WO1996005847A1 - Procede de sequençage de proteines par classement d'epitopes et cartographie de sites de restriction de proteines - Google Patents
Procede de sequençage de proteines par classement d'epitopes et cartographie de sites de restriction de proteines Download PDFInfo
- Publication number
- WO1996005847A1 WO1996005847A1 PCT/US1995/010668 US9510668W WO9605847A1 WO 1996005847 A1 WO1996005847 A1 WO 1996005847A1 US 9510668 W US9510668 W US 9510668W WO 9605847 A1 WO9605847 A1 WO 9605847A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- nucleotide sequence
- sequence
- modified
- nucleotide
- antibody
- Prior art date
Links
- 102000004169 proteins and genes Human genes 0.000 title claims abstract description 64
- 108090000623 proteins and genes Proteins 0.000 title claims abstract description 64
- 238000000034 method Methods 0.000 title claims abstract description 49
- 238000013507 mapping Methods 0.000 title abstract description 7
- 238000012163 sequencing technique Methods 0.000 title description 6
- 108091008146 restriction endonucleases Proteins 0.000 claims abstract description 34
- 150000001413 amino acids Chemical class 0.000 claims abstract description 18
- 230000027455 binding Effects 0.000 claims abstract description 11
- 230000001323 posttranslational effect Effects 0.000 claims abstract description 6
- 125000003275 alpha amino acid group Chemical group 0.000 claims abstract 3
- 239000002773 nucleotide Substances 0.000 claims description 89
- 125000003729 nucleotide group Chemical group 0.000 claims description 69
- 230000000295 complement effect Effects 0.000 claims description 22
- 108091028043 Nucleic acid sequence Proteins 0.000 claims description 18
- 102000001706 Immunoglobulin Fab Fragments Human genes 0.000 claims description 10
- 108010054477 Immunoglobulin Fab Fragments Proteins 0.000 claims description 10
- 230000029087 digestion Effects 0.000 claims description 10
- 238000000137 annealing Methods 0.000 claims description 8
- 238000013519 translation Methods 0.000 claims description 3
- 235000018102 proteins Nutrition 0.000 description 51
- 102000013498 tau Proteins Human genes 0.000 description 17
- 239000000523 sample Substances 0.000 description 16
- 108010026424 tau Proteins Proteins 0.000 description 16
- 108091034117 Oligonucleotide Proteins 0.000 description 14
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 11
- 235000001014 amino acid Nutrition 0.000 description 11
- 238000006243 chemical reaction Methods 0.000 description 11
- 239000000499 gel Substances 0.000 description 10
- 239000000203 mixture Substances 0.000 description 10
- 238000006731 degradation reaction Methods 0.000 description 9
- 108090000765 processed proteins & peptides Proteins 0.000 description 9
- 239000007983 Tris buffer Substances 0.000 description 8
- 230000015556 catabolic process Effects 0.000 description 8
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 8
- 239000000243 solution Substances 0.000 description 7
- 108020004414 DNA Proteins 0.000 description 6
- 230000008878 coupling Effects 0.000 description 6
- 238000010168 coupling process Methods 0.000 description 6
- 238000005859 coupling reaction Methods 0.000 description 6
- 239000012634 fragment Substances 0.000 description 6
- 238000009396 hybridization Methods 0.000 description 6
- 229920002401 polyacrylamide Polymers 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- 229920000936 Agarose Polymers 0.000 description 5
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 5
- 239000012528 membrane Substances 0.000 description 5
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 4
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 4
- 239000000020 Nitrocellulose Substances 0.000 description 4
- 108090000526 Papain Proteins 0.000 description 4
- 102000057297 Pepsin A Human genes 0.000 description 4
- 108090000284 Pepsin A Proteins 0.000 description 4
- 239000004365 Protease Substances 0.000 description 4
- PXIPVTKHYLBLMZ-UHFFFAOYSA-N Sodium azide Chemical compound [Na+].[N-]=[N+]=[N-] PXIPVTKHYLBLMZ-UHFFFAOYSA-N 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 230000000692 anti-sense effect Effects 0.000 description 4
- 230000004927 fusion Effects 0.000 description 4
- 229920001220 nitrocellulos Polymers 0.000 description 4
- 108020004707 nucleic acids Proteins 0.000 description 4
- 102000039446 nucleic acids Human genes 0.000 description 4
- 150000007523 nucleic acids Chemical class 0.000 description 4
- 229940055729 papain Drugs 0.000 description 4
- 235000019834 papain Nutrition 0.000 description 4
- 229940111202 pepsin Drugs 0.000 description 4
- 230000004481 post-translational protein modification Effects 0.000 description 4
- 102000004196 processed proteins & peptides Human genes 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 238000000734 protein sequencing Methods 0.000 description 4
- 238000012216 screening Methods 0.000 description 4
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 241001465754 Metazoa Species 0.000 description 3
- 241000283973 Oryctolagus cuniculus Species 0.000 description 3
- 239000002202 Polyethylene glycol Substances 0.000 description 3
- 238000002835 absorbance Methods 0.000 description 3
- 239000000427 antigen Substances 0.000 description 3
- 102000036639 antigens Human genes 0.000 description 3
- 108091007433 antigens Proteins 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000000872 buffer Substances 0.000 description 3
- 210000004027 cell Anatomy 0.000 description 3
- OOTFVKOQINZBBF-UHFFFAOYSA-N cystamine Chemical compound CCSSCCN OOTFVKOQINZBBF-UHFFFAOYSA-N 0.000 description 3
- 229940099500 cystamine Drugs 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 3
- 238000001976 enzyme digestion Methods 0.000 description 3
- 210000004408 hybridoma Anatomy 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 239000002953 phosphate buffered saline Substances 0.000 description 3
- DCWXELXMIBXGTH-UHFFFAOYSA-N phosphotyrosine Chemical compound OC(=O)C(N)CC1=CC=C(OP(O)(O)=O)C=C1 DCWXELXMIBXGTH-UHFFFAOYSA-N 0.000 description 3
- 229920001223 polyethylene glycol Polymers 0.000 description 3
- 150000003141 primary amines Chemical class 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 2
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 2
- 241000972773 Aulopiformes Species 0.000 description 2
- 102000014914 Carrier Proteins Human genes 0.000 description 2
- 108010078791 Carrier Proteins Proteins 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 2
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 2
- 239000004471 Glycine Substances 0.000 description 2
- 125000000729 N-terminal amino-acid group Chemical group 0.000 description 2
- 108091000080 Phosphotransferase Proteins 0.000 description 2
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 2
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000012148 binding buffer Substances 0.000 description 2
- 239000001045 blue dye Substances 0.000 description 2
- UDSAIICHUKSCKT-UHFFFAOYSA-N bromophenol blue Chemical compound C1=C(Br)C(O)=C(Br)C=C1C1(C=2C=C(Br)C(O)=C(Br)C=2)C2=CC=CC=C2S(=O)(=O)O1 UDSAIICHUKSCKT-UHFFFAOYSA-N 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000003776 cleavage reaction Methods 0.000 description 2
- 239000002299 complementary DNA Substances 0.000 description 2
- 239000003431 cross linking reagent Substances 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000001212 derivatisation Methods 0.000 description 2
- 239000000975 dye Substances 0.000 description 2
- 238000001962 electrophoresis Methods 0.000 description 2
- 229940088598 enzyme Drugs 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000013595 glycosylation Effects 0.000 description 2
- 238000006206 glycosylation reaction Methods 0.000 description 2
- 238000004128 high performance liquid chromatography Methods 0.000 description 2
- 230000003053 immunization Effects 0.000 description 2
- 230000002163 immunogen Effects 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 229910001629 magnesium chloride Inorganic materials 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- 230000005012 migration Effects 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- QKFJKGMPGYROCL-UHFFFAOYSA-N phenyl isothiocyanate Chemical group S=C=NC1=CC=CC=C1 QKFJKGMPGYROCL-UHFFFAOYSA-N 0.000 description 2
- 230000026731 phosphorylation Effects 0.000 description 2
- 238000006366 phosphorylation reaction Methods 0.000 description 2
- 102000020233 phosphotransferase Human genes 0.000 description 2
- 229920001184 polypeptide Polymers 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 239000011535 reaction buffer Substances 0.000 description 2
- 239000011541 reaction mixture Substances 0.000 description 2
- 235000019515 salmon Nutrition 0.000 description 2
- 230000007017 scission Effects 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000007873 sieving Methods 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 239000001509 sodium citrate Substances 0.000 description 2
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- LLXVXPPXELIDGQ-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) 3-(2,5-dioxopyrrol-1-yl)benzoate Chemical compound C=1C=CC(N2C(C=CC2=O)=O)=CC=1C(=O)ON1C(=O)CCC1=O LLXVXPPXELIDGQ-UHFFFAOYSA-N 0.000 description 1
- FDKWRPBBCBCIGA-REOHCLBHSA-N (2r)-2-azaniumyl-3-$l^{1}-selanylpropanoate Chemical compound [Se]C[C@H](N)C(O)=O FDKWRPBBCBCIGA-REOHCLBHSA-N 0.000 description 1
- UKAUYVFTDYCKQA-UHFFFAOYSA-N -2-Amino-4-hydroxybutanoic acid Natural products OC(=O)C(N)CCO UKAUYVFTDYCKQA-UHFFFAOYSA-N 0.000 description 1
- PQMRRAQXKWFYQN-UHFFFAOYSA-N 1-phenyl-2-sulfanylideneimidazolidin-4-one Chemical compound S=C1NC(=O)CN1C1=CC=CC=C1 PQMRRAQXKWFYQN-UHFFFAOYSA-N 0.000 description 1
- VLEIUWBSEKKKFX-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;2-[2-[bis(carboxymethyl)amino]ethyl-(carboxymethyl)amino]acetic acid Chemical compound OCC(N)(CO)CO.OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O VLEIUWBSEKKKFX-UHFFFAOYSA-N 0.000 description 1
- BFSVOASYOCHEOV-UHFFFAOYSA-N 2-diethylaminoethanol Chemical compound CCN(CC)CCO BFSVOASYOCHEOV-UHFFFAOYSA-N 0.000 description 1
- HJBUBXIDMQBSQW-UHFFFAOYSA-N 4-(4-diazoniophenyl)benzenediazonium Chemical compound C1=CC([N+]#N)=CC=C1C1=CC=C([N+]#N)C=C1 HJBUBXIDMQBSQW-UHFFFAOYSA-N 0.000 description 1
- 230000005730 ADP ribosylation Effects 0.000 description 1
- 101100480709 Bos taurus MAPT gene Proteins 0.000 description 1
- 241000167854 Bourreria succulenta Species 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- FDKWRPBBCBCIGA-UWTATZPHSA-N D-Selenocysteine Natural products [Se]C[C@@H](N)C(O)=O FDKWRPBBCBCIGA-UWTATZPHSA-N 0.000 description 1
- 102000053602 DNA Human genes 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 229920001917 Ficoll Polymers 0.000 description 1
- 108091006027 G proteins Proteins 0.000 description 1
- 102000003688 G-Protein-Coupled Receptors Human genes 0.000 description 1
- 108090000045 G-Protein-Coupled Receptors Proteins 0.000 description 1
- 102000030782 GTP binding Human genes 0.000 description 1
- 108091000058 GTP-Binding Proteins 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- FFFHZYDWPBMWHY-VKHMYHEASA-N L-homocysteine Chemical compound OC(=O)[C@@H](N)CCS FFFHZYDWPBMWHY-VKHMYHEASA-N 0.000 description 1
- UKAUYVFTDYCKQA-VKHMYHEASA-N L-homoserine Chemical compound OC(=O)[C@@H](N)CCO UKAUYVFTDYCKQA-VKHMYHEASA-N 0.000 description 1
- 102000029749 Microtubule Human genes 0.000 description 1
- 108091022875 Microtubule Proteins 0.000 description 1
- 241000699666 Mus <mouse, genus> Species 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- 108020005187 Oligonucleotide Probes Proteins 0.000 description 1
- 108091081548 Palindromic sequence Proteins 0.000 description 1
- 102000007079 Peptide Fragments Human genes 0.000 description 1
- 108010033276 Peptide Fragments Proteins 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 206010035226 Plasma cell myeloma Diseases 0.000 description 1
- 108010021757 Polynucleotide 5'-Hydroxyl-Kinase Proteins 0.000 description 1
- 102000008422 Polynucleotide 5'-hydroxyl-kinase Human genes 0.000 description 1
- 229920001213 Polysorbate 20 Polymers 0.000 description 1
- 102000001253 Protein Kinase Human genes 0.000 description 1
- 108020004511 Recombinant DNA Proteins 0.000 description 1
- 229920002684 Sepharose Polymers 0.000 description 1
- 238000012300 Sequence Analysis Methods 0.000 description 1
- RZCIEJXAILMSQK-JXOAFFINSA-N TTP Chemical compound O=C1NC(=O)C(C)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 RZCIEJXAILMSQK-JXOAFFINSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 210000000628 antibody-producing cell Anatomy 0.000 description 1
- 230000009831 antigen interaction Effects 0.000 description 1
- 230000000890 antigenic effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000001588 bifunctional effect Effects 0.000 description 1
- VYLDEYYOISNGST-UHFFFAOYSA-N bissulfosuccinimidyl suberate Chemical compound O=C1C(S(=O)(=O)O)CC(=O)N1OC(=O)CCCCCCC(=O)ON1C(=O)C(S(O)(=O)=O)CC1=O VYLDEYYOISNGST-UHFFFAOYSA-N 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 229940098773 bovine serum albumin Drugs 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 210000004899 c-terminal region Anatomy 0.000 description 1
- 150000001718 carbodiimides Chemical class 0.000 description 1
- 235000019693 cherries Nutrition 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 239000012228 culture supernatant Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- SUYVUBYJARFZHO-RRKCRQDMSA-N dATP Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@H]1C[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 SUYVUBYJARFZHO-RRKCRQDMSA-N 0.000 description 1
- SUYVUBYJARFZHO-UHFFFAOYSA-N dATP Natural products C1=NC=2C(N)=NC=NC=2N1C1CC(O)C(COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 SUYVUBYJARFZHO-UHFFFAOYSA-N 0.000 description 1
- RGWHQCVHVJXOKC-SHYZEUOFSA-J dCTP(4-) Chemical compound O=C1N=C(N)C=CN1[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)C1 RGWHQCVHVJXOKC-SHYZEUOFSA-J 0.000 description 1
- HAAZLUGHYHWQIW-KVQBGUIXSA-N dGTP Chemical compound C1=NC=2C(=O)NC(N)=NC=2N1[C@H]1C[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 HAAZLUGHYHWQIW-KVQBGUIXSA-N 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000006862 enzymatic digestion Effects 0.000 description 1
- 238000012869 ethanol precipitation Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 238000002523 gelfiltration Methods 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 108060003552 hemocyanin Proteins 0.000 description 1
- DKPHLYCEFBDQKM-UHFFFAOYSA-H hexapotassium;1-phosphonato-n,n-bis(phosphonatomethyl)methanamine Chemical class [K+].[K+].[K+].[K+].[K+].[K+].[O-]P([O-])(=O)CN(CP([O-])([O-])=O)CP([O-])([O-])=O DKPHLYCEFBDQKM-UHFFFAOYSA-H 0.000 description 1
- 230000008348 humoral response Effects 0.000 description 1
- 238000002649 immunization Methods 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- PGLTVOMIXTUURA-UHFFFAOYSA-N iodoacetamide Chemical compound NC(=O)CI PGLTVOMIXTUURA-UHFFFAOYSA-N 0.000 description 1
- 238000004255 ion exchange chromatography Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 108010045069 keyhole-limpet hemocyanin Proteins 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 210000003563 lymphoid tissue Anatomy 0.000 description 1
- 125000003588 lysine group Chemical group [H]N([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 210000004688 microtubule Anatomy 0.000 description 1
- 229940126619 mouse monoclonal antibody Drugs 0.000 description 1
- 201000000050 myeloid neoplasm Diseases 0.000 description 1
- 230000007498 myristoylation Effects 0.000 description 1
- ZIUHHBKFKCYYJD-UHFFFAOYSA-N n,n'-methylenebisacrylamide Chemical compound C=CC(=O)NCNC(=O)C=C ZIUHHBKFKCYYJD-UHFFFAOYSA-N 0.000 description 1
- 210000002569 neuron Anatomy 0.000 description 1
- 230000009871 nonspecific binding Effects 0.000 description 1
- 238000007899 nucleic acid hybridization Methods 0.000 description 1
- 239000002751 oligonucleotide probe Substances 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000026792 palmitoylation Effects 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 229940117953 phenylisothiocyanate Drugs 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000002157 polynucleotide Substances 0.000 description 1
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 1
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- SCVFZCLFOSHCOH-UHFFFAOYSA-M potassium acetate Chemical compound [K+].CC([O-])=O SCVFZCLFOSHCOH-UHFFFAOYSA-M 0.000 description 1
- 108020001580 protein domains Proteins 0.000 description 1
- 230000004853 protein function Effects 0.000 description 1
- 108060006633 protein kinase Proteins 0.000 description 1
- 230000009145 protein modification Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000012521 purified sample Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000006152 selective media Substances 0.000 description 1
- ZKZBPNGNEQAJSX-UHFFFAOYSA-N selenocysteine Natural products [SeH]CC(N)C(O)=O ZKZBPNGNEQAJSX-UHFFFAOYSA-N 0.000 description 1
- 235000016491 selenocysteine Nutrition 0.000 description 1
- 229940055619 selenocysteine Drugs 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 238000010532 solid phase synthesis reaction Methods 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000019635 sulfation Effects 0.000 description 1
- 238000005670 sulfation reaction Methods 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- 125000001493 tyrosinyl group Chemical group [H]OC1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 description 1
- 230000034512 ubiquitination Effects 0.000 description 1
- 238000010798 ubiquitination Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/68—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
Definitions
- N-terminal sequences of proteins and peptides are most commonly determined using repeated cycles, either manual or automated, of the Edman degradation reaction. Each degradation cycle consists of three steps: coupling, cleavage and conversion. In the coupling step, the unmodified N-terminus of a peptide or protein is modified with phenylisothiocyanate under basic conditions to generate a phenylthiocarbomyl peptide.
- the PTC-N-terminal residue is cleaved from the polypeptide by either liquid or gaseous trifluoroacetic acid to form an anilinothiazoline-amino acid derivative of the original N-terminal residue and a protein or peptide whose penultimate residue now lies at the N-terminus.
- the ATZ-amino acid is unstable and is converted in the third step by acid to a more stable phenylthiohydantoin (PTH) -amino acid.
- PTH phenylthiohydantoin
- protein samples are normally adsorbed or coupled to a membrane or glass fiber support that lies in a reaction cartridge.
- the ATZ-amino acid is washed from the reaction cartridge into a conversion flask where it is converted into the PTH-amino acid.
- the PTH-amino acid is then injected into a HPLC column, and the amino acid is detected by UV absorbance and is identified by its retention time.
- the sensitivity of such analyzers can be a s low as 1 pmol of PTH-amino acid.
- the number of residues which can be sequentially identified is dependent upon the sample amount and on the sequence itself.
- the sample must be at least 80% pure. Mixtures of proteins generate multiple PTH-amino acids during each cycle of the Edman degradation. Thus, if multiple proteins are present in similar quantities in a sample, it is almost impossible to assign a sequence to a particular protein. In addition, if the N-terminus is blocked, then sequences can arise form contaminating proteins. Second, the sample must be free of contaminants such as Tris, glycine, sodium dodecyl sulfate (SDS) , or acrylamide which affect the performance of the instrument and create large artifactual peaks in the chromatograms. Finally, there must be sufficient quantity of sample available for analysis.
- SDS sodium dodecyl sulfate
- the epitope ordering procedure allows for characterization of post-translational modification events which occur on a protein.
- An object of the invention is to provide a method of identifying an amino acid sequence of a protein.
- This method comprises obtaining antibodies to amino acids.
- the antibodies are then modified by binding a first nucleotide sequence and a second nucleotide sequence to the antibody, the first nucleotide sequence comprising a modified 5' -nucleotide followed by a single restriction enzyme site and a long nucleotide sequence containing a base pair sequence at the 3' end capable of annealing to a complementary sequence, the second nucleotide sequence comprising the same modified 5'- nucleotide, single restriction enzyme site and long nucleotide sequence as the first nucleotide sequence but having the complementary base pair sequence at the 3' end.
- the modified antibodies are bound to a protein so that complementary base pair sequences at the 3' end of said first and second nucleotide sequences of the antibody form a primer template complex which is extended to form a stable double-stranded duplex.
- the double-stranded duplex comprising bound modified antibodies is treated with at least one restriction enzyme to digest the duplex and the digested products are separated. A band pattern produced from these digested products is detected and a portion of the amino acid sequence of the protein is identified.
- Another object of the present invention is to provide a method of characterizing post-translational events on a protein. This method comprises obtaining antibodies to at least two epitopes on a protein with at least one antibody being directed toward a post-translationally modified epitope.
- antibodies are then modified by binding a first nucleotide sequence and a second nucleotide sequence to said antibody, said first nucleotide sequence comprising a modified 5' -nucleotide followed by a single restriction enzyme site and a long nucleotide sequence containing a base pair sequence at the 3' end capable of annealing to a complementary sequence, said second nucleotide sequence comprising the same modified 5' -nucleotide, single restriction enzyme site and long nucleotide sequence as said first nucleotide sequence and having the complementary base pair sequence at the 3' end.
- the modified antibodies are then bound to a protein so that complementary base pair sequences at the 3' end of said first and second nucleotide sequences of said modified antibodies form a primer template complex which is extended to form a stable double-stranded duplex.
- the double-stranded duplex comprising bound modified antibodies is treated with at least one restriction enzyme to digest the duplex and the products of the digestion are separated. The band pattern produced from these digested products is detected and a post-translation event on the protein is identified and characterized.
- Another object of the present invention is to provide modified antibodies which comprise an antibody to a single, bi- or tri-amino acid or an epitope on a protein related to a post- translational event, a first nucleotide sequence having a modified 5' -nucleotide, a single restriction enzyme site, a long nucleotide sequence, and a first base pair sequence at the 3' end which is capable of annealing to a complementary sequence, and a second nucleotide sequence having the same modified 5' -nucleotide, single restriction enzyme site and long nucleotide sequence as the first nucleotide sequence and a second base pair sequence at the 3' end which is complementary to the first base pair sequence of the first nucleotide sequence, the first and second nucleotide sequences each being bound to the antibody.
- Figure 1 is an autoradiograph showing hybridization results for use of Abl4 and Abtaul-DNA-spanner complexes in detection of the tau protein.
- Lane 1 shows a mixture of the Abs which have not been mixed with tau but have been taken through the epitope ordering procedure.
- Lanes 2 and 3 show the results obtained from two different experiments by mixing tau protein with the Ab-DNA-spanner complexes and going through the epitope ordering procedure with no subsequent restriction enzyme digestion.
- the BamHI and EcoRI digestions of the material seen in lane 2 are shown in lanes 4 and 5, respectively.
- a technique has now been developed for the rapid and sensitive identification of amino acid sequences of unknown proteins. This technique can be used to facilitate the generation of nucleic acid hybridization probes. In addition, this technique can be used to characterize post-translational modification events such as amino acid phosphorylation, sulfation, and glycosylation occurring on proteins.
- antibodies are prepared against each of the 21 amino acids or to di-amino or tri-amino sequences.
- Antibodies can also be prepared against non-naturally occurring amino acids such as selenocysteine, homocysteine and homoserine.
- antibodies are prepared against epitopes on a protein relating to post-translational events. For example, antibodies have been prepared against the antigenic di-amino sequence phospho-tyrosine.
- monoclonal antibodies to the tau protein designated as antibody 14 (Abl4) and taul (Abtaul) are used.
- antibody is meant to refer to complete, intact antibodies, Fab fragments and F(ab) 2 fragments. It is preferred that each specific antibody is made into Fab fragments in accordance with methods well known in the art. The protein structure of complete intact antibodies, Fab fragment and F(ab) 2 fragments and the organization of the genetic sequences that encode such molecules are well known in the art.
- a first nucleotide sequence is prepared which contains a modified 5' -nucleotide followed by a single restriction enzyme site and a long nucleotide sequence which contains a base pair sequence at the 3' end which serves as a sequence to which a complementary sequence will anneal.
- a second nucleotide sequence is then prepared comprising the same modified 5' -nucleotide, restriction enzyme site and long nucleotide sequence as the first nucleotide sequence, but having a base sequence at the 3' end in the corresponding position which is complementary to the base pair sequence of the first nucleotide sequence.
- these DNA- spanning oligonucleotides comprises 198 base pairs with four distinct regions.
- the nucleotide sequence used in accordance with this invention may be conveniently and routinely made through the well-known technique of solid phase synthesis.
- Equipment for such synthesis is sold by several vendors including Applied Biosystems (Foster City, CA) . Any other means for such synthesis may also be employed; the actual synthesis of the nucleotide sequences is well within the talents of the routineer.
- Oligonucleotides are synthesized using standard phosphoamidite chemistry and thus have a 5' -OH group. These oligonucleotides can be phosphorylated using a standard reaction and then derivatized to contain a 5'-NH 2 using the OligoLink Derivitzation Kit (Pierce Chemical) .
- the 5' nucleotide can be modified with the addition of a cystamine containing the free primary amine and is ready to be linked to the antibody.
- a nucleotide spacer region is followed by a nucleotide restriction enzyme recognition sequence, which is followed by a second nucleotide spacer region, followed at the 3'-end by a specific nucleotide hybridization sequence.
- a 36 nucleotide spacer region is followed by a 6 nucleotide restriction enzyme recognition sequence, followed by a 141 nucleotide spacer region, followed by a specific 15 nucleotide hybridization sequence.
- the BamHl and EcoRl restriction sites have been utilized for the DNA-spanners designated BAM36- 198, BAM36-198op, RI36-198, and RI38-198op.
- the BAM and RI spanners have a specific 15 nucleotide sequence at the 3' end which will complement the 15 nucleotide sequence at the 3' end of the 198op sequences.
- the nucleotide sequences are attached to a selected antibody covalently using a primary amine cross-linking agent.
- the derivatized DNA-spanners were attached to the tau antibodies using glutaraldehyde in accordance with well known methods.
- other bifunctional crosslinking agents such as bis(sulfosuccinimidyl) suberate and dimethyl suberimindate are also useful for forming amide bonds with the primary amine on the 5' end of the nucleotide sequences and the e-amino group of a lysine residue on the antibody.
- Such agents are commercially available through companies such as Pierce
- Abl4 was complexed with BAM36-198 and BAM36-198op, while Abtaul was complexed with RI36-198 and RI36-198op using glutaraldehyde.
- the antibody-oligo conjugates are subsequently separated from the unincorporated oligonucleotides by protein A column chromatography, in accordance with well known methods.
- the protein containing fractions are detected by 280 nm absorbance readings and stored at 4°C.
- the modified antibodies are then added to a sample containing a protein of unknown sequence under conditions which discourage annealing of nucleotide sequences. By these conditions it is meant to include, but is not limited to high salt concentrations or mechanical stabilization of the nucleotide sequence interaction.
- the modified antibodies then interact with their specific epitopes to bind with them.
- the ability of Abl4 and Abtaul-DNA-spanner complexes to associate with purified Abtaul protein has been demonstrated for at least one set of conditions.
- T4 DNA polymerase, Klenow and dNTPs are added so that the complementary base sequences of the first and second nucleotide sequences, which are brought into proximity because of the position of the nearest bound modified antibody, form a primer template complex which is then extended to form a stable double-stranded duplex.
- Restriction mapping is used frequently to map and characterize DNA fragments by those of skill in the art. Restriction mapping is accomplished with individual enzymes in accordance with the restriction enzyme suppliers' recommended conditions. For example, EcoRI digestion of the Ab-DNA mixtures is performed by addition of the following reagents in their final concentrations to the mixture: 100 mM Tris pH 7.5, 7 mM MgCl 2 and 50 mM NaCl. The enzymatic digestion then proceed for two hours at 37°C. Restriction enzymes can be obtained from a variety of different vendors including Promega (Madison, WI) , New England Biolabs
- the cleaved fragments are then separated on the basis of their length differences by electrophoresis in agarose or polyacrylamide gels.
- Gels containing various percentages of polyacrylamide or agarose (0.5 to 4%) can be used in the separation.
- the gel is run under conditions which achieve the best separation of fragments.
- the negatively charged nucleotide sequences migrate toward the anode. This migration is retarded by a matrix which contains large pores that sieve nucleotide sequences in a fashion so that longer nucleotide sequences migrate more slowly than shorter nucleotide sequences.
- the sieving properties are proportional to the concentration of agarose or polyacrylamide in the gel with migration being more retarded at higher concentrations.
- the sieving is even further controlled by the extent of cross-linking in the polymer.
- the pores are very large and the primary resolution variable is the concentration of the agarose used.
- Buffers used in these methods are selected in accordance with their buffering capacity which is needed during electrolysis of the water that occurs during electrophoresis.
- undigested, EcoRI or BamHI-digested reactions are mixed with gel loading dye, heated, and electrophoresed on a 4% polyacrylamide gel until the bromphenol blue dye is at the bottom of the gel.
- the Ab-oligo-oligo-Ab complexes are transferred to a nitrocellulose membrane by electroblotting.
- the nitrocellulose membrane is dried and then prehybridized with a solution containing BSA and salmon sperm DNA to prevent non-specific binding of the probe to the membrane.
- the blot is then probed with a radioactively labeled oligonucleotide containing the sequence (TGG) 10 which will hybridize with the DNA in the spacer region of the DNA-spanner oligonucleotides.
- This probe is labeled at the 5' end using 5' -polynucle ⁇ tide kinase and 32 P ATP.
- FIG. 1 shows hybridization results for use of Abl4 and Abtaul-DNA-spanner complexes in detection of the tau protein. These Ab-DNA complexes can be hybridized because of free (unreacted) single stranded DNA-spanners on each antibody. Lane 1 shows a mixture of the Abs which have not been mixed with tau but have been taken through the epitope ordering procedure. Lanes 2 and 3 show the results obtained from two different experiments by mixing tau protein with the Ab-DNA-spanner complexes and going through the epitope ordering procedure with no subsequent restriction enzyme digestion.
- the BamHI and EcoRI digestions of the material seen in lane 2 are shown in lanes 4 and 5 respectively.
- the slower mobility of the Ab-DNA complexes seen in lanes 2 and 3 show that the epitope ordering procedure produced a higher molecular weight complex while the restriction enzyme digestions of this complex shown in lanes 4 and 5 show that the restriction enzyme sites which were predicted to be generated were indeed generated.
- the antibody can be detected by protein A or a second, labeled antibody in accordance with well known methods.
- the banding pattern generated by using a single or multiple restriction enzymes determines the identity of the antibody associated with that restriction site. This information is then used to determine the order of the antibodies and the corresponding sequence of the bound protein.
- Such techniques are well-known to those of skill in the art as evidenced by wide use of the Edman degradation where identification of only a few amino acids is required to be able to generate a probe for isolation of the corresponding clone.
- antibodies are prepared against at least two epitopes on a protein with at least one antibody being directed toward a post-translationally modified epitope. These antibodies are modified and contacted with a sample as previously described in the present application.
- the function of proteins are often dependent upon the existence of groups added after primary translation and folding. For example, phosphorylation of tyrosine residues often activate or deactivate a protein kinase or lead to protein-protein dissociation of one of the G-protein subunits in a G-protein coupled receptor.
- proteins modification which affect protein function, stability, cellular trafficking or targeting for degradation include, but are not limited to, glycosylation, ADP-ribosylation, myristoylation, palmitoylation and ubiquitination.
- antibodies can be obtained to epitopes resulting from post-translational modifications of the protein allowing for identification and characterization of post-translational modifications on a protein.
- Current protein sequencing techniques and oligonucleotides sequencing methodologies do not establish these side chain modifications. In fact, in Edman Degradation, such modifications can make sequencing of a protein very difficult, if not impossible.
- a crude cellular homogenate can be used in the present invention since the antibodies are specific to epitopes within a specific protein and the chances of two or more antibodies nonspecifically binding to the same protein are very small.
- Antibodies generated against single, bi- or tri-amino acids are generated by first coupling the antigen to a carrier protein.
- carrier proteins include, but are not limited to keyhole limpet hemocyanin and bovine serum albumin. This coupling is accomplished using any number of methodologies well known in the art including, but not limited to, glutaraldehyde, m-Maleimidobenzoyl-N-hydroxysuccinimide ester, carbodiimide or bis-diazotized benzidine.
- the antigen-carrier complex is used as an immunogen to immunize rabbits in accordance with procedures well known in the art. Once appropriate antibody titers are reached, antibodies are isolated from the rabbit blood in accordance with published procedures.
- monoclonal antibodies can be generated by immunizing mice with the antigen-carrier complex and generating hybridoma cells lines.
- the tau monoclonal antibodies used in one embodiment of the invention have been described by Kosik et al. (1988) .
- Abl4 and Abtaul were derived from a mouse immunization with bovine tau protein. This immunogen was prepared by boiling a thrice-cycled microtubule preparation. The supernatant was fractionated on a Sepharose 4B column to obtain a preparation enriched in tau.
- antibodies to phospho-tyrosine are produced. Phosphorylated tyrosine is conjugated to the carrier hemocyanin and antibodies are produced in rabbits.
- Animals are injected with the antigen-carrier complex to produce a humoral response and an appropriate screening procedure developed.
- the sera from test bleed are used to develop and validate the screening procedure.
- production of the hybridoma may begin.
- animals are boosted with a sample of antigen.
- antibody-secreting cells are isolated from lymphoid tissue of the immunized animal and mixed with myeloma cells. The mixture is centrifuged to generate good cell-to-cell contacts and fused with polyethylene glycol (PEG) . Following the fusion, the cells are removed from the PEG, diluted in selective medium and plated into ultiwell tissue culture dishes.
- PEG polyethylene glycol
- Samples of the tissue culture supernatants are tested for the presence of selected antibodies about one week after the fusion. Hybridomas testing positive are grown and then single-cell cloned. Using this approach allows for the establishment of a continuous cell line as the source of a single type of antibody.
- Fab fragments are prepared from the antibodies in accordance with published procedures using either papain or pepsin digestion of the Ab molecule.
- the antibody In papain digestion, the antibody is cleaved at the N-terminal side of the disulfide bond which holds the heavy chains together.
- a solution of the IgG at 5 mg/ml in 100 mM NaAcetate (pH 5.5) containing cysteine (final concentration 50 mM) and EDTA (final concentration 1 mM) is prepared and aliquoted into test tubes.
- Ten micrograms of papain is added for each milligram of antibody in the tube. The tube is then incubated at 37°C for 10 hours. Following incubation, iodoacetamide is added to a final concentration of 75 mM and the solution is incubated for 30 minutes.
- pepsin digestion the antibody is cleaved on the
- CAA 12 -GGA-TCC- (CAA) 47 -GCT-GAT-GCT-GAT-GCT-3'
- CAA 12 -GAA-TTC- (CAA) 47 -GCT-GAT-GCT-GAT-GCT-3'
- CAA 5' - (CAA) 12 -GAA-TTC- (CAA) 47 -GCT-GAT-GCT-GAT-GCT-3'
- Oligonucleotides were phosphorylated in a reaction mixture containing 25 microliters oligo (200 ng/microliter) , 5 microliter 10X PNC buffer (500 mM Tris pH 8.0, 10 mM MgCl 2 ) , 5 microliter ATP (10 mM stock) , 10 microliters H 2 0, and 5 microliter polynucleotide kinase. The mixture was incubated for 30 minutes at 37°C. Phenol/chloroform extraction was then performed followed by ethanol precipitation in accordance with well known methods. Derivatization of these oligonucleotides is accomplished through use of the OligoLink derivatzation kit provided by Pierce Chemical.
- the protocol provided by Pierce uses approximately 5 micrograms oligo mixed with a derivatization reagent (cystamine) .
- the derivatized oligo is then bound to a matrix and reduced with DTT to generate a free disulfide bond in the center of the cystamine leaving a free sulfhydryl group.
- the oligo in its final form is eluted from the matrix using 10 mM TE (Tris-EDTA) buffer.
- Example 4 Covalent Attachment of DNA-spanner to Antibody
- the derivatized oligonucleotides are attached to the antibody using glutaraldehyde. Approximately, 100 micrograms of antibody are mixed with 10 micrograms of the derivatized oligos in phosphate buffered saline (PBS) . A total volume of 200 microliters to 1 ml is appropriate. An equal volume of freshly made 0.1% EM grade glutaraldehyde (in PBS) is added and the mixture incubated at room temperature for 3 hours. 1/20 solution volume of 1 M ethanolamine pH 7 is added to the solution and incubated at room temperature for 2 hours.
- PBS phosphate buffered saline
- the antibody-oligo complexes are adjusted to pH 8.0 by addition of 1 M Tris pH 8 to a final concentration of 0.1 M.
- the solution is passed over protein A beads (BioRad Corp.) and the column washed with 5 volumes 0.1 M Tris pH 8, then 5 volumes 10 mM Tris pH 8.
- the antibody-oligo complex is eluted by adding 500 microliters 100 mM glycine pH 3 in 50 microliter aliquots. These aliquots are collected from the column into Eppendorf tubes containing 40 microliters 1 M Tris pH 8.
- the protein containing fractions are detected by absorbance readings at 280 nm.
- the protein containing fractions are pooled and stored until use at 4°C in 50% glycerol and 0.02% sodium azide.
- 10 microliters of 10X binding/reaction buffer (2 M Tris OAc pH 7.4, 1% gelatin, 2%
- 1 microliter 10X binding/reaction buffer 1.5 microliters 1 M MgOAc, 4 microliters of a mixture of 250 micromolar each dATP, dGTP, dCTP, and TTP, 1 microliter H 2 0, 3 microliters T4 DNA Polymerase (2 U/microliter) , 1 microliter Klenow (8 U/microliter) were added and the mixture incubated at room temperature for 30 minutes.
- the reactions were then digested with the appropriate restriction enzymes.
- the ion concentration was adjusted with the addition of 1.5 microliters 1 M KOAc and 3 microliters restriction enzyme (BamHI and EcoRI) .
- the tubes were then incubated at 37° for 30 minutes.
- the samples are mixed with gel loading dye, heated to 60°C for 5 minutes and electrophoresed on a 4% polyacrylamide gel (Laemmli, Nature 1970, 227: 680-685); 42-1 acrylamide: bis-acrylamide. After the bromphenol blue dye reaches the bottom of the gel, the complexes are transferred to nitrocellulose membrane by electroblotting.
- the nitrocellulose is baked at 80°C under vacuum for 4 hours.
- the blot is prehybridized for 4 hours at 40°C in 6X SSC (0.9 M sodium citrate, 0.09 M sodium chloride); 100 microgram/ml salmon sperm DNA, 5X Denhardt's (0.1% BSA, 0.1% polyvinylpyrrolidone, 0.1% ficoll) and 50% formamide.
- 6X SSC 0.9 M sodium citrate, 0.09 M sodium chloride
- 5X Denhardt's 0.1% BSA, 0.1% polyvinylpyrrolidone, 0.1% ficoll
- the blot is then hybridized at 50°C for 18 hours with 32 P-radiolabeled
- TGG 10 This probe is labeled using 5' -polynucleotide kinase where the reaction volume is 10 microliters and 3 microliters of 32 P-ATP (3000 Ci/mM, Amersham) is utilized in the reaction mix. After hybridization, the blot is washed twice for 30 minutes each with 2X SSC at 50°C followed by washing twice with 0.1X SSc at 50°C for 30 minutes each. The blot is exposed to X-ray film next to an intensifying screen for 24 hours.
- SEQ ID NO: 1 CAACAACAAC AACAACAACA ACAACAACAA CAACAAGGAT CCCAACAACA 50 ACAACAACAA CAACAACAAC AACAACAACAACAACAACAA CAACAACAAC 100 AACAACAACAACAACAA CAACAACAAC AACAACAACAACAACAACAA 150 CAACAACAAC AACAACAACAACAACAA CAAGCTGATG CTGATGCT 198 (2) INFORMATION FOR SEQ ID NO: 2:
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Immunology (AREA)
- Organic Chemistry (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Engineering & Computer Science (AREA)
- Medicinal Chemistry (AREA)
- Genetics & Genomics (AREA)
- Biophysics (AREA)
- Urology & Nephrology (AREA)
- Biomedical Technology (AREA)
- Hematology (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Food Science & Technology (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Cell Biology (AREA)
- Peptides Or Proteins (AREA)
Abstract
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8508272A JPH10507344A (ja) | 1994-08-22 | 1995-08-22 | エピトープ整列化とタンパク質制限地図作製によるタンパク質の配列決定方法 |
EP95930901A EP0778777A4 (fr) | 1994-08-22 | 1995-08-22 | Procede de sequen age de proteines par classement d'epitopes et cartographie de sites de restriction de proteines |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US29413394A | 1994-08-22 | 1994-08-22 | |
US08/294,133 | 1994-08-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1996005847A1 true WO1996005847A1 (fr) | 1996-02-29 |
Family
ID=23132029
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US1995/010668 WO1996005847A1 (fr) | 1994-08-22 | 1995-08-22 | Procede de sequençage de proteines par classement d'epitopes et cartographie de sites de restriction de proteines |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP0778777A4 (fr) |
JP (1) | JPH10507344A (fr) |
CA (1) | CA2197493A1 (fr) |
WO (1) | WO1996005847A1 (fr) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000050901A1 (fr) * | 1999-02-25 | 2000-08-31 | Cyclacel Limited | Dosage de proteine |
WO2002037117A1 (fr) * | 2000-10-31 | 2002-05-10 | NMI Naturwissenschaftliches und Medizinisches Institut an der Universität Tübingen | Procede d'analyse de proteines |
US6821738B2 (en) | 1999-01-20 | 2004-11-23 | The Board Of Regents For Oklahoma State University | Broad spectrum bio-detection of nerve agents, organophosphates, and other chemical warfare agents |
US6972198B2 (en) * | 1999-02-26 | 2005-12-06 | Cyclacel, Ltd. | Methods and compositions using protein binding partners |
US7460960B2 (en) | 2002-05-10 | 2008-12-02 | Epitome Biosystems, Inc. | Proteome epitope tags and methods of use thereof in protein modification analysis |
US7618788B2 (en) | 2002-05-10 | 2009-11-17 | Millipore Corporation | Proteome epitope tags and methods of use thereof in protein modification analysis |
US7645586B2 (en) | 2006-03-23 | 2010-01-12 | Millipore Corporation | Protein isoform discrimination and quantitative measurements thereof |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3034304B2 (ja) * | 1990-05-04 | 2000-04-17 | カイロン コーポレイション | タンパク質―核酸プローブおよびそれを用いたイムノアッセイ |
US5348633A (en) * | 1993-01-22 | 1994-09-20 | Northeastern University | Method for quantitating trace amounts of an analyte in a sample by affinity capillary electrophoresis |
-
1995
- 1995-08-22 CA CA 2197493 patent/CA2197493A1/fr not_active Abandoned
- 1995-08-22 EP EP95930901A patent/EP0778777A4/fr not_active Ceased
- 1995-08-22 WO PCT/US1995/010668 patent/WO1996005847A1/fr not_active Application Discontinuation
- 1995-08-22 JP JP8508272A patent/JPH10507344A/ja active Pending
Non-Patent Citations (3)
Title |
---|
METZLER, "Biochemistry: the Chemical Reactions of Living Cells", Published 1977, by ACADEMIC PRESS, INC. (NY), page 64. * |
REES et al., "Protein Engineering: a Practical Approach", Published 1992, by IRL PRESS (NY), page 1, Chapter 11. * |
See also references of EP0778777A4 * |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6821738B2 (en) | 1999-01-20 | 2004-11-23 | The Board Of Regents For Oklahoma State University | Broad spectrum bio-detection of nerve agents, organophosphates, and other chemical warfare agents |
WO2000050901A1 (fr) * | 1999-02-25 | 2000-08-31 | Cyclacel Limited | Dosage de proteine |
US6972198B2 (en) * | 1999-02-26 | 2005-12-06 | Cyclacel, Ltd. | Methods and compositions using protein binding partners |
WO2002037117A1 (fr) * | 2000-10-31 | 2002-05-10 | NMI Naturwissenschaftliches und Medizinisches Institut an der Universität Tübingen | Procede d'analyse de proteines |
US7867755B2 (en) | 2000-10-31 | 2011-01-11 | NMI Naturwissenschaftliches und Medizinisches Institut an der Universität Tübingen | Method for analyzing proteins |
US8241894B2 (en) | 2000-10-31 | 2012-08-14 | NMI Naturwissenschaftliches und Medizinisches Institut an der Universität Tübingen | Method for analyzing proteins |
US7460960B2 (en) | 2002-05-10 | 2008-12-02 | Epitome Biosystems, Inc. | Proteome epitope tags and methods of use thereof in protein modification analysis |
US7618788B2 (en) | 2002-05-10 | 2009-11-17 | Millipore Corporation | Proteome epitope tags and methods of use thereof in protein modification analysis |
US7964362B2 (en) | 2002-05-10 | 2011-06-21 | Millipore Corporation | Proteome epitope tags and methods of use thereof in protein modification analysis |
US8244484B2 (en) | 2002-05-10 | 2012-08-14 | Emd Millipore Corporation | Proteome epitope tags and methods of use thereof in protein modification analysis |
US7645586B2 (en) | 2006-03-23 | 2010-01-12 | Millipore Corporation | Protein isoform discrimination and quantitative measurements thereof |
US7855057B2 (en) | 2006-03-23 | 2010-12-21 | Millipore Corporation | Protein splice variant/isoform discrimination and quantitative measurements thereof |
Also Published As
Publication number | Publication date |
---|---|
EP0778777A1 (fr) | 1997-06-18 |
EP0778777A4 (fr) | 1999-01-27 |
CA2197493A1 (fr) | 1996-02-29 |
JPH10507344A (ja) | 1998-07-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0711303B2 (fr) | Biotinylation de proteines | |
Shai et al. | Anti-sense peptide recognition of sense peptides: direct quantitative characterization with the ribonuclease S-peptide system using analytical high-performance affinity chromatography. dag. | |
US20120190564A1 (en) | Identification of protein binding sites | |
Marano et al. | Purification and amino terminal sequencing of human melanoma nerve growth factor receptor | |
US8241894B2 (en) | Method for analyzing proteins | |
JPH09101306A (ja) | 標的蛋白質の親和性精製に有用なペプチドリガンドの選択のための組み合わせペプチドライブラリーのスクリーニング | |
AU600439B2 (en) | Ras oncogene peptides and antibodies | |
Anand et al. | Reporter epitopes: A novel approach to examine transmembrane topology of integral membrane proteins applied to the. alpha. 1 subunit of the nicotinic acetylcholine receptor | |
US20230349903A1 (en) | Assays and reagents for characterization of mhci peptide binding | |
EP0222876A1 (fr) | Proteine fusionnee pour des systemes d'essais immunologiques a enzymes | |
KR0174528B1 (ko) | 암과 관련된 헵토글로빈 | |
EP0778777A1 (fr) | Procede de sequen age de proteines par classement d'epitopes et cartographie de sites de restriction de proteines | |
JPH08233811A (ja) | I型コラーゲン検出用の抗原及び抗体 | |
FISHER et al. | Affinity purification of antibodies using antigens immobilized on solid supports | |
Hefta et al. | Expression of carcinoembryonic antigen and its predicted immunoglobulin-like domains in HeLa cells for epitope analysis | |
US6986994B2 (en) | INGAP displacement assays | |
EP1648919A2 (fr) | Methodes de detection de l'activation des lymphocytes t par des peptides de liaison au cmh | |
Meissner et al. | Lessons of studying TRP channels with antibodies | |
JPH01257263A (ja) | Sm−d抗原、sm−d抗原のクローニングとsm−d抗原使用による播種性エリテマトーデの検出 | |
EP1646652A2 (fr) | Procedes de modelage gpcr et de production d'anticorps a blocage de ligand et a activation de recepteur associes | |
JP3888695B2 (ja) | ヒトlect2に対する抗体、それを産生する細胞、その測定法及び測定用キット | |
JP2002058479A (ja) | 構造認識アミノ酸配列の取得方法 | |
Mische et al. | Protein sequencing of post-translationally modified peptides and proteins: Design, characterization and results of ABRF-92SEQ | |
AU2007244153B2 (en) | Prostasin partial peptide and anti-prostasin antibody | |
US5296383A (en) | Human centromere antigen polypeptide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CA JP US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2197493 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1995930901 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 1997 793235 Country of ref document: US Date of ref document: 19970317 Kind code of ref document: A |
|
WWP | Wipo information: published in national office |
Ref document number: 1995930901 Country of ref document: EP |
|
WWR | Wipo information: refused in national office |
Ref document number: 1995930901 Country of ref document: EP |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 1995930901 Country of ref document: EP |