acid analyte.
- the particles can be non-magnetic or magnetic, preferably magnetic.
- the particles are non-magnetic with a density heavier than water to permit separation from the medium containing the sample through settling and movement of the particles from the fir ⁇ t chamber through channel 76 to the second chamber 78 after breaking of frangible seal 79.
- the particles should have a density greater than that of the gel. The gel is in lower portion 80 of chamber 72 and in channel 76 of device 70.
- the ⁇ ample can be combined with magnetic particle ⁇ capable of binding the nucleic acid analyte and moved through the ⁇ ample medium or air, or through liquefied gel if a gel is employed, by application of a magnetic field gradient such a ⁇ by magnet 82 in Fig. 5.
- a magnetic field gradient such as a ⁇ by magnet 82 in Fig. 5.
- For magnetic transfer through a gel it is fir ⁇ t nece ⁇ ary to partially or fully liquefy the gel. Usually, this is accomplished by heating the channel or chamber containing the gel to an appropriate temperature.
- the magnetic particle mas ⁇ is transferred through the area of liquefication. The gel in at least this area should be at a vi ⁇ co ⁇ ity that permit ⁇ the particle ⁇ to move.
- the magnetic particle ma ⁇ s through an air pocket 108 in the device 100 of Fig. 6, for example, in the channel 106 leading from the fir ⁇ t chamber 104 to the second chamber 78.
- Medium containing ⁇ ample and magnetic particles i ⁇ introduced into device 100 through port 102.
- the medium 114 containing the magnetic particle ma ⁇ s is subjected to a magnetic field gradient produced by magnet 118 to pull the magnetic particle ⁇ tas ⁇ out of the medium and into air pocket 108, which is usually an unwetted area 116 of the plastic film forming the chambers and/or channels of the device through which the particle ma ⁇ must move.
- the magnetic particle ⁇ adhere to the inner pla ⁇ tic ⁇ urface of the channel and/or chamber.
- a detergent such as a ⁇ , for example, Tween 20 ® (Triton X100 ® , lecithin) or the like.
- a balance must be reached between elimination of adherence and increasing the wetting capability of the ⁇ urface by the detergent.
- a relatively strong magnetic field gradient is necessary to move the magnetic particle mas ⁇ along the pla ⁇ tic surface in this embodiment.
- Such a gradient should be about 5 to 15 KOe/cm and may require that the magnet be in contact with the pla ⁇ tic film a ⁇ the particle ⁇ move along. More than one magnet may be used to achieve a gradient sufficient to move the magnetic particle ma ⁇ , which should be as compact as pos ⁇ ible.
- the magnet, and thus the magnetic particle mas ⁇ usually are moved at a speed of about 0.5 to 20 mm/sec.
- the second chamber can contain reagents 88 for conducting amplification of the nucleic acid analyte if present.
- reagents can be present in a liquid or, preferably, dry, form such as a tablet or powder and can include template dependent polynucleotide polymerase, deoxynucleotide tripho ⁇ phates, and polydeoxynucleotide primer( ⁇ ) .
- the amplification can be conducted in thi ⁇ second chamber 78 or the content ⁇ of the ⁇ econd chamber can be transferred to the third chamber 84, where the amplification can be carried out.
- Fluid communication is e ⁇ tabli ⁇ hed between ⁇ econd chamber 78 and a third chamber 84 u ⁇ ually by breaking a frangible seal 86, which can be broken by applying pressure to the contents of chamber 78 and forcing the contents into chamber 84.
- the third chamber can contain reagent ⁇ 90 for detecting amplified nucleic acid or ⁇ uch reagent ⁇ can be introduced into the ⁇ econd or third chamber after amplification has been carried out.
- a liquid containing the ⁇ e reagent ⁇ through a channel (not ⁇ hown) in fluid communication with chamber 84 wherein the fluid can be contained in a ⁇ eparate chamber in fluid communication with the channel and the channel may optionally be sealed with a frangible seal.
- Fourth chamber 96 is in potential fluid communication with third chamber 90. At an appropriate time fluid communication is e ⁇ tabli ⁇ hed between chamber ⁇ 96 and 90 and the reaction mixture pa ⁇ e ⁇ into chamber 96 where, for example, ⁇ ignal i ⁇ read.
- reaction conditions are chosen for carrying out the amplification reaction.
- the following description sets forth such appropriate conditions, which are ⁇ ubject to modification by those skilled in the art depending on the specific reagents and other molecules chosen for any particular application.
- an aqueous medium is employed.
- Other polar co ⁇ olvent ⁇ may al ⁇ o be employed in the medium, u ⁇ ually oxygenated organic solvents of from 1-6, more usually from 1-4, carbon atoms, including alcohols, ethers and the like.
- these cosolvent ⁇ are pre ⁇ ent in le ⁇ than about 70 weight percent, more u ⁇ ually, in less than about 30 weight percent.
- the pH for the medium is usually in the range of about 5.5 to 10, more usually, in the range of about 6.5 to 9.5, and, preferably, in the range of about 7 to 9.
- the pH and temperature are chosen and varied, as the case may be, so as to cause, either simultaneously or wholly or partially sequentially, di ⁇ ociation of any internally hybridized sequence ⁇ , hybridization of the primer with the single stranded polynucleotide sequences and extended primer once the primer has been extended, extension of the primer along the single stranded polynucleotide sequence ⁇ and extended primer, and di ⁇ ociation of the extended primer from its duplex.
- Variou ⁇ buffere may be used to achieve the desired pH and maintain the pH during the determination.
- Illustrative buffers include borate, pho ⁇ phate, carbonate, Tri ⁇ , barbital and the like.
- Moderate temperature ⁇ are normally employed for carrying out the amplification.
- the temperature employed are dependent on a number of con ⁇ ideration ⁇ ⁇ uch as, for example, the salt concentration and the pH of the medium, the solvent compo ⁇ ition of the medium u ⁇ ed, the length of the polynucleotide analyte and the length and nucleotide compo ⁇ ition of the primer(s) .
- the medium is cycled between two or three temperatures.
- the temperatures for the present method in conjunction with amplification generally range from about 10° to 105°C, more usually from about 40° to 99°C, preferably 50° to 98°C. Relatively low temperatures of from about 30° to 75°C can be employed for the hybridization steps, while denaturation and extension can be carried out at a temperature of from about 50° to 105°C.
- the amplification i ⁇ conducted for a time sufficient to achieve a desired number of copies to achieve an accurate assay for a polynucleotide analyte is conducted for a time sufficient to achieve a desired number of copies to achieve an accurate assay for a polynucleotide analyte.
- the time period for conducting the method is from about 20 seconds to 10 minutes per cycle and any number of cycles can be used from 1 to as high as 100 or more, usually 5 to 80, frequently 10-60. As a -matter of convenience it is usually desirable to minimize the time period and the number of cycles.
- the time period for a given degree of amplification can be shortened, for example, by selecting concentrations of nucleoside triphosphate ⁇ ⁇ ufficient to saturate the polynucleotide polymerase and by increasing the concentrations of polynucleotide polymera ⁇ e and polynucleotide primer.
- the time period for conducting the method i ⁇ from about 5 to 200 minutes.
- Amplified nucleic acid can be detected in numerous ways.
- molecules of the polynucleotide primer can be labeled with a reporter molecule such as a ligand, a small organic molecule including fluorescers, chemiluminescers and the like, catalysts, co-enzymes, radioactive sub ⁇ tance ⁇ , amplifiable polynucleotide ⁇ equences, a polypeptide, a support, an operator or the like.
- a reporter molecule such as a ligand, a small organic molecule including fluorescers, chemiluminescers and the like, catalysts, co-enzymes, radioactive sub ⁇ tance ⁇ , amplifiable polynucleotide ⁇ equences, a polypeptide, a support, an operator or the like.
- a reporter molecule such as a ligand, a small organic molecule including fluorescers, chemiluminescers and the like, catalysts, co-enzymes, radioactive sub ⁇ tance ⁇ , amplifi
- the method comprise ⁇ treating the reaction mixture ⁇ u ⁇ pected of containing the amplified nucleic acid analyte under conditions ⁇ uch that the analyte, if pre ⁇ ent, causes a photosensitizer and a chemiluminescent compound to come into close proximity.
- the photo ⁇ en ⁇ itizer generate ⁇ ⁇ inglet oxygen and activates the chemiluminescent compound when it is in clo ⁇ e proximity.
- the activated chemiluminescent compound subsequently produces light.
- the amount of light produced is related to the amount of analyte in the medium. More particularly, as applied to the present invention, the method comprises as a fir ⁇ t ⁇ tep providing a combination compri ⁇ ing the aforementioned medium suspected of containing amplified nucleic acid analyte bound to a particle which also has a chemiluminescent compound associated with the particle, a photo ⁇ en ⁇ itizer associated with a specific binding pair (sbp) member capable of binding to the amplified nucleic acid analyte.
- the combination i ⁇ treated, usually by irradiation with light, to excite the photosensitizer, which is capable in it ⁇ excited state of activating oxygen to a singlet state.
- the combination is then examined for the amount of luminescence or light emitted.
- the amount of such luminescence is related to the amount of nucleic acid analyte in the medium.
- the chemiluminescent compound is associated with an sbp member capable of binding amplified nucleic acid analyte and the particle to which the nucleic acid analyte is bound is associated with a photosensitizer.
- Signal generated by the detection reagents i ⁇ generally measured or detected at the chamber where the reaction mixture is located. However, it is within the purview of the present invention to transfer the reaction mixture to a fourth chamber prior to reading the signal.
- detection of signal can occur at the third chamber 84.
- the chamber at which detection of signal occurs usually contains means for detection of the signal such a ⁇ , for example, an element capable of transmitting a signal, e.g., a window or electrode depending on the nature of the signal formed.
- an optical signal is read through the wall of the chamber containing the reaction mixture.
- kits can be used in accordance with the methods of the present invention in determining a polynucleotide analyte.
- the kit comprises in packaged combination: (a) a device in accordance with the present invention and (b) particles capable of binding the nucleic acid analyte.
- the kit can further include a labeled or unlabeled polynucleotide probe capable of binding to extended primer produced in the method of the invention.
- kits above can further include in the packaged combination, if not included in the device, deoxynucleoside tripho ⁇ phate ⁇ (dNTP ⁇ ) such as, e.g., deoxyadenosine triphosphate (dATP) , deoxyguano ⁇ ine tripho ⁇ phate (dGTP) , deoxycytidine tripho ⁇ phate (dCTP) and deoxythymidine tripho ⁇ phate
- dNTP ⁇ deoxynucleoside tripho ⁇ phate ⁇
- dATP deoxyadenosine triphosphate
- dGTP deoxyguano ⁇ ine tripho ⁇ phate
- dCTP deoxycytidine tripho ⁇ phate
- the kit can further include a polydeoxynucleotide polymerase and member ⁇ of a ⁇ ignal producing ⁇ ystem and also various buffered media, some of which may contain one or more of the above reagent ⁇ .
- the relative amount ⁇ of the variou ⁇ reagent ⁇ in the kits can be varied widely to provide for concentrations of the reagents that substantially optimize the reactions that need to occur during the present method and to further substantially optimize the ⁇ ensitivity of any assay, in which the present method is employed.
- one or more of the reagent ⁇ in the kit can be provided a ⁇ a dry powder, usually lyophilized, including excipients, which on dissolution will provide for a reagent solution having the appropriate concentrations for performing a method or assay in accordance with the present invention.
- Each reagent can be packaged in separate containers or some reagents can be combined in one container where cro ⁇ -reactivity and ⁇ helf life permit.
- the above discussion include ⁇ certain theories as to mechanisms involved in the present invention. These theories should not be construed to limit the present invention in any way, since it has been demonstrated that the present invention achieves the results described.
- the above description and examples disclose the invention including certain preferred embodiments thereof. Modifications of the methods de ⁇ cribed that are obviou ⁇ to those of ordinary skill in the art such as molecular biology and related ⁇ cience ⁇ are intended to be within the scope of the following claims and included within the metes and bound ⁇ of the invention.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Hematology (AREA)
- Clinical Laboratory Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Dispersion Chemistry (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Dispositifs et procédés permettant d'effectuer un essai pour la détermination d'acides nucléiques. Les dispositifs comprennent (a) une chambre recevant l'échantillon, (b) un ensemble de chambres supplémentaires, dont au moins l'une contient des réactifs servant à effectuer un essai pour la détermination d'un acide nucléique, (c) un moyen de détection d'un signal produit par les réactifs, (d) un moyen permettant la communication par fluide entre les chambres supplémentaires, (e) un moyen permettant d'introduire un échantillon dans le dispositif, et (f) un moyen permettant de séparer l'analyte du reste de l'échantillon et de l'introduire dans l'une des chambres supplémentaires, ce moyen comprenant des particules pouvant être mises en suspension. Les procédés consistent à introduire un échantillon que l'on soupçonne contenir un analyte d'acide nucléique dans un dispositif du type décrit par la présente invention. L'analyte éventuellement présent et des particules dans un milieu sont transportés à travers les chambres du dispositif. Les réactifs servant à effectuer une amplification sont combinés avec le milieu transporté, qui est soumis à des conditions d'amplification de l'analyte. On examine ensuite le milieu afin de détecter la présence d'un analyte amplifié.
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US6288593A | 1993-05-17 | 1993-05-17 | |
| US08/062,885 | 1993-05-17 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO1994026414A1 true WO1994026414A1 (fr) | 1994-11-24 |
Family
ID=22045479
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US1994/004849 WO1994026414A1 (fr) | 1993-05-17 | 1994-05-03 | Recipient de reaction pour essai par liaison specifique et procede d'utilisation |
Country Status (1)
| Country | Link |
|---|---|
| WO (1) | WO1994026414A1 (fr) |
Cited By (57)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5645801A (en) * | 1993-10-21 | 1997-07-08 | Abbott Laboratories | Device and method for amplifying and detecting target nucleic acids |
| US5746978A (en) * | 1994-06-15 | 1998-05-05 | Boehringer Mannheim Gmbh | Device for treating nucleic acids from a sample |
| US5759847A (en) * | 1995-07-14 | 1998-06-02 | Difco Laboratories | System and apparatus for automatically transferring media |
| WO1998053311A3 (fr) * | 1997-05-23 | 1999-02-18 | Gamera Bioscience Corp | Dispositifs et procedes permettant d'utiliser l'acceleration centripete pour commander le deplacement de fluides sur un systeme microfluidique |
| WO1999045141A1 (fr) * | 1998-03-05 | 1999-09-10 | Thuraiayah Vinayagamoorthy | Reaction en chaine ligase/polymerase multi-zone |
| WO2000046595A1 (fr) * | 1999-02-03 | 2000-08-10 | Aclara Biosciences, Inc. | Commande multicanal dans des microfluidiques |
| WO2000053320A1 (fr) * | 1999-03-09 | 2000-09-14 | Biomerieux S.A. | Dispositif de pompage permettant de transferer au moins un fluide dans un consommable |
| US6143248A (en) * | 1996-08-12 | 2000-11-07 | Gamera Bioscience Corp. | Capillary microvalve |
| US6143247A (en) * | 1996-12-20 | 2000-11-07 | Gamera Bioscience Inc. | Affinity binding-based system for detecting particulates in a fluid |
| ES2153745A1 (es) * | 1998-07-31 | 2001-03-01 | Ivia | Dispositivo compartimentado y metodo para la captura y doble amplificacion enzimatica de secuencias diana de acidos nucleicos en un solo dispositivo compartimentado cerrado. |
| WO2001025395A1 (fr) * | 1999-10-01 | 2001-04-12 | 3M Innovative Properties Company | Dispositifs et procedes pour la detection de micro-organismes |
| WO2002043865A1 (fr) * | 2000-11-29 | 2002-06-06 | Commissariat A L'energie Atomique | Procedes et dispositifs de transport et de concentration d'un analyte present dans un echantillon |
| WO2003057369A1 (fr) * | 2001-12-21 | 2003-07-17 | 3M Innovative Properties Company | Remplissage centrifuge de dispositifs de traitement d'echantillons |
| US6627159B1 (en) | 2000-06-28 | 2003-09-30 | 3M Innovative Properties Company | Centrifugal filling of sample processing devices |
| WO2003045557A3 (fr) * | 2001-11-27 | 2003-12-31 | Lab901 Ltd | Appareil et procedes d'application microfluidiques |
| WO2004007078A1 (fr) * | 2002-07-12 | 2004-01-22 | British Biocell International Limited | Procede et dispositif d'analyse a ecoulement lateral |
| WO2003093168A3 (fr) * | 2001-07-26 | 2004-05-13 | Motorola Inc | Systeme et procedes permettant d'effectuer des melanges dans un dispositif microfluidique |
| WO2004096443A1 (fr) * | 2003-04-25 | 2004-11-11 | november Aktiengesellschaft Gesellschaft für Molekulare Medizin | Dispositif et procede de preparation de liquides comprenant une substance a analyser |
| EP1625888A3 (fr) * | 2004-08-13 | 2006-06-07 | Alps Electric Co., Ltd. | Plaque d'essai et procédé utilisant ladite plaque |
| EP1566217A3 (fr) * | 2004-02-20 | 2006-06-28 | Eppendorf Ag | Enceinte d'échantillonnage |
| US7169353B1 (en) | 1999-03-09 | 2007-01-30 | Biomerieux S.A. | Apparatus enabling liquid transfer by capillary action therein |
| WO2007016693A3 (fr) * | 2005-08-02 | 2007-05-31 | 3M Innovative Properties Co | Appareil et procédé de détection d’une analyte |
| US7323660B2 (en) | 2005-07-05 | 2008-01-29 | 3M Innovative Properties Company | Modular sample processing apparatus kits and modules |
| EP1920842A1 (fr) * | 2006-10-27 | 2008-05-14 | Konica Minolta Medical & Graphic, Inc. | Micropuce et système d'inspection de micropuce |
| WO2008087405A1 (fr) * | 2007-01-16 | 2008-07-24 | Lab 901 Limited | Dispositif microfluidique |
| EP1967267A1 (fr) * | 2007-02-07 | 2008-09-10 | Samsung Electronics Co., Ltd. | Remplissage de soupape microfluidique et unité de soupape l'incluant |
| JP2009505090A (ja) * | 2005-08-18 | 2009-02-05 | キアゲン ゲゼルシャフト ミット ベシュレンクテル ハフツング | 液体から磁性粒子を分離する装置および方法 |
| US7569186B2 (en) | 2001-12-28 | 2009-08-04 | 3M Innovative Properties Company | Systems for using sample processing devices |
| WO2009013321A3 (fr) * | 2007-07-23 | 2009-10-08 | Clondiag Gmbh | Tests |
| US7718133B2 (en) | 2003-10-09 | 2010-05-18 | 3M Innovative Properties Company | Multilayer processing devices and methods |
| US7754474B2 (en) | 2005-07-05 | 2010-07-13 | 3M Innovative Properties Company | Sample processing device compression systems and methods |
| EP2206780A1 (fr) * | 2008-12-23 | 2010-07-14 | Qiagen GmbH | Procédé et dispositif pour la réalisation d'un procédé de préparation d'un acide nucléique et/ou d'amplification |
| US7763210B2 (en) | 2005-07-05 | 2010-07-27 | 3M Innovative Properties Company | Compliant microfluidic sample processing disks |
| US8012427B2 (en) | 2005-08-02 | 2011-09-06 | 3M Innovative Properties Company | Apparatus and method for detecting an analyte |
| WO2012028595A1 (fr) * | 2010-09-01 | 2012-03-08 | Boehringer Ingelheim Microparts Gmbh | Procédé de fabrication d'un dispositif microfluidique et appareils de stratification pour celui-ci |
| EP2574400A1 (fr) * | 2003-02-05 | 2013-04-03 | Iquum, Inc. | Traitement d'échantillon |
| CN103173346A (zh) * | 2006-11-06 | 2013-06-26 | 科隆迪亚戈有限公司 | 使用结合元件用于分析的装置和方法 |
| WO2013102071A1 (fr) * | 2011-12-30 | 2013-07-04 | Abbott Molecular, Inc. | Cuves de réaction chimique |
| US8501305B2 (en) | 2007-01-16 | 2013-08-06 | Agilent Technologies, Inc. | Laminate |
| JP2013533979A (ja) * | 2010-07-14 | 2013-08-29 | キアゲン ゲーエムベーハー | 新規の貯蔵、収集、または単離デバイス |
| US8673153B2 (en) | 2003-12-15 | 2014-03-18 | Commissariat A L'energie Atomique | Method and device for division of a biological sample by magnetic effect |
| JP2014112106A (ja) * | 2007-12-20 | 2014-06-19 | Koninklijke Philips Nv | 磁性粒子を有する多数区画装置 |
| US8834792B2 (en) | 2009-11-13 | 2014-09-16 | 3M Innovative Properties Company | Systems for processing sample processing devices |
| US8931331B2 (en) | 2011-05-18 | 2015-01-13 | 3M Innovative Properties Company | Systems and methods for volumetric metering on a sample processing device |
| US9005551B2 (en) | 1998-06-24 | 2015-04-14 | Roche Molecular Systems, Inc. | Sample vessels |
| US9067205B2 (en) | 2011-05-18 | 2015-06-30 | 3M Innovative Properties Company | Systems and methods for valving on a sample processing device |
| US9168523B2 (en) | 2011-05-18 | 2015-10-27 | 3M Innovative Properties Company | Systems and methods for detecting the presence of a selected volume of material in a sample processing device |
| AU2014200826B2 (en) * | 2006-11-06 | 2016-01-14 | Clondiag Gmbh | Assays |
| US9414777B2 (en) | 2004-07-13 | 2016-08-16 | Dexcom, Inc. | Transcutaneous analyte sensor |
| US9662652B2 (en) | 2000-12-29 | 2017-05-30 | Chen & Chen, Llc | Sample processing device for pretreatment and thermal cycling |
| EP1871527B1 (fr) * | 2004-12-23 | 2017-09-27 | Abbott Point of Care Inc. | Systeme de diagnostic moleculaire |
| US9803230B2 (en) | 2013-03-15 | 2017-10-31 | Abbott Molecular Inc. | One-step procedure for the purification of nucleic acids |
| US9986942B2 (en) | 2004-07-13 | 2018-06-05 | Dexcom, Inc. | Analyte sensor |
| AU2018201680B2 (en) * | 2006-11-06 | 2020-02-20 | Clondiag Gmbh | Device and process for assays using binding members |
| US10610136B2 (en) | 2005-03-10 | 2020-04-07 | Dexcom, Inc. | System and methods for processing analyte sensor data for sensor calibration |
| US10813577B2 (en) | 2005-06-21 | 2020-10-27 | Dexcom, Inc. | Analyte sensor |
| GB2618578A (en) * | 2022-05-11 | 2023-11-15 | Stratec Se | Method and consumable for nucleic acid extraction |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO1989005456A1 (fr) * | 1987-12-01 | 1989-06-15 | Biotope, Inc. | Procedes et dispositifs servant a effectuer des analyses |
| EP0381501A2 (fr) * | 1989-02-03 | 1990-08-08 | Eastman Kodak Company | Récipient pour réaction de polymérase et méthode d'utilisation de celui-ci |
| WO1993022020A2 (fr) * | 1992-04-23 | 1993-11-11 | Amoco Corporation | Recipient ferme pour isoler des molecules cibles et effectuer l'amplification |
-
1994
- 1994-05-03 WO PCT/US1994/004849 patent/WO1994026414A1/fr active Application Filing
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO1989005456A1 (fr) * | 1987-12-01 | 1989-06-15 | Biotope, Inc. | Procedes et dispositifs servant a effectuer des analyses |
| EP0381501A2 (fr) * | 1989-02-03 | 1990-08-08 | Eastman Kodak Company | Récipient pour réaction de polymérase et méthode d'utilisation de celui-ci |
| WO1993022020A2 (fr) * | 1992-04-23 | 1993-11-11 | Amoco Corporation | Recipient ferme pour isoler des molecules cibles et effectuer l'amplification |
Cited By (124)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5645801A (en) * | 1993-10-21 | 1997-07-08 | Abbott Laboratories | Device and method for amplifying and detecting target nucleic acids |
| US5746978A (en) * | 1994-06-15 | 1998-05-05 | Boehringer Mannheim Gmbh | Device for treating nucleic acids from a sample |
| US5759847A (en) * | 1995-07-14 | 1998-06-02 | Difco Laboratories | System and apparatus for automatically transferring media |
| US6143248A (en) * | 1996-08-12 | 2000-11-07 | Gamera Bioscience Corp. | Capillary microvalve |
| US6143247A (en) * | 1996-12-20 | 2000-11-07 | Gamera Bioscience Inc. | Affinity binding-based system for detecting particulates in a fluid |
| WO1998053311A3 (fr) * | 1997-05-23 | 1999-02-18 | Gamera Bioscience Corp | Dispositifs et procedes permettant d'utiliser l'acceleration centripete pour commander le deplacement de fluides sur un systeme microfluidique |
| US6548788B2 (en) | 1997-05-23 | 2003-04-15 | Tecan Trading Ag | Devices and methods for using centripetal acceleration to drive fluid movement in a microfluidics system |
| US6399361B2 (en) | 1997-05-23 | 2002-06-04 | Tecan Trading Ag | Devices and methods for using centripetal acceleration to drive fluid movement in a microfluidics system |
| US6140110A (en) * | 1998-03-05 | 2000-10-31 | Vinayagamoorthy; Thuraiayah | Apparatus for multi-zone polymerase chain reaction |
| WO1999045141A1 (fr) * | 1998-03-05 | 1999-09-10 | Thuraiayah Vinayagamoorthy | Reaction en chaine ligase/polymerase multi-zone |
| US10022722B2 (en) | 1998-06-24 | 2018-07-17 | Roche Molecular Systems, Inc. | Sample vessels |
| US9005551B2 (en) | 1998-06-24 | 2015-04-14 | Roche Molecular Systems, Inc. | Sample vessels |
| ES2153745A1 (es) * | 1998-07-31 | 2001-03-01 | Ivia | Dispositivo compartimentado y metodo para la captura y doble amplificacion enzimatica de secuencias diana de acidos nucleicos en un solo dispositivo compartimentado cerrado. |
| WO2000046595A1 (fr) * | 1999-02-03 | 2000-08-10 | Aclara Biosciences, Inc. | Commande multicanal dans des microfluidiques |
| WO2000053320A1 (fr) * | 1999-03-09 | 2000-09-14 | Biomerieux S.A. | Dispositif de pompage permettant de transferer au moins un fluide dans un consommable |
| US7169353B1 (en) | 1999-03-09 | 2007-01-30 | Biomerieux S.A. | Apparatus enabling liquid transfer by capillary action therein |
| US6737266B1 (en) | 1999-10-01 | 2004-05-18 | 3M Innovative Properties Company | Devices and methods for microorganism detection |
| WO2001025395A1 (fr) * | 1999-10-01 | 2001-04-12 | 3M Innovative Properties Company | Dispositifs et procedes pour la detection de micro-organismes |
| US7001719B2 (en) | 1999-10-01 | 2006-02-21 | 3M Innovative Properties Company | Devices and methods for microorganism detection |
| US7445752B2 (en) | 2000-06-28 | 2008-11-04 | 3M Innovative Properties Company | Sample processing devices and carriers |
| US7026168B2 (en) | 2000-06-28 | 2006-04-11 | 3M Innovative Properties Company | Sample processing devices |
| US7595200B2 (en) | 2000-06-28 | 2009-09-29 | 3M Innovative Properties Company | Sample processing devices and carriers |
| US6814935B2 (en) | 2000-06-28 | 2004-11-09 | 3M Innovative Properties Company | Sample processing devices and carriers |
| US6627159B1 (en) | 2000-06-28 | 2003-09-30 | 3M Innovative Properties Company | Centrifugal filling of sample processing devices |
| WO2002043865A1 (fr) * | 2000-11-29 | 2002-06-06 | Commissariat A L'energie Atomique | Procedes et dispositifs de transport et de concentration d'un analyte present dans un echantillon |
| US7569398B2 (en) | 2000-11-29 | 2009-08-04 | Commissariat A L'energie Atomique | Methods and devices for transporting and concentrating an analyte present in a sample |
| US9662652B2 (en) | 2000-12-29 | 2017-05-30 | Chen & Chen, Llc | Sample processing device for pretreatment and thermal cycling |
| WO2003093168A3 (fr) * | 2001-07-26 | 2004-05-13 | Motorola Inc | Systeme et procedes permettant d'effectuer des melanges dans un dispositif microfluidique |
| EP1427531B1 (fr) * | 2001-09-11 | 2016-10-19 | Iquum, Inc. | Tubes echantillons |
| GB2397256B (en) * | 2001-11-27 | 2006-06-28 | Lab901 Ltd | Apparatus and methods for microfluidic applications |
| GB2397256A (en) * | 2001-11-27 | 2004-07-21 | Lab901 Ltd | Apparatus and methods for microfluidic applications |
| US8124029B2 (en) | 2001-11-27 | 2012-02-28 | Lab901 Limited | Apparatus and methods for microfluidic applications |
| WO2003045557A3 (fr) * | 2001-11-27 | 2003-12-31 | Lab901 Ltd | Appareil et procedes d'application microfluidiques |
| WO2003057369A1 (fr) * | 2001-12-21 | 2003-07-17 | 3M Innovative Properties Company | Remplissage centrifuge de dispositifs de traitement d'echantillons |
| US7569186B2 (en) | 2001-12-28 | 2009-08-04 | 3M Innovative Properties Company | Systems for using sample processing devices |
| WO2004007078A1 (fr) * | 2002-07-12 | 2004-01-22 | British Biocell International Limited | Procede et dispositif d'analyse a ecoulement lateral |
| US8936933B2 (en) | 2003-02-05 | 2015-01-20 | IQumm, Inc. | Sample processing methods |
| EP2574400A1 (fr) * | 2003-02-05 | 2013-04-03 | Iquum, Inc. | Traitement d'échantillon |
| US10443050B2 (en) | 2003-02-05 | 2019-10-15 | Roche Molecular Systems, Inc. | Sample processing methods |
| US9708599B2 (en) | 2003-02-05 | 2017-07-18 | Roche Molecular Systems, Inc. | Sample processing methods |
| WO2004096443A1 (fr) * | 2003-04-25 | 2004-11-11 | november Aktiengesellschaft Gesellschaft für Molekulare Medizin | Dispositif et procede de preparation de liquides comprenant une substance a analyser |
| US8865091B2 (en) | 2003-10-09 | 2014-10-21 | 3M Innovative Properties Company | Multilayer processing devices and methods |
| US7718133B2 (en) | 2003-10-09 | 2010-05-18 | 3M Innovative Properties Company | Multilayer processing devices and methods |
| US8673153B2 (en) | 2003-12-15 | 2014-03-18 | Commissariat A L'energie Atomique | Method and device for division of a biological sample by magnetic effect |
| EP1566217A3 (fr) * | 2004-02-20 | 2006-06-28 | Eppendorf Ag | Enceinte d'échantillonnage |
| US10827956B2 (en) | 2004-07-13 | 2020-11-10 | Dexcom, Inc. | Analyte sensor |
| US10709363B2 (en) | 2004-07-13 | 2020-07-14 | Dexcom, Inc. | Analyte sensor |
| US10524703B2 (en) | 2004-07-13 | 2020-01-07 | Dexcom, Inc. | Transcutaneous analyte sensor |
| US10980452B2 (en) | 2004-07-13 | 2021-04-20 | Dexcom, Inc. | Analyte sensor |
| US11045120B2 (en) | 2004-07-13 | 2021-06-29 | Dexcom, Inc. | Analyte sensor |
| US11883164B2 (en) | 2004-07-13 | 2024-01-30 | Dexcom, Inc. | System and methods for processing analyte sensor data for sensor calibration |
| US10932700B2 (en) | 2004-07-13 | 2021-03-02 | Dexcom, Inc. | Analyte sensor |
| US9986942B2 (en) | 2004-07-13 | 2018-06-05 | Dexcom, Inc. | Analyte sensor |
| US10993641B2 (en) | 2004-07-13 | 2021-05-04 | Dexcom, Inc. | Analyte sensor |
| US10709362B2 (en) | 2004-07-13 | 2020-07-14 | Dexcom, Inc. | Analyte sensor |
| US10918313B2 (en) | 2004-07-13 | 2021-02-16 | Dexcom, Inc. | Analyte sensor |
| US10799159B2 (en) | 2004-07-13 | 2020-10-13 | Dexcom, Inc. | Analyte sensor |
| US10918314B2 (en) | 2004-07-13 | 2021-02-16 | Dexcom, Inc. | Analyte sensor |
| US10918315B2 (en) | 2004-07-13 | 2021-02-16 | Dexcom, Inc. | Analyte sensor |
| US10799158B2 (en) | 2004-07-13 | 2020-10-13 | Dexcom, Inc. | Analyte sensor |
| US11064917B2 (en) | 2004-07-13 | 2021-07-20 | Dexcom, Inc. | Analyte sensor |
| US9414777B2 (en) | 2004-07-13 | 2016-08-16 | Dexcom, Inc. | Transcutaneous analyte sensor |
| US10722152B2 (en) | 2004-07-13 | 2020-07-28 | Dexcom, Inc. | Analyte sensor |
| US11026605B1 (en) | 2004-07-13 | 2021-06-08 | Dexcom, Inc. | Analyte sensor |
| US10993642B2 (en) | 2004-07-13 | 2021-05-04 | Dexcom, Inc. | Analyte sensor |
| US10813576B2 (en) | 2004-07-13 | 2020-10-27 | Dexcom, Inc. | Analyte sensor |
| EP1625888A3 (fr) * | 2004-08-13 | 2006-06-07 | Alps Electric Co., Ltd. | Plaque d'essai et procédé utilisant ladite plaque |
| EP1871527B1 (fr) * | 2004-12-23 | 2017-09-27 | Abbott Point of Care Inc. | Systeme de diagnostic moleculaire |
| US10918316B2 (en) | 2005-03-10 | 2021-02-16 | Dexcom, Inc. | System and methods for processing analyte sensor data for sensor calibration |
| US10617336B2 (en) | 2005-03-10 | 2020-04-14 | Dexcom, Inc. | System and methods for processing analyte sensor data for sensor calibration |
| US10610135B2 (en) | 2005-03-10 | 2020-04-07 | Dexcom, Inc. | System and methods for processing analyte sensor data for sensor calibration |
| US10743801B2 (en) | 2005-03-10 | 2020-08-18 | Dexcom, Inc. | System and methods for processing analyte sensor data for sensor calibration |
| US10610136B2 (en) | 2005-03-10 | 2020-04-07 | Dexcom, Inc. | System and methods for processing analyte sensor data for sensor calibration |
| US11000213B2 (en) | 2005-03-10 | 2021-05-11 | Dexcom, Inc. | System and methods for processing analyte sensor data for sensor calibration |
| US10856787B2 (en) | 2005-03-10 | 2020-12-08 | Dexcom, Inc. | System and methods for processing analyte sensor data for sensor calibration |
| US10898114B2 (en) | 2005-03-10 | 2021-01-26 | Dexcom, Inc. | System and methods for processing analyte sensor data for sensor calibration |
| US10918317B2 (en) | 2005-03-10 | 2021-02-16 | Dexcom, Inc. | System and methods for processing analyte sensor data for sensor calibration |
| US10716498B2 (en) | 2005-03-10 | 2020-07-21 | Dexcom, Inc. | System and methods for processing analyte sensor data for sensor calibration |
| US10610137B2 (en) | 2005-03-10 | 2020-04-07 | Dexcom, Inc. | System and methods for processing analyte sensor data for sensor calibration |
| US10709364B2 (en) | 2005-03-10 | 2020-07-14 | Dexcom, Inc. | System and methods for processing analyte sensor data for sensor calibration |
| US10918318B2 (en) | 2005-03-10 | 2021-02-16 | Dexcom, Inc. | System and methods for processing analyte sensor data for sensor calibration |
| US10925524B2 (en) | 2005-03-10 | 2021-02-23 | Dexcom, Inc. | System and methods for processing analyte sensor data for sensor calibration |
| US11051726B2 (en) | 2005-03-10 | 2021-07-06 | Dexcom, Inc. | System and methods for processing analyte sensor data for sensor calibration |
| US10813577B2 (en) | 2005-06-21 | 2020-10-27 | Dexcom, Inc. | Analyte sensor |
| US7763210B2 (en) | 2005-07-05 | 2010-07-27 | 3M Innovative Properties Company | Compliant microfluidic sample processing disks |
| US7754474B2 (en) | 2005-07-05 | 2010-07-13 | 3M Innovative Properties Company | Sample processing device compression systems and methods |
| US8080409B2 (en) | 2005-07-05 | 2011-12-20 | 3M Innovative Properties Company | Sample processing device compression systems and methods |
| US7767937B2 (en) | 2005-07-05 | 2010-08-03 | 3M Innovative Properties Company | Modular sample processing kits and modules |
| US7323660B2 (en) | 2005-07-05 | 2008-01-29 | 3M Innovative Properties Company | Modular sample processing apparatus kits and modules |
| WO2007016693A3 (fr) * | 2005-08-02 | 2007-05-31 | 3M Innovative Properties Co | Appareil et procédé de détection d’une analyte |
| US8012427B2 (en) | 2005-08-02 | 2011-09-06 | 3M Innovative Properties Company | Apparatus and method for detecting an analyte |
| JP2009503554A (ja) * | 2005-08-02 | 2009-01-29 | スリーエム イノベイティブ プロパティズ カンパニー | 検体を検出するための可撓性装置及び方法 |
| JP2009505090A (ja) * | 2005-08-18 | 2009-02-05 | キアゲン ゲゼルシャフト ミット ベシュレンクテル ハフツング | 液体から磁性粒子を分離する装置および方法 |
| EP1920842A1 (fr) * | 2006-10-27 | 2008-05-14 | Konica Minolta Medical & Graphic, Inc. | Micropuce et système d'inspection de micropuce |
| EP2061588B1 (fr) * | 2006-11-06 | 2016-07-13 | Clondiag GmbH | Installation et procédé pour tests de liaison |
| US10167525B2 (en) | 2006-11-06 | 2019-01-01 | ALERE TECHNOLOGIES GmbH | Assays |
| AU2018201680B2 (en) * | 2006-11-06 | 2020-02-20 | Clondiag Gmbh | Device and process for assays using binding members |
| AU2014200826B2 (en) * | 2006-11-06 | 2016-01-14 | Clondiag Gmbh | Assays |
| CN109055495A (zh) * | 2006-11-06 | 2018-12-21 | 美艾利尔技术公司 | 使用结合元件用于分析的装置和方法 |
| US8846313B2 (en) | 2006-11-06 | 2014-09-30 | Clondiag Gmbh | Assays |
| CN103173346A (zh) * | 2006-11-06 | 2013-06-26 | 科隆迪亚戈有限公司 | 使用结合元件用于分析的装置和方法 |
| EP2674217A3 (fr) * | 2006-11-06 | 2014-04-02 | CLONDIAG GmbH | Dosages |
| US8501305B2 (en) | 2007-01-16 | 2013-08-06 | Agilent Technologies, Inc. | Laminate |
| JP2010515924A (ja) * | 2007-01-16 | 2010-05-13 | ラブ901 リミテッド | マイクロ流体デバイス |
| WO2008087405A1 (fr) * | 2007-01-16 | 2008-07-24 | Lab 901 Limited | Dispositif microfluidique |
| EP1967267A1 (fr) * | 2007-02-07 | 2008-09-10 | Samsung Electronics Co., Ltd. | Remplissage de soupape microfluidique et unité de soupape l'incluant |
| US8281815B2 (en) | 2007-02-07 | 2012-10-09 | Samsung Electronics Co., Ltd. | Microfluidic valve filler and valve unit including the same |
| EP2610007A1 (fr) * | 2007-07-23 | 2013-07-03 | CLONDIAG GmbH | Tests |
| WO2009013321A3 (fr) * | 2007-07-23 | 2009-10-08 | Clondiag Gmbh | Tests |
| US9925536B2 (en) | 2007-07-23 | 2018-03-27 | Clondiag Gmbh | Assays for measuring nucleic acids |
| US10092903B2 (en) | 2007-12-20 | 2018-10-09 | Koninklijke Philips N.V. | Multi-compartment device with magnetic particles |
| JP2014112106A (ja) * | 2007-12-20 | 2014-06-19 | Koninklijke Philips Nv | 磁性粒子を有する多数区画装置 |
| EP2206780A1 (fr) * | 2008-12-23 | 2010-07-14 | Qiagen GmbH | Procédé et dispositif pour la réalisation d'un procédé de préparation d'un acide nucléique et/ou d'amplification |
| US8834792B2 (en) | 2009-11-13 | 2014-09-16 | 3M Innovative Properties Company | Systems for processing sample processing devices |
| JP2013533979A (ja) * | 2010-07-14 | 2013-08-29 | キアゲン ゲーエムベーハー | 新規の貯蔵、収集、または単離デバイス |
| WO2012028595A1 (fr) * | 2010-09-01 | 2012-03-08 | Boehringer Ingelheim Microparts Gmbh | Procédé de fabrication d'un dispositif microfluidique et appareils de stratification pour celui-ci |
| US9522520B2 (en) | 2010-09-01 | 2016-12-20 | Boehringer Ingelheim Microparts Gmbh | Process for producing a microfluidic apparatus and related laminating devices |
| US8931331B2 (en) | 2011-05-18 | 2015-01-13 | 3M Innovative Properties Company | Systems and methods for volumetric metering on a sample processing device |
| US9067205B2 (en) | 2011-05-18 | 2015-06-30 | 3M Innovative Properties Company | Systems and methods for valving on a sample processing device |
| US9168523B2 (en) | 2011-05-18 | 2015-10-27 | 3M Innovative Properties Company | Systems and methods for detecting the presence of a selected volume of material in a sample processing device |
| US9725762B2 (en) | 2011-05-18 | 2017-08-08 | Diasorin S.P.A. | Systems and methods for detecting the presence of a selected volume of material in a sample processing device |
| WO2013102071A1 (fr) * | 2011-12-30 | 2013-07-04 | Abbott Molecular, Inc. | Cuves de réaction chimique |
| US9803230B2 (en) | 2013-03-15 | 2017-10-31 | Abbott Molecular Inc. | One-step procedure for the purification of nucleic acids |
| GB2618578A (en) * | 2022-05-11 | 2023-11-15 | Stratec Se | Method and consumable for nucleic acid extraction |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| WO1994026414A1 (fr) | Recipient de reaction pour essai par liaison specifique et procede d'utilisation | |
| US11235295B2 (en) | System and method of using multi-chambered receptacles | |
| AU753191B2 (en) | Devices and methods for detecting target molecules in biological samples | |
| EP0530357B1 (fr) | Element et procede pour l'amplification et la detection de l'acide nucleique au moyen de sondes collees | |
| US5888723A (en) | Method for nucleic acid amplification and detection using adhered probes | |
| US8368882B2 (en) | Systems and methods for detecting a signal and applying thermal energy to a signal transmission element | |
| US20120252017A1 (en) | Device and method for extraction and analysis of nucleic acids from biological samples | |
| US11904314B2 (en) | System and self-metering cartridges for point of care bioassays | |
| US7776530B2 (en) | Integrated nucleic acid analysis | |
| CN113278492B (zh) | 一体式全封闭检测反应管 | |
| US20170335413A1 (en) | Cell Surface Marker Depletion in a Sample Processing Device | |
| CN101147070A (zh) | 反应方法 | |
| US11898197B2 (en) | System and self-metering cartridges for point of care bioassays | |
| JP2009543548A (ja) | 分析装置 | |
| US12428674B2 (en) | System and self-metering cartridges for point of care bioassays |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AK | Designated states |
Kind code of ref document: A1 Designated state(s): CA JP |
|
| AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE |
|
| DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
| 122 | Ep: pct application non-entry in european phase | ||
| NENP | Non-entry into the national phase |
Ref country code: CA |