[go: up one dir, main page]

WO1996001315A1 - Expressionskassette für die antisense- und die ribozym-expression - Google Patents

Expressionskassette für die antisense- und die ribozym-expression Download PDF

Info

Publication number
WO1996001315A1
WO1996001315A1 PCT/DE1995/000663 DE9500663W WO9601315A1 WO 1996001315 A1 WO1996001315 A1 WO 1996001315A1 DE 9500663 W DE9500663 W DE 9500663W WO 9601315 A1 WO9601315 A1 WO 9601315A1
Authority
WO
WIPO (PCT)
Prior art keywords
ribozyme
expression cassette
loop region
antisense
promoter
Prior art date
Application number
PCT/DE1995/000663
Other languages
English (en)
French (fr)
Inventor
Andre Lieber
Michael Strauss
Original Assignee
MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. filed Critical MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V.
Priority to EP95919314A priority Critical patent/EP0767834A1/de
Publication of WO1996001315A1 publication Critical patent/WO1996001315A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/575Hormones
    • C07K14/61Growth hormone [GH], i.e. somatotropin

Definitions

  • the invention relates to a vector for antisense and for ribozyme expression.
  • Fields of application of the invention are molecular biology, genetic engineering and medicine.
  • RNA inactivation by antisense molecules or by ribozymes seems to be feasible for therapeutic use. Both classes of compounds can be made by chemical synthesis or in conjunction with a promoter by biological expression in vitro or even in vivo.
  • RNA molecules and cleavage in trans The principle of catalytic self-cleavage of RNA molecules and cleavage in trans has become well established in the past 10 years.
  • the hammerhead ribozymes are best characterized within the RNA molecules with ribozyme activity. After it has been shown that hammerhead structures can be integrated into heterologous RNA sequences and thereby transfer the ribozyme activity to this molecule, it seems obvious that catalytic antisense sequences can be provided for almost every target sequence with a matching cleavage site.
  • the basic principle of the ribozyme equipment is very simple: You select a region of interest of the RNA that contains the triplet GUC (or CUC), take 2 oligonucleotide strands with 6-8 nucleotides each and insert the catalytic hammerhead sequence in between .
  • Molecules of this type have been synthesized for numerous target sequences, they have shown catalytic activity in vitro and in some cases also in vivo. The best results were achieved with short ribozymes and target sequences.
  • a current challenge for in vivo use is the construction of ribozyme genes that allow continuous expression of the ribozyme in a specific cell (Bertrand, E. et al. / 1994 / Nucleic Acids Res. 22, 293-300).
  • the mRNA substrate probably exists in a strongly folded structure, which can also be protected by proteins bound to parts of the structure. Meeting accessible locations within the substrate for hybridization with the complementary flanking regions of the ribozyme is a matter of current probability.
  • Computer-aided predictions of possible thermodynamically stable secondary structures can be useful for finding loop regions without base pairing, but the physiological relevance of these conformation models is still uncertain.
  • the ribozyme Since the target raRNA is immediately transported out of the cell nucleus, the ribozyme must also pass into the cytoplasm, preferably in the same way. However, colocalization of ribozymes and their substrate is difficult to achieve.
  • ribozymes in vivo requires the insertion of ribozyme genes in suitable expression cassettes.
  • the transcription of these constructs can produce mRNAs that contain the central catalytic secondary structure of the ribozymes other, more stable base pairings within the non-complementary flanking sequences are displaced.
  • the kinetics of the cleavage reaction and the ability of the ribozymes to carry out multi-conversion reactions depend on the binding parameters and the structure of the complementary flanking regions of the ribozymes.
  • Cellular proteins can affect the catalysis of the cleavage reaction, probably by dissociating the ribozyme from the cleavage substrate, which is the precursor to the next cleavage.
  • the aim of the invention is to construct a vector for antisense and ribozyme expression. It should be able to bring about continuous and stable expression in a cell of a specific desired ribozyme or an antisense sequence.
  • a strong promoter preferably a T7 promoter
  • Subclaims 2-5 contain the preferred variants of the expression cassette.
  • the T7 promoter is preferably used in combination with T7 polymerase.
  • the loop region is located in a restriction site in the central part of the adenoviral va RNA gene, its size is at least 2x21 bases of the same sequence.
  • a preferred base sequence of the loop region is 5'-AACCCAGGTGTGCGACGTCAG-3 '.
  • Figure 2 shows the result of the cleavage of hGH RNA by a specific ribozyme in vitro.
  • A Structure of the specific ribozyme for a 27 n.t. Region around the GUC at position 988 within exon IV of hGH RNA.
  • B Maps of plasmid matrices for ribozyme synthesis by in vitro transcription with pol III (HeLa-extract) and T7-RNA polymerase.
  • C Electrophoretic representation of the fission products.
  • hGH-RNA was synthesized from a linear (Sstl section) genomic hGH gene (1663nt) by in vitro transcription with T7-RNA polymerase (with 0.2 ⁇ Ci 3 P CTP / ⁇ g RNA). An equi-ol mixture (100 nM) of ribozyme and substrate was incubated at 37 ⁇ C in 50 M Tris-Cl pH 7.5 and 10 mm MgCl 2 for 30 min with previous heat denaturation (90 sec 95 ⁇ C).
  • RNAs were purified and separated individually on a 6% PAA gel. Full length RNA and ribozyme cleavage products (988nt and 675nt) have been detected. The result shows that embedding the catalytic hammerhead structure in a stabilizing RNA (above all) leads to a functional and stable ribozyme only after the loop region has been additionally incorporated.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Endocrinology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • Toxicology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

Die Erfindung hat das Ziel, einen Vektor für die Antisense- und die Ribozym-Expression zu konstruieren. Er soll in der Lange sein, eine kontinuierliche und stabile Expression eines bestimmten gewünschten Ribozyms bzw. einer Antisensesequenz in einer Zelle zu bewirken. Anwendungsgebiete der Erfindung sind die Molekularbiologie und die Gentechnik. Die erfindungsgemäße Expressionskassette ist dadurch gekennzeichnet, daß sie einen starken Promoter, bevorzugt einen T7-Promoter, ein adenovirales va-RNA-Gen, eine stabile Schleifen(loop)-Region und einen Insertionsort für Antisense-/Ribozymsequenzen in der Schleifenregion enthält. Der T7-Promoter wird bevorzugt in Kombination mit T7-Polymerase verwendet. Die Schleifenregion befindet sich in einem Restriktionsort im zentralen Teil des adenoviralen va-RNA-Gens, wobei ihre Größe bevorzugt mindestens 2x21 Basen gleicher Sequenz beträgt.

Description

Expressionskassette für die Antisense- und die Ribozy - Expression
Beschreibung
Die Erfindung betrifft einen Vektor für die Antisense- und für die Ribozym-Expression. Anwendungsgebiete der Erfindung sind die Molekularbiologie, die Gentechnik und die Medizin.
Die Inaktivierung von Genfunktionen durch reverses genetisches Material ist die wichtigste Methode, um bestimmte Gene abzuschalten. Das ist von großer Bedeutung zur Bekämpfung von infektiösen und anderen, durch Störung der Genexpression bedingten Krankheiten(einschließlich AIDS). Eine Genfunktion kann in verschiedenen Ebenen außer Kraft gesetzt werden: durch homologe Rekombination auf der DNA-Ebene, durch Antisense- Nukleinsäuren oder Ribozyme auf der RNA-Ebene oder durch Antikörper auf der Proteinebene. In der praktischen Umsetzung haben alle 4 Möglichkeiten Vor- und Nachteile. Für eine therapeutische Anwendung scheint nur die RNA-Inaktivierung durch Antisense-Moleküle oder durch Ribozyme durchführbar zu sein. Beide Verbindungsklassen können durch chemische Synthese oder in Verbindung mit einem Promoter durch biologische Expression in vitro oder sogar in vivo hergestellt werden. Das Prinzip der katalytischen Selbstspaltung von RNA-Molekülen und der Spaltung in trans hat sich in den letzten 10 Jahren gut etabliert. Innerhalb der RNA-Moleküle mit Ribozym-Aktivität sind die Hammerhead-Ribozyrae am besten charakterisiert. Nachdem gezeigt worden ist, daß Hammerhead-Strukturen in heterologe RNA- Sequenzen integriert werden und dadurch die Ribozym-Aktivität auf dieses Molekül übertragen können, scheint es naheliegend, daß katalytische Antisense-Sequenzen für fast jede Zielsequenz mit einem übereinstimmenden Spaltort vorgesehen werden können. Das Grundprinzip der Ribozym-Ausstattung ist sehr einfach: Man wählt eine interessierende Region der RNA aus, die das Triplett GUC (bzw. CUC) enthält, nimmt 2 Oligonukleotid-Stränge mit je 6- 8 Nukleotiden und fügt die katalytische Hammerhead-Sequenz dazwischen ein.
Moleküle dieser Art wurden für zahlreiche Zielsequenzen synthetisiert, sie zeigten katalytische Aktivität in vitro und in manchen Fällen auch in vivo. Die besten Ergebnisse wurden mit kurzen Ribozymen und Zielsequenzen erzielt. Eine aktuelle Herausforderung für die in vivo-Anwendung ist die Konstruktion von Ribozymgenen, die eine kontinuierliche Expression des Ribozyms in einer bestimmten Zelle erlauben(Bertrand, E. et al. /1994/ Nucleic Acids Res. 22, 293-300).
Es gibt 5 potentielle Gründe, die eine befriedigende Funktion von exprimierten Ribozymen innerhalb des komplexen Zellmilieus behindern.
1. Innerhalb der Zelle existiert das mRNA-Substrat vermutlich in einer stark gefalteten Struktur, die außerdem noch durch an Teile der Struktur gebundene Proteine geschützt sein kann. Das Treffen von zugänglichen Orten innerhalb des Substrates zur Hybridisierung mit den komplementären flankierenden Regionen des Ribozyms ist eine Frage der aktuellen Wahrscheinlichkeit. Computergestützte Vorhersagen von möglichen thermodynamisch stabilen Sekundärstrukturen können für die Suche nach Loop- Regionen ohne Basenpaarung nützlich sein, aber die physiologische Relevanz dieser Konformationsmodelle ist noch unsicher.
2. Da die Ziel-raRNA sofort aus dem Zellkern heraustransportiert wird, muß das Ribozym muß auch in das Zytoplasma übergehen, bevorzugt auf dem selben Wege. Es ist jedoch schwierig, eine Kolokalisation von Ribozymen und ihrem Substrat zu erreichen.
3. Der Einsatz von Ribozymen in vivo erfordert die Einfügung von Ribozymgenen in geeignete Expressionskassetten. Die Transkription dieser Konstrukte kann mRNAs produzieren, in denen die zentrale katalytische Sekundärstruktur der Ribozyme durch andere, stabilere Basenpaarungen innerhalb der nichtkomple¬ mentären flankierenden Sequenzen verdrängt wird.
4. Ein Überschuß (100-1000fach) an Ribozym-Molekülen gegenüber der Zielsequenz ist notwendig, um ein registrierbares Ansteigen des RNA-Niveaus zu erreichen. Die Produktion von 105-106 Ribozym- Molekülen pro Zelle über eine lange Periode hinweg kann jedoch zytotoxische Wirkung haben. Im allgemeinen sind solche hohen Expressionsniveaus nicht stabil. Die Notwendigkeit des Überschusses an Ribozymen wird durch die ungenügende Stabilität der Ribozyme gegenüber Nukleasen, durch den uneffektiven Transport zum Zytoplasma und durch den nicht optimalen Umsatz- Faktor der Spaltungsreaktion hervorgerufen.
5. Die Kinetik der Spaltungsreaktion und die Fähigkeit der Ribozyme, Multi-Umsatz-Reaktionen durchzuführen, hängt von den Bindungsparametern und der Struktur der komplementären flankierenden Regionen der Ribozyme ab. Zelluläre Proteine können die Katalyse der Spaltungsreaktion beeinflussen, wahrscheinlich mit Hilfe der Dissoziation des Ribozyms vom Substrat der Spaltung, das die Vorstufe zur nächsten Spaltung darstellt. Bis heute ist es nicht möglich, die optimale Struktur der flankierenden Regionen für ein Ribozym vorherzusagen, um hohe Spezifität und einen hohen Umsatz zu garantieren. Insgesamt kann man feststellen, daß trotz vieler Bemühungen zur Konstruktion spezifischer Ribozym-Gene nur Teilerfolge erzielt wurden, meist auf der Basis von "trial and error"-Experimenten.
Die Erfindung hat das Ziel, einen Vektor für die Antisense- und die Ribozymexpression zu konstruieren. Er soll in der Lage sein, eine kontinuierliche und stabile Expression eines bestimmten gewünschten Ribozyms bzw. einer Antisensesequenz in einer Zelle zu bewirken.
Diese Zielstellung wird mit dem Aufbau der erfindungsgemäßen Expressionskassette gemäß Anspruch 1 realisiert. Sie hat folgende Bestandteile:
- einen starker Promoter, bevorzugt einen T7-Promoter
- ein adenovirales va-RNA-Gen
- eine stabile Schleifen(loop)-Region und - einen Insertionsort für die Antisense-/Ribozymsequenz in der
Schleifenregion. Die Unteransprüche 2-5 enthalten die Vorzugsvarianten der Expressionskassette.
Der T7-Promoter wird bevorzugt in Kombination mit T7-Polymerase verwendet. Die Loop-Region befindet sich in einem Restriktionsort im zentralen Teil des adenoviralen va-RNA-Gens, ihre Größe beträgt mindestens 2x21 Basen gleicher Sequenz. Eine bevorzugte Basensequenz der Loop-Region ist 5'- AACCCAGGTGTGCGACGTCAG-3'.
Ein Beispiel für die erfindungsgemäße Expressionskassette ist in Abbildung 1 gegeben.
Abbildung 2 zeigt das Ergebnis der Spaltung von hGH RNA durch ein spezifisches Ribozym in vitro.
A: Struktur des spezifischen Ribozyms für eine 27 n.t. Region um das GUC auf position 988 innerhalb des Exon IV von hGH RNA. B: Karten von Plasmidmatrizen für die Ribozymsynthese durch in vitro Transcription mit pol III (HeLa-extract) und T7-RNA Polymerase. C: Elektrophoretische Darstellung der Spaltprodukte.
Beispiel 1:
Die Plasmide T7Rz und T7Rzneo wurden mit Hind III-Behandlung linearisiert. GvaRz und GvaLRz wurden in Zirkularform eingesetzt. hGH-RNA wurde aus einem linearen (Sstl-Schnitt) genomischen hGH-Gen (1663nt) durch in vitro-Transkription mit T7-RNA Polymerase (mit 0,2 μCi3P CTP/μg RNA) synthetisiert. Eine äqui olare Mixtur (100 nM) von Ribozym und Substrat wurde bei 37βC in 50 M Tris-Cl pH 7,5 und lOmM MgCl2 für 30 min mit vorheriger Hitzedenaturierung (90 sec 95βC)inkubiert. Nach der Spaltung wurden die RNAs gereinigt und einzeln auf einem 6% PAA- Gel getrennt. RNA-und Ribozym-Spaltungsprodukte mit voller Länge (988nt und 675nt) wurden nachgewiesen. Das Ergebnis zeigt, daß die Einbettung der katalytischen Hammerhead-Struktur in eine stabilisierende RNA (va) erst nach zusätzlichem Einbau der loop- Region zu einem funktionsfähigen und stabilen Ribozym führt.

Claims

Patentansprüche
1. Expressionskassette für die Antisense- und die Ribozym- expression, gekennzeichnet durch
- einen starken Promoter,
- ein adenovirales va-RNA-Gen,
- eine stabile Schleifen(loop)-Region und
- einen Insertionsort für die Antisense- bzw. Ribozymsequenz in der Schleifenregion
2. Expressionskassette nach Anspruch 1, dadurch gekennzeichnet, daß als starker Promotor der T7-Promotor verwendet wird.
3. Expressionskassette nach Anspruch 1, dadurch gekennzeichnet, daß der T7-Promoter in Kombination mit T7-Polymerase verwendet wird.
4. Expressionskassette nach Anspruch 1, dadurch gekennzeichnet, daß sich die Loop-Region in einem Restriktionsort im zentralen Teil des adenoviralen va-RNA-Gens befindet.
5. Expressionskassette nach Anspruch 1, dadurch gekennzeichnet, daß die Größe der Loop-Region mindestens 2x21 Basen gleicher Sequenz beträgt.
6. Expressionskassette nach Anspruch 1 und 5, dadurch gekenn¬ zeichnet, daß die Loop-Region zweimal folgende Basensequenz enthält: 5'-AACCCAGGTGTGCGACGTCAG-3'
PCT/DE1995/000663 1994-07-04 1995-05-19 Expressionskassette für die antisense- und die ribozym-expression WO1996001315A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP95919314A EP0767834A1 (de) 1994-07-04 1995-05-19 Expressionskassette für die antisense- und die ribozym-expression

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4424761A DE4424761C1 (de) 1994-07-04 1994-07-04 Expressionskassette für die Antisense- und die Ribozym-Expression
DEP4424761.3 1994-07-04
US08/314,588 US5695992A (en) 1994-07-04 1994-09-28 Expression cassette for antisense expression of ribozyme

Publications (1)

Publication Number Publication Date
WO1996001315A1 true WO1996001315A1 (de) 1996-01-18

Family

ID=25938313

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1995/000663 WO1996001315A1 (de) 1994-07-04 1995-05-19 Expressionskassette für die antisense- und die ribozym-expression

Country Status (4)

Country Link
US (2) US5695992A (de)
EP (1) EP0767834A1 (de)
DE (1) DE4424761C1 (de)
WO (1) WO1996001315A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2743818A1 (fr) * 1996-01-23 1997-07-25 Agronomique Inst Nat Rech Constructions d'adn et vecteurs d'expression derives du gene de l'arn va i d'adenovirus
US6107027A (en) * 1994-12-14 2000-08-22 University Of Washington Ribozymes for treating hepatitis C

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6130092A (en) * 1994-07-04 2000-10-10 Max-Planck Gesellschaft Zur Forderung Der Wissenschaften E.V. Ribozyme gene library and method for making
GB9912965D0 (en) * 1999-06-03 1999-08-04 Oxford Biomedica Ltd In vivo selection method
DE10046913A1 (de) * 2000-09-21 2002-04-18 Nascacell Gmbh Expressionssystem für funktionale Nukleinsäuren
US8252527B2 (en) * 2007-02-16 2012-08-28 The Research Foundation Of State University Of New York Method for identification of polynucleotides capable of cleaving target mRNA sequences

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0387775A1 (de) * 1989-03-16 1990-09-19 BOEHRINGER INGELHEIM INTERNATIONAL GmbH Genetische Einheiten zur Inhibierung der Funktion von RNA
FR2687411A1 (fr) * 1992-02-13 1993-08-20 Nice Sophia Antipolis Universi Vecteur comportant un gene viral transcrit par l'arn polymerase iii, et procede de production intracellulaire d'arn.

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0387775A1 (de) * 1989-03-16 1990-09-19 BOEHRINGER INGELHEIM INTERNATIONAL GmbH Genetische Einheiten zur Inhibierung der Funktion von RNA
FR2687411A1 (fr) * 1992-02-13 1993-08-20 Nice Sophia Antipolis Universi Vecteur comportant un gene viral transcrit par l'arn polymerase iii, et procede de production intracellulaire d'arn.

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6107027A (en) * 1994-12-14 2000-08-22 University Of Washington Ribozymes for treating hepatitis C
US6107028A (en) * 1994-12-14 2000-08-22 University Of Washington Ribozymes for treating hepatitis C
FR2743818A1 (fr) * 1996-01-23 1997-07-25 Agronomique Inst Nat Rech Constructions d'adn et vecteurs d'expression derives du gene de l'arn va i d'adenovirus
WO1997027309A1 (fr) * 1996-01-23 1997-07-31 Institut National De La Recherche Agronomique - I.N.R.A. Constructions d'adn et vecteurs d'expression derives du gene de l'arn va i d'adenovirus

Also Published As

Publication number Publication date
EP0767834A1 (de) 1997-04-16
US5695992A (en) 1997-12-09
USRE37411E1 (en) 2001-10-16
DE4424761C1 (de) 1995-06-08

Similar Documents

Publication Publication Date Title
EP1798285B1 (de) Verfahren und Medikament zur Hemmung der Expression eines vorgegebenen Gens
DE69425903T2 (de) Verbindungen und verfahren zur ortsspezifischen mutation in eukaryotischen zellen
DE68928467T2 (de) RNS-Katalysator zur Spaltung von spezifischen RNS-Sequenzen
DE3852539T3 (de) Ribozyme.
DE4424762C1 (de) Ribozym-Bibliothek, ihre Herstellung und ihre Verwendung
DE69435005T2 (de) Antisense Oligonukleotide die anomales Splicing verhindern und deren Verwendung
DE69636937T2 (de) Durch trans-spaltung erhaltene therapeutische molekule
EP1951870B1 (de) Dna-konstrukte zur spezifischen hemmung der genexpression durch rna-interferenz
DE69031172T2 (de) Modifikation der endogenen genexpression mit hilfe eines regulatorischen elements mittels homologe rekombination
KR900014591A (ko) Rna 작용을 억제하는 유전 단위
WO2003035869A1 (de) Verwendung einer doppelsträngigen ribonukleinsäure zur gezielten hemmung der expression eines vorgegebenen zielgens
DE69613336T2 (de) Chimere ribozym-snRNA Moleküle mit katalytischen Aktivität nuklearer RNAs
WO2008098569A2 (de) Biologisch wirksame moleküle, insbesondere auf grundlage von pna und sirna, verfahren zu deren zellspezifischen aktivierung sowie applikationskit zur verabreichung
DE69232768T2 (de) Einzelsträngige hybride DNS-RNS Moleküle und Methoden zur Herstellung
DE4424761C1 (de) Expressionskassette für die Antisense- und die Ribozym-Expression
DE19520815A1 (de) Replikatives und transkriptionsaktives Peptid-Nukleinsäureplasmid, sowie seine Verwendung zur Einbringung in Zellen und Zellorganellen
DE69122246T2 (de) Identifikation von neuen medikamenten und reagenzien
DE60202196T2 (de) Orientationsgerichtete konstruktion von plasmiden
EP0299303B1 (de) Eukaryotische Expressionsvektoren mit multimeren Enhancer-Subelementen, Verfahren zu ihrer Herstellung und Verwendung
AU784832B2 (en) Self-cleaving RNA sequences and their use for the control of protein synthesis
DE69412146T2 (de) Asymetrische "hammerhead" ribozyme und nukleotidsequenzen zu deren aufbau
WO1997004087A1 (de) Ribozyme zur selektiven hemmung der expression von genen von mhc-allelen und diese enthaltende arzneimittel
EP3583215A1 (de) System und verfahren zur zelltyp-spezifischen translation von rna-molekülen in eukaryoten
DE102004038535B4 (de) Zelluläre Einschleusung von Nukleinsäurewirkstoffen
DE69933382T2 (de) Herstellung von ssdna innerhalb der zelle

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1995919314

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1995919314

Country of ref document: EP

WWR Wipo information: refused in national office

Ref document number: 1995919314

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1995919314

Country of ref document: EP