WO1996014599A9 - - Google Patents
Info
- Publication number
- WO1996014599A9 WO1996014599A9 WO9614599A9 WO 1996014599 A9 WO1996014599 A9 WO 1996014599A9 WO 9614599 A9 WO9614599 A9 WO 9614599A9
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrode
- anodic oxidation
- signal
- linear resistance
- anodizing
- Prior art date
Links
- 230000003647 oxidation Effects 0.000 claims description 393
- 238000007254 oxidation reaction Methods 0.000 claims description 393
- 239000000758 substrate Substances 0.000 claims description 200
- 239000004973 liquid crystal related substance Substances 0.000 claims description 187
- 238000007743 anodising Methods 0.000 claims description 137
- 229910052751 metal Inorganic materials 0.000 claims description 34
- 239000002184 metal Substances 0.000 claims description 34
- 239000004065 semiconductor Substances 0.000 claims description 34
- 239000010407 anodic oxide Substances 0.000 claims description 33
- 239000000463 material Substances 0.000 claims description 12
- 230000001681 protective effect Effects 0.000 claims description 9
- 238000002048 anodisation reaction Methods 0.000 claims description 3
- 238000009413 insulation Methods 0.000 claims description 3
- 238000002161 passivation Methods 0.000 claims 2
- 239000002253 acid Substances 0.000 claims 1
- 230000001590 oxidative effect Effects 0.000 claims 1
- 239000010408 film Substances 0.000 description 319
- 239000010410 layer Substances 0.000 description 114
- 238000005530 etching Methods 0.000 description 111
- 229910052715 tantalum Inorganic materials 0.000 description 79
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 79
- 238000000034 method Methods 0.000 description 43
- 238000000926 separation method Methods 0.000 description 35
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 34
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 32
- 230000008569 process Effects 0.000 description 29
- 229910001936 tantalum oxide Inorganic materials 0.000 description 28
- 239000011159 matrix material Substances 0.000 description 26
- 238000004519 manufacturing process Methods 0.000 description 24
- 239000011347 resin Substances 0.000 description 22
- 229920005989 resin Polymers 0.000 description 22
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 18
- 239000007789 gas Substances 0.000 description 16
- 229910052760 oxygen Inorganic materials 0.000 description 16
- 239000001301 oxygen Substances 0.000 description 16
- 229910018503 SF6 Inorganic materials 0.000 description 14
- 238000012545 processing Methods 0.000 description 14
- SFZCNBIFKDRMGX-UHFFFAOYSA-N sulfur hexafluoride Chemical compound FS(F)(F)(F)(F)F SFZCNBIFKDRMGX-UHFFFAOYSA-N 0.000 description 14
- 229960000909 sulfur hexafluoride Drugs 0.000 description 14
- 238000007689 inspection Methods 0.000 description 13
- 230000036961 partial effect Effects 0.000 description 12
- 239000011651 chromium Substances 0.000 description 11
- 230000006866 deterioration Effects 0.000 description 11
- 239000012535 impurity Substances 0.000 description 11
- 150000002500 ions Chemical class 0.000 description 10
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 9
- 230000007547 defect Effects 0.000 description 9
- 239000011521 glass Substances 0.000 description 9
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 8
- 239000007864 aqueous solution Substances 0.000 description 8
- 238000001020 plasma etching Methods 0.000 description 8
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 7
- 230000008859 change Effects 0.000 description 7
- 229910052804 chromium Inorganic materials 0.000 description 7
- 230000005611 electricity Effects 0.000 description 7
- 229910052750 molybdenum Inorganic materials 0.000 description 7
- 239000011733 molybdenum Substances 0.000 description 7
- 230000002093 peripheral effect Effects 0.000 description 7
- 230000003068 static effect Effects 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 6
- 229910021417 amorphous silicon Inorganic materials 0.000 description 6
- 229910003437 indium oxide Inorganic materials 0.000 description 6
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 238000004544 sputter deposition Methods 0.000 description 5
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 4
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 4
- 238000005520 cutting process Methods 0.000 description 4
- 230000006378 damage Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 229910052698 phosphorus Inorganic materials 0.000 description 4
- 239000011574 phosphorus Substances 0.000 description 4
- 230000002829 reductive effect Effects 0.000 description 4
- 238000002834 transmittance Methods 0.000 description 4
- 238000001039 wet etching Methods 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 230000012447 hatching Effects 0.000 description 3
- 239000011229 interlayer Substances 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 125000006850 spacer group Chemical group 0.000 description 3
- 238000004528 spin coating Methods 0.000 description 3
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical compound FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 description 3
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 3
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 241000255925 Diptera Species 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 2
- 229910052794 bromium Inorganic materials 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000000873 masking effect Effects 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 239000010955 niobium Substances 0.000 description 2
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 2
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 2
- 238000007639 printing Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- WYXIGTJNYDDFFH-UHFFFAOYSA-Q triazanium;borate Chemical compound [NH4+].[NH4+].[NH4+].[O-]B([O-])[O-] WYXIGTJNYDDFFH-UHFFFAOYSA-Q 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- GWCPMNRTISDVKH-UHFFFAOYSA-N F.F.F.F.F.F.S Chemical compound F.F.F.F.F.F.S GWCPMNRTISDVKH-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 230000000968 intestinal effect Effects 0.000 description 1
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 230000001151 other effect Effects 0.000 description 1
- NDLPOXTZKUMGOV-UHFFFAOYSA-N oxo(oxoferriooxy)iron hydrate Chemical compound O.O=[Fe]O[Fe]=O NDLPOXTZKUMGOV-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910021341 titanium silicide Inorganic materials 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- WQJQOUPTWCFRMM-UHFFFAOYSA-N tungsten disilicide Chemical compound [Si]#[W]#[Si] WQJQOUPTWCFRMM-UHFFFAOYSA-N 0.000 description 1
- 229910021342 tungsten silicide Inorganic materials 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Definitions
- the present invention relates to a monochrome or flat liquid crystal display device widely used as a display of a clock, a calculator, a video camera, and various other electronic devices.
- the first electrode and the second electrode are provided on one of the two substrates for sealing the liquid crystal, and the non-linear resistance layer is formed between the first electrode and the second electrode.
- the present invention relates to a configuration of a liquid crystal display device in which an anodic oxide film of an electrode is formed, and a non-linear resistance element having a “metal-insulator-metal” or “metal-insulator-transparent conductor” structure is provided.
- the decrease of the contrast or the decrease of the response speed occurs as the time division is performed. For this reason, it is difficult to obtain a sufficient contrast when having about 200 scanning lines.
- an active matrix liquid crystal display panel having a switching element in each pixel is adopted.
- the active matrix liquid crystal display panel can be roughly classified into three terminals using thin film transistors (Thin-Film-Transistor: hereinafter referred to as "TFT”) as switching elements.
- TFT thin film transistors
- a diode type, a varistor type, or a thin-film diode (hereinafter referred to as “TFD”) type has been developed as this two-terminal system.
- the T F D type is characterized in that the structure is particularly simple and the manufacturing process is short.
- liquid crystal display panels are required to have high density and high definition, and the area occupied by switching elements must be reduced.
- FIG. 45 is a plan view of a liquid crystal display S showing an example of the structure of a conventional liquid crystal display having switching elements effective for large surface area and low cost
- FIG. Description will be made with reference to FIG. 46, which is a plan view showing in an enlarged manner
- FIG. 47 which is a cross-sectional view taken along the line X-X.
- this liquid crystal display device opposes a first substrate 1 and a second substrate 11 made of a transparent material with a predetermined distance therebetween via a spacer 17. Liquid crystal 16 is sealed between them.
- a lower electrode 2 and a signal electrode 4 are provided as a first electrode on the first substrate 1, and a non-linear resistive layer 3 is provided on the lower electrode 2. Further, an upper electrode 6 is provided as a second electrode so as to overlap on the non-linear resistance layer 3 to constitute a non-wire resistive element 9.
- the upper electrode 6 as the second electrode extends from the display electrode 7 as shown in FIG. 46, and a part thereof also serves as the display electrode.
- the non-linear resistive element 9 and the display electrode 7 are provided in a matrix.
- a black matrix 12 is provided in the whole area shown by hatching in FIG. That is, the black matrix 12 is provided as a light shield in the non-display area.
- the counter electrode 13 is made to face the display electrode 7 and the interlayer insulating film 14 is kept in contact with the black matrix 12 so as not to short. It is provided in the form of a band via
- lower electrode 2 and signal electrode 4 which are the first electrodes on first substrate 1 and upper electrode 6 and the display electrode 7 which are the second electrodes are all shown by broken lines.
- the non-linear resistance layer 3 is not shown, and the black matrix 12 and the counter electrode 13 on the lower surface of the second substrate 11 are shown by solid lines.
- the lower electrode 2 provided on the first substrate 1 projects from the signal electrode 4 in order to provide the non-linear resistance element 9, and the lower electrode 2 as this overhanging area overlaps the upper electrode 6.
- the non-linear resistance element 9 is configured.
- the signal electrode 4 as the first electrode and the display electrode 7 as the second electrode have a gap d of a predetermined dimension as shown in FIG.
- the display electrode 7 becomes a pixel portion of the liquid crystal display panel by being disposed so as to overlap with the counter electrode 1 3 via the liquid crystal 16.
- the black matrix 12 is provided so as to overlap by a certain amount up to the formation region of the display electrode 7, and has a role of preventing light leakage from the peripheral region of the display electrode 7.
- the liquid crystal display device performs a predetermined image display due to the change in transmittance of the liquid crystal 16 in the region where the black matrix 12 is not formed on the display electrode 7.
- alignment films 15 and 15 are provided as processing layers for regularly arranging the molecules of the liquid crystal 16. There is.
- an M-row signal electrode 4 is provided on the first substrate 1, and an N-row counter electrode 13 or a second electrode 11 is provided on the second substrate 11.
- a liquid crystal display device having a display area 18 shown by a dot-and-dash line consisting of a matrix of M columns and N rows is provided by providing a data electrode.
- a display electrode 7 is provided at the intersection of the M signal electrodes 4 and the N row counter electrodes 13 or the data electrodes, and a non-linear resistance element (this example is shown between the signal electrodes 4 and the display electrodes 7).
- TFD 9 is provided.
- an anodic oxidation electrode 5 for interconnecting the signal electrodes 4 in M rows is provided, and the anodic oxidation electrode 5 and the anodic oxidation electrode 5 are provided.
- connection electrodes 8 are provided for connecting each signal electrode 4 to an external circuit.
- the signal electrodes 4 of each column are connected by the anodic oxidation electrodes 5, and each lower electrode 2 connected to the signal electrodes is subjected to the positive oxidation treatment at one time, and the non-linear resistance is applied to the surface thereof.
- Layer 3 ( Figure 47) is formed, but after processing the signal electrodes 4 of each column must be separated and made independent.
- the characteristics of the non-linear resistance element 9 may be degraded by static electricity. Also, when the first substrate 1 is cut, each signal is cut off. Since the end faces of the electrodes are exposed, there is a possibility that a short circuit may occur between a plurality of signal electrodes due to the adsorption of dust and moisture.
- the characteristics of the non-linear resistance element 9 may be degraded or broken.
- Anodizing electrode 5 is separated during alignment processing for aligning liquid crystal regularly, during transportation between devices, and during inspection process, which is processing for processing substrate 1 having non-linear resistance element 9 for liquid crystal display. If you do, you can not disperse the static electricity that is generated locally.
- the voltage can be applied to the respective display electrodes 7 simply by applying the voltage to the mutually connected anodic oxidation angle electrodes 5 in the inspection step of the liquid crystal display device, the inspection can be performed easily. it can.
- the external circuit is mounted on the substrate 1 forming the non-linear resistance element 9, for example, a chip on which an integrated circuit capable of high density mounting is mounted on the substrate using a conductive adhesive.
- a conductive adhesive In the case of the glass (COG) mounting method, it is required that contamination does not enter between the mounting electrode and the conductive paste before mounting.
- the material is wasted. It was not possible to meet the various demands mentioned above.
- the present invention provides a liquid crystal display device in which a part of the anodic oxidation electrode is easily removed by etching after various processes as described above are completed, and each signal electrode becomes independent. Deterioration and destruction of the non-linear resistive element due to static electricity generated during the manufacturing process of the non-linear resistive element or the subsequent process to become a liquid crystal display device is prevented, defects of the non-linear resistive element are reduced, and characteristics of the non-linear resistive element
- the first objective is to stabilize the
- the waste disposal part like the cutting part shown in Figure 46 is Another purpose is to make effective use of the remaining portion after making each signal electrode of the anodizing electrode used for anodizing treatment become independent, and also to use the conventional non-linear resistive element described above.
- the signal electrode is formed of a gold coating, and the wiring widths of the initial signal electrode and the final signal electrode are the same. Therefore, there is a problem that it is difficult to make correction when etching defects occur in part of the signal electrodes.
- the anodic oxidation film can not be formed if the signal electrode is broken. Furthermore, in order to form a positive oxide film uniformly, it is necessary to form an anodic oxidation electrode as wide as possible.
- the gate electrode when the gate electrode is used as an anodic oxidation electrode and the anodic oxide film of the gate electrode is used as a gate insulating film, as in the case of the TFD element. There is a risk that an anodic oxidation electrode disconnection or an electrical short between the signal electrode (gate electrode or source electrode) and the transparent display electrode may occur.
- the present invention uses the signal electrode as a part of the electrode for anodic oxidation to enable the anodic oxide film to be formed as the non-linear resistance layer of each non-linear resistance element to be formed reliably and uniformly. If etching defects occur in part of the signal electrodes so that they can be easily corrected, and if an electrical short circuit occurs between the display electrodes of the transparent conductive film and the signal electrodes or anode electrodes for anodic oxidation. It also aims to make it easy to detect the short circuit point. Disclosure of the invention
- the present invention configures a liquid crystal display as follows.
- a first substrate and a second substrate are opposed with a predetermined distance, a plurality of electrodes are provided on the first substrate, and the plurality of electrodes overlap.
- a non-linear resistance layer is formed of the anodic oxide film of one of the electrodes, and a non-linear resistance element such as a TFD element or a TFT element is provided.
- the liquid crystal is sealed between the first substrate and the second substrate.
- an anodic oxidation electrode for mutually connecting in advance each electrode forming an anodic oxide film to form the above-mentioned nonlinear resistance layer so that anodic oxidation treatment can be performed quickly and uniformly, and an anodic oxidation electrode thereof By separately exposing the exposed portion of the anodizing electrode by etching using the other electrode as a mask after the anodic oxidation treatment.
- a special coating for masking can be omitted or reduced, and an etching process for independent of each electrode can be easily performed at any step after the anodizing process.
- the remaining portion of the anodic oxidation electrode can be effectively used as a connection electrode, an input electrode (terminal) and the like.
- anodic oxidation electrode around the display area or the display element portion, it can be used as a light shielding portion, and there is no liquid crystal display device without black matrix. You can also give up.
- the width of the anodic oxidation electrode wide at the beginning, the uniformity of the anodic oxidation film can be improved and the effect of preventing cutting etc. can be enhanced, and the anodic oxidation film can be partially formed on the electrode. Even if a defect occurs, it can be repaired using the wide part of the anodizing electrode.
- FIG. 1 is a plan view showing a part of a liquid crystal display device according to a first embodiment of the present invention
- FIG. 2 is a cross-sectional view taken along the line A-A of FIG.
- FIG. 3 is a plan view showing a part of the liquid crystal display device according to the second embodiment of the present invention.
- Fig. 4 is a cross-sectional view taken along the line B-B of Fig. 3;
- FIG. 5 is a plan view showing a state in which a plurality of substrates of the liquid crystal display device g according to the third embodiment of the present invention are arranged on a large substrate.
- FIG. 6 is an enlarged plan view showing the boundary between two liquid crystal display substrates, which is surrounded by a broken line in FIG.
- FIG. 7 is a cross-sectional view taken along the line C--C of FIG. 6 in a state where the liquid crystal display device is configured
- FIG. 8 is a cross-sectional view taken along the line D-D.
- FIG. 9 is a plan view showing a part of the first substrate side of a liquid crystal display device g according to a fourth embodiment of the present invention
- FIG. 10 is a view showing the liquid crystal display device shown in FIG. -It is a sectional view taken along the line E.
- FIG. 11 is a plan view showing the whole construction of a liquid crystal display according to a fifth embodiment of the present invention
- FIG. 12 is a plan view showing a portion surrounded by broken lines a and b in FIG. It is.
- FIG. 13 is a cross-sectional view taken along line F-F of FIG. 12 with the liquid crystal display S configured
- FIG. 14 is a cross-sectional view taken along line G-G of FIG.
- FIG. 15 is an enlarged plan view showing a part of a liquid crystal display according to a sixth embodiment of the present invention
- FIG. 16 is a cross-sectional view taken along the line HH of FIG.
- FIG. 17 is an enlarged plan view showing a part of a liquid crystal display according to a seventh embodiment of the present invention
- FIG. 18 is a cross-sectional view taken along line I-I in FIG.
- FIG. 19 is a plan view showing an entire configuration of a liquid crystal display according to an eighth embodiment of the present invention
- FIG. 20 is a plan view showing a part of FIG. 19 in an enlarged manner
- FIG. 0 is a cross-sectional view taken along the line JJ of FIG.
- FIG. 22 is a plan view showing a part of the liquid crystal display according to a ninth embodiment of the present invention in an enlarged manner
- FIG. 23 is a cross sectional view taken along the line K--K of FIG.
- FIG. 24 is a plan view showing a partial region of the first substrate forming the TFD element of the liquid crystal display according to the tenth embodiment of the present invention, and FIG. 24 is a cross-sectional view taken along the line L-L in FIG.
- 26 to 29 are a plan view of a liquid crystal display device according to a tenth embodiment of the present invention and sectional views showing a method of manufacturing the negative substrate in order of steps.
- FIG. 30 is a plan view showing a partial region of the first substrate forming the TFD element of the liquid crystal display device according to the first embodiment of the present invention
- FIG. 3.1 is a diagram showing M of FIG. -A cross-sectional view along the M line.
- FIG. 32 to 34 are sectional views showing a method of manufacturing the active substrate of the liquid crystal display device according to the first embodiment of the present invention in the order of steps.
- FIG. 35 is a plan view showing a partial region of a first substrate forming the TFD element of the liquid crystal display device according to the twelfth embodiment of the present invention
- FIG. 36 is an N-- FIG. It is sectional drawing which follows N line.
- FIG. 37 is a plan view showing a partial region of the first substrate forming the TFD element of the liquid crystal display device according to the thirteenth embodiment of the present invention
- FIG. 38 is a plan view of FIG. It is a sectional view which meets P line.
- FIG. 39 is a plan view showing a partial region of the first substrate forming the TFT element of the liquid crystal display device according to the fourteenth embodiment of the present invention
- FIG. 40 is a plan view of FIG. -It is a cross-sectional view along the Q line.
- FIGS. 41 to 44 are sectional views showing a method of manufacturing an active substrate of a liquid crystal display according to a fourteenth embodiment of the present invention in the order of steps.
- FIG. 45 is a whole plan view showing an example of a conventional liquid crystal display device
- FIG. 46 is a plan view showing a part of the liquid crystal display device in an enlarged manner
- FIG. It is sectional drawing in alignment with a line.
- FIGS. 1 to 44 used in the description of each of the following embodiments, the corresponding parts in FIGS. 45 to 47 described above and in the drawings of each embodiment respectively correspond.
- FIG. 1 the structure of a liquid crystal display device according to a first embodiment of the present invention will be described with reference to FIGS. 1 and 2.
- FIG. 1 the structure of a liquid crystal display device according to a first embodiment of the present invention will be described with reference to FIGS. 1 and 2.
- FIG. 1 the structure of a liquid crystal display device according to a first embodiment of the present invention will be described with reference to FIGS. 1 and 2.
- FIG. 1 the structure of a liquid crystal display device according to a first embodiment of the present invention will be described with reference to FIGS. 1 and 2.
- FIG. 1 is a plan view showing a part of the liquid crystal display device of the first embodiment
- FIG. 2 is a cross-sectional view taken along the line A--A of FIG. In FIG. 1, the first and second substrates themselves are not shown.
- this liquid crystal display device is the same as that of the prior art described above, and as shown in FIG. 2, the first substrate 1 and the second substrate 11 made of materials such as transparent glass are respectively
- the liquid crystal 16 is enclosed between the electrodes with a predetermined distance therebetween via a spacer (not shown).
- a lower electrode 2 made of a tantalum (T a) film, a signal electrode 4 and an electrode for anodic oxidation 5 are provided as a first electrode.
- a non-linear resistance layer 3 made of a tantalum oxide (Ta 2 0 5 5) film which is a positive electrode oxide film of the lower electrode 2 itself is formed.
- the anodic oxide film is formed not only on the lower electrode 2 but also on the entire surface of the first electrode, ie, the surfaces of the signal electrode 4 and the anodic oxidation electrode 5.
- the second electrode As the second electrode, the upper electrode 6 on the non-linear resistance layer 3, the display electrode 7 connected to the upper electrode 6, and the connection electrode 8 forming a part of the anodic oxidation electrode 5 And indium tin oxide (ITO) film.
- ITO indium tin oxide
- the lower electrode 2, the non-linear resistive layer 3 and the upper electrode 6 constitute a non-linear resistive element 9 of a TFD structure.
- connection electrode 8 consisting of the second electrode covers a part of the anodizing electrode 5 consisting of the first electrode, and at the time of anodizing treatment, as shown by phantom lines in FIG.
- the runners 5 a of the anodic oxidation electrodes 5 connecting the electrodes 4 are separated from each other at the separation side 10 by the connection electrodes 8 after the anodic oxidation treatment, and the signal electrodes 4 independent of each other are formed.
- connection electrode 8 is an electrode connected to the output terminal 1 0 0 0 a of the driving IC 1 0 0 for driving the liquid crystal display device as shown in FIG.
- a black matrix 1 2 made of a chromium (Cr) film is provided on the inner surface of the ing.
- the black matrix 12 is not provided in the area of the second substrate 11 facing the display electrode 7 on the first substrate 1 o
- an opposite electrode 1 3 made of a zinc oxide oxide film is provided to face the display electrode 7.
- the counter electrode 13 is provided via the interlayer insulating film 14 so as not to short circuit in contact with the black matrix 12.
- the first electrode (signal electrode 4) and the display electrode 7 have a gap of a predetermined size so as not to short-circuit both.
- the display electrode 7 becomes a display pixel portion of the liquid crystal display panel by being disposed so as to overlap the counter electrode 13 via the liquid crystal 16 as shown in FIG.
- the black matrix 1 2 is provided with an opening 1 2 a.
- the shaded region shown in FIG. 1 is the area where the black matrix 1 2 is formed.
- the liquid crystal display device performs predetermined image display by the change in the transmittance of the liquid crystal 16 in the display pixel portion described above.
- first substrate 1 and the second substrate 11 are provided with alignment films 15 and 15 as treatment layers for regularly arranging the molecules of the liquid crystal 16.
- the anodizing electrode 5 formed of the first electrode is separated in a self-aligned manner by the connection electrode 8 formed of the second electrode.
- the signal electrodes 4 of each row are formed by the anodic oxidation electrodes 5. 2 are connected to each other. Then, after inspection of, for example, a liquid crystal display panel after anodizing treatment, etching is performed using the connection electrode 8 consisting of the second electrode as a mask, whereby a runner not covered by the connection electrode 8 of the anodizing electrode 5 The part 5 a is removed and separated from each other at the separation side 10 of the connection electrode 8 to constitute independent signal electrodes 4 of each row.
- connection electrode 8 which is the second electrode is used as a mask for etching, the respective signal electrodes connected to each other during the manufacturing process of the liquid crystal display panel, the inspection process, or after the inspection. It becomes possible to process 4 into independent signal electrodes.
- FIG. 3 is a plan view showing a part of the liquid crystal display device of the second embodiment
- FIG. 4 is a cross-sectional view taken along the line B--B of FIG. In FIG. 3, the first and second substrates themselves are not shown.
- the lower electrode 2, the signal electrode 4 and the anodic oxidation electrode 5 are provided on the first substrate 1 as a first electrode made of a tantalum (Ta) film. Then, on the surface of the first electrode including the lower electrode 2, tantalum oxide is used as an enteric oxide film of the first electrode itself. A non-linear resistance layer 3 composed of a (T a2 O5) film is formed.
- an upper electrode 6 made of a chromium (Cr) film is provided on the non-linear resistive layer 3 and a first connection electrode 2 which forms a part of an anodic oxidation electrode. 2 is provided with the same chrome.
- the lower electrode 2, the non-linear resistive layer 3 and the upper electrode 6 constitute a non-linear resistive element 9 having a structure of TFD.
- a second connection electrode 8 which forms a part of the display electrode 7 and the positive oxidation electrode 5 (a connection electrode of the first embodiment) And an indium tin oxide (ITO) film are provided.
- the upper electrode 6 is electrically connected to the display electrode 7 by a connection 7 a which is a part of the display electrode 7.
- first connection electrode 22 composed of the second electrode and the second connection electrode 8 composed of the third electrode cover a part of the anodic oxidation electrode 5 composed of the first electrode.
- the anodic oxidation electrode 5 is separated by the separation side 10 of the second connection electrode 8 to form independent connection terminals 23 2, 23 4, 25,...
- connection terminals 2 3, 2 4, 2 5,... are electrically connected to the signal electrodes 4 of each row through the anodic oxidation electrodes 5 separated from each other.
- the target display can be made on each display electrode 7.
- connection terminals 2 3, 2 4, 2 5,... With the external circuit using the chip on glass (C OG) method. They are disposed close to each other on the terminal formation portion 1 a of the substrate 1.
- C OG chip on glass
- an anisotropic conductive seal agent or conductive particles are formed in a convex shape on a semiconductor integrated circuit (IC), and an adhesive in the anisotropic conductive seal agent is used to form a semiconductor. It is a method of mounting an integrated circuit on a substrate. Also according to the second embodiment, when anodizing to form a non-linear resistance layer on the lower electrode 2 is performed, the signal electrodes 4 of each row are mutually connected by the anodizing electrodes 5. ing.
- etching is performed using the second connection electrode 8 consisting of the second electrode as a mask to obtain the second connection electrode 8 of the anodizing electrode 5.
- Each runner portion 5a (shown by an imaginary line in FIG. 3) which is not shown in FIG. 3 is removed and separated from each other at each separation side 10 around the second connection electrode 8.
- the independent connection terminals 2 3, 2 4, 2 5,... which respectively conduct the electrodes 4 are formed.
- the respective signal electrodes 4 are mutually connected by the anodizing electrode 5 in the case of anodizing treatment, and then required. After completion of the process, each signal electrode can be made independent by a simple etching process.
- anodic oxidation electrode 5 consisting of a first electrode
- a first connection electrode 22 consisting of a second electrode
- a second connection electrode 8 consisting of a third electrode are sequentially formed. Therefore, the adhesion between the anodic oxidation electrode 5 and the second connection electrode 8 can be enhanced.
- FIG. 5 a liquid crystal display device according to a third embodiment of the present invention will be described based on FIGS. 5 to 8.
- FIG. 5 a liquid crystal display device according to a third embodiment of the present invention
- FIG. 5 is a plan view showing a state in which a plurality of substrates of the liquid crystal display device according to the third embodiment are arranged on a large substrate.
- FIG. 6 is an enlarged view of a boundary between two liquid crystal display substrates, which is enclosed by a broken line in FIG. 5 is a plan view.
- FIG. 7 is a cross-sectional view taken along a line C--C in FIG. 6, and
- FIG. 8 is a cross-sectional view taken along a line D-D in the same.
- liquid crystal display substrates 3 1, 3 2,... are provided on a large first substrate 30.
- the liquid crystal display substrates 3 1 and 32 are configured to be separated by separation lines 3 3 and 34.
- the liquid crystal display substrate 3 1 or 3 2 (corresponding to the first substrate 1 in the above-mentioned embodiments) has a first electrode made of a tantalum (T a) film. As shown in FIGS. 6 and 8, a lower electrode 2, a signal electrode 4 and an anodizing electrode 4 1 are provided.
- the anodic oxidation electrode 41 is provided on the liquid crystal display substrate 32 side as shown in FIG. 6, and the respective signal electrodes 4 of the adjacent liquid crystal display substrate 31 are connected to each other, and the anodic oxidation is performed. Sometimes it has a structure that applies a voltage from the signal pole 4 to each lower electrode 2.
- the lower electrode 2 is provided with a non-linear resistance layer 3 formed of a tantalum oxide (T a 205) film which is an anodic oxide film formed by anodizing the lower electrode 2 itself.
- a tantalum oxide (T a 205) film which is an anodic oxide film formed by anodizing the lower electrode 2 itself.
- ITO indium tin oxide
- the lower electrode 2, the non-linear resistive layer 3 and the upper electrode 6 constitute a non-linear resistive element 9 of a TFD structure.
- the input electrode 8 'consisting of the second electrode covers a part of the anodizing electrode 4 1 consisting of the first electrode of the adjacent substrate 32 for liquid crystal display devices.
- the anodic oxidation electrode 41 is separated at the same side as the input electrode 8 'by the etching treatment, and the portion shown by a phantom line in FIG. 6 is removed. Therefore, adjacent 6 Form the independent input terminals 3 8, 3 9 and 40 in the liquid crystal display substrate 32 together with the connection terminals 2 3, 2 4, 2 5 and 2 6 for the dry IC.
- liquid crystal display device 60 is a seal for sealing the liquid crystal 16 between the liquid crystal display substrate 3 1 or 3 2 and the second substrate 1 1, and the internal configuration of the liquid crystal display device is as follows: This is the same as the first embodiment described above.
- the respective signal electrodes 4 are mutually exposed by the anodizing electrodes 4 1 in the anodizing treatment.
- the etching process is performed using the input electrode 8 'consisting of the second electrode as a mask to form the positive oxidation electrode 4 1 and thus, independent signal electrodes 4 can be obtained.
- each signal electrode 4 is connected and separated by using an anodizing electrode 41 formed of the first electrode of the adjacent liquid crystal display device and an input electrode 8 ′ formed of the second electrode. Therefore, a large substrate can be used effectively because it does not require a large space for removing the anodizing electrode.
- the portion left after separation of the anodic oxidation electrode 41 or 5 can be effectively used as an input terminal or a connection terminal of the adjacent liquid crystal display device.
- FIG. 9 a liquid crystal display according to a fourth embodiment of the present invention will be described based on FIGS. 9 and 10.
- FIG. 9 is a plan view showing a part of the first substrate side of the liquid crystal display device according to the fourth embodiment
- FIG. 10 is a diagram showing the liquid crystal display device.
- FIG. 10 is a cross-sectional view taken along the line E-E in FIG.
- a second anodic oxidation electrode 5 6 is provided.
- the non-linear resistance layer 3 made of this anodic oxide film is also formed on the surface of the signal electrode which is the same first electrode as the lower electrode 2 and on the surfaces of the first anodic oxidation electrode 5 5 and the second anodic oxidation electrode 56. It is formed.
- the upper electrode 6 provided on the non-linear resistance layer 3 and the display electrode 7 connected to the upper electrode 6 are provided by an indium oxide (ITO) film, and also by the tantalum oxide.
- ITO indium oxide
- each signal electrode 50 extending on the first substrate 1 outside the seal 60 and each of them mutually cover a part of the first anodic oxidation electrode 55
- a surrounding electrode 5 8 is provided so as to cover each connection electrode 8 and most of the second anodic oxidation electrode 56.
- the second electrode for anodic oxidation 56 and the surrounding electrode 58 are disposed so as to surround the vicinity of the connection electrodes 51, 52, 53 and 54, and are further adjacent to the display electrode 7 near the seal 60. Connected to the surrounding electrode 5 7.
- the lower electrode 2, the non-linear resistive layer 3 and the upper electrode 6 described above constitute a non-linear resistive element 9 of a T FD structure.
- the ion component of the alignment film 15 or the liquid crystal 16 in which liquid crystals are regularly arranged may be influenced, and the characteristic change or deterioration of the non-linear resistive element 9 may occur.
- a transparent insulating film 48 is provided on the non-linear resistance element 9 and its periphery.
- This insulating film 48 has an opening 4 at the top of the first anodic oxidation electrode 5 5 connecting the connection electrodes 5 1 to 5 4 of each signal electrode 50 and the second anodic oxidation electrode 5 6. 9 is provided. 8 And, in the state of becoming a liquid crystal display device, the portion shown by a phantom line in FIG. 9 of the first anodic oxidation electrode 55 which is exposed to the opening of the insulating film 48 is removed. . Therefore, the connection electrodes 51 to 54 and the surrounding electrode 58 constitute electrically isolated separate electrodes.
- the characteristic change or the characteristic deterioration of the non-linear resistance element 9 is prevented.
- the anodizing electrode 55 consisting of the first electrode is formed on a part of the side which is the second electrode.
- connection electrodes 51 to 54 are external lines such as dry IC 10 0 shown by phantom lines in FIG. 10. It constitutes an independent electrode terminal connected to the circuit.
- each signal electrode 50 is connected to each other by the first and second anodizing electrodes 55 and 56. Therefore, the embodiments described above are performed. The same effect is obtained.
- the second anodic oxidation electrode 56 is disposed in the vicinity of the connection electrodes 51 to 54, and is connected to the second anodic oxidation electrode 55 via the branch portion of the first anodic oxidation electrode 55.
- the first anodic oxidation electrode 5 5 (shown by a phantom line in FIG. 9) in the opening 49 is removed.
- the processing for making each signal electrode 50 independent can be performed simultaneously, so that the number of manufacturing processes does not increase.
- the opening 49 is formed in the insulating film 48, the second substrate 11 and the seal 60 are assembled.
- a tantalum film containing nitrogen may be used other than an ordinary tantalum film.
- a tantalum film containing tin or a tantalum film containing niobium can also be used as the first electrode.
- a multilayer film of a low resistance material such as aluminum, copper or nickel and a film containing tantalum or an impurity in tantalum may be used.
- the tantalum film is used as the first electrode 2 and the oxidized tantalum film is formed as the non-linear resistance layer has been described.
- a silicon oxide film, a silicon nitride film, or a silicon oxide film containing impurities is provided on the tantalum oxide film, and a tantalum oxide film and a multilayer film of these films are formed. You may use a non-linear resistive layer.
- the film formed on the tantalum oxide film of the non-linear resistance layer consisting of a multilayer film may be formed using plasma chemical vapor deposition (CVD).
- CVD plasma chemical vapor deposition
- a voltage is applied to the tantalum oxide film, and the breakdown voltage is improved, so that it is possible to prevent the deterioration of the non-linear resistance element.
- control of current-voltage characteristics of the non-linear resistance element becomes possible. Therefore, it is possible to suppress the flow of overcurrent to the non-linear resistance element, and to improve the characteristics of the liquid crystal display device.
- FIG. 11 is a plan view showing the whole constitution of the liquid crystal display device according to the fifth embodiment, and for the sake of easy understanding, the constitutions of both the first and second substrates which are superimposed one on the other are used. It is indicated by a solid line.
- FIG. 12 is an enlarged plan view showing a portion surrounded by broken lines a and b in FIG. The upper substrate and the film formed thereon are shown removed. And, a portion surrounded by a broken line a is shown on the upper side, and a portion surrounded by a broken line b is shown on the lower side.
- FIG. 13 is a cross-sectional view taken along the line F-F of FIG. 12 with the liquid crystal display configured
- FIG. 14 is a cross-sectional view taken along the line G-G of FIG.
- the basic configuration of the liquid crystal display device according to this embodiment is the same as that of each of the above-described embodiments.
- a lower electrode 2 On the first substrate 1, a lower electrode 2, a signal S pole 4 and an electrode for anodic oxidation 5 are provided as a first electrode made of a tantalum (T a) film.
- T a tantalum
- a non-linear resistance layer 3 made of a tantalum oxide (T a 2 0 5) film is formed as an anodic oxide film of the electrode 1.
- the anodic oxidation electrode 5 is formed in a band shape so as to surround the periphery of the display area 18 as indicated by hatching in FIG. Then, in order to form the plurality of first substrates 1 from the large original substrate, in order to connect the anodic oxidation electrodes 5 to each other, the interconnection electrodes 65 are formed of the first substrate 1. It is provided at the end.
- the anodic oxidation electrode 5 consisting of the first electrode is, as shown in FIGS. 1 1 and 12, a matrix shape consisting of the signal electrodes 4 in M rows and the counter electrodes 13 in N rows.
- the plurality of signal electrodes 4, 4,... are connected to each other around the display area 18.
- the upper electrode 6 on the non-linear resistance layer 3 and the display electrode 7 connected to the upper electrode 6 are provided by an indium tin oxide (ITO) film.
- ITO indium tin oxide
- the lower electrode 2, the non-linear resistive layer 3 and the upper electrode 6 constitute a non-linear resistive element 9 of a TFD structure.
- FIG. 12 a hatched periphery is shown on the anodic oxidation electrode 5 provided so as to surround the display regions 18 in which a large number of display electrodes 7 are arranged in a matrix.
- indium oxide it is also possible to use indium oxide as the second electrode. It is made of tin (ITO) film.
- the electrodes for anodic oxidation 5 are all formed on the lower side of each electrode shown by I: and so on in FIG. 12, and all the signal electrodes 4 have both ends at the time of anodizing treatment.
- the electrodes are securely connected to each other by the anodic oxidation electrodes 5.
- the peripheral electrodes 57 and 58 including the second electrodes, the connection electrodes 71 to 74, and the light shielding portion electrode 75 are parts of the electrode 5 for anodic oxidation.
- a mask for the mask another mask is also applied to the surface of width shown by D in FIG. 12 of the display area 18 and the etching process is carried out. The exposed portion of the mask is removed. As a result, each signal electrode 4 and each connection electrode 71 to 74 connected thereto are separated from each other to constitute an independent electrode.
- FIGS. 13 and 14 the removed portions of the anodic oxidation electrode 5 and the non-linear resistance layer 3 are indicated by phantom lines.
- the respective signal electrodes 4 are connected to each other by the anodic oxidation electrode 5 at the time of the positive oxidation treatment for forming the non-linear resistance layer 3 and the subsequent inspection steps, etc.
- the same effect as the above-mentioned embodiments can be obtained.
- the connection is made at the end of the signal electrode 4, it is more reliable, and even if a break occurs in the middle of the signal electrode, the anodic oxidation treatment can be performed reliably.
- etching is performed using the second electrode as a mask to easily separate each signal electrode 4 and the connection electrodes 7:! can do.
- the sides on both sides of the peripheral electrode 57, the left and right sides in FIG. 12 of each of the connection electrodes 71 to 74, and the sides around the light shielding portion electrode 75 become the separation sides.
- the opaque anodic oxidation electrode 5 remains on the outer peripheral portion of the display area 18 to form a light shielding part, and the display area 18 can be cut off.
- the anodizing electrode 5 as a light shielding portion, even in the liquid crystal display device without the black matrix 12, a parting (a frame surrounding the periphery of the display area) can be made.
- the width of the anodic oxidation electrode can be widened by the anodic oxidation electrode 5 used for the parting, and the uniformity of the anodic oxidation film is improved.
- an element having a TFD structure is used as a non-linear resistance element, and a structure in which two TFD elements are connected in series in each pixel portion is used. The case where it is provided will be explained.
- FIG. 15 is a plan view showing a part of the liquid crystal display in an enlarged manner
- FIG. 6 is a cross-sectional view taken along the line HH of FIG.
- an island-like lower electrode 2, a first data electrode 8 2 and an anodic oxidation are formed on a first substrate 1 as a first electrode made of a tantalum (Ta) film.
- An electrode 5 and a wire connection portion 7 6 connecting the island-shaped lower electrode 2 and the first data electrode m 82 are provided, and on this first electrode, an anodic oxide film of the first electrode and Then, a non-linear resistance layer 3 made of a tantalum oxide (Ta 2 O 5) film is formed.
- the anodic oxidation electrode 5 consisting of the first electrode is formed of a plurality of data electrodes 8 1 around the matrix-like display area consisting of the signal electrodes of M rows and the data electrodes 8 1 and 8 1 of N columns. , 8 1 has a configuration to connect with each other.
- the upper electrode 8 4 for data electrode connected to the second data electrode 8 3 and the display electrode 7 an upper electrode 85 for display electrode to be connected, and a second data electrode 83 on the display electrode 7 and the first data electrode 82 are provided with an oxide tin (ITO) film.
- ITO oxide tin
- the island-shaped lower electrode 2, the non-linear resistive layer 3, and the upper electrode 8 4 for the data electrode constitute a first non-linear resistive element 86 of the TFD structure. Furthermore, a second non-linear resistive element 8 7 of T FD structure is configured by the island-shaped lower electrode 2, the non-linear resistive layer 3, and the upper electrode 8 5 for the display electrode.
- the second data electrode 83 is connected to the data electrode upper electrode 84, the nonlinear resistive layer 3, the lower electrode 2, the nonlinear resistive layer 3, the display electrode upper electrode 85, and the display electrode 7 in this order.
- the data electrode 8 3 and the display electrode 7 have a symmetrical TFD configuration.
- an insulating film 48 made of oxidized tantalum (Ta 2 O 5) is provided on the first substrate 1 as shown in FIG.
- the insulating film 48 has a wiring connection portion separation opening 9 1 around the wiring connection portion 76 connecting the first signal electrode 4 and the island-like lower electrode 2.
- a plurality of separation openings 92 are provided on the anodic oxidation electrode 5.
- connection opening 93 for connecting the external circuit and the second data electrode 83.
- the insulating film 4 8 and the first electrode are provided in the wire connection portion separating opening 9 1 provided on the wire connection portion 7 6 connecting the first data electrode 8 2 and the island-like lower electrode 2, the insulating film 4 8 and the first electrode are provided.
- the lower electrode 2 has the same separation side.
- the insulating film 4 8 and the anodic oxidation electrode 5 have the same separation side 10.
- light shielding portions 7 6 are provided in which the anodic oxidation electrodes 5 are separated by the same separation side as the insulating film 4 8.
- the outer periphery of the display area is closed off by the light shielding part 7 6.
- the red filter 95, the blue filter 9 6 are provided so that the liquid crystal display device can display a color.
- a green filter not shown is provided.
- an area 9 7 in which color filters are superposed is provided.
- a counter electrode 13 made of an indium tin oxide film is provided to face the display electrode 7.
- the display electrode 7 becomes a display pixel portion of the liquid crystal display panel by arranging the display electrode 7 so as to overlap with the counter electrode 13 via the liquid crystal 16.
- the display pixel portion has a monochromatic color filter, for example, a red filter 9 3.
- the liquid crystal The display device performs predetermined image display.
- alignment films 15 and 15 are provided on the first substrate 1 and the second substrate 11 respectively as treatment layers for regularly arranging the molecules of the liquid crystal 16.
- the anodizing electrode 5 formed of the first electrode is separated in a self-aligned manner by the opening of the insulating film 48 in the periphery of the display area 1 It has 0.
- the anodic oxidation electrode 5 or the first data electrode 82 is formed into an island shape. It is necessary to separate the lower electrode 2 of the
- the light shielding portion 7 6 can be provided around the display region using the anodizing electrode 5 without delaying the step. Therefore, when using a color finisher in place of the black matrix instead of the black matrix, even if the light shielding property of the part is insufficient, the anodizing electrode 5 remains shaded. By using Section 7 6, it is possible to close the light shielding sufficiently.
- a voltage can be supplied from the periphery during the anodic oxidation process for forming the non-linear resistance layer 3.
- some of the anodic oxidation electrodes 5 have defects. Even if it occurs, voltage can be supplied from other parts.
- a T F T structure element is used as the non-linear resistance element.
- FIG. 17 is a plan view showing an enlarged part of the liquid crystal display device.
- FIG. 18 is a cross-sectional view taken along the line I-I.
- a gate electrode 101 corresponding to the signal electrode 4 and an electrode for anodic oxidation are used as a first electrode made of a tantalum (Ta) film.
- a gate insulating film 102 made of a tantalum oxide (T a 2 O 5) film is provided on the first electrode as an anodic oxide film of the first electrode.
- the anodizing electrode 5 consisting of the first electrode is, as shown in FIG. 17, a matrix-like display consisting of gate electrodes 10 1 in M rows and source electrodes 10 5 in N columns. A plurality of gate electrodes 1 0 1 and 1 0 1 are mutually connected around the area.
- the anodic oxidation electrode 5 is also provided under the peripheral electrode 57 and the light shielding portion electrode 75 shown by hatching in FIG.
- An amorphous silicon (a-Si) film is provided as a semiconductor layer 103 on and around the gate insulating film 102. Further, a semiconductor layer 104 containing phosphorus (P) as impurity ions is provided on the semiconductor layer 103.
- a source electrode 10 5 and a drain electrode 1 0 6 are provided on the semiconductor layer 14 4 containing impurity ions.
- Source electrode 105 and drain electrode 106 are provided by molybdenum (Mo).
- Mo molybdenum
- the semiconductor layer 104 containing impurity ions is provided at the overlapping portion of the source electrode 105, the drain electrode 106 and the semiconductor 103.
- the source electrode 105 is connected to the data electrodes 1 2 1 and 1 2 2 connected to the external circuit.
- the drain electrode 106 is connected to the display electrode 7 made of a transparent conductive film to form a display pixel portion.
- the same film as the display electrode 7 is provided on the anodic oxidation electrode 5 connected to the gate electrode 101. Further, a part of the anodic oxidation electrode 5 is separated at the same side as the side of the same film as the display electrode 7 at the same separation side 10 to form a light shielding portion.
- a part of the anodizing electrode 5 is covered with a peripheral electrode 5 7 and a light shielding part electrode 5 5 which are the same film as the display electrode 7, and anodizing is performed by masking and etching the display area. Shown by broken line Is removed, making each goet electrode 1 0 1 independent. Then, in the outer peripheral part of the display area, the light shielding part formed by the remaining anodic oxidation electrode 5 can be cut off.
- the second substrate 1 1 is first transparently conductive on the second substrate 11 in order to reduce the amount of light reflected from the external light source 1 1 1 2.
- a counter electrode 13 consisting of Next, in order to prevent light leakage from the periphery of the display electrode 7, a black matrix 1 2 made of a chromium (Cr) film is provided.
- the reflected light 112 can be reduced by the interference of the counter electrode 13 made of a transparent conductive film, the second substrate 11 and the black matrix 12 made of a chromium film.
- the liquid crystal display device performs predetermined image display by the change in transmittance of the liquid crystal 16 in the display area.
- first substrate 1 and the second substrate 1 1 are provided with alignment films 15 and 15 respectively as treatment layers for arranging the molecules of the liquid crystal 16 regularly.
- the first substrate 1 and the second substrate 11 are made to face each other with a predetermined gap, and they are pasted together by a seal 60 to form the first substrate 1 and the second substrate 1.
- the liquid crystal 16 is sealed between it and the substrate 1 1 of the
- the anodic oxidation electrode 5 formed of the first electrode has a separation side which is separated in the same manner by the same film as the display electrode 7 in the periphery of the display area. .
- a light shielding portion can be provided around the display area by using the anodic oxidation electrode 5 remaining after separation.
- the anodic oxidation electrode 5 applies a voltage to each gate electrode 10 1 from the periphery.
- voltage can be supplied from the other portion.
- FIG. 19 a liquid crystal display according to an eighth embodiment of the present invention will be described with reference to FIGS. 19 to 21.
- T.sub.FD structure is used as a non-linear resistance element, and T.sub.FD elements are provided on the signal electrode side consisting of M rows.
- a light shielding portion provided around display electrode 7 utilizes a part of second anodic oxidation electrode 126 and a second non-linear resistive layer 12 on second anodic oxidation electrode 126 8 has a film thickness different from that of the first non-linear resistive layer 3 used for the non-linear resistive element 9.
- FIG. 19 is a plan view showing the overall structure of a liquid crystal display according to an eighth embodiment of the present invention.
- FIG. 20 is a plan view showing a part of FIG. 19 in an enlarged manner
- FIG. 21 is a cross-sectional view taken along the line J-- J ⁇ However, FIGS. 20 and 21 Here, the upper second substrate, the film formed thereon, etc., and the liquid crystal are not shown.
- a first electrode made of a tantalum (T a) film As a first electrode made of a tantalum (T a) film, a lower electrode 2, a signal electrode 4, a first anodic oxidation electrode 5 and a second anodic oxidation electrode 1 are formed on the first substrate 1. 2 6, an auxiliary electrode 1 2 7 and an interconnection electrode 6 6 are provided, and on the lower electrode 2, the first anodic oxidation electrode 5 and the signal electrode 4, an anodic oxide film of a first electrode is formed.
- a first non-linear resistive layer 3 made of an oxide tantalum (Ta 2 O 5) film is provided.
- a second non-linear resistive layer comprising a tantalum oxide (T a 2 O 5) film as an anodic oxide film of the first electrode 1 Set 2 8
- connection of the first and second anodic oxidation electrodes 5 and 1 2 6 to each other is carried out.
- interconnect electrodes 65 and 65 are provided on both ends of the first substrate 1.
- the first anodic oxidation electrode 5 and the second anodic oxidation electrode 1 2 6 are separated from each other.
- the film thickness of the second non-linear resistive layer 1 2 8 is made thicker than that of the first non-linear resistive layer 3 used for the non-linear resistive element 9.
- the first anodic oxidation electrode 5 consisting of the first electrode is composed of the signal electrode 4 in the M row and the counter electrode 13 in the N row.
- a plurality of signal electrodes. 4 are connected to each other around the periphery of the display region 18 in the form of a triangle.
- the second anodic oxidation electrode 126 has a configuration in which a plurality of auxiliary electrodes 127 are connected to each other by a connecting portion 66.
- the upper electrode 6 on the first non-linear resistance layer 3 the display electrode 7 connected to the upper electrode 6, and a part of the first anodic oxidation electrode 5
- the connection electrode 8 is made of indium tin oxide (ITO) film.
- the lower electrode 2, the first non-linear resistive layer 3 and the upper electrode 6 constitute a non-linear resistive element 9 of an FD structure.
- a part of the display electrode 7 covers the auxiliary electrode 1 2 7 connected to the second anodic oxidation electrode 1 2 6, and the display electrode 7 and the auxiliary electrode 1 2 2 form a light shielding part.
- a tantalum oxide film is formed on the first substrate 1, the non-linear resistance element 9, the signal electrode 4, the display electrode 7, the first anodic oxidation electrode 5, and the second anodic oxidation electrode 1 26.
- a separation opening 92 is provided on the first anodic oxidation electrode 5 and the second anodic oxidation electrode.
- the first anodic oxidation electrode 5 is separated and constitutes an independent signal electrode 4 by the separation side 10 which is the same as the separation opening 9 2, and the second anodic oxidation electrode 1 2 6 constitutes an independent auxiliary electrode 1 2 7.
- an opening 4 9 is provided around the display electrode 7, and the auxiliary electrode 1 2 7 is provided for each display electrode 7 by the same separation side 10 as the opening 4 9 of the display electrode 7 or the insulating film 4 8. It separates and becomes a shade part.
- connection electrode 8 An opening 93 is also provided on the connection electrode 8 to enable connection to an external circuit.
- the configuration of the second substrate 11 side is the same as that of the above-described embodiment, and a black matrix made of a chromium (Cr) film for preventing light leakage from the gap of the display electrode 7;
- An interlayer insulating film or the like is provided in order to ensure electrical insulation between the counter electrode 13, black, matrix, and the counter electrode 13.
- the first substrate 1 and the second substrate 1 1 are attached to each other at a constant distance, and liquid crystal is sealed to form a liquid crystal display device.
- the second anodic oxidation electrode 126 consisting of the first electrode is independent from the initial stage of the first anodic oxidation electrode 5. Therefore, the influence of the second anodic oxidation electrode 126 is not given to the first anodic oxidation electrode 5. Furthermore, the second anodic oxidation electrode 126 separates in a self-aligned manner with the display electrode 7 consisting of the second electrode or the opening 4 9 of the insulating film 4 8 at the periphery of the display area. It has a separation side 10 and constitutes a light shielding part that is independent for each display shield 7.
- a second non-linear resistance layer 1 2 8 provided on the second anodic oxidation electrode 1 26 is provided on the lower electrode 2 by the first anodic oxidation electrode 5 If the thickness of the layer 3 is greater than that of the layer 3 and the insulation property is enhanced, the display quality is not affected even if the display electrode 7 and the auxiliary electrode 12 7 are electrically short-circuited. , Yield better.
- FIG. 22 is a plan view showing a part of the liquid crystal display in an enlarged manner
- FIG. 23 is a cross-sectional view taken along the line K-K of FIG.
- parts corresponding to those in FIGS. 15 and 16 are assigned the same reference numerals.
- a lower electrode 2 On the first substrate 1 in this embodiment, a lower electrode 2, a first data electrode 8 1 and a first data electrode 8 1 are used as a first electrode made of a tantalum (T a) film. And a wire connection 7 6 connecting the lower electrode 2 and 3 A first anodic oxidation electrode 5, a second anodic oxidation electrode 1 2 6, an auxiliary electrode 1 2 7 and an interconnection electrode 6 6 are provided.
- a first oxide film of tantalum oxide (T a 205) is formed as an anodic oxide film of the first electrode.
- a non-linear resistance layer 3 is provided.
- a second non-linear resistance is formed of a tantalum oxide (T a2 O5) film as an anodic oxide film of the first electrode.
- T a2 O5 tantalum oxide
- the first anodic oxidation electrode 5 and the second anodic oxidation electrode 1 2 6 are separated from each other.
- the second non-linear resistance layer 1 2 8, non-linear resistance pixel value 9 made of the first are thick compared to the thickness in the non-linear resistive layer 3 t the first electrode used in the first anodizing
- the electrode 5 has a configuration in which the first data electrodes 8 1 of N rows are mutually connected around the display area, as shown in FIG.
- the second anodic oxidation electrode 126 has a configuration in which a plurality of auxiliary electrodes 127 are mutually connected.
- a second data electrode 83 is provided on the first data electrode 81, and is connected to the second data electrode 83.
- An upper electrode 84 for data electrode is provided on the non-linear resistance layer 3 of 1, and a display electrode 7 is provided on a part of the auxiliary electrode 1 2 7 and the first substrate 1.
- An upper electrode 85 for display electrode connected to the display electrode 7 is provided on the non-linear resistance layer 3 with an indium tin oxide (ITO) film.
- ITO indium tin oxide
- connection electrode 8 which is connected to the second data electrode 83 and forms a part of the first anodic oxidation electrode 5 is also provided with an indium tin oxide (ITO) film together with the second electrode.
- ITO indium tin oxide
- the lower electrode 2, the first non-linear resistive layer 3, and the upper electrode 8 4 for the data electrode constitute a first non-linear resistive element 86 of a TFT structure.
- a second non-linear resistive element 8 7 of TFD structure is formed by the lower electrode 2, the first non-linear resistive layer 3, and the upper electrode 8 5 for the display electrode.
- a part of the display electrode 7 covers the auxiliary electrode 1 2 7 connected to the second electrode for anodic oxidation 1 2 6, and a light shielding portion is formed by the display electrode 7 and the auxiliary electrode 1 2 7.
- An insulating film 48 made of a tantalum oxide film (Ta 2 05) is provided to cover the upper surfaces of the electrodes 126.
- the insulating film 48 is provided with a separation opening 9 2 on the first anodic oxidation electrode 5 and the second anodic oxidation electrode 126. Then, the first anodic oxidation electrode 5 is separated by a separation side 10 identical to the separation opening 9 2 to form an independent first data electrode 8 1. The second anodic oxidation electrode 1 2 6 is also separated to constitute an independent auxiliary electrode 1 2 7.
- an opening 4 9 is provided around the display electrode 7, and the auxiliary electrode 1 2 7 is displayed by the same separation side 10 as the opening 4 9 of the display electrode 7 or the insulating film 4 8.
- Each electrode 7 is separated to form a light shielding portion.
- the second anodic oxidation electrode 126 formed of the first electrode is independent from the initial stage of the first anodic oxidation electrode 5. Therefore, the influence of the second anodic oxidation electrode 126 is not given to the first anodic oxidation electrode 5. Furthermore, the second anodic oxidation electrode 126 is a separation edge that is separated in a self-aligned manner with the display electrode 7 or the opening 4 9 of the insulating film 4 8 at the periphery of the display area. Each display electrode 7 has an independent light shielding portion.
- a second non-linear resistance layer 1 2 8 provided on the second anodic oxidation electrode 1 2 6 is provided on the lower electrode 2 by the first anodic oxidation electrode 5 1st non-linear resistance layer 1 2 8
- the film thickness is made thicker than layer 3 and the insulation property is enhanced. Therefore, even if the display electrode 7 and the auxiliary electrode 1 2 7 of the display electrode 7 cause an electrical short circuit, the display quality is affected.
- a light shielding portion 7 5 can be provided around the display electrode 7 without yield.
- a part of the anodic oxidation electrode can be used for the light shielding portion.
- the opening of the protective insulating film is formed on the portion of the anodic oxidation electrode to be separated.
- the anodic oxidation electrode can be easily separated by performing an etching process using the resist as a mask and the resist used for forming the protective insulating film or the opening of the protective insulating film as a mask.
- FIG. 24 a liquid crystal display according to a tenth embodiment of the present invention will be described with reference to FIGS. 24 and 25.
- FIG. 24 a liquid crystal display according to a tenth embodiment of the present invention will be described with reference to FIGS. 24 and 25.
- FIG. 24 is a plan view showing a partial region of a first substrate on which a TFT device of a liquid crystal display according to a tenth embodiment of the present invention is formed.
- FIG. 25 is a cross-sectional view taken along the line L-L in FIG.
- An anodic oxidation electrode 5 and a lower electrode 2 each made of a tantalum (Ta) film are provided as a metal film on the first substrate 1 which is an active substrate for forming a TFT element.
- the width W 1 of the anodizing electrode 5 is wider than the width W 2 of the signal electrode 4 except for the periphery of the lower electrode 2.
- this anodic oxidation electrode 5 is an anodic oxidation electrode at one end.
- a plurality of lines are electrically connected by 5 a, and the other end is connected to a connection electrode 8 for applying a signal to the non-linear resistance element from an external circuit.
- the anodic oxidation electrode 5 is used as an electrode when the non-linear resistance layer 3 is formed on the surface of the lower electrode 2 by a treatment for anodic oxidation.
- a wide positive electrode 5 for oxidation of width W 1 is provided between the signal electrode 4 and the display electrode 7.
- the etching removing portion 1 21 which is a part of the anodizing electrode 5 is removed in the final shape. That is, FIG. 2 shows the middle of the manufacturing process to make it easy to understand the explanation.
- a non-linear resistive layer 3 made of a tantalum oxide (T a 2 O 5) film formed by anodizing the lower electrode 2 is provided on the surface of the lower electrode 2.
- a transparent conductive film is provided on the substrate 1 and an overlapping portion 12 22 which is a part of the anodizing electrode 5 to form a display electrode 7. Then, an upper electrode 6 connected to the display electrode 7 is provided on the lower electrode 2. Furthermore, a transparent conductive film is provided also on the anodic oxidation electrode 5 to form a connection electrode 8.
- a partial region of the display electrode 7 has an overlapping portion 12 2 which is a region overlapping with a partial region of the anodic oxidation electrode 5.
- the lower electrode 2, the non-linear resistance layer 3 and the upper electrode 6 constitute a non-linear resistance element (TFD element) 9.
- each of the upper electrode 6 and the display electrode 7 is formed of a transparent conductive film, for example, an indium tin oxide (I T O) film.
- I T O indium tin oxide
- the etching removal portion 1 21 between the signal electrode 4 which is a part of the anodizing electrode 5 and the overlapping portion 1 2 2 below the display electrode 7 is removed and the signal electrode 4 is formed.
- the display electrode 7 made of a transparent conductive film are separated.
- the anodic oxidation electrode 5 a connecting the plurality of signal electrodes 4 is also removed, and each signal electrode 4 becomes independent.
- etching removal portion 1 2 1 between the display electrodes 7 is also removed, and each display electrode 7 is also independent.
- the width W 1 of the anodizing electrode 5 is the width W of the signal electrode 4. It will be two.
- the width of the anodizing electrode 5 is W 1
- the width of the signal electrode 4 is made wider than the width W 2 until the lower portion of the display electrode 7. Keep it open. Further, the adjacent display electrodes 7 are also connected by the anodic oxidation electrode 5.
- the anodic oxidation electrode 5 is etched to remove the etching removal portion 12 1 which is a part of the anodic oxidation electrode 5, and the width of the signal cathode 4 is set to W 2 I assume. Furthermore, the etching removal portion 1 2 1 provided between the adjacent display electrodes 7 is also removed to form isolated display electrodes 7.
- the width of the anodizing electrode 5 is increased (W 1) at the time of anodizing, and a uniform anodic oxide film 3 can be formed in a short time.
- the display electrode 7 is a transparent conductive film, it is difficult to inspect the etching condition around the display electrode 7 because it is transparent.
- the tantalum film and the tantalum oxide film are present as the anodic oxidation electrode 5 around the display electrode 7, even if the display electrode 7 is a transparent conductive film, the etching removal is performed.
- the transparent conductive film becomes an etching mask, and the tantalum or tantalum oxide film and the tantalum film remain, making it easy to inspect the etching state of the transparent conductive film around the display electrode 7.
- the transparent conductive film can also be removed during the etching process of the etching removal portion 121, and the etching residual film around the display electrode 7 is removed cleanly. be able to.
- the width (W 1) of the anodizing electrode 5 is increased, if there is a break in the width (W 2) of the signal electrode 4, the distance between the display electrode 7 and the signal electrode 4 is The anodic oxidation electrode 5 can be used to prevent the disconnection of the signal electrode 4.
- FIG. 26 is a plan view showing a state in which a disconnection point 4 d is generated in the signal electrode 4 in this embodiment.
- the anodic oxidation electrode 5 is made wide enough to have the width W 2 of the signal electrode 4, anodic oxidation can be performed. Furthermore, the signal electrode 4 is not broken by forming it so that the broken part of the signal electrode 4 is bypassed by using a part of the anodic oxidation electrode 5 formed around the signal electrode 4.
- the display electrode 7 is provided with a deletion part 7 a for deleting a part. .
- a tantalum (T a) film is sputtered by a thickness of 150 nm as a metal film on the entire surface of the first substrate 1 which is an absorptive substrate made of glass shown in FIG. 27. Form.
- a photosensitive resin (not shown) is formed on the entire surface of the tantalum film by a spin coating method, and exposure and development processing is performed using a predetermined hot mask to pattern the photosensitive resin. Thereafter, using the patterned photosensitive resin as an etching mask, the tantalum film is etched by hot etching to form an anodic oxidation electrode 5, a lower electrode 2 and a plurality of signal electrodes 4 (anodic oxidation electrode Pattern with the part that connects).
- the etching of the tantalum film is performed by reactive ion etching (or
- a mixed gas of sulfur hexafluoride (SF 6) and oxygen (02) is used as an etching gas.
- the flow rate of sulfur hexafluoride is 100 to 200 Osccm
- the oxygen flow rate is 10 to 40 sccm
- the pressure is
- the anodic oxidation electrode 5 is used as an anode, and as an anodic oxidation solution,
- a voltage of 30 to 40 V is applied to carry out the anodic oxidation treatment of the tantalum film.
- the non-linear resistance layer 3 composed of a tantalum oxide film (T a 205) is formed on the surface of the side wall and the upper surface of the lower electrode 2 and the electrode 5 for anodic oxidation.
- an indium tin oxide (ITO) film is formed over the entire surface to a film thickness of 100 nm as a transparent conductive film using a sputtering method. Thereafter, a photosensitive resin (not shown) is formed on the indium tin oxide film. Then, the indium tin oxide film is etched to form a pattern simultaneously with the display electrode 7, the upper electrode 6 connected to the display electrode 7, and the connection electrode 8 (not shown), as shown in FIG.
- ITO indium tin oxide
- This etching of indium tin oxide is performed by wet etching using a liquid etchant of ferric oxide and hydrochloric acid. At this time, the etching temperature is set at 30-40.
- etching removal portion 1 2 1 between the anodizing electrode 5 and the overlapping portion 1 2 2 at the lower portion of the display electrode 7 a photosensitive layer is formed. Fat 1 2 5 forms.
- the etching removing section 1 2 1 etches the display electrode 7 made of a photosensitive resin 1 2 5 5 and an indium tin oxide film as a mask for etching using an RIE apparatus.
- This etching condition uses a mixed gas of sulfur hexafluoride (S F) and oxygen (O 2) as an etching gas. And of sulfur hexafluoride
- the signal electrode 4 consisting of a part of the anodic oxidation electrode 5 and the overlapping portion 12 22 of the display electrode 7 can be separated by etching away the etching removal portion 12 1.
- the positive oxidation electrode 5 is separated from the display electrode 7 to become the signal electrode 4 and the external circuit (not shown).
- the connection electrode 8 connected to the signal electrode 4 the signal electrode 4 and the lower electrode 2 connected thereto, the non-linear resistive layer 3 formed on the lower electrode 2, and the upper electrode 6 formed on the non-linear resistive layer 3.
- the target voltage can be applied to the display electrode 7 connected to the upper electrode 6.
- non-linear resistance element (TFD element) 9 is formed by the lower electrode 2, the non-linear resistance layer 3 and the upper electrode 6.
- the etching removal portion 1 2 1 can be formed in a shape that matches the lower surface region of the display electrode 7.
- the signal electrode 4 and the etching are performed when the etching removal portion 121 is etched.
- the transparent conductive film in the etching failure part between the display electrodes 7 can be removed simultaneously.
- the indium oxide oxide film remains on the large surface after etching, the indium tin oxide film remains on the etching removal portion 121, so the oxide of the non-linear resistance layer 3 under the indium tin oxide film is formed.
- the tantalum and the lower electrode 2 remain, so only the transparent conductive film It is much easier to inspect short spots than in the past.
- the refractive index of the liquid crystal or the thickness or orientation of the substrate 1 is used. It is difficult to detect the etching residual film of the transparent conductive film around the display electrode 7 because of the refractive index of the film or the like.
- FIG. 30 a liquid crystal display according to a first embodiment of the present invention will be described based on FIGS. 30 and 31.
- FIG. 30 a liquid crystal display according to a first embodiment of the present invention will be described based on FIGS. 30 and 31.
- FIG. 30 is a plan view showing a partial region of the first substrate forming the TFD element of the liquid crystal display device in the embodiment 11 of this invention, and FIG. -A cross-sectional view along the M line.
- an anodic oxidation electrode 5 consisting of a tantalum (T a) film as a metal film, an island-like lower electrode 2, an anodic oxidation electrode 5 and a lower electrode 2
- a wire connection 7 6 shown in phantom
- the width of the anodic oxidation electrode 5 is W 1 wider than the width W 2 of the first data electrode 8 1 except for the periphery of the island-shaped lower electrode 2.
- a plurality of anodic oxidation electrodes 5 are connected to each other by an anodic oxidation electrode 5 a at one end, and the other end is connected to a connection electrode 8 for applying a signal to the nonlinear resistance element from an external circuit. It is covered.
- the anodic oxidation electrode 5 is used as an electrode when the non-linear resistance layer 3 is formed on the surface of the lower electrode 2 by anodizing treatment.
- An anodic oxidation electrode 5 is provided between the first data electrode 8 1 and the display electrode 7.
- the etching removal portion 1 21 which is a part of the anodic oxidation electrode 5 is removed in the final structure.
- the wire connection 7 6 connected to the first data electrode 8 1 and the island-like lower electrode 2 is also removed in the final structure. That is, the plan view of FIG. 30 and the cross-sectional view of FIG. 31 indicate the middle of the manufacturing process by a broken line so that the description can be easily understood.
- tantalum oxide (T a 2 O 5) is formed by anodizing the tantalum film on the surface of the lower electrode 2 in the form of an island through the anodic oxidation electrode 5 and the wire connection portion 76.
- a non-linear resistance layer 3 made of a film is provided, and a transparent conductive film is provided on the overlapping portion 12 2 of the anodic oxidation electrode 5 and the substrate 1 to form a display electrode 7.
- a display electrode upper electrode 8 5 connected to the display electrode 7 is provided on the lower electrode 2.
- a second data electrode 83 is provided on the anodizing electrode 5, and an upper electrode 84 for data electrode connected to the second data electrode 83 is further provided.
- connection electrode 8 made of a transparent conductive film is provided on the anodic oxidation electrode 5 made of tantalum for applying a signal from the external circuit to the non-linear resistance element portion.
- the anode of the anodic oxidation electrode 5 has a frame shape.
- the connection electrode 8 made of a transparent conductive film covers the frame-shaped tantalum.
- the frame-like tantalum when connecting the external circuit and the connection electrode 8, the frame-like tantalum can be used to make the position clearer than the transparent conductive film, so the alignment accuracy is improved. Furthermore, by providing a transparent conductive film inside and outside the frame-shaped tantalum, the connection status of the external circuit and the input section can be confirmed through the transparent conductive film pad.
- the alignment accuracy is improved by providing tantalum in a frame shape, and the island-like lower electrode 2, the non-linear resistance layer 3 and the upper electrode 8 4 for data electrode
- the first non-linear resistance element (a FD element) 8 6 is constructed.
- a second non-linear resistive element (TFD element) 8 7 is configured by the island-shaped lower electrode 2, the non-linear resistive layer 3, and the upper electrode 8 5 for the display electrode.
- the display electrode upper electrode 85, the data electrode upper electrode 84 and the display electrode 7 are all formed of a transparent conductive film, for example, an indium tin oxide (ITO) film.
- ITO indium tin oxide
- an overlapping portion 12 22 of the anodizing electrode 5 and the display electrode 7 made of a transparent conductive film, and a first data electrode 8 1 made of tantalum under the second data electrode 83 are used. It is a structure to separate. Then, the etching removal portion 1 2 1 between the first data electrode 8 1 and the display electrode 7 is also removed and separated from the display electrode 7.
- the width W 1 of the anodizing electrode 5 becomes the width W 2 as the first data electrode 8 1.
- the width W 1 of the anodic oxidation electrode 5 is made wider than the width W 2 of the first data electrode 8 1 so as to extend to the lower part of the display electrode 7. Further, the adjacent display electrodes 7 are also connected by the anodic oxidation electrode 5.
- the wiring connection portion 7 6 connecting the first data electrode 8 1 and the island-shaped lower electrode 2 is etched.
- the etching removal portion 12 1 located between the first data electrode 8 1 and the display electrode 7 is etched to form the isolated display electrode 7 and the first It is assumed that the data electrode 8 1.
- the anodic oxidation electrode 5 is anodized at the time of anodic oxidation.
- the width is as wide as W 1, a uniform anodic oxide film can be formed in a short time. Furthermore, as in the example of FIG. 26, since the width of the anodic oxidation electrode is wide, If there is a break in the width W 2 of the first data electrode 8 1, the first data electrode 8 is used by using the anodizing electrode 5 between the display electrode 7 and the data electrodes 8 1 and 8 3. According to this embodiment, it is necessary to separate the island-shaped lower electrode 2 from the first data electrode 81. Therefore, it is possible to prevent the anodic oxidation electrode 5 from the first data electrode 81. Since the process of processing the data electrode 1 of 1 can also be performed at the same time, it does not add a process.
- FIG. 32 to 34 are sectional views corresponding to FIG. 31 showing the method of manufacturing the active substrate of the liquid crystal display device in the twelfth embodiment in the order of steps.
- a tantalum (T a) film is sputtered with a thickness of 200 nm as a metal film on the entire surface of the first substrate 1 which is an active substrate made of glass shown in FIG. 32. Form by ring method.
- a photosensitive resin (not shown) is formed on the entire surface of the tantalum film by a spin coating method, and exposure and development processing is performed using a predetermined photomask to pattern a photosensitive resin. .
- the anodic oxidation electrode 5 including the portion to be the first data electrode 8 1 is formed by the etching process using the tantalum film, and the island shape is formed.
- a pattern is formed so as to mutually connect the lower electrode 2, the wire connection part 7 6 connecting the anodic oxidation electrode 5 and the island-like lower electrode 2, and the plurality of anodic oxidation electrodes 5 to each other.
- the etching of the tantalum film is performed using an RIE apparatus.
- the etching conditions are sulfur hexafluoride (SF) as an etching gas.
- the anodic oxidation electrode 5 was used as an anode, and as an anodic oxidation solution,
- the tantalum film is anodized by applying a voltage of 16 to 20 V using an aqueous solution of 0.01 to 1.0 wt% of citric acid, an aqueous solution of ammonium borate or an aqueous solution of phosphoric acid.
- the non-linear resistance layer 3 composed of a tantalum oxide film (T a 2 O 5) is formed with a thickness of 30 to 40 nm on the surface of the side wall and the upper surface of the lower electrode 2 and the anodic oxidation electrode 5.
- an indium tin oxide (ITO) film is formed over the entire surface to a thickness of 15 O n as a transparent conductive film.
- a photosensitive resin (not shown) is formed on the indium tin oxide film.
- the indium tin oxide film is etched to form the display electrode 7, the display electrode upper electrode 85 connected to the display electrode 7, the connection electrode 8, and the second data, as shown in FIG. 33.
- the electrode 8 3 and the upper electrode 8 4 for data electrode connected to the second data electrode 8 3 are simultaneously patterned.
- This indium tin oxide is etched by wet etching using an aqueous etchant of bromine (H B r). At this time, the etchant temperature is set to 25 ° C to 30 ° C.
- the wiring connection portion 76 connecting the anodic oxidation electrode 5 and the island-shaped lower electrode 2 is removed to form an isolated island-shaped lower electrode 2.
- Forming photosensitive resin 125 Forming photosensitive resin 125.
- the etching removal portion 12 1 which is a part of the electrode 5 for positive electrode oxidation is removed, and the electrode 5 for positive electrode oxidation is overlapped with the first data electrode 8 1 and the overlapping portion 1 below the display electrode 7. It separates into 2 2.
- This anodic oxidation electrode 5 uses an RIE apparatus with the display electrode 7 made of a photosensitive resin 125 and an indium tin oxide film and the second data electrode 8 3 as a mask for etching. Etching process.
- This etching condition is sulfur hexafluoride (SF) as an etching gas. 6) Use a mixed gas of oxygen (02). And the flow rate of sulfur hexafluoride is 100 to 200 seem, the oxygen flow rate is 10 to 4 Osccm, the pressure is 4 to: I 2 X 10 to 2 torr, and the power consumption is Perform at 0.2 to 0.5 k W cm 2 .
- the anodizing electrode 5 is separated into the first data electrode 8 1 and the overlapping portion 1 2 2 at the bottom of the display electrode 7,
- the signal of the circuit can be applied through the following route ⁇ i.e., Connection electrode 8 connected to an external circuit (not shown), first data electrode 8 1 connected to anodic oxidation electrode 5, second data
- the target voltage is applied to the display electrode 7 connected to the display electrode upper electrode 85 through 5.
- the photosensitive resin 125, the display electrode 7 and the second data electrode 83 are used as an etching mask to separate the island-shaped lower electrode 2 and perform etching.
- the etching removal portion 1 21 between the first data electrode 8 1 and the overlapping portion 1 2 2 of the anodic oxidation electrode 5 is simultaneously removed, so it is not a process addition 0.
- FIG. 35 a liquid crystal display according to a twelfth embodiment of the present invention will be described with reference to FIGS. 35 and 36.
- FIG. 35 a liquid crystal display according to a twelfth embodiment of the present invention.
- FIG. 35 is a plan view showing a partial region of a first substrate forming the TFD element of the liquid crystal display device in the twelfth embodiment.
- FIG. 36 is a cross-sectional view taken along the line N-N of FIG. 35.
- the anodic oxidation electrode 5 of the 11th embodiment is extended to the top, bottom, left and right of the display electrode 7, and overlapping portions 12 2 are provided on the top, bottom, left and right of the display electrode 7.
- an anodic oxidation electrode 5 consisting of a tantalum (T a) film as a metal film, an island-like lower electrode 2, an anodic oxidation electrode 5 and a lower electrode 2
- a wire connection 7 6 shown in phantom in Figure 35
- the width of the anodic oxidation electrode 5 is wider than the width W 2 of the first data electrode 8 1 except for the periphery of the island-shaped lower electrode 2. Furthermore, the anodic oxidation electrodes 5 are connected to each other vertically and horizontally.
- the anodic oxidation electrode 5 has a configuration in which one end is connected to each other by the runner 5 a, and the other end is used to apply a signal to the non-linear resistance element from an external circuit. It is covered with the connection electrode 8 of.
- the anodic oxidation electrode 5 is used as an electrode when forming the non-linear resistance layer 3 on the surface of the lower electrode 2 by anodizing treatment.
- An anodic oxidation electrode 5 is also provided between the first data electrode 8 1 and the display electrode 7 in FIG. 35 and also between the display electrode 7.
- the etching removal portion 1 2 1 which is a part of the anodizing electrode 5 is removed in the final structure.
- the wire connection 7 6 connected to the first data electrode 8 1 and the island-like lower electrode 2 is also removed in the final structure. That is, the plan view of FIG. 35 and the cross-sectional view of FIG. 36 show virtual lines in the middle of the manufacturing process so that the description can be easily understood.
- tantalum oxide (Ta 2 O 5) is formed by anodizing the tantalum film on the surface of the lower electrode 2 in the form of an island via the anodic oxidation electrode 5 and the wire connection portion 7 6.
- a non-linear resistive layer 3 composed of a film is provided.
- a transparent conductive film is provided on the overlapping portion 122 of the anodic oxidation electrode 5 and on the substrate 1 to form a display electrode 7.
- an upper electrode 85 for display electrode connected to the display electrode 7 is provided on the lower electrode 2.
- a second data electrode 8 3 is provided on the anodic oxidation electrode 5, and an upper electrode 8 4 for data electrode connected to the second data electrode 83 is further provided.
- connection electrode 8 made of a transparent conductive film is provided on the anodic oxidation electrode 5 made of tantalum for applying a signal from the external circuit to the non-linear resistance element portion.
- the tantalum has a frame-like shape.
- the transparent conductive film covers the frame-like tantalum. With this shape, when the external circuit and the connection electrode 8 are connected, the position of the frame-shaped tantalum can be made clearer than that of the transparent conductive film, so that the alignment accuracy is improved. Furthermore, by providing the transparent conductive film inside and outside the frame-shaped tantalum, the connection status of the external circuit and the input unit can be confirmed through the transparent conductive film pad.
- a first non-linear resistive element (TFD element) 86 is configured by the island-shaped lower electrode 2, the non-linear resistive layer 3, and the upper electrode 8 4 for the data electrode.
- a second non-linear resistive element (TFD element) 8 7 is configured by the island-shaped lower electrode 2, the non-linear resistive layer 3, and the upper electrode 8 5 for the display electrode.
- each of the display electrode upper electrode 85, the data electrode upper electrode 84 and the display electrode 7 is formed of a transparent conductive film, for example, an indium tin oxide (ITO) film.
- ITO indium tin oxide
- the anodic oxidation electrode 5 comprises an overlapping portion 12 22 of the anodic oxidation electrode 5 and the display electrode 7 made of a transparent conductive film, and a tantalum below the second data electrode 8 3.
- the structure is to separate into the first data electrode 8 1.
- the etching removing portion 1 2 1 between the first data electrode 8 1 and the display electrode 7 is also removed to separate it from the display electrode 7.
- the width of the anodizing electrode 5 is the width W 2 of the first data electrode 8 1.
- the width W 1 of the anodizing electrode 5 is set as Make it wider than the width (W 2) of 1 data electrode 8 1 and extend it to the lower part of display electrode 7. Further, the adjacent display electrodes 7 are also connected by the anodizing electrode 5.
- the wiring connection portion 7 6 connecting the first data electrode 8 1 and the island-shaped lower electrode 2 is etched.
- the etching removal portion 12 1 located between the first data electrode 8 1 and the display electrode 7 is etched to separate the isolated display electrode 7 and the first Let it be the data electrode 8 1.
- the anodic oxidation electrode 5 is made wider at the time of anodic oxidation and is traversed vertically and horizontally, it becomes possible to form a uniform anodic oxide film in a short time.
- FIG. 37 a liquid crystal display device according to a thirteenth embodiment of the present invention will be described with reference to FIGS. 37 and 38.
- FIG. 37 a liquid crystal display device according to a thirteenth embodiment of the present invention will be described with reference to FIGS. 37 and 38.
- Fig. 3 7 is a plan view showing a partial region of the first substrate forming the TFD element of the liquid crystal display device in the 13th embodiment
- Fig. 3 8 is a plan view of Fig. — A cross-sectional view taken along the line P.
- the insulating film 4 8 is formed in the 11th embodiment, the opening 49 is provided in the insulating film 4 8, and the island-shaped lower electrode 2 and the first electrode 4 are formed by using the opening 49. Etch and remove wiring connection 7 6 connecting data electrode 8 1 of.
- the opening 4 9 of the insulating film 4 8 is located between the first data electrode 81 or the second data electrode 83 and the display electrode 7, or between the display electrode 7 and the display electrode 7.
- the first data electrode 8 1 and the display electrode 7 are formed by removing a portion of the anodizing electrode 5, that is, the etching removal portion 12 1. It consists of the composition to separate.
- an anodic oxidation electrode 5 consisting of a tantalum (T a) film as a metal film, an island-like lower electrode 2, an anodic oxidation electrode 5 and a lower electrode 2 Provide a wire connection 7 6 and (shown in phantom) to connect the.
- the width W 1 of the anodizing electrode 5 is wider than the width W 1 of the first data electrode 8 1 except for the periphery of the island-shaped lower electrode 2.
- a plurality of anodic oxidation electrodes 5 are connected to each other at one end by runners 5 a.
- the other end of the anodic oxidation electrode 5 is covered with a connection electrode 8 for applying a signal from the external circuit to the non-linear resistance element.
- the anodic oxidation electrode 5 is used as an electrode when forming the non-linear resistance layer 3 on the surface of the lower electrode 2 by anodizing treatment.
- An anodic oxidation electrode 5 is provided between the first data electrode 8 1 and the display electrode 7 shown in FIG.
- the etching removal portion 1 2 1 is removed in the final structure.
- wire connection 7 6 connected to the first data electrode 8 1 and the island-like lower electrode 2 is also removed in the final structure. That is, in FIGS. 37 and 38, the middle of the manufacturing process is indicated by phantom lines so that the explanation can be easily understood.
- tantalum oxide (T a 2 O 5) is formed by anodizing the tantalum film on the surface of the lower electrode 2 in the form of an island through the anodic oxidation electrode 5 and the wiring connection portion 7 6.
- a non-linear resistive layer 3 composed of a film is provided.
- a transparent conductive film is provided on the overlapping portion 12 2 of the anodizing electrode 5 and on the substrate 1 to form a display electrode 7. And contact with this display electrode 7 An upper electrode 85 for display electrode to be connected is provided on the lower electrode 2. Furthermore, a second data electrode 83 is provided on the anodizing electrode 5, and an upper electrode 84 for data electrode connected to the second data electrode 83 is further provided. Further, the connection electrode 8 made of a transparent conductive film is provided on the anodic oxidation electrode 5 made of a tantalum for applying a signal from the external circuit to the non-linear resistance element portion. In the connection electrode 8, tantalum has a frame shape. Also, the transparent conductive film covers the frame-like tantalum and has a quadrilateral shape. With this shape, when connecting the external circuit and the connecting electrode 8, the frame-like tantalum can make the position clearer than that of the transparent conductive film, thereby improving the alignment accuracy.
- the connection state of the external circuit and the input part can be confirmed through the transparent conductive film.
- a first non-linear resistive element (TFD element) 8 6 is configured by the island-shaped lower electrode 2, the non-linear resistive layer 3, and the upper electrode 8 4 for the data electrode.
- a second non-linear resistive element (TFD element) 8 7 is configured by the island-shaped lower electrode 2, the non-linear resistive layer 3, and the upper electrode 8 5 for the display electrode.
- the display electrode upper electrode 8 5, the data electrode upper electrode 8 4, and the display electrode 7 are each formed of a transparent conductive film, for example, an indium tin oxide (ITO) film.
- ITO indium tin oxide
- This insulating film 48 is provided with a tantalum oxide film (Ta 205) by sputtering.
- the insulating film 48 is provided with a wiring connection opening 91 (shown by an alternate long and short dash line) for removing the wiring connection portion 76 as the opening 4 9. Furthermore, A separation opening 92 is also provided on the etching removal portion 1 21 between the overlapping portion 1 2 2 of the anodizing electrode 5 and the display electrode 7.
- connection opening 9 3 of the insulating film 4 8 is provided on the connection electrode 8 of the transparent conductive film, and the insulating film 4 8 is left in the other part.
- insulating film 48 covers most of the wiring. There is no possibility of an electrical short between the input part and wiring close to each other due to dust or the like.
- the wiring connection portion 76 has the same side as the wiring connection opening 9 1 of the insulating film 4 8 and the side of the display electrode 7, and the island-shaped lower electrode 2 is connected from the anodic oxidation electrode 5 to the wiring It has the same side as the connection opening 9 1.
- the etching removal portion 12 1 has the same side as the separation opening portion 9 2 of the insulating film 4 8 and the side of the display electrode 7, and the electrode 5 for anodic oxidation is formed by the etching removal portion 1 2 1. Becomes the first data electrode 8 1, and becomes the configuration of the independent display electrode 7.
- the width of the anodizing electrode 5 is the width W 2 of the first data electrode 8 1.
- the width of the anodizing electrode 5 is set to W 1 and the width of the first data electrode 8 1 is made wider than the width W 2, and it is extended to the lower portion of the display electrode 7. deep. Further, the adjacent display electrodes 7 are also connected by the anodic oxidation electrode 5.
- the first data electrode 81 and the island-shaped lower electrode 2 are connected.
- the wiring connection portion 76 is etched to form the isolated lower electrode 2 and at the same time the etching removal portion 1 21 between the first data electrode 8 1 and the display electrode 7 is etched. To the isolated display electrode 7 and the first data electrode 8 1.
- the width of the anodic oxidation electrode can be increased at the anodic oxidation, and a uniform anodic oxide film can be formed in a short time. 5 Furthermore, as in the example of FIG. 26, since the width (W 1) of the anodizing electrode is increased, there are broken portions in the width (W 2) of the first data electrode 8 1. In the case, a part of the anodic oxidation electrode 5 between the display electrode 7 and the first data electrode 81 can be used to prevent the disconnection of the first data electrode 8 1.
- the island-shaped lower electrode 2 it is necessary to separate the island-shaped lower electrode 2 from the first data electrode 81. Furthermore, in the connection electrode 8, an opening is provided in the insulating film 48, It is necessary to make an electrical connection with the circuit. Therefore, since the removal of the wiring connection portion 7 6 and the step of forming the first data electrode 1 8 from the anodic oxidation electrode 5 1 can be performed simultaneously with the processing of the insulating film 48, It does not add to the process at all.
- two upper electrodes may be provided.
- FIG. 39 a liquid crystal display device according to a fourteenth embodiment of the present invention will be described based on FIGS. 39 and 40.
- FIG. 39 a liquid crystal display device according to a fourteenth embodiment of the present invention will be described based on FIGS. 39 and 40.
- the fourteenth embodiment relates to the structure of the TFT element.
- FIG. 3 9 is a plan view showing a partial region of the first substrate forming the TFT element of the liquid crystal display device according to the 14th embodiment
- FIG. 40 is a plan view of FIG. It is sectional drawing which follows Q line.
- An anodic oxidation electrode 5 and a portion of the anodic oxidation electrode 5 are formed of a tantalum (T a) film, all of which are metal films on the first substrate 1 which is an active substrate for forming a TFT element.
- T a tantalum
- the anodic oxidation electrode 5 is composed of a gate electrode 10 1 and an etching removal portion 12 1 and an overlapping portion 12 2.
- the width of the anodizing electrode 5 is as wide as W 1 except for the periphery of the gate electrode 101.
- the anodic oxidation electrode 5 has a configuration in which a plurality of anodic oxidation electrode portions (not shown) are mutually connected at one end. The other end is covered by a connection 8 for applying a signal from the external circuit to the TFT element.
- the anodic oxidation electrode 5 is used as an electrode when the gate insulating film 102 is formed on the surface of the gate electrode portion 101 by anodizing treatment.
- a part of the anodic oxidation electrode 5 is provided between the gate electrode 101 and the display electrode 7 in FIG.
- the etching removal portion 121 which is a region other than the display electrode 7, is removed.
- a gate insulating film 10 made of a tantalum oxide (a205) film formed by anodizing the tantalum film is formed. Provide two.
- a semiconductor layer 103 made of amorphous silicon (a-S i) is provided around the gate electrode 101. Further, a semiconductor layer 104 containing phosphorus (P) as impurity ions is provided on the semiconductor layer 103, and a source electrode 104 is provided on the semiconductor layer 104 containing impurity ions.
- Source electrode 105 and data electrode 106 are provided by molybdenum (Mo).
- Mo molybdenum
- the semiconductor layer 104 containing impurity ions is provided at the overlapping portion of the source electrode 10 5, the drain electrode 1 0 6 and the semiconductor layer 1 0 3. Also, the source electrode 105 is connected to the data electrode 81 connected to the external circuit.
- the gate electrode 1 0 1 is a metal film (tantalum) 2 and an anodic oxide film (tantalum oxide) 3, and the semiconductor layer 1 is formed thereon A metal film (molybdenum) of a semiconductor layer 104 containing 0 3 and impurity ions and a source electrode 105 is provided.
- the metal film of the gate electrode 1 0 1 and the gold of the source electrode 1 0 5 An electrical short circuit can be prevented by providing a multilayer insulating film or a semiconductor layer 103 between the metal films.
- the display electrode 7 is provided on the overlapping portion 122 of the anodizing electrode 5 and the substrate 1.
- connection electrode .8 made of a transparent conductive film is provided on the anodic oxidation electrode 5 made of tantalum for applying a signal from the external circuit to the non-linear resistance element.
- tantalum has a frame shape.
- the transparent conductive film covers the frame-like tantalum and has a square shape.
- the frame-like tantalum can make the position clearer than the transparent conductive film, so that the alignment accuracy is improved. Furthermore, by providing the transparent conductive film inside and outside the frame-like tantalum, the connection state of the external circuit and the connection electrode 8 can be confirmed through the transparent conductive film.
- each of the display electrode 7 and the connection electrode 8 is formed of a transparent conductive film, for example, an indium tin oxide (I T O) film.
- I T O indium tin oxide
- the etching removal portion 12 1 located between the display electrode 7 and the gate electrode 1 0 1 is etched away by the etching method, and the electrode 5 for anodic oxidation is It becomes the gate electrode 1 0 1 and separates from the overlapping portion 1 2 2 at the bottom of the display electrode 7.
- the width of the anodizing electrode 5 is the width W 2 as the gate electrode 101.
- the width of the anodizing electrode 5 is set to W 1, and the width is made wider than the width (W 2) of the gate electrode 101 and is extended to the lower part of the display electrode 7. Further, the adjacent display electrodes 7 are also connected by the anodic oxidation electrode 5.
- the gate electrode 1 0 1 and the display electrode 7 are separated into overlapping portions 1 2 2 at the bottom. Furthermore, the display electrode 7 becomes isolated.
- the anodic oxidation electrode can be used during anodic oxidation.
- the width (W 1) of the anodizing electrode 5 is made wide, when there is a break in the width (W 2) of the gate electrode 101, the display electrode 7 and the gate electrode Breakage of the gate electrode 101 can be prevented by utilizing a part of the anodizing electrode 5 between the electrodes 101.
- FIGS. 41 to 44 are sectional views showing a method of manufacturing the active substrate of the liquid crystal display according to the fourteenth embodiment in order of steps.
- a tantalum (T a) film is sputtered to a thickness of 200 nm as a metal film on the entire surface of the first substrate 1 which is an absorptive substrate made of glass shown in FIG. 41. Formed by
- a photosensitive resin (not shown) is formed on the entire surface of the tantalum film by a spin coating method, exposure and development processing is performed using a predetermined hot mask, and a photosensitive resin is patterned, and then This patterned photosensitive resin is used as an etching mask to etch a tantalum film, and a pattern of an anodic oxidation electrode 5 and a goot electrode 1 0 1 connected to the anodic oxidation electrode 5 are formed by a hot etching process.
- the tantalum film is etched using an RIE apparatus.
- the etching conditions use a mixed gas of sulfur hexafluoride (SF 6) and oxygen (O 2) as an etching gas.
- the flow rate of sulfur hexafluoride is 100 to 200 seem, the oxygen flow rate is 10 to 40 sccm, the pressure is 4 to 12 X 1 O- ⁇ , and the power consumption is 0.2 to 20 Do this with 0.5 k WZ cm 2 .
- anodic oxidation electrode 5 as an anode and using an aqueous solution of 0.01 to 1.0 wt% of a citric acid solution, an aqueous solution of boric acid or an aqueous solution of phosphoric acid as an anodic oxidation solution, 60 to 70 A voltage of V is applied to anodize the tantalum film.
- an insulating film (not shown) made of a tantalum oxide film (T a 2 O 5) is formed on the surface of the side wall and the top surface of the gate electrode 101 and the electrode 5 for anodic oxidation. ) With a thickness of 120 to 130 nm.
- an amorphous silicon (a-Si) film is formed over the entire surface to a thickness of 70 nm as a semiconductor layer 103 using a plasma CVD method.
- a semiconductor layer 104 (n-a-S i) containing phosphorus (P) as impurity ions is formed on the entire surface by 20 nm using a plasma CVD method ⁇ Thereafter, FIG. As shown in FIG. 6, the semiconductor layers 103 and 104 are etched to form a pattern on the periphery of the gate electrode 101 and the portion of the data electrode 81.
- the etching of the amorphous silicon film is performed using an RIE apparatus.
- the etching conditions use a mixed gas of carbon tetrafluoride (CF 4) and oxygen (O 2) as an etching gas. Then tetrafluoride flow amount 1 0 0 ⁇ 2 00 sccm of a carbon, oxygen flow rate is 1 0 to 4 0 seem, the pressure is set to 4 ⁇ 1 2 X 1 0- 2 torr, further use electric mosquito 0.2 It is done with 0.5 k WZ cm 2 .
- CF 4 carbon tetrafluoride
- O 2 oxygen
- a molybdenum den- sion film (Mo) is formed over the entire surface to a film thickness of 200 nm using a sputtering method. Thereafter, a photosensitive resin (not shown) is formed on the molybdenum film.
- the molybdenum film is etched to simultaneously pattern the source electrode 105 and the data electrode 8 1 connected to the drain electrode 106 and the source electrode 105.
- the molybdenum film is etched by wet etching using an etchant of phosphoric acid (H 3 PO 4 ), nitric acid (H NO 3 ) and acetic acid ( ⁇ , 001).
- the etchant solution temperature is set at 25 "to 26".
- the photosensitive resin is used as a mask for etching to etch the semiconductor layer 104 containing impurity ions.
- the etching is performed using a RIE device, and the etching conditions are set such that deterioration of the underlying semiconductor layer 103 does not occur.
- a mixture of carbon tetrafluoride (CF 4 ) and oxygen (02) as an etching gas Use mixed gas.
- an indium tin oxide (I T 0) film is formed on the entire surface as a transparent conductive film with a film thickness of 1 O O n m using a sputtering method. Then, form photosensitive resin (not shown) on the indium tin oxide film.
- the indium tin oxide film is etched to be connected to the drain electrode 106, and the display electrode 7 is patterned on the overlapping portion 122 which is a part of the anodizing electrode 5. Further, an input portion (not shown) connected to the connection electrode 8 and the data electrode 8 1 is formed on the anodic oxidation electrode 5 connected to the gate electrode 101.
- This indium tin oxide is etched by wet etching using an aqueous etchant of bromine (H B r). At this time, set the etching liquid temperature at 25 to 30 * 0.
- the etching removal portion 1 21 between the overlapping portion 1 22 of the inner display electrode 7 of the anodic oxidation electrode 5 and the gate electrode 1 1 1 or the display electrode 7 is displayed.
- a photosensitive resin 1 2 5 is formed to cover the periphery of the data electrode 8 1 and the gate electrode portion 1 0 1.
- the etching removal portion 1 2 1 is exposed from the display electrode 7 made of the photosensitive resin 1 2 5 and the indium tin oxide film, so the photosensitive resin 1 2 5 and the display electrode 7 is used as a mask for etching, and the etching removal portion 1 2 1 is removed by an etching process using RI ⁇ equipment.
- This etching condition is sulfur hexafluoride (SF) as an etching gas.
- the anodizing electrode 5 is overlapped with the gate electrode 10 1 and the lower portion of the display electrode 7. It can be separated into 1 2 2.
- the width (W 1) of the anodic oxidation electrode can be increased at the anodic oxidation, and a uniform anodic oxide film can be formed in a short time.
- the display electrode 7 and the gate electrode 10 can be formed if there is a break in the width W 2 of the gate electrode 101. Breakage of the gate electrode 10 1 can be prevented by utilizing a part of the anodizing electrode 5 between 1.
- indium oxide In2O3
- tin oxide SnO2 Oxides such as zinc oxide (Z n O) may be used.
- tantalum as the material for the anodic oxidation electrode 5
- aluminum or tantalum is a metal containing carbon, silicon, niobium, nitrogen, or phosphorus in aluminum.
- a membrane may be used.
- the upper electrode and the display electrode are made of different materials. It may be provided.
- chromium titanium, tungsten, titanium silicide, tungsten silicide or a chromium film containing nitrogen can also be used.
- the present invention relates to a liquid crystal display device widely used in various electronic devices, and particularly to a liquid crystal display device using as a switching element a nonlinear resistive element such as TFD or TFT which can be finely processed and is effective for cost reduction. It is possible to uniformly form the non-linear resistance layer by anodizing treatment in a short time, to prevent the subsequent occurrence of breakage and to facilitate inspection.
- a nonlinear resistive element such as TFD or TFT
- the remaining part after using the anodic oxidation electrode was effectively used to form a connection electrode with an external circuit, etc., to be used as a light shielding part, or to cause a defect in the electrode. It can be used for repairing the case.
Description
明 柳 書 液 晶 表 示 装 置 技術分野
この発明は、 時計, 電卓, ビデオカメ ラ, その他各種電子機器の 表示器と して広範に使用されているモノ ク ロあるいはカラ一の液晶 表示装置に関する。
特に、 液晶を封入する 2枚の基板の一方に第 1の電極と第 2の電 極を有し、 その第 1 の電極と第 2 の電極と の間に非線形抵抗層と し て第 1 の電極の陽極酸化膜を形成して、 「金属—絶縁膜一金属」 あ るいは 「金属一絶縁膜一透明導電体」 構造の非線形抵抗素子を設け た液晶表示装置の構成に関するものである。 背景技術
近年、 液晶パネルを用いた液晶表示装置の表示容量は、 大容量化 の一途をたどっている。
そして、 単純マ ト リ クス構成の液晶表示装置にマルチプレタ ス駆 動を用いる方式においては、 高時分割化するに従ってコン トラス ト の低下あるいは応答速度の低下が生じる。 このため、 2 0 0本程度 の走査線を有する場合には、 充分なコン トラス トを得ることが難し く なる。
そこで、 このよ うな欠点を除去するために、 それぞれの画素にス ィ ツチング素子を設けるアクティブマ ト リ クス方式の液晶表示パネ ルが採用されている。
このアクティブマ ト リ ク ス方式の液晶表示パネルには、 大別する と、 スイ ッチング素子と して薄膜トランジスタ (Th i n-Fi lm-Trans i s tor :以下 「T F T」 と称す」 を用いる三端子系と、 非線形抵抗素 子を用いる二端子系とがある。 そして、 構造や製造方法が簡単な点 で二端子系の方が便れている。
この二端子系には、 ダイオー ド型やバリスタ型、 あるいは薄膜ダ ィオー ド (Thin-Fi lm- Diode : 以下 「T F D」 と称す) 型などが開 発されている。
このうち、 T F D型は特に構造が簡単で、 そのうえ製造工程が短 いという特徴を備えている。
さ らに、 液晶表示パネルは髙密度でしかも髙精細化が要求され、 スイ ッチング素子の占有面積を小さ くする必要がある。
その高密度化高精細化の手段と して、 半導体製造技術の微細加工 技術であるフォ ト リ ソグラフィ技術とェツチング技術とがある。 し かしながら、 この半導体製造技術を用いても、 大面精加工が可能で しかも低コス トを実現するのは非常に困難である。
そこで、 大面稜化および低コス ト化に有効なスィ ツチング素子を 有する従来の液晶表示装置の構造を、 その一例を示す液晶表示装 S の平面図である第 4 5図、 その一部を拡大して示す平面図である第 4 6図、 及びその X— X線に沿う断面図である第 4 7図を用いて説 明する。
この液晶表示装置は、 第 4 7図に明示されるよ うに、 それぞれ透 明材料からなる第 1の基板 1 と第 2の基板 1 1 とをスぺーサ 1 7を 介して所定の間隔をもって対向させ、 その間に液晶 1 6を封入して いる。
その第 1 の基板 1上には、 第 1 の電極と して下部電極 2 と信号電 極 4を設け、 その下部電極 2上に非線形抵抗層 3を設ける。 さ らに、 その非線形抵抗層 3上にオーバラッブするよ うに第 2の電極と して 上部電極 6 を設けて、 非線 抵抗素子 9を構成している。 第 2の 電極と しての上部電極 6は、 第 4 6図に示されるよ うに表示電極 7 から延設しており、 一部は表示電極を兼ねている。
この非線形抵抗素子 9 と表示電極 7は、 マ ト リ クス状に設けられ ている。
—方、 第 2の基板 1 1 の第 1 の基板 1 と対向する面には、 第 1 の 基板 1上に設けた各表示電極 7の隙間からの光の漏れを防止するた
めに、 第 4 6図に斜線を施して示す領域全体にブラックマ ト リ クス 1 2を設けている。 すなわち、 非表示部に遮光部と してブラックマ ト リクス 1 2を設けている。
さらに、 第 2の基板 1 1には、 対向電極 1 3を第 4 7図に示すよ うに表示電極 7 と対向させて、 ブラックマ ト リクス 1 2 と接触して 短絡しないように層間絶縁膜 1 4を介して帯状に設けている。
なお、 第 4 6図においては、 第 1の基板 1上の第 1の電極である 下部電極 2および信号電極 4 と、 第 2の電極である上部電極 6 と表 示電極 7はいずれも破線で示し、 非線形抵抗層 3は図示を省略し、 第 2の基板 1 1の下面のブラックマ ト リ クス 1 2 と対向電極 1 3は 実線で示している。
そして、 第 1 の基板 1上に設ける下部電極 2は、 非線形抵抗素子 9を設けるために信号電極 4から張り出しており、 この張り出し領 域としての下部電極 2が上部電極 6 とオーバラップして、 非線形抵 抗素子 9を構成している。
また、 第 1 の電極と しての信号電極 4 と第 2 の電極と しての表示 電極 7 とは、 第 4 6図に示すよ うに所定寸法の間隙 dを有している。 表示電極 7は、 液晶 1 6を介して対向電極 1 3 と重なり合うよう に配置することにより、 液晶表示パネルの画素部となる。
ブラックマ ト リ クス 1 2は、 表示電極 7 の形成領域にまで一定量 オーバラップするように設け、 表示電極 7の周辺部の領域からの光 の漏れを防止する役割をもっている。
表示電極 7上のブラ ッ クマ ト リ クス 1 2が形成されていない領域 の液晶 1 6の透過率変化により、 液晶表示装置は所定の画像表示を 行う。
さらに、 第 1の基板 1 と第 2 の基板 1 1の対向面側には、 液晶 1 6の分子を規則的に並べるための処理層と して、 それぞれ配向膜 1 5, 1 5を設けている。
そして、 第 4 5図に示すように、 第 1の基板 1上には M列の信号 電極 4を設け、 第 2の基板 1 1上には N行の対向電極 1 3またはデ
ータ電極を設けて、 M列 N行のマ ト リ タスからなる 1点鎖線で示す 表示領域 1 8 を有する液晶表示装置を構成している。
その M列の信号電極 4 と N行の対向電極 1 3またはデータ電極の 交点には、 それぞれ表示電極 7 を有し、 その信号電極 4 と表示電極 7の間には、 非線形抵抗素子 (この例では T F D ) 9を設けている, さ らに、 第 1 の基板 1上には、 M列の信号電極 4 を相互に接続す る陽極酸化用電極 5 を有し、 その陽極酸化用電極 5 と反対め方向に は、 各信号電極 4を外部回路と接続するための接続電極 8を有して いる。
このよ うに、 陽極酸化用電極 5によって各列の信号電極 4 を接続 し、 その信号電極に接続されている各下部電極 2に対して一度に陽 極酸化処理を行って、 その表面に非線形抵抗層 3 (第 4 7図) を形 成するが、 その処理後には各列の信号電極 4 を分離して独立させな ければならない。
そのため、 第 4 5図に示すよ うに、 陽極酸化用電極 5を第 1 の基 板 1 の分離線 (破線で示す) 3 4 よ り外方に長さ Lだけ延設した切 断部分 6 2に設けて、 陽極酸化処理後に分離線 3 4で切断して、 陽 極酸化用電極 5 を切断部分 6 2 と共に第 1 の基板 1 から切り離すよ うにしている。
しかしながら、 このよ うに陽極酸化用電極 5を信号電極 4 と分離 するためには、 この切断部分 6 2 を設ける必要があり、 それは分離 線 3 4に切り込みを入れた後、 作業者が指で折り曲げて切断できる だけの大き さが必要であり、 それだけ材料が無駄になるという問題 がある。
さ らに、 切断部分 6 2を信号電極 4よ り切り離す工程において、 静電気によって非線形抵抗素子 9の特性を劣化させる可能性もある < また、 第 1 の基板 1 の切断されたと ころには各信号電極の端面が 露出するため、 ゴミや水分の吸着によって複数の信号電極間で短絡 が発生する恐れもある。
また、 陽極酸化用電極 5を切断する工程をどの時点で行うかによ
つて、 非線形抵抗素子 9の特性劣化や破壊を招く ことがある。
非線形抵抗素子 9を有する基板 1 を液晶表示装置用に加工するェ 程処理である、 液晶を規則正しく配列するための配向処理や、 装置 間の搬送時や検査工程時に、 陽極酸化用電極 5が分離していると、 局所的に発生する静電気を分散できない。
そのために、 非線形抵抗素子 9に過剰な電圧が印加されることに なり 、 非線形抵抗素子 9の劣化や破壊が発生することがある。
さ らに、 液晶表示装置の検査中には、 陽極酸化用電極を相互に接 続していることによ り、 非線形抵抗素子 9の劣化や破壊の発生を防 止することができる。
さ らにまた、 液晶表示装置の検査工程のとき、 相互に接続してい る陽極酸化角電極 5に電圧を印加するだけで各表示電極 7に電圧を 印加できるため、 検査を容易に行う ことができる。
特に、 外部回路を非線形抵抗素子 9を形成する基板 1上に実装す るとき、 たとえば高密度な実装が可能である集積回路を導電性接着 剤を使用して基板上に実装するチップ · オン ' ガラス (C O G ) 実 装法のときには、 実装前に実装用電極上と導電ペース ト間に汚染物 質が混入しないことが要求される。
そのため、 前述のよ うに第 1 の基板に切断部分を設けてそこに陽 極酸化用電極を形成し、 陽極酸化処理後にその切断部分を切断して 各信号電極から切り離す構造では、 材料の無駄になるばかり力、、 上 述のよ うな種々の要求を満たすことができなかった。
そのため、 この発明は、 上記のよ うな各種の工程が終了した後に 陽極酸化用電極の一部をエッチングによって簡単に除去して、 各信 号電極が独立するよ うにした液晶表示装置を提供し、 非線形抵抗素 子の製造工程、 あるいはそれ以後の液晶表示装置化への工程時に発 生する静電気による非線形抵抗素子の劣化や破壊を防止し、 非線形 抵抗素子の欠陥を減ら し、 非線形抵抗素子の特性を安定にすること を第 1 の目的とする。
また、 第 4 6図に示した切断部分のよ うな無駄に廃棄する部分を
なく し、 陽極酸化処理に使用した陽極酸化用電極の各信号電極を独 立させた後に残存する部分を有効に利用すること も他の目的とする, さ らに、 前述した従来の非線形抵抗素子を有する液晶表示装置は 信号電極を金厲膜によって形成し、 初期の信号電極と最終の信号電 極の配線幅が同一である。 そのため、 信号電極の一部にエッチング 不良が発生した場合には修正がしにくいという問題があった。
. また、 信号鴛極を陽極酸化用電極の一部と して使用する場合には. 信号電極が断線すると陽極酸化膜を形成できなく なる。 さらに、 陽 極酸化膜を均一に形成するためには、 陽極酸化用電極をできるだけ 幅広く形成しておく必要がある。
さ らにまた、 表示電極と して透明導電性膜を使用する場合には、 透明導電性膜のエッチング不良によ り信号電極と表示電極とが電気 的に短絡 (ショー ト) していても、 表示電極が透明なためその短絡 箇所を容易に検出するこ とができなかった。
なお、 T F T素子に関しても、 ゲー ト電極を陽極酸化用電極と し て利用し、 ゲー ト絶縁膜と してゲー ト電極の陽極酸化膜を用いるよ うにした場合には、 T F D素子の場合と同様に陽極酸化用電極の断 線あるいは、 信号電極 (ゲー ト電極あるいはソース電極) と透明な 表示電極との電気的短絡が発生する恐れがある。
そのため、 この発明は、 信号電極を陽極酸化用電極の一部と して 使用して、 各非線形抵抗素子の非線形抵抗層とする陽極酸化膜を確 実且つ均一に形成できるよ うにすると共に、 その信号電極の一部に エッチング不良が発生した場合にも容易に修正できるよ うにするこ と、 および透明導電性膜の表示電極と信号電極あるいは陽極酸化用 鸳極との電気的短絡が発生した場合に、 その短絡箇所を検出し易く するこ と も目的とする。 発明の開示
この発明は上記の目的を達成するため、 液晶表示装置を次のよ う に構成する。
この発明の対象とする液晶表示装置は、 第 1 の基板と第 2の基板 とを所定の間隔をもって対向させ、 その第 1 の基板上に、 複数の電 極を設け、 その複数の電極が重なり合う領域に、 一方の電極の陽極 酸化膜によ り非線形抵抗層を形成して、 T F D素子あるい T F T素 子等の非線形抵抗素子を設ける。 そして、 その第 1 の基板と第 2の 基板との間に液晶を封入した構造のものである。
そして、 上記非線形抵抗層を形成するために陽極酸化膜を形成す る各電極を、 予め相互に接続して陽極酸化処理を速く均一に行える よ うにする陽極酸化用電極と、 その陽極酸化用電極の一部をマスク する他の電極とを設け、 陽極酸化処理後にその他の電極をマスク と してエッチングによ り陽極酸化用電極の露出部分を除去することに よ り 、 各電極が独立しているものである。
したがって、 マスキング用の特別な被覆を省略するか少なくする ことができ、 陽極酸化処理後の任意の工程で容易に各電極の独立の ためのエッチング処理を行なう こ とができる。
また、 陽極酸化用電極の残った部分を、 接続電極や入力電極 (端 子) 等に有効に利用することができる。
また、 その陽極酸化用電極を表示領域の周囲や表示素子部の周囲 に設けることによ り、 それを遮光部と して利用することができ、 ブ ラック · マ ト リ クスがない液晶表示装置にも見切り を設けることが できる。
さ らに、 その陽極酸化用電極の幅を初期には広く しておく こ とに よ り、 陽極酸化膜の均一性の向上および切断等の防止効果を高める ことができ、 電極の一部に欠陥が生じた場合にも陽極酸化用電極の 幅広部を利用して補修することが可能になる。 図面の簡単な説明
第 1 図はこの発明の第 1 実施例の液晶表示装置の一部を示す平面 図であり、 第 2図は図 1 の A— A線に沿う断面図である。
第 3図はこの発明の第 2実施例の液晶表示装置の一部を示す平面
図であり、 第 4図は図 3の B— B線に沿う断面図である。
第 5図はこの発明の第 3実施例による液晶表示装 gの基板を大型 基板上に複数個配 gする状態を示す平面図である。
第 6図は第 5図に破線で囲んで示す 2個の液晶表示装置用基板の 境界部を拡大して示す平面図である。
第 7図は液晶表示装置を構成した状態で第 6図の C一 C線に沿う 断面図、 第 8図は同じく D— D線に沿う断面図である。
第 9図はこの発明の第 4実施例による液晶表示装 gの第 1の基板 側の一部を示す平面図であり、 第 1 0図は液晶表示装置を構成した 状態で第 9図の E— E線に沿う断面図である。
第 1 1図はこの発明の第 5実施例による液晶表示装置の全体構成 を示す平面図、 第 1 2図は第 1 1図に破線 a, bでそれぞれ囲んだ 部分を拡大して示す平面図である。
第 1 3図は液晶表示装 Sを構成した状態で第 1 2図の F— F線に 沿う断面図、 第 1 4図は同じく第 1 2図の G— G線に沿う断面図で ある。
第 1 5図はこの発明の第 6実施例による液晶表示装置の一部を拡 大して示す平面図であり、 第 1 6図は第 1 5図の H— H線に沿う断 面図である。
第 1 7図はこの発明の第 7実施例による液晶表示装置の一部を拡 大して示す平面図であり、 第 1 8図は第 1 7図の I一 I線に沿う断 面図である。
第 1 9図はこの発明の第 8実施例による液晶表示装置の全体構成 を示す平面図、 第 2 0図は第 1 9図の一部分を拡大して示す平面図、 第 2 1図は第 2 0図の J— J線に沿う断面図である。
第 2 2図はこの発明の第 9実施例による液晶表示装置の一部分を 拡大して示す平面図であり、 第 2 3図は第 2 2の K一 K線に沿う断 面図である。
第 2 4図はこの発明の第 1 0実施例による液晶表示装置の T F D 素子を形成する第 1の基板の一部領域を示す平面図、 第 2 5図は第
2 4図の L一 L線に沿う断面図である。
第 2 6図乃至第 2 9図はこの発明の第 1 0実施例による液晶表示 装篋の平面図とそのァクティブ基板の製造方法を工程順に示す断面 図である。
第 3 0図はこの発明の第 1 1実施例における液晶表示装置の T F D素子を形成する第 1の基板の一部領域を示す平面図であり、 第 3 .1図は第 3 0図の M— M線に沿う断面図である。
第 3 2図乃至第 3 4図はこの発明の第 1 1実施例における液晶表 示装置のァクティブ基板の製造方法を工程順に示す断面図である。 第 3 5図はこの発明の第 1 2実施例における液晶表示装置の T F D素子を形成する第 1の基板の一部領域を示す平面図であり、 第 3 6図は第 3 5図の N— N線に沿う断面図である。
図 3 7図はこの発明の第 1 3実施例における液晶表示装置の T F D素子を形成する第 1の基板の一部領域を示す平面図であり、 第 3 8図は第 3 7図の P— P線に沿う断面図である。
図 3 9図はこの発明の第 1 4実施例による液晶表示装篋の T F T 素子を形成する第 1の基板の一部領域を示す平面図であり、 第 4 0 図は第 3 9図の Q— Q線に沿う断面図である。
第 4 1乃至第 4 4図はこの発明の第 1 4実施例による液晶表示装 直のァクティブ基板の製造方法を工程順に示す断面図である。
第 4 5図は従来の液晶表示装置の一例を示す全体の平面図、 第 4 6図はその一部を拡大して示す平面図、 第 4 7図は第 4 6図におけ る X— X線に沿う断面図である。 発明を実施するための最良の形態
この発明の内容をより詳細に説明するために、 添付の図面を参照 しながらこの発明の実施例を脱明する。
なお、 以下の各実施例の説明に使用する第 1図乃至第 4 4図にお いて、 前述した第 4 5図乃至第 4 7図と対応する部分、 および各実 施例の図においてそれぞれ対応する部分には同一の符号を付してあ
0 る
〔第 1 実施例〕
先ず始めに、 この発明の第 1実施例である液晶表示装置の構成を 第 1図と第 2図に基づいて説明する。
第 1 図は第 1 実施例の液晶表示装置の一部を示す平面図であり、 第 2図は第 1図の A — A線に沿う断面図である。 なお、 第 1図では 第 1 , 第 2の基板自体は図示を省略している。
この液晶表示装置の基本的構成は、 前述した従来例と同様であり , 第 2図に示すよ うに、 それぞれ透明なガラス等の材料からなる第 1 の基板 1 と第 2の基板 1 1 とを図示しないスぺーサを介して所定の 間隔をもって対向させ、 その間に液晶 1 6を封入している。
そして、 その第 1 の基板 1上には、 第 1 の電極と して、 タンタル ( T a ) 膜からなる下部電極 2 と信号電極 4 と陽極酸化用電極 5 と を設けている。 また、 下部電極 2上には、 その下部電極 2 自体の陽 極酸化膜である酸化タンタル (T a 2 0 5 ) 膜からなる非線形抵抗 層 3 を形成している。 その陽極酸化膜は下部電極 2上だけでなく 、 第 1 の電極の全表面、 すなわち信号電極 4および陽極酸化用電極 5 の表面にも形成される。
さ らに、 第 2の電極と して、 非線形抵抗層 3上の上部電極 6 と、 その上部電極 6 と接続する表示電極 7 と、 陽極酸化用電極 5の一部 をなす接続電極 8 とを、 酸化インジウム錫 ( I T O ) 膜で設けてい る。
これらの下部電極 2 と非線形抵抗層 3 と上部電極 6 とによって、 T F D構造の非線形抵抗素子 9を構成している。
さ らに、 第 2の電極からなる接続電極 8は、 第 1 の電極からなる 陽極酸化用電極 5の一部を覆い、 陽極酸化処理時には第 1図に仮想 線で示すよ うに、 各行の信号電極 4を相互に接続している陽極酸化 用電極 5のランナー部 5 a を、 陽極酸化処理後にこの接続電極 8に よる分離辺 1 0にて相互に分離し、 それぞれ独立した信号電極 4を
構成する。
この接続電極 8は、 第 2図に示すよ うにこの液晶表示装置を駆動 する ドライ ノく I C 1 0 0 の出力端子 1 0 0 a と接続する電極である さ らに、 第 2の基板 1 1 の内側の面には、 第 1 の基板 1上に設け た各表示電極 7の間隙からの光の漏れを防止するために、 ク ロム ( C r ) 膜からなるブラックマ ト リ クス 1 2を設けている。
なお、 第 1図に示すよ うに、 第 1 の基板 1上の表示電極 7に対向 する第 2の基板 1 1 の領域には、 ブラックマ ト リ クス 1 2は設けな い o
また、 この第 2の基板 1 1 の内側の面には、 表示電極 7 と対向す るよ うに酸化ィ ンジゥム錫膜からなる対向電極 1 3 を設けている。 この対向電極 1 3は、 ブラックマ ト リ クス 1 2 と接触して短絡しな いよ うに、 層間絶縁膜 1 4を介して設ける。
さ らに第 1図に示すよ うに、 第 1 の電極 (信号電極 4 ) と表示電 極 7 とは、 両者が短絡しないよ うに所定寸法の間隙を有する。
表示電極 7は、 第 2図に示すよ うに液晶 1 6 を介して対向電極 1 3 と重なり合う よ うに配置されることによ り、 液晶表示パネルの表 示画素部となる。 この各表示画素部では、 ブラ ックマ ト リ クス 1 2 は開口部 1 2 a を設けている。 そして、 第 1 図に斜線を施して示す ブラ ックマ ト リ クス 1 2 の形成領域が遮光部となる。
上述した表示画素部の液晶 1 6の透過率の変化によ り、 この液晶 表示装置は所定の画像表示を行う。
さ らに、 第 1 の基板 1 と第 2 の基板 1 1 とは、 液晶 1 6 の分子を 規則的に並べるための処理層と して、 それぞれ配向膜 1 5, 1 5を 設けている。
以上説明したこの第 1 実施例の構成によ り 、 第 1 の電極からなる 陽極酸化用電極 5は、 第 2の電極からなる接続電極 8によ り 自己整 合的に分離する構成を有する。
すなわち、 下部電極 2上に非線形抵抗層を形成するための陽極酸 化処理を行う際には、 各行の信号電極 4が陽極酸化用電極 5によつ
2 て相互に接続されている。 そして、 陽極酸化処理後のたとえば液晶 表示バネルの検査後に、 第 2の電極からなる接続電極 8をマスク と してエッチングを行う ことによって、 陽極酸化用電極 5の接続電極 8 に覆われていないランナー部 5 a が除去され、 接続電極 8の分離 辺 1 0にて相互に分離されて、 各行の独立した信号電極 4を構成す る。
. このように、 第 2の電極である接続電極 8をエッチングのマスク と して使用するため、 液晶表示パネルの製造工程中や検査工程中、 あるいは検査後に、 相互に接続されている各信号電極 4を独立した 信号電極に加工するこ とが可能となる。
それによつて、 その各接続電極 8 と独立した信号電極 4を用いて、 各行の非線形抵抗素子 9に外部信号を印加することが可能になる。 また、 非線形抵抗素子 9 を有する第 1 の基板 1に配向膜 1 5を印 刷する工程や、 配向膜 1 5 を利用してその表面を布で擦って配向処 理を行う工程等の静電気の発生を伴う工程では、 各信号電極 4が陽 極酸化用電極 5 によって相互に接続されたままの状態にしておく こ とによ り、 非線形抵抗素子 9の特性劣化を防止することができる。 それによつて、 均一で安定した特性の良好な表示品質を有する液 晶表示装置を得るこ とができる。
〔第 2実施例〕
次に、 この発明の第 2実施例である液晶表示装置の構造を、 第 3 図及び第 4図に基づいて説明する。
第 3図はその第 2実施例の液晶表示装置の一部を示す平面図であ り、 第 4図は第 3図の B— B線に沿う断面図である。 なお、 第 3図 では第 1, 第 2の基板自体は図示を省略している。
この実施例においても、 第 1 の基板 1上には、 タンタル (T a ) 膜からなる第 1 の電極と して、 下部電極 2 と信号電極 4 と陽極酸化 用電極 5を設けている。 そして、 その下部電極 2を含む第 1の電極 の表面には、 その第 1 の電極自体の腸極酸化膜と して酸化タンタル
(T a2 O5 ) 膜からなる非線形抵抗層 3を形成する。
さ らに、 第 2の電極と して、 非線形抵抗層 3上にク ロム (C r ) 膜からなる上部電極 6を設けると共に、 陽極酸化用電極の一部をな す第 1の接続電極 2 2を同じクロムで設けている。
これらの下部電極 2と非線形抵抗層 3 と上部電極 6 とによって、 T F Dの構造の非線形抵抗素子 9を構成する。
. 第 1の基板 1上にはさ らに、 第 3の電極と して、 表示電極 7と陽 極酸化用電極 5の一部をなす第 2の接続電極 8 (第 1実施例の接続 電極 8に相当する) とを、 酸化インジウム錫 ( I TO) 膜で設けて いる。 その上部電極 6は、 表示電極 7の一部である接続部 7 aによ つて表示電極 7 と電気的に接続されている。
さ らに、 第 2の電極からなる第 1の接続電極 2 2 と第 3の電極か らなる第 2の接続電極 8 とは、 第 1の電極からなる陽極酸化用電極 5の一部を覆っており、 その陽極酸化用電極 5は、 第 2の接続電極 8の分離辺 1 0で分離されて、 独立する接続端子 2 3, 24, 2 5 , …を構成する。
その接続端子 2 3, 2 4, 2 5 , …は、 それぞれ分離された陽極 酸化用電極 5を介して各行の信号電極 4 と導通しているから、 各接 続端子 2 3 , 2 4, 2 5, …に外部回路 (第 1実施例の場合と同様 に ドライバ I C等) を接続して、 各行の信号電極 4を介してそれぞ れ独立して各非線形抵抗素子 9に電圧を印加し、 各表示電極 7に目 的の表示をさせるこ とができる。
さ らに、 この実施例においては、 各接続端子 2 3, 2 4, 2 5, …と外部回路との接続を、 チップ · オン ' ガラス (C OG) 法を用 いて行なえるよ うに、 第 1の基板 1の端子形成部 1 a上に互いに近 接させて配設している。
なお C OG法とは、 半導体集積回路 ( I C) 上に異方性導電シー ル剤や、 あるいは導電粒子を凸状に形成し、 異方性導電シール剤中 の接着剤を利用して、 半導体集積回路を基板上に実装する方法であ る。
4 この第 2実施例によっても、 下部電極 2上に非線形抵抗層を形成 するための陽極酸化処理を行う際には、 各行の信号電極 4は陽極酸 化用電極 5によつて相互に接続されている。
そして、 陽極酸化処理後のたとえば液晶表示パネルの検査後に、 第 2の電極からなる第 2の接続電極 8をマスク と してエッチングを 行う ことによって、 陽極酸化用電極 5の第 2の接続電極 8に ¾われ ていない各ランナー部 5 a (第 3図に仮想線で示す) が除去され、 第 2の接続電極 8の周囲の各分離辺 1 0にて相互に分離されて、 各 行の信号電極 4をそれぞれ導通する独立した接続端子 2 3, 2 4, 2 5, …を構成する。
したがって、 この第 2実施例によれば、 高密度実装に用いる C O G法を利用する場合においても、 陽極酸化処理のときには、 各信号 電極 4 を陽極酸化用電極 5によって相互に接続し、 その後、 所要の 工程完了後に、 簡単なエッチング処理によって、 各信号電極を独立 したものとすることができる。
そのため、 前述の第 1実施例と同様な効果が得られると共に、 液 晶表示パネルの作成中、 あるいはその検査中又は検査後に、 高密度 実装に必要な、 高密度な電極端子の配置を行う場合においても、 独 立する信号電極の各端子に簡単に加工することが可能になる。
さ らに、 第 1 の電極からなる陽極酸化用電極 5上に、 第 2の電極 からなる第 1 の接続電極 2 2 と第 3の電極からなる第 2の接続電極 8 とを順番に形成しているので、 陽極酸化用電極 5 と第 2の接続電 極 8 との密着力を高めるこ とができる。
〔第 3実施例〕
次に、 この発明の第 3実施例である液晶表示装置について、 第 5 図乃至第 8図に基づいて説明する。
第 5図は、 この第 3実施例による液晶表示装置の基板を大型基板 上に複数個配置する状態を示す平面図である。 第 6図は、 第 5図に 破線で囲んで示す 2個の液晶表示装置用基板の境界部を拡大して示
5 す平面図である。 第 7図は、 第 6図の C一 C線に沿う断面図、 第 8 図は、 同じく D— D線に沿う断面図である。
第 5図の平面図に示すように、 大型の第 1の基板 3 0上に、 複数 個 (この例では 6個) の液晶表示装髭用基板 3 1 , 3 2 , …を有す る。 そして、 この各液晶表示装置用基板 3 1 と 3 2は、 分離線 3 3 , 3 4により分離して使用する構成となっている。
. さらに、 この液晶表示装 g用基板 3 1 るいは 3 2 (前述の各実 施例における第 1 の基板 1に相当する) には、 タンタル (T a ) 膜 からなる第 1の電極と して、 第 6図および第 8図に示すように下部 電極 2 と信号電極 4 と陽極酸化用電極 4 1 とを設ける。
その陽極酸化用電極 4 1は、 第 6図に示すように液晶表示装置用 基板 3 2側に設けられ、 隣接する液晶表示装置用基板 3 1の各信号 電極 4を相互に接続し、 陽極酸化時に信号鸳極 4から各下部電極 2 に電圧を印加する構造を有する。
下部電極 2上には、 下部電極 2 自体を陽極酸化処理して形成する 陽極酸化膜である酸化タンタル (T a 2 05 ) 膜からなる非線形抵 抗層 3を設ける。
さらに、 その非線形抵抗層 3の上に設ける上部電極 6 と、 その上 部電極 6 と接続する表示電極 7 と、 大型基板 3 0上に設けた隣接す る液晶表示装置用基板の第 1 の電極からなる陽極酸化用電極 5の一 部を覆う入力電極 8 ' (前述の各実施例における接続電極 8に相当 する) とを、 酸化インジウム錫 ( I T O ) 膜からなる第 2の電極と して設ける。
これらの下部電極 2と非線形抵抗層 3 と上部電極 6 とによって、 T F D構造の非線形抵抗素子 9を構成する。
図 6に示すよ うに、 第 2の電極からなる入力電極 8 ' は、 隣接す る液晶表示装置用基板 3 2の第 1 の電極からなる陽極酸化用電極 4 1 の一部を覆っているので、 その陽極酸化用電極 4 1は陽極酸化処 理後に、 エッチング処理により入力電極 8 ' と同一な辺で分離され、 第 6図に仮想線で示す部分が除去される。 それによつて、 隣接する
6 液晶表示装置用基板 3 2における独立した入力端子 3 8 , 3 9 , 4 0を、 ドライ ノく I C用の接続端子 2 3, 2 4, 2 5, 2 6 と共に形 成する。
6 0は、 この液晶表示装置用基板 3 1 あるいは 3 2 と第 2の基板 1 1 との間に液晶 1 6 を封入するためのシールであり、 その内部の 液晶表示装置と しての構成は前述の第 1 実施例と同様である。
この第 3実施例の構成によ り 、 液晶表示装置用基板を大型基板上 に複数個配置する場合においても、 陽極酸化処理の際には、 各信号 電極 4を陽極酸化用電極 4 1 によって相互に接続しており、 その後 の液晶表示パネルの検査中あるいは検査後に、 第 2の電極からなる 入力電極 8 ' をマスク と してエッチング処理を行う ことによ り、 陽 極酸化用電極 4 1 と して、 独立した各信号電極 4を得ることができ る。
したがって、 高密度実装に必要な高密度な信号電極の配置を行う ときにおいても、 独立する信号電極に簡単に加工することができる, そして、 大型基板上に複数の液晶表示装置用基板を設ける場合に おいて、 隣接する液晶表示装置の第 1 の電極からなる陽極酸化用電 極 4 1 と第 2の電極からなる入力電極 8 ' を利用して、 各信号電極 4の接続と分離がなされるので、 陽極酸化用電極を除去するための スペースをあま り必要と しないため、 大型基板を有効に使用するこ とが可能になる。
そして、 陽極酸化用電極 4 1 あるいは 5の分離後に残った部分を 隣接する液晶表示装置の入力端子あるいは接続端子と して有効に利 用することができる。
〔第 4実施例〕
次に、 この発明の第 4実施例による液晶表示装置について、 第 9 図および第 1 0図に基づいて説明する。
第 9図は、 この第 4実施例による液晶表示装置の第 1 の基板側の 一部を示す平面図であり 、 第 1 0図は、 液晶表示装置を構成した状
態で第 9図の E— E線に沿う断面図である。
この実施例における第 1 の基板 1上には、 第 1 の電極と して、 タ ンタル (T a ) 膜からなる下部電極 2および信号電極 5 0と、 第 1 の陽極酸化用電極 5 5および第 2の陽極酸化用電極 5 6 とを設けて いる。
さらに、 その下部電極 2上には、 下部電極 2 自体の陽極酸化膜で ある酸化タンタル (T a 2 O 5 ) 膜からなる非線形抵抗層 3 を形成 している。 この陽極酸化膜による非線形抵抗層 3は、 下部電極 2 と 同じ第 1 の電極である信号電極、 および第 1 の陽極酸化用電極 5 5 と第 2の陽極酸化用電極 5 6の表面にもそれぞれ形成される。
また、 第 2の電極と して、 非線形抵抗層 3上に設ける上部電極 6 と、 その上部電極 6 と接続する表示電極 7 とを酸化インジウム ( I T O ) 膜によって設けて、 また、 同じく酸化タンタルによる第 2電 極と して、 シール 6 0 よ り外側の第 1の基板 1上に延びる各信号電 極 5 0 とそれらを相互に第 1 の陽極酸化用電極 5 5の一部を覆う よ うに各接続電極 8 と、 第 2の陽極酸化用電極 5 6の殆どを覆う よ う に周囲電極 5 8 とを設けている。
第 2の陽極酸化用電極 5 6及び周囲電極 5 8は、 接続電極 5 1, 5 2, 5 3 , 5 4の近傍を囲むよ うに配置し、 さらにシール 6 0の 近傍の表示電極 7に近接する周囲電極 5 7 と接続している。
上述の下部電極 2 と非線形抵抗層 3 と上部電極 6 とによって、 T F D構造の非線形抵抗素子 9を構成する。
この非線形抵抗素子 9に対して、 液晶を規則正しく並べたもの配 向膜 1 5あるいは液晶 1 6のイオン成分が影饗し、 非線形抵抗素子 9の特性変化あるいは劣化が生じてしま う ことがある。
この特性変化や劣化を防止するために、 非線形抵抗素子 9上とそ の周辺に透明な絶縁膜 4 8を設けている。
この絶縁膜 4 8は、 各信号電極 5 0の接続電極 5 1 乃至 5 4およ び第 2の陽極酸化用電極 5 6 を連結する第 1 の陽極酸化用電極 5 5 の上部に開口部 4 9を設けている。
8 そして、 液晶表示装置となった状態では、 この絶縁膜 4 8の開口 部に ί!出する第 1 の陽極酸化用電極 5 5の第 9図に仮想線で示す部 分は除去されている。 したがって、 接続電極 5 1〜 5 4, および周 囲鸳極 5 8は、 それぞれ電気的に分離された、 独立の電極を構成し ている。
その他の構成は、 前述した各実施例と同じである。
この第 4の実施例の液晶表示装置の構成においては、 第 1 の電極 からなる陽極酸化用電極 5 5, 5 6上には、 非線形抵抗素子 9の特 性変化あるいは特性劣化を防止するための絶縁膜 4 8を設けている, そして、 その絶縁膜 4 8の開口部 4 9内において、 第 1 の電極か らなる陽極酸化用電極 5 5は、 第 2の電極である一部の辺にて自己 整合して分離された形状を有し、 各信号電極 5 0は独立し、 接続電 極 5 1〜 5 4は第 1 0図に仮想線で示す ドライ ノく I C 1 0 0などの 外部回路と接続する独立した電極端子を構成している。
この実施例においても、 陽極酸化処理を行う ときには、 各信号電 極 5 0は、 第 1 , 第 2の陽極酸化用電極 5 5, 5 6によって相互に 接続されているので、 前述の各実施例と同様な効果が得られる。
さ らに、 第 2の陽極酸化用電極 5 6を接続電極 5 1 ~ 5 4 の近傍 に配置して、 これに第 1 の陽極酸化用電極 5 5の枝部を介して接続 するこ とによ り 、 各接続電極 5 :!〜 5 4あるいは信号電極 5 0から 静電気が発生したときに、 周囲にその静電気を分散させることがで さる。
また、 絶縁膜 4 8に開口部 4 9を形成する際のェツチング時に、 その開口部 4 9内の第 1 の陽極酸化用電極 5 5 (第 9図に仮想線で 示している) を除去して、 各信号電極 5 0を独立させる加工を同時 にすることが可能なため、 製造工程の増加は生じない。
なお、 この絶縁膜 4 8に開口部 4 9を形成すると きには、 第 2の 基板 1 1やシール 6 0が組み付けられている。
このことによ り、 静電気が発生しやすい液晶表示パネルの作成後, あるいは液晶表示パネルの検査後、 レーザーにより絶縁膜を一部除
去した領域から信号電極 5 0に電圧を印加するとき、 あるいはチッ プ ' オン ' ガラス法によ り ドライバ I C 1 0 0を実装する直前など に、 絶縁膜 4 8の開口部 4 9を形成するこ とが可能になる。
したがって、 非線形抵抗素子 9を有する第 1 の基板 1 に配向膜 1 5を印刷する工程、 あるいは配向膜 1 5を利用して配向膜 1 5 の表 面を布で擦り配向処理を行う工程などの静電気の発生を伴う工程に おいて、 非線形抵抗素子 9の特性が劣化するのを防止できる。
そのため、 均一で安定した特性の良好な表示品質を有する液晶表 示装置を得ることができる。
〔第 1 乃至第 4実施例の変形例〕
以上説明したこの発明の第 1実施例から第 4実施例においては、 第 1 の電極と してタンタル膜を用いた例について説明したが、 普通 のタンタル膜以外でも、 窒素を含むタンタル膜ゃリ ンを含むタンタ ル膜、 あるいはニオブを含むタ ンタル膜なども、 第 1 の電極と して 使用することができる。
さ らに、 この第 1 の電極と しては、 アルミニウム, 銅やあるいは 二ッケルなどの低抵抗材料と、 タンタルあるいはタンタルに不純物 を含む膜との多層膜を用いてもよい。
また、 上記各実施例では、 第 1 の電極 2 と してタ ンタル膜を用い、 非線形抵抗層と して酸化タ ンタル膜を形成する場合について説明し た。 しかしながら、 非線形抵抗層と しては、 酸化タ ンタル膜の上部 に酸化シリ コン膜ゃ窒化シリ コン膜、 あるいは不純物を含む酸化シ リ コンを設け、 酸化タンタル膜と これらの膜との多層膜からなる非 線形抵抗層を用いてもよい。
さ らに、 多層膜からなる非線形抵抗層の酸化タンタル膜上に形成 する被膜は、 プラズマ化学気相成長法 (C V D法) を利用して形成 すると よい。 このことによ り、 酸化タンタル膜に電圧が印加するこ とになり、 耐圧が向上するため非線形抵抗素子の劣化を防止するこ とが可能になる。
また、 多層膜からなる非線形抵抗層を使用することにより、 非線 形抵抗素子の電流一電圧特性の制御が可能になる。 このため、 非線 形抵抗素子への過電流が流れることを抑制し、 液晶表示装置の特性 向上が可能になる。
さらにまた、 前述の第 1実施例から第 4実施例においては、 各画 素に 1個の非線形抵抗素子を備える液晶表示装置の例を示したが、 各面素ごとに複数個の非線形抵抗素子を設けてもよい。
その場合にも、 多層膜からなる非線形抵抗層を使用することによ り、 非線形抵抗素子の電流一電圧特性の制御が可能になる。 それに よって、 非線形抵抗素子に過鴦流が流れることを抑制し、 液晶表示 装置の特性向上を計ることができる。
〔第 5実施例〕
次に、 この発明の第 5実施例による液晶表示装 gについて、 第 1 1図乃至第 1 4図に基づいて説明する。
第 1 1図は、 この第 5実施例による液晶表示装置の全体構成を示 す平面図であり、 判り易くするため、 上下に重なっている第 1, 第 2の両基板側の構成をいずれも実線で示している。
第 1 2図は、 第 1 1図に破線 a, bでそれぞれ囲んだ部分を拡大 して示す平面図である。 伹し、 上側の基板とそれに形成される膜な どは除去して示している。 そして、 破線 aで囲んだ部分を上側に、 破線 bで囲んだ部分を下側に図示している。
第 1 3図は、 液晶表示装置を構成した状態で第 1 2図の F— F線 に沿う断面図、 第 1 4図は同じく第 1 2図の G— G線に沿う断面図 である。
この実施例による液晶表示装篋も、 基本的な構成は前述の各実施 例と共通している。
すなわち、 第 1の基板 1上には、 タンタル (T a ) 膜からなる第 1 の電極と して、 下部鼋棰 2と信号 S極 4 と陽極酸化用電極 5を設 けている。 その下部電極 2 と陽極酸化用電極 5上には、 これらの第
2
1 の電極の陽極酸化膜と して、 酸化タンタル (T a 2 0 5 ) 膜から なる非線形抵抗層 3を形成する。
この実施例ではその陽極酸化用電極 5を、 第 1 1図に斜線を施し て示すよ うに、 表示領域 1 8の周囲を囲むよ うに帯状に形成してい る。 そして、 複数個の第 1 の基板 1 を大きな元基板から作成するた め、 その基板相互の陽極酸化用電極 5の接続を行うために、 相互接 続用電極 6 5を第 1 の基板 1 の端に設けている。
この第 1 の電極からなる陽極酸化用電極 5は、 第 1 1 図と第 1 2 図に示すよ うに、 M行の信号電極 4 と N列の対向電極 1 3からなる マ ト リ クス状の表示領域 1 8の周囲において複数の信号電極 4, 4 , …を相互に接続する構成を有する。
また、 第 2の電極と して、 非線形抵抗層 3上の上部電極 6 と、 そ の上部電極 6 と接続する表示電極 7 とを酸化イ ンジウム錫 ( I T O ) 膜で設けている。
この下部電極 2 と非線形抵抗層 3 と上部電極 6 とによって、 T F D構造の非線形抵抗素子 9を構成している。
さ らに、 第 1 2図において多数の表示電極 7がマ ト リ クス状に列 設された表示領域 1 8を囲むよ うに設けられた陽極酸化用電極 5上 に、 斜線を施して示す周囲電極 5 7 と、 各信号電極 4 と接続して第 1 の基板 1 のシール 6 0 よ り外の端子形成部 1 a に延びる各接続電 極 7 1 〜 7 4 と、 その間に若干の隙間をあけて並ぶ長方形の遮光部 電極 7 5 と、 周囲電極 5 7から各接続電極 7 1〜 7 4 の先端部を囲 むよ うに延びる周囲電極 5 8 も、 第 2の電極と して酸化イ ンジウム 錫 ( I T O ) 膜で形成している。
すなわち、 第 1 2図にお I:、て斜線を施して示した各電極の下側に も全て陽極酸化用電極 5が形成されており、 陽極酸化処理時には、 全ての信号電極 4がその両端で陽極酸化用電極 5によって相互に確 実に接続されている。
そして、 これらの第 2の電極からなる周囲電極 5 7, 5 8、 各接 続電極 7 1〜 7 4, 遮光部電極 7 5は、 陽極酸化用電極 5の一部を
Sうマスクの役目をなし、 表示領域 1 8の第 1 2図に Dで示す幅の 面にも別にマスクを施してエッチング処理を行なう こ とによ り、 陽 極酸化用電極 5のそれらのマスクから露出する部分が除去される。 それによつて、 各信号電極 4及びそれに接続する各接続電極 7 1 〜 7 4が、 それぞれ分離され、 独立した電極を構成する。
第 1 3図および第 1 4図においては、 この陽極酸化用電極 5およ び非線形抵抗層 3の除去される部分は仮想線で示している。
その他の構成は、 前述の各実施例と同様であるので、 その説明は 省略する。
この第 5実施例によっても、 非線形抵抗層 3 を形成するための陽 極酸化処理時及びその後の検査工程等においては、 各信号電極 4が 陽極酸化用電極 5によって相互に接続されているので、 前述の各実 施例と同様な効果が,得られる。 しかも、 その接続が信号電極 4の两 端でなされるので、 よ り確実であり、 信号電極の途中で断線が生じ た場合でも、 陽極酸化処理を確実に行なう ことができる。
そして、 任意の工程において、 第 2の電極をマスクに利用して、 エッチング処理を行なう ことによ り、 容易に各信号電極 4及び接続 電極 7 :! 〜 7 4を分離して独立した電極とすることができる。 その 際、 周囲電極 5 7の両側の辺、 各接続電極 7 1 ~ 7 4の第 1 2図で 左右の辺、 および遮光部電極 7 5の周囲の辺が分離辺となる。
そして、 表示領域 1 8の外周部には、 不透明な陽極酸化用電極 5 が残存して遮光部を形成し、 表示領域 1 8の見切り を構成できる。
このよ うに、 陽極酸化用電極 5を遮光部に利用することによ り、 ブラック · マ ト リ クス 1 2がない液晶表示装置においても、 見切り (表示領域周辺を囲む枠) ができる。
また、 見切り に利用する陽極酸化用電極 5により陽極酸化用電極 の幅を広くすることができ、 陽極酸化膜の均一性が向上する。
〔第 6実施例〕
次に、 この発明の第 6実施例による液晶表示装置について、 第 1
正さ
5図と第 1 6図に基づいて説明する。
この第 6 の実施例においては、 非線形抵抗素子と して T F D構造 の素子を使用し、 各画素部には T F D素子を 2個直列接続する構造 を用い、 T F D素子を N列からなるデータ電極側に設ける場合につ いて説明する。
第 1 5図はその液晶表示装置の一部を拡大して示す平面図であり . 第 6図は第 5図の H— H線に沿う断面図である。
この実施例においては、 第 1 の基板 1上には、 タンタル (T a ) 膜からなる第 1 の電極と して、 島状の下部電極 2 と第 1 のデータ電 極 8 2 と陽極酸化用電極 5 と、 島状の下部電極 2 と第 1 のデータ電 m 8 2 とを接続する配線接続部 7 6 とを設け、 この第 1 の電極上に は、 第 1 の電極の陽極酸化膜と して酸化タンタル (T a 2 O 5 ) 膜 からなる非線形抵抗層 3 を形成する。
この第 1 の電極からなる陽極酸化用電極 5は、 M行の信号電極と N列のデータ電極 8 1, 8 1 からなるマ ト リ クス状の表示領域の周 囲において複数のデータ電極 8 1, 8 1 を相互に接続する構成を有 する。
さ らに、 第 2の電極と して、 島状の下部電極 2上の非線形抵抗層 3上に、 第 2 のデータ電極 8 3に接続するデータ電極用上部電極 8 4 と、 表示電極 7に接続する表示電極用上部電極 8 5 と、 表示電極 7 と第 1 のデータ電極 8 2上の第 2のデータ電極 8 3 とを、 酸化ィ ンジゥム錫 ( I T O ) 膜で設ける。
この島状の下部電極 2 と非線形抵抗層 3 とデータ電極用上部電極 8 4 とによって、 T F D構造の第 1 の非線形抵抗素子 8 6を構成す る。 さ らに、 島状の下部電極 2 と非線形抵抗層 3 と表示電極用上部 電極 8 5 とによって、 T F D構造の第 2の非線形抵抗素子 8 7 を構 成する。
第 2のデータ電極 8 3から、 データ電極用上部電極 8 4, 非線形 抵抗層 3, 下部電極 2, 非線形抵抗層 3, 表示電極用上部電極 8 5 と表示電極 7の順に接続する。 島状の下部電極 2に対し、 第 2のデ
ータ電極 8 3 と表示電極 7は対称の T F D素子構成となる。
さ らに、 第 1 の基板 1上には、 第 1 6図に示すよ うに酸化タンタ ル ( T a 2 O 5 ) からなる絶縁膜 4 8を設ける。 この絶縁膜 4 8に は、 第 1 の信号電極 4 と島状の下部電極 2 とを接続する配線接続部 7 6上の周囲に配線接続部分離用開口部 9 1 を有する。 また、 陽極 酸化用電極 5上には、 第 1 5図に示すよ う に複数個の分離用開口部 9 2を有する。
さ らに、 第 2のデータ電極 8 3上には、 外部回路と第 2のデータ 電極 8 3 の接続を行うための接続用開口部 9 3 を有する。
第 1 のデータ電極 8 2 と島状の下部電極 2 とを接続する配線接続 部 7 6上に設けた配線接続部分離用開口部 9 1 においては、 絶縁膜 4 8 と第 1 の電極である下部電極 2が同一の分離辺を有する。
陽極酸化用電極 5上に設ける複数個の分離用開口部 9 2において は、 絶縁膜 4 8 と陽極酸化用電極 5が同一の分離辺 1 0を有する。 表示領域の上下、 左右には、 陽極酸化用電極 5を絶縁膜 4 8 と同 一な分離辺にて分離した遮光部 7 6 を設ける。
したがって、 表示領域の外周部は遮光部 7 6 によ り見切りが構成 される。
さ らに、 第 1 6図に示すよ う に、 第 2の基板 1 1 の内側の面には. 液晶表示装置がカラ一表示を行うために、 赤フ ィルタ 9 5, 青フィ ルタ 9 6 と、 図示しない緑フィルタのカラ一フィルタを設ける。 そ れぞれの表示電極 7の間隙からの光の漏れを防止するために、 カラ 一フィルタを重ね合わせた領域 9 7 を設ける。
さ らに、 第 2の基板 1 1 には、 表示電極 7 と対向するよ うに酸化 イ ンジウム錫膜からなる対向電極 1 3を設ける。
表示電極 7は、 液晶 1 6 を介して対向電極 1 3 と重なり合う よ う に配置することによ り、 液晶表示パネルの表示画素部となる。 そし てこの表示画素部では、 単色のカラ一フィルタ 、 例えば赤フィルタ 9 3 を有する。
そして、 この表示画素部の液晶 1 6の透過率変化によ り 、 液晶表
示装置は所定の画像表示を行う。
さ らに、 第 1 の基板 1 と第 2の基板 1 1 には、 液晶 1 6の分子を 規則的に並べるための処理層と して、 それぞれ配向膜 1 5, 1 5 を 設けている。
この第 6実施例の構成によ り、 第 1 の電極からなる陽極酸化用電 極 5は表示領域の周囲部において絶縁膜 4 8の開口部によ り 自己整 合的に分離する分離辺 1 0を有する。
さ らに、 この実施例に示すよ うに、 複数の T F D素子を接続する 場合には、 非線形抵抗層 3を設けた後に、 陽極酸化用電極 5あるい は第 1 のデータ電極 8 2から島状の下部電極 2を分離する必要があ る。
そのため、 絶縁膜 4 8の開口部を利用して分離する方法、 あるい は絶縁膜なしに分離する必要がある。 この分離工程を有するため、 この実施例の場合には、 特に工程を增やすことなく表示領域の周囲 に陽極酸化用電極 5を利用して遮光部 7 6 を設けることができる。 そのため、 ブラック · マ ト リ クスの代わり にカラーフィノレタを重 ね合わせた部分を見切り に利用した場合に、 見切り部の遮光性が不 十分な場合においても、 陽極酸化用電極 5が残存した遮光部 7 6 を 利用することによ り、 遮光性の十分な見切りができる。
また、 陽極酸化用電極 5 を分離する以前には、 非線形抵抗層 3を 形成する陽極酸化処理の際に周囲から電圧を供給することができる ため、 例えば一部の陽極酸化用電極 5に欠陥が生じても他の部分か ら電圧の供給ができる。
〔第 7実施例〕
次に、 この発明の第 7実施例による液晶表示装置について、 第 1 7図と第 1 8図に基づいて説明する。
この実施例においては、 非線形抵抗素子と して T F T構造の素子 を使用する。
第 1 7図は、 その液晶表示装置の一部を拡大して示す平面図であ
り、 第 1 8図は、 その I 一 I線に沿う断面図である。
この第 7実施例における第 1 の基板 1上には、 タ ンタル (T a ) 膜からなる第 1 の電極と して、 信号電極 4に相当するゲ一 ト電極 1 0 1 と陽極酸化用電極 5 とを設け、 第 1の電極上には、 第 1 の電極 の陽極酸化膜と して酸化タンタル (T a 2 O5 ) 膜からなるゲー ト 絶縁膜 1 0 2を設ける。
この第 1 の電極からなる陽極酸化用電極 5は、 第 1 7図に示すよ うに、 M行のゲー ト電極 1 0 1 と N列のソース電極 1 0 5からなる マ ト リ クス状の表示領域の周囲において、 複数のゲー ト電極 1 0 1, 1 0 1 を相互に接続する。 この陽極酸化用電極 5は第 1 7図に斜線 を施して示した周囲電極 5 7及び遮光部電極 7 5の下にも設けられ ている。
ゲー ト絶縁膜 1 0 2上とその周囲には半導体層 1 0 3 と してァモ ルファスシリ コ ン ( a — S i ) 膜を設ける。 さらに、 半導体層 1 0 3上に不純物イオンと してリ ン ( P ) を含む半導体層 1 0 4を設け る。
さらに、 不純物イ オンを含む半導体層 1 0 4上にソース電極 1 0 5 と ドレイ ン電極 1 0 6 を設ける。 ソース電極 1 0 5 と ドレイ ン電 極 1 0 6はモリ ブデン (M o ) にて設ける。 不純物イオンを含む半 導体層 1 0 4はソース電極 1 0 5 と ドレイ ン電極 1 0 6 と半導体 1 0 3の重なり合う部分に設けている。 また、 ソース電極 1 0 5は 外部回路に接続するデータ電極 1 2 1, 1 2 2に接続する。
ドレイ ン電極 1 0 6は透明導電性膜からなる表示電極 7に接続し、 表示画素部となる。
ゲー ト電極 1 0 1 に接続する陽極酸化用電極 5上には、 表示電極 7 と同一膜を設けて有る。 また、 陽極酸化用電極 5の一部は表示電 極 7 と同一膜の辺と同一な分離辺 1 0にて分離し、 遮光部とする。
陽極酸化用電極 5の一部は、 表示電極 7 と同一膜である周囲電極 5 7 と遮光部電極 7 5に覆われており、 表示領域をマスキングして エッチング処理することによ り、 陽極酸化用電極の破線で示す部分
は除去され、 各グー ト電極 1 0 1 を独立させる。 そして、 表示領域 の外周部には、 残った陽極酸化用電極 5によって形成される遮光 部によ り見切りができる。
さらに、 第 2 の基板 1 1 には、 第 1 8図に示すよ うに外部光源 1 1 1 の反射光 1 1 2の光量を低滅するために、 第 2の基板 1 1上に はまず透明導電性膜からなる対向電極 1 3を設ける。 つぎに、 表示 電極 7の周囲からの光の漏れを防止するために、 クロム (C r ) 膜 からなるブラック · マ ト リ クス 1 2 を設ける。 透明導電性膜からな る対向電極 1 3 と第 2の基板 1 1 とクロム膜からなるブラック · マ ト リ クス 1 2の干渉によ り 、 反射光 1 1 2を低減できる。
そして、 この表示面素部の液晶 1 6の透過率変化によ り、 液晶表 示装置は所定の画像表示を行う。
さ らに、 第 1 の基板 1 と第 2 の基板 1 1 とは、 液晶 1 6の分子を 規則的に並べるための処理層と して、 それぞれ配向膜 1 5, 1 5 を 設けている。
そして、 スぺーサ (図示せず) によって、 第 1 の基板 1 と第 2 の 基板 1 1 とを所定の間隙をもって対向させ、 シール 6 0によ り貼り 合わせ、 第 1 の基板 1 と第 2の基板 1 1 との間に液晶 1 6を封入し ている。
この第 7実施例の構成によ り、 第 1 の電極からなる陽極酸化用電 極 5は表示領域の周囲部において表示電極 7 と同一な膜によ り 自己 整合的に分離する分離辺を有する。
また、 表示領域の周囲に分離後に残る陽極酸化用電極 5を利用し 遮光部を設けることができる。
そして、 陽極酸化用電極 5を分離する以前には、 非線形抵抗層を 形成するための陽極酸化処理の際に、 この陽極酸化用電極 5によつ て周囲から各ゲー ト電極 1 0 1 に電圧を供給することができるため、 例えば一部陽極酸化用電極 5に欠陥が生じても他の部分から電圧の 供給ができる。
〔第 8実施例〕
次に、 この発明の第 8実施例による液晶表示装置について、 第 1 9図乃至第 2 1図に基づいて説明する。
この第 8の実施例においては、 非線形抵抗素子と して T F D構造 の素子を利用し、 T F D素子を M列からなる信号電極側に設ける場 合について説明する。
また、 表示電極 7の周囲に設ける遮光部は第 2の陽極酸化用電極 1 2 6の一部を利用し、 第 2の陽極酸化用電極 1 2 6上の第 2の非 線形抵抗層 1 2 8は非線形抵抗素子 9に用いる第 1の非線形抵抗層 3 と膜厚が異なる。
第 1 9図は、 この発明の第 8の実施例による液晶表示装置の全体 構成を示す平面図である。 第 2 0図は、 第 1 9図の一部分を拡大し て示す平面図であり、 第 2 1図はその J — J線に沿う断面図である < 但し、 第 2 0図及び第 2 1図では上側の第 2の基板及びそれに形成 される膜等、 並びに液晶は図示を省略している。
第 1の基板 1上には、 タンタル (T a ) 膜からなる第 1の電極と して、 下部電極 2 と信号電極 4 と第 1の陽極酸化用電極 5 と第 2の 陽極酸化用電極 1 2 6 と補助電極 1 2 7 と相互接続用電極 6 6を設 け、 下部電極 2 と第 1の陽極酸化用電極 5 と信号電極 4上には、 第 1 の電極の陽極酸化膜と して酸化タ ンタル (T a 2 O5 ) 膜からな る第 1の非線形抵抗層 3を設ける。
また、 第 1 9図に示すよ うに、 複数個の第 1 の基板 1 を大きな元 基板から作成するために、 相互の陽極酸化用電極 5の接続を行うた めに、 相互接続用電極 6 5を第 1の基板 1の端に設ける。
第 2の陽極酸化用電極 1 2 6 と補助電極 1 2 7上には、 第 1 の電 極の陽極酸化膜と して酸化タンタル (T a 2 O5 ) 膜からなる第 2 の非線形抵抗層 1 2 8を設ける。 また、 第 1 9図に示すよ うに、 複 数個の第 1の基板 1 を大きな元基板から作成するために、 相互の第 1, 第 2の陽極酸化用電極 5, 1 2 6の接続を行うために、 相互接 続用電極 6 5, 6 5を第 1の基板 1 の両端に設ける。
第 1 の陽極酸化用電極 5 と第 2の陽極酸化用電極 1 2 6 とは相互 に分離している。 また、 第 2の非線形抵抗層 1 2 8は、 非線形抵抗 素子 9に用いる第 1 の非線形抵抗層 3に比較し膜厚を厚く してある。
この第 1の電極からなる第 1の陽極酸化用電極 5は、 第 1 9図と 第 2 0図に示すように、 M行の信号電極 4 と N列の対向電極 1 3力 > らなるマ ト リクス状の表示領域 1 8の周囲において複数の信号電極 .4を相互に接続する構成を有する。 また、 第 2の陽極酸化用電極 1 2 6は複数の補助電極 1 2 7を接続部 6 6で相互に接続する構成を 有する。 さらに、 第 2の電極と して、 第 1の非線形抵抗層 3上の上 部電極 6 と、 その上部電極 6 と接続する表示電極 7 と、 第 1 の陽極 酸化用電極 5の一部をなす接続電極 8 とを酸化ィンジゥム錫 ( I T O ) 膜にて設ける。
そして、 下部電極 2 と第 1 の非線形抵抗層 3 と上部電極 6 とによ つて、 丁 F D構造の非線形抵抗素子 9を構成する。
さらに、 表示電極 7の一部は第 2の陽極酸化用電極 1 2 6に接続 する補助電極 1 2 7を覆い、 表示電極 7と補助電極 1 2 7により遮 光部を構成する。
また、 第 1の基板 1上と非線形抵抗素子 9 と信号電極 4 と表示電 極 7 と第 1 の陽極酸化用電極 5 と第 2の陽極酸化用電極 1 2 6上と に酸化タンタル膜 (T a 2 O 5 ) からなる絶縁膜 4 8を設ける。
その絶縁膜 4 8には、 第 1の陽極酸化用電極 5 と第 2の陽極酸化 用電極上に分離用開口部 9 2を設ける。 その分離用開口部 9 2 と同 —な分離辺 1 0によ り、 第 1の陽極酸化用電極 5は分離して独立す る信号電極 4を構成し、 第 2の陽極酸化用電極 1 2 6は独立する補 助電極 1 2 7を構成する。
さらに、 表示電極 7の周囲においては、 開口部 4 9を設け、 補助 電極 1 2 7は、 表示電極 7あるいは絶縁膜 4 8の開口部 4 9 と同一 な分離辺 1 0により表示電極 7毎に分離し、 遮光部となる。
接続電極 8上にも開口部 9 3を設けて、 外部回路との接続を可能 にしている。
第 2の基板 1 1側の構成は前述の実施例と同様であり、 表示電極 7の間隙からの光の漏れを防止するためのク ロム (C r ) 膜からな るブラックマ ト リ クス と、 対向電極 1 3 と、 ブラック , マ ト リ クス と対向電極 1 3 との電気的絶縁性を確保するために層間絶縁膜等を 有する。
この第 1 の基板 1 と第 2の基板 1 1 を一定の間隔で張り合わせ、 液晶を封入して液晶表示装置とする。
この第 8実施例の構成によ り、 第 1の電極からなる第 2の陽極酸 化用電極 1 2 6は、 第 1 の陽極酸化用電極 5から初期よ り独立して いる。 そのため第 2の陽極酸化用電極 1 2 6の影響を第 1 の陽極酸 化用電極 5に与えるこ とがない。 さ らに、 第 2の陽極酸化用電極 1 2 6は、 表示領域の周囲部において、 第 2の電極からなる表示電極 7、 あるいは絶縁膜 4 8 の開口部 4 9 と 自己整合的に分離する分離 辺 1 0を有し、 表示亀極 7毎に独立する遮光部を構成する。
さ らに、 第 2の陽極酸化用電極 1 2 6上に設ける第 2 の非線形抵 抗層 1 2 8 を第 1 の陽極酸化用電極 5によ り下部電極 2上に設ける 第 1 の非線形抵抗層 3 よ り膜厚を厚く し、 絶縁性を高めておく 、 そ のため、 表示電極 7 と補助電極 1 2 7が電気的短絡を起しても、 表 示品質に影響を与えるこ となく 、 歩留ま り良く なる。
〔第 9実施例〕
次に、 この発明の第 9実施例による液晶表示装置について、 第 2 2図及び第 2 3図に基づいて説明する。
第 2 2図はその液晶表示装置の一部分を拡大して示す平面図であ り、 第 2 3図は第 2 2図の K一 K線に沿う断面図である。 これらの 図において、 第 1 5図および第 1 6図と対応する部分には同一符号 を付してある。
この実施例における第 1 の基板 1上には、 タンタル ( T a ) 膜か らなる第 1 の電極と して、 下部電極 2 と、 第 1 のデータ電極 8 1 と 第 1 のデータ電極 8 1 と下部電極 2 を接続する配線接続部 7 6 と、
3 第 1の陽極酸化用電極 5 と、 第 2の陽極酸化用電極 1 2 6 と、 補助 電極 1 2 7 と、 その相互接続用電極 6 6 とを設けている。
下部電極 2 と第 1の陽極酸化用電極 5 と第 1のデータ電極 8 1上 には、 第 1の電極の陽極酸化膜と して酸化タ ンタル (T a 2 05 ) 膜からなる第 1の非線形抵抗層 3を設ける。
また、 第 2の陽極酸化用電極 1 2 6 と補助電極 1 2 7上には、 第 1の電極の陽極酸化膜と して酸化タ ンタル (T a2 O5 ) 膜からな る第 2の非線形抵抗層 1 2 8を設ける。
第 1の陽極酸化用電極 5 と第 2の陽極酸化用電極 1 2 6 とは相互 に分離している。 また、 第 2の非線形抵抗層 1 2 8は、 非線形抵抗 素チ 9に用いる第 1の非線形抵抗層 3に比較し膜厚を厚く してある t この第 1の電極からなる第 1の陽極酸化用電極 5は、 第 2 2図に 示すよ うに、 N列の第 1のデータ電極 8 1 を表示領域の周囲におい て相互に接続する構成を有する。 また、 第 2の陽極酸化用電極 1 2 6は複数の補助電極 1 2 7を相互に接続する構成を有する。
さ らに、 第 2の電極と して、 第 1のデータ電極 8 1上に第 2のデ ータ電極 8 3を設け、 第 2のデータ電極 8 3に接続し、 下部電極 2 上の第 1の非線形抵抗層 3上にデータ電極用上部電極 8 4を設け、 補助電極 1 2 7の一部と第 1の基板 1上とに表示電極 7を設け、 下 部電極 2上の第 1の非線形抵抗層 3上に、 表示電極 7に接続する表 示電極用上部電極 8 5を、 いずれも酸化インジウム錫 ( I TO) 膜 にて設ける。
また、 第 2のデータ電極 8 3に接続して、 第 1の陽極酸化用電極 5の一部をなす接続電極 8 も、 上記第 2の電極と共に酸化イ ンジゥ ム錫 ( I T O) 膜にて設ける。
この下部電極 2 と第 1の非線形抵抗層 3 とデータ電極用上部電極 8 4 とによって、 T F D構造の第 1の非線形抵抗素子 8 6を構成す る。
さ らに、 この下部電極 2 と第 1の非線形抵抗層 3 と表示電極用上 部電極 8 5 とによって、 T F D構造の第 2の非線形抵抗素子 8 7を
構成する。
そして、 表示電極 7の一部は第 2の陽極酸化用電極 1 2 6 に接続 する補助電極 1 2 7を覆い、 表示滬極 7 と補助電極 1 2 7によ り遮 光部を構成する。
さらにまた、 第 1 の基板 1上と非線形抵抗素子 8 6 , 8 7 と、 第 2のデータ電極 8 3 と、 表示亀極 7 と、 第 1 の陽極酸化用電極 5 と 第 2の陽極酸化用電極 1 2 6の各上面を覆う よ うに、 酸化タンタル 膜 (T a 2 05 ) からなる絶縁膜 4 8を設ける。
その絶縁膜 4 8には、 第 1 の陽極酸化用電極 5 と第 2の陽極酸化 用電極 1 2 6上に分離用開口部 9 2 を設ける。 そして、 その分離用 開口部 9 2 と同一な分離辺 1 0により第 1 の陽極酸化用電極 5は分 離して、 独立する第 1 のデータ電極 8 1 を構成する。 第 2の陽極酸 化用電極 1 2 6 も分離して独立する補助電極 1 2 7を構成する。
さ らに、 表示電極 7の周囲においては開口部 4 9を設け、 補助電 極 1 2 7は、 表示電極 7あるいは絶縁膜 4 8の開口部 4 9 と同一な 分離辺 1 0によ り表示電極 7毎に分離して遮光部となる。
この第 9実施例の構成によ り、 第 1 の電極からなる第 2の陽極酸 化用電極 1 2 6は、 第 1 の陽極酸化用電極 5から初期よ り独立して いる。 そのため第 2の陽極酸化用電極 1 2 6の影響を第 1 の陽極酸 化用電極 5に与えるこ とがない。 さ らに、 第 2の陽極酸化用電極 1 2 6は、 表示領域の周囲部において第 2の電極からなる表示電極 7 あるいは絶縁膜 4 8の開口部 4 9 と 自己整合的に分離する分離辺 1 0を有し、 表示電極 7毎に独立する遮光部を構成する。
さ らに、 第 2の陽極酸化用電極 1 2 6上に設ける第 2の非線形抵 抗層 1 2 8を第 1 の陽極酸化用電極 5によ り下部電極 2上に設ける 第 1 の非線形抵抗層 3 よ り膜厚を厚く し、 絶縁性を高めておく 、 そ のため、 表示電極 7 と表示電極 7の補助電極 1 2 7が電気的短絡を 起しても、 表示品質に影響を与えることなく歩留ま り良く表示電極 7の周囲に遮光部 7 5 を設けることができる。
また、 この発明の第 8の実施例と第 9の実施例においては、 非線
形抵抗素子を有する第 1 の基板を液晶表示装置に利用する際に、 非 線形抵抗素子の機械的劣化を防止するために、 絶縁膜を設ける場合 を示したが、 絶縁膜を設けていない場合においても、 本発明は有効 である。
これらの第 5乃至第 9実施例によれば、 陽極酸化用電極の一部を 遮光部に利用することができる。
また、 複数の非線形抵抗素子を有する場合には、 第 1 の信号電極 と下部電極を分離する際に、 陽極酸化用電極と第 1 の信号電極との 分離と、 陽極酸化用電極と遮光部の分離を同時に行なえる。
保護用絶縁膜を有する場合には、 外部回路との接続を行うための 保護用絶縁膜の開口部を形成する際に、 陽極酸化用電極の分離した い部分に保護用絶縁膜の開口部を設け、 その保護用絶縁膜あるいは 保護用絶縁膜の開口部の形成に利用する レジス トをマスクにして、 エッチング処理を行う ことによ り、 容易に陽極酸化用電極の分離が 可能である。
〔第 1 0実施例〕
次に、 この発明の第 1 0実施例による液晶表示装置について、 第 2 4図と第 2 5図に基づいて説明する。
第 2 4図は、 この発明の第 1 0実施例による液晶表示装置の T F D素子を形成する第 1 の基板の一部領域を示す平面図である。 第 2 5図は、 第 2 4図の L一 L線に沿う断面図である。
まず、 これらの図を参照して、 この実施例における T F D素子の 構成を説明する。
T F D素子を形成するァクティブ基板である第 1 の基板 1上には、 いずれも金属膜と してタ ンタル ( T a ) 膜からなる陽極酸化用電極 5 と下部電極 2 とを設ける。
陽極酸化用電極 5 の幅 W 1 は、 下部電極 2の周辺以外では、 信号 電極 4の幅 W 2 よ り広い。
そして、 この陽極酸化用電極 5は、 一方の端部で陽極酸化用電極
5 a によって複数本が電気的に接続され、 他方の端部を外部回路か ら非線形抵抗素子に信号を印加するための接続電極 8に接統する。 この陽極酸化用電極 5は、 下部電極 2の表面に非線形抵抗層 3を陽 極酸化用処理によ り形成するときの電極と して使用する。
したがって、 信号電極 4 と表示電極 7 との間には幅 W 1の広い陽 棰酸化用電極 5を有する。 陽極酸化用電極 5の一部であるエツチン グ除去部 1 2 1 は、 最終形状では除去される。 すなわち、 この第 2 図は製造工程の途中を示し、 説明を理解し易いよ うにしている。 さ らに、 この下部電極 2の表面には、 この下部電極 2を陽極酸化 処理して形成する酸化タンタル (T a 2 O 5 ) 膜からなる非線形抵 抗層 3 を設ける。
さらに、 陽極酸化用電極 5の一部である重なり部 1 2 2 と、 基板 1上に透明導電膜を設けて表示電極 7 とする。 そして、 この表示電 極 7に接続する上部電極 6を下部電極 2上に設ける。 さ らに、 陽極 酸化用電極 5上にも透明導電性膜を設け接続電極 8 とする。
表示電極 7の一部領域は、 陽極酸化用電極 5の一部領域とオーバ ーラ ップする領域である重なり部 1 2 2 を有する。
そして、 下部電極 2 と非線形抵抗層 3 と上部電極 6 とによ り非線 形抵抗素子 (T F D素子) 9を構成する。
ここで、 上部電極 6 と表示電極 7 とは、 いずれも透明導電膜、 た とえば酸化インジウム錫 ( I T O ) 膜で構成する。
さ らに、 陽極酸化用電極 5の一部からなる信号電極 4 と、 表示電 極 7の下部にある重なり部 1 2 2 との間にあるエッチング除去部 1 2 1 は除去され、 信号電極 4 と透明導電性膜からなる表示電極 7 と は分離する構造となる。
複数の信号電極 4を接続する陽極酸化用電極 5 a も除去され、 各 信号電極 4は独立したものとなる。
さ らに、 表示電極 7間にあるエッチング除去部 1 2 1 も除去され 各表示電極 7 も独立したものとなる。
このため、 陽極酸化用電極 5の幅 W 1 は信号電極 4 と しての幅 W
2 となる。
すなわち、 陽極酸化を行う以前には、 陽極酸化用電極 5 と してそ の電極の輻は W 1であり、 信号電極 4の幅 W 2 よ り幅を広く し、 表 示電極 7の下部まで広げておく。 さらに隣接する表示電極 7の間も 陽極酸化用電極 5によ り連結している。
表示鼋棰 7を設けた後に、 陽極酸化用電極 5のエッチング加工を 行い、 陽極酸化用電極 5の一部であるエッチング除去部 1 2 1 を除 去し、 信号霪極 4の幅を W 2 とする。 さらに、 隣接する表示電極 7 の間に設けたエッチング除去部 1 2 1 も除去し、 孤立した表示電極 7 とする。
この構造を用いることによ り、 陽極酸化用電極 5を陽極酸化時に は幅を広く (W 1 ) し、 短時間に均一な陽極酸化膜 3を形成可能に する。
通常、 表示電極 7が透明導電性膜の場合には、 透明なため表示電 極 7の周囲のエッチング状況を検査することが難しい。
しかし、 本実施例によれば、 表示電極 7の周辺には陽極酸化用電 極 5 と してタンタル膜と酸化タンタル膜があるため、 表示電極 7が 透明導電性膜であっても、 エッチング除去部 1 2 1 のエッチングの 際に透明導電性膜がエッチングマスク となり、 タンタルあるいは酸 化タンタル膜とタンタル膜が残り、 表示電極 7の周辺の透明導電性 膜のエッチング状況を検査しやすく なる。
さ らに、 透明導電性膜がわずかに残る場合には、 エッチング除去 部 1 2 1のエッチング処理の際に、 その透明導電性膜も除去でき、 表示電極 7の周辺のエッチング残膜をきれいに取ることができる。
さらに、 陽極酸化用電極 5の幅 (W 1 ) を広く してあるため、 信 号電極 4の幅 (W 2 ) 內に断線箇所がある場合には、 表示電極 7 と 信号電極 4の間の陽極酸化用電極 5を利用して、 信号電極 4の断線 を防止することができる。
第 2 6図は、 この実施例において信号電極 4に断線箇所 4 dが発 生している状況を示す平面図である。
訂正された用 ¾ ( 91)
この図では、 信号電極 4の幅 W 2 より深い (深さ W 3 ) 断線箇所 4 dが発生した場合の例を示してある。 信号電極 4が従来の電極幅 W 2のままでは断線してしま う。 すなわち、 陽極酸化を行う ことが できない。 さ らに、 非線形抵抗素子 9 ( T F D素子) に外部よ り鬣 圧を印加することができない。
しかし、 この実施例では、 陽極酸化用電極 5 を信号電極 4の幅 W .2 よく広く しているため、 陽極酸化を行う ことができる。 さらに、 信号電極 4の周囲に形成する陽極酸化用 ¾極 5の一部を利用して信 号電極 4の断線箇所を迂回されるよ うに形成することによ り、 信号 電極 4は断線しない。
さらに、 表示電極 7の下部にある重なり部 1 2 2の一部を信号鴛 極 4の迂回部と して使用するため、 表示電極 7には一部を削除する 削除部 7 a を設けている。
このよ うに、 腸極酸化用電極 5の幅を広く してあるため、 陽極酸 化膜の均一性の向上と断線による陽極酸化膜の形成できない部分を 防止できるため、 歩留ま りおよび陽極酸化膜の性能を向上できる。 次に、 この第 1 0実施例による液晶表示装握のアクティブ基板の 製造方法を説明する。 第 2 7図から第 2 9図は、 その製造方法をェ 程順に示す第 2 5図と対応する断面図である。
先ず始めに第 2 7図に示すガラスからなるァクティブ基板である 第 1 の基板 1 上の全面に、 金属膜と してタンタル (T a ) 膜を 1 5 0 n mの膜厚でスパッタ リ ング法で形成する。
その後、 そのタンタル膜上の全面に感光性樹脂 (図示せず) を回 転塗布法によ り形成し、 所定のホ トマスクを用いて露光, 現像処理 を行って感光性樹脂をパターン形成し、 その後このパターニングし た感光性樹脂をェッチングマスクに用いて、 タンタル膜をェッチン グするホ トエッチング処理によ り、 陽極酸化用電極 5 と下部電極 2 と複数の信号電極 4 (陽極酸化用電極) を接続する部分とをパター ン形成する。
ここでタンタル膜のエッチングは、 反応性イオンエッチング (以
訂正された^!^ (規則 9Γ)
下 R I Eと記載する) 装置を用いて行う。
そのエッチング条件は、 エッチングガスと して六弗化硫黄 (S F 6 ) と酸素 (02 ) との混合ガスを用いる。 そして六弗化硫黄の流 量が 1 0 0〜 2 0 Osccm、 酸素流量が 1 0〜 4 0 sccmと し、 圧力が
4 ~ 1 2 X 1 0 -2 torrと し、 さ らに使用電力が 0.2〜 0.5 kWZ c m2 で行う 0
. その後、 陽極酸化用電極 5を陽極と し、 陽極酸化液と して、
0.1〜 1.0 w t %のクェン酸水溶液あるいはホウ酸アンモニゥム 水溶液を用いて、 3 0〜 4 0 Vの電圧を印加して、 タンタル膜の陽 極酸化処理を行う。
その結果、 下部電極 2 と陽極酸化用電極 5の側壁と上面の表面に、 酸化タンタル膜 (T a 2 05 ) からなる非線形抵抗層 3が 6 0〜 7
5 n mの膜厚で形成される。
つぎにスパッタ リ ング法を用いて、 透明導鴛性膜と して酸化イン ジゥム錫 ( I T O) 膜を膜厚 1 0 0 n mで全面に形成する。 その後、 その酸化イ ンジウム錫膜上に感光性榭脂 (図示せず) を形成する。 そして、 酸化インジウム錫膜をエッチング処理して、 第 2 8図に 示すように、 表示電極 7 と、 表示電極 7に接続する上部電極 6 と、 図示されない接続電極 8 とを同時にパターン形成する。
この酸化インジウム錫のエッチングは、 酸化第二鉄と塩酸の水溶 液エツチャン トを用いるゥエツ トエッチングによ り行う。 なおこの ときのエッチヤン ト液温は 3 0 〜 4 0でに設定する。
つぎに第 2 9図に示すよ うに、 陽極酸化用電極 5 と表示電極 7の 下部にある重なり部 1 2 2 との間にあるエツチング除去部 1 2 1 を パターン形成するために、 感光性榭脂 1 2 5を形成する。 エツチン グ除去部 1 2 1 は、 感光性樹脂 1 2 5 と酸化イ ンジュゥム錫膜から なる表示電極 7をエッチング用のマスクと し、 R I E装置を使用し ェツチング処理する。
このエッチング条件は、 エッチングガスと して六弗化硫黄 (S F ) と酸素 (O2 ) との混合ガスを用いる。 そして、 六弗化硫黄の
訂
流量が 1 0 0〜 2 0 0 sccm、 酸素流量が 1 0〜 4 0 seemで、 圧力が 4〜: L 2 X 1 0-2torrと し、 使用電力が 0. 2 ~ 0. 5 k W/ c m 2 で行う。
上記のエッチング条件では、 酸化インジウム錫をほとんどエッチ ングすることなく、 タンタル膜と非線形抵抗層 3の酸化タンタル膜 だけをエッチングすることができる。
そのため、 陽極酸化用電極 5の一部からなる信号電極 4 と表示電 極 7の重なり部 1 2 2 とを、 エッチング除去部 1 2 1 をエッチング 除去することによ り分離できる。
以上の工程によ り、 第 1 0実施例の第 2 5図に示したように、 陽 極酸化用電極 5は表示電極 7 と分離して信号電極 4 となり、 外部回 路 (図示せず) と接続する接続電極 8 と、 信号電極 4及びそれと接 続する下部電極 2 と、 その下部電極 2上に形成する非線形抵抗層 3 と、 非線形抵抗層 3上に形成する上部電極 6 とを介して、 上部電極 6に接続する表示電極 7に目的の電圧を印加できる。
また、 非線形抵抗素子 (T F D素子) 9は、 下部電極 2 と非線形 抵抗層 3 と上部電極 6によ り形成する。
この実施例においては、 陽極酸化用電極 5 をエッチング処理にて 加工するときに、 感光性樹脂 1 2 5 と表示電極 7 とをエッチング用 マスク と して使用する。 このため、 エッチング除去部 1 2 1 を表示 電極 7の下面領域に整合するよ うな形状に形成することができる。
そのため、 例えば酸化インジュゥム錫膜がェツチング除去部 1 2 1上に薄く あるいは僅かに残る、 いわゆるエッチング不良が発生し た場合においても、 エッチング除去部 1 2 1 のエッチングを行う際 に、 信号電極 4 と表示電極 7の間にあるエッチング不良部の透明導 電性膜を同時に除去できる。
さ らに、 大きな面で酸化インジユウム錕膜がエッチング後に残る 場合にも、 エッチング除去部 1 2 1上に酸化インジユウム錫膜が残 るため、 酸化ィンジゥム錫膜の下部に非線形抵抗層 3である酸化タ ンタルと下部電極 2であるタンタルが残るため、 透明導電性膜のみ
に比べショー ト箇所の検査が非常に容易になる。
さ らに、 液晶表示装置と して、 第 1の基板 1 と第 2の基板 (図示 せず) を張り合わせて液晶を封入した後には、 液晶の屈折率あるい は基板 1の厚み、 または配向膜等の屈折率のために、 表示電極 7の 周囲の透明導電性膜のエッチング残膜は検出が難しい。
この場合にも、 タンタル等がエッチング残膜と して残るため、 検 出が極めて容易になる。
〔第 1 1実施例〕
つぎに、 この発明の第 1 1実施例による液晶表示装置について、 第 3 0図および第 3 1図に基づいて説明する。
第 3 0図は、 この第 1 1 実施例における液晶表示装置の T F D素 子を形成する第 1 の基板の一部領域を示す平面図であり、 第 3 1図 は、 第 3 0図の M— M線に沿う断面図である。
これらの図を参照して、 この第 1 1 の実施例における T F D素子 の構成を説明する。
第 1 の基板 1 の上には、 いずれも金属膜と してタンタル (T a ) 膜からなる陽極酸化用電極 5 と、 島状の下部電極 2 と、 陽極酸化用 電極 5 と下部電極 2 とを接続する配線接続部 7 6 (仮想線にて図示) を設ける。
陽極酸化用電極 5の幅は島状の下部電極 2の周辺以外では、 第 1 のデータ電極 8 1 の幅 W 2 よ り広い W 1 となっている。
陽極酸化用電極 5は、 一方の端部を陽極酸化用電極 5 aによって 複数本が相互に接続され、 他方の端部は外部回路から非線形抵抗素 子に信号を印加するための接続電極 8に被覆されている。
この陽極酸化用電極 5は、 下部電極 2の表面に非線形抵抗層 3を 陽極酸化処理によ り形成するときの電極と して使用する。
第 1 のデータ電極 8 1 と表示電極 7 との間には陽極酸化用電極 5 を有する。 陽極酸化用電極 5の一部であるエッチング除去部 1 2 1 は最終構造では除去される。
さ らに、 第 1 のデータ電極 8 1 と島状の下部電極 2に接続する配 線接続部 7 6 も最終構造では除去される。 すなわち、 この第 3 0図 の平面図と第 3 1図の断面図は製造工程の途中を破線にて示し、 説 明を理解しやすいよ うにしている。
さ らに、 この陽極酸化用電極 5 と配線接続部 7 6を介する島状の 下部電極 2の表面には、 このタンタル膜を陽極酸化処理して形成す る酸化タンタル (T a 2 O 5 ) 膜からなる非線形抵抗層 3を設ける, そして、 陽極酸化用電極 5の重なり部 1 2 2上と、 基板 1上に透 明導電性膜を設けて表示電極 7 とする。 さ らに、 この表示電極 7に 接続する表示電極用上部電極 8 5 を下部電極 2上に設ける。 さ らに 陽極酸化用電極 5上に第 2のデータ電極 8 3を設け、 さ らに第 2の データ電極 8 3に接続するデータ電極用上部電極 8 4を設ける。
さ らに、 外部回路から非線形抵抗素子部に信号を印加するための タンタルからなる陽極酸化用電極 5に上に透明導電性膜からなる接 続電極 8 を設ける。 接続電極 8 においては、 陽極酸化用電極 5のタ ンタルは額縁状の形状をしている。 また、 透明導電性膜による接続 電極 8は額縁状のタ ンタルを覆っている。
この形状にすることによ り、 外部回路と接続電極 8 との接続を行 う場合に、 額縁状のタ ンタルによ り透明導電性膜よ り位置を明確に できるため、 合わせ精度が向上する。 さ らに、 額縁状タ ンタルの内 と外に透明導電性膜を設けるこ とによ り 、 外部回路と入力部の接続 状況を透明導電性膜パッ ド部を透して確認できる。
4 特に、 集積回路 ( I C ) と入力部を導電ペース ト等の媒介を利用 し、 接続電極 8上に直に接続する、 いわゆるチップ · オン · ガラス ( C O G ) 法の場合には、 透明導電性膜のみでは合わせ精度が悪い ため、 タンタルを額縁状に設けることによ り合わせ精度が向上する, そして、 島状の下部電極 2 と非線形抵抗層 3 とデータ電極用上部 電極 8 4 とによ り第 1 の非線形抵抗素子 (丁 F D素子) 8 6 を構成 する。 さ らに、 島状の下部電極 2 と非線形抵抗層 3 と表示電極用上 部電極 8 5 とによ り 、 第 2の非線形抵抗素子 (T F D素子) 8 7を 構成する。
ここで、 表示電極用上部電極 8 5 とデータ電極用上部電極 8 4 と 表示電極 7 とは、 いずれも透明導電膜、 たとえば酸化イ ンジウム錫 ( I T O ) 膜で構成する。
さ らに、 陽極酸化用電極 5 と透明導電性膜からなる表示電極 7 と の重なり部 1 2 2 と、 第 2のデータ電極 8 3の下部にあるタンタル からなる第 1 のデータ電極 8 1 を分離する構造である。 そして、 第 1 のデータ電極 8 1 と表示電極 7間にあるエッチング除去部 1 2 1 も除去し、 表示電極 7 と分離する。
このため、 陽極酸化用電極 5の幅 W 1 は第 1 のデータ電極 8 1 と しての幅 W 2 となる。
したがって、 陽極酸化時には陽極酸化用電極 5の幅 W 1 と して第 1 のデータ電極 8 1 の幅 W 2 よ り広く し、 表示電極 7の下部まで広 げておく。 さ らに隣接する表示電極 7の間も陽極酸化用電極 5によ り連結している。
第 2のデータ電極 8 3 と表示電極 7 とを設けた後に、 第 1 のデ一 タ電極 8 1 と島状の下部電極 2 との間を接続する配線接続部 7 6の エッチング加工を行い、 孤立する島状の下部電極 2 を設けると同時 に、 第 1 のデータ電極 8 1 と表示電極 7の間にあるエッチング除去 部 1 2 1 のエッチング加工を行い、 孤立する表示電極 7 と第 1 のデ ―タ電極 8 1 とする。
この構造を用いるこ とによ り、 陽極酸化用電極 5 を陽極酸化時に
訂
幅が W l と広いので、 短時間に均一な陽極酸化膜を形成可能になる, さ らに、 第 2 6図の例と同様に、 陽極酸化用電極の幅を広く して あるため、 第 1 のデータ電極 8 1 の幅 W 2内に断線箇所がある場合 には、 表示電極 7 とデータ電極 8 1 , 8 3の間の陽極酸化用電極 5 を利用して、 第 1 のデータ電極 8 1 の断線を防止することができる, またこの実施例によれば、 第 1 のデータ電極 8 1から島状の下部 ®極 2 を分離する必要があるが、 そのため、 陽極酸化用電極 5から 第 1 のデータ電極 8 1 に加工を行う工程も同時に行う ことができる ため、 工程の付加にはならない。
つぎに、 この第 1 1 実施例による液晶表示装置のアクティブ基板 の製造方法を、 第 3 2図から第 3 4図を用いて説明する。
第 3 2図から第 3 4図は、 この第 1 2実施例における液晶表示装 置のァクティブ基板の製造方法を工程順に示す第 3 1 図に相当する 断面図である。
先ず始めに、 第 3 2図に示すガラスからなるアクティブ基板であ る第 1 の基板 1 上の全面に、 金属膜と してタ ンタル (T a ) 膜を 2 0 0 n mの膜厚でスパッタ リ ング法で形成する。
その後、 タンタル膜上の全面に感光性樹脂 (図示せず) を回転塗 布法によ り形成し、 所定のホ トマスクを用いて露光, 現像処理を行 い、 感光性榭脂をパターン形成する。
その後、 このパターニングした感光性榭脂をエッチングマスクに 用いて、 タンタル膜をェツチングするホ トェツチング処理によ り、 第 1 のデータ電極 8 1 となる部分を含む陽極酸化用電極 5 と、 島状 の下部電極 2 と、 陽極酸化用電極 5 と島状の下部電極 2 とを接続す る配線接続部 7 6 と、 複数の陽極酸化用電極 5 をお互いに接続する よ うにパターン形成する。
ここでタンタル膜のエッチングは、 R I E装置を用いて行う。
そのエッチング条件は、 エッチングガスと して六弗化硫黄 ( S F
6 ) と酸素 (02 ) との混合ガスを用いる。 そして六弗化硫黄の流 量が 1 0 0〜 2 0 0 sccm、 酸素流量が 1 0〜 4 Osccmで、 圧力が 4
- 1 2 X 1 0 -2torrと し、 さ らに使用電カが 0.2〜 0.5 k Wノ c m2 で行う。
その後、 陽極酸化用電極 5を陽極と し、 陽極酸化液と して、
0.0 1〜 1.0 w t %のクェン酸水溶液あるいはホウ酸アンモニゥ ム水溶液又は燐酸水溶液を用いて、 1 6〜 2 0 Vの電圧を印加して タンタル膜の陽極酸化処理を行う。
この結果、 下部電極 2 と陽極酸化用電極 5の側壁と上面の表面に 酸化タンタル膜 (T a 2 O5 ) からなる非線形抵抗層 3を 3 0〜 4 0 n mの膜厚で形成する。
つぎに、 スパッタ リ ング法を用いて、 透明導電性膜と して酸化ィ ンジゥム錫 ( I TO) 膜を膜厚 1 5 O n mで全面に形成する。 その 後、 酸化イ ンジウム錫膜上に感光性樹脂 (図示せず) を形成する。 その後、 酸化インジウム錫膜をエッチング処理して、 第 3 3図に 示すよ うに、 表示電極 7 と、 表示電極 7に接続する表示電極用上部 電極 8 5と、 接続電極 8 と、 第 2のデータ電極 8 3 と、 第 2のデ一 タ電極 8 3に接続するデータ電極用上部電極 8 4 とを同時にパター ン形成する。
この酸化インジウム錫のエッチングは、 臭素 (H B r ) の水溶液 エツチャン トを用いるゥエツ トエッチングによ り行う。 このときの エッチヤン ト液温は 2 5 °C〜 3 0 °Cに設定する。
つぎに、 第 3 4図に示すよ うに、 陽極酸化用電極 5 と島状の下部 電極 2 とを接続する配線接続部 7 6を除去し、 孤立する島状の下部 電極 2を形成するために、 感光性樹脂 1 2 5を形成する。 この際陽 極酸化用電極 5の一部であるエッチング除去部 1 2 1 を除去し、 陽 極酸化用電極 5を第 1のデータ電極 8 1 と、 表示電極 7の下部にあ る重なり部 1 2 2 とに分離する。
この陽極酸化用電極 5は、 感光性樹脂 1 2 5 と酸化イ ンジウム錫 膜からなる表示電極 7 と、 第 2のデーター電極 8 3 とをエッチング 用のマスク と して、 R I E装置を使用してエッチング処理する。
このエッチング条件は、 エッチングガスと して六弗化硫黄 ( S F
6 ) と酸素 (02 ) との混合ガスを用いる。 そして六弗化硫黄の流 量が 1 0 0〜 2 0 0 seem, 酸素流量が 1 0〜 4 Osccmで、 圧力が 4 〜 : I 2 X 1 0-2torrと し、 さ らに使用電力が 0.2〜 0. 5 k Wノ c m 2 で行う。
上記のエッチング条件では、 酸化インジウム錫をほとんどエッチ ングするこ となく 、 配線接続部 7 6 とエッチング除去部 1 2 1 のタ ンタル膜と酸化タンタル膜だけをェツチングするこ とができる。 以上の工程によ り、 第 3 1図に示したよ うに、 陽極酸化用電極 5 は、 第 1 のデータ電極 8 1 と、 表示電極 7の下部にある重なり部 1 2 2 とに分離され、 外部回路の信号を以下に示す経路で印加できる < すなわち、 外部回路 (図示せず) と接続する接続電極 8 と、 陽極 酸化用電極 5に接続する第 1 のデータ電極 8 1 と、 第 2のデータ電 極 8 3 と、 第 2のデータ電極 8 3に接続するデータ電極用上部電極 8 4 と、 非線形抵抗層 3 と、 島状の下部電極 2 と、 非線形抵抗層 3 と表示電極用上部電極 8 5 とを介して、 表示電極用上部電極 8 5に 接続する表示電極 7に目的の電圧を印加する。
この実施例においては、 島状の下部電極 2を分離するために、 感 光性樹脂 1 2 5 と表示電極 7 と第 2のデータ電極 8 3をエッチング 用マスク と して使用 してエッチングを行う。 このとき同時に、 陽極 酸化用電極 5の内、 第 1 のデータ電極 8 1 と重なり部 1 2 2 との間 のエッチング除去部 1 2 1 を除去するため、 工程の增加にはならな い 0
〔第 1 2実施例〕
つぎに、 この発明の第 1 2実施例による液晶表示装置について、 第 3 5図および第 3 6図に基づいて説明する。
第 3 5図は、 この第 1 2実施例における液晶表示装置の T F D素 子を形成する第 1 の基板の一部領域を示す平面図である。 第 3 6図 は、 第 3 5図の N— N線に沿う断面図である。
この実施例では、 第 1 1 実施例の陽極酸化用電極 5 を表示電極 7 の上下左右まで延ばし、 重なり部 1 2 2を表示電極 7 の上下左右に 設ける。
第 1 の基板 1 の上には、 いずれも金属膜と してタンタル (T a ) 膜からなる陽極酸化用電極 5 と、 島状の下部電極 2 と、 陽極酸化用 電極 5 と下部電極 2 とを接続する配線接続部 7 6 (第 3 5図に仮想 線で図示) を設ける。
この陽極酸化用電極 5の幅は、 島状の下部電極 2の周辺以外では 第 1 のデータ電極 8 1 の幅 W 2 よ り広い幅 W 2 を有する。 さ らに、 陽極酸化用電極 5は、 上下左右にお互いに接続している。
また、 陽極酸化用電極 5は、 一方の端部をランナー部 5 a によつ て複数本の互いに接続する構成を有し、 他方の端部は外部回路から 非線形抵抗素子に信号を印加するための接続電極 8で被覆されてい る。 この陽極酸化用電極 5は、 下部電極 2 の表面に非線形抵抗層 3 を陽極酸化処理によ り形成するときの電極と して使用する。
この第 3 5図の第 1 のデータ電極 8 1 と表示電極 7 との間、 およ び表示電極 7間にも陽極酸化用電極 5を有する。 陽極酸化用電極 5 の一部であるエッチング除去部 1 2 1 は最終構造では除去される。
さ らに、 第 1 のデータ電極 8 1 と島状の下部電極 2に接続する配 線接続部 7 6 も、 最終構造では除去される。 すなわちこの第 3 5図 の平面図と第 3 6図の断面図は製造工程の途中を仮想線にて示し、 説明を理解しやすいよ う にしている。
さ らに、 この陽極酸化用電極 5 と配線接続部 7 6 を介する島状の 下部電極 2 の表面には、 このタ ンタル膜を陽極酸化処理して形成す る酸化タンタル (T a 2 O 5 ) 膜からなる非線形抵抗層 3を設ける。 そして、 陽極酸化用電極 5の重なり部 1 2 2上と基板 1上に透明 導電性膜を設け、 表示電極 7 とする。 さ らにこの表示電極 7に接続 する表示電極用上部電極 8 5を下部電極 2上に設ける。 また、 陽極 酸化用電極 5上に第 2のデータ電極 8 3 を設け、 さ らに第 2のデ一 タ電極 8 3に接続するデータ電極用上部電極 8 4 を設ける。
さ らに、 外部回路から非線形抵抗素子部に信号を印加するための タンタルからなる陽極酸化用電極 5の上に、 透明導電性膜からなる 接続電極 8を設ける。 この接続電極 8においては、 タ ンタルは額縁 状の形状をしている。 また、 透明導電性膜は額縁状のタンタルを覆 つている。 この形状にすることによ り、 外部回路と接続電極 8 との 接続を行う場合に、 額縁状のタンタルによ り透明導電性膜よ り位置 を明確にできるため、 合わせ精度が向上する。 さらに、 額縁状タン タルの内と外に透明導電性膜を設けることによ り、 外部回路と入力 部の接続状況を透明導電性膜パッ ド部を透して確認できる。
と く に、 集積回路 ( I C ) と入力部を導電ペース ト等の媒介を利 用し、 接続電極 8上に直に接続する、 いわゆるチップ · オン · ガラ ス ( C O G ) 法の場合には、 透明導電性膜のみでは合わせ精度が悪 いため、 タンタルを額縁状に設けることによ り合わせ精度が向上す る。
そして、 島状の下部電極 2 と非線形抵抗層 3 とデータ電極用上部 電極 8 4 とによ り第 1 の非線形抵抗素子 (T F D素子) 8 6を構成 する。 さ らに、 島状の下部電極 2 と非線形抵抗層 3 と表示電極用上 部電極 8 5 とによ り第 2の非線形抵抗素子 (T F D素子) 8 7を構 成する。
こ こで表示電極用上部電極 8 5 とデータ電極用上部電極 8 4 と表 示電極 7 とは、 いずれも透明導電性膜、 たとえば酸化イ ンジウム錫 ( I T O ) 膜で構成する。
さ らに、 陽極酸化用電極 5を、 陽極酸化用電極 5 と透明導電性膜 からなる表示電極 7 との重なり部 1 2 2 と、 第 2のデータ電極 8 3 の下部にあるタ ンタルからなる第 1 のデータ電極 8 1 に分離する構 造である。 また、 第 1 のデータ電極 8 1 と表示電極 7間にあるエツ チング除去部 1 2 1 も除去し、 表示電極 7 と分離する。
このため、 陽極酸化用電極 5 の幅は第 1 のデーター電極 8 1 と し ての幅 W 2 となる。
したがって、 陽極酸化時には陽極酸化用電極 5の幅 W 1 と して第
1 のデータ電極 8 1 の幅 (W 2 ) よ り広く し、 表示電極 7の下部ま で広げておく。 さ らに隣接する表示電極 7の間も陽極酸化用電極 5 によ り連結している。
第 2のデータ電極 8 3 と表示電極 7 とを設けた後に、 第 1 のデ一 タ電極 8 1 と島状の下部電極 2 との間を接続する配線接続部 7 6の エッチング加工を行い、 孤立する島状の下部電極 2を設けると同時 に、 第 1 のデータ電極 8 1 と表示電極 7の間にあるエッチング除去 部 1 2 1 のエッチング加工を行い、 孤立する表示電極 7 と第 1 のデ 一ター電極 8 1 とする。
この構造を用いることによ り、 陽極酸化用電極 5 を陽極酸化時に は幅を広く して且つ上下左右に横断しているため、 短時間に均一な 陽極酸化膜を形成可能となる。
その他の作用効果は第 1 1実施例の場合と同様である。
〔第 1 3実施例〕
つぎに、 この発明の第 1 3の実施例による液晶表示装置について, 第 3 7図と第 3 8図に基づいて説明する。
図 3 7図は、 この第 1 3実施例における液晶表示装置の T F D素 子を形成する第 1 の基板の一部領域を示す平面図であり、 第 3 8図 は、 第 3 7図の P— P線に沿う断面図である。
これらの図を参照して、 この第 1 3実施例における T F D素子の 構成を説明する。
なお、 この実施例は、 第 1 1 実施例に絶縁膜 4 8 を形成し、 絶縁 膜 4 8に開口部 4 9を設け、 開口部 4 9を利用して島状の下部電極 2 と第 1 のデータ電極 8 1 を接続する配線接続部 7 6 をエッチング 除去する。
さ らに、 絶縁膜 4 8の開口部 4 9を第 1 のデータ電極 8 1 あるい は第 2のデータ電極 8 3 と表示電極 7 との間、 あるいは表示電極 7 と表示電極 7の間に設け、 陽極酸化用電極 5の一部すなわちエッチ ング除去部 1 2 1 を除去し、 第 1 のデーター電極 8 1 と表示電極 7
分離する構成からなる。
第 1 の基板 1 の上には、 いずれも金属膜と してタンタル (T a ) 膜からなる陽極酸化用電極 5 と、 島状の下部電極 2 と、 陽極酸化用 電極 5 と下部電極 2 とを接続する配線接続部 7 6 と (仮想線にて図 示) を設ける。
陽極酸化用電極 5の幅 W 1 は島状の下部電極 2の周辺以外では、 第 1データ電極 8 1 の幅 W 1 よ り広い。
陽極酸化用電極 5は、 一方の端部をランナー部 5 a によって複数 本が相互に接続されている。 また、 その陽極酸化用電極 5の他方の 端部は、 外部回路から非線形抵抗素子に信号を印加するための接続 電極 8に被覆されている。
この陽極酸化用電極 5は、 下部電極 2 の表面に非線形抵抗層 3 を 陽極酸化処理により形成するときの電極と して使用する。
この第 3 1図に示す第 1 のデータ電極 8 1 と表示電極 7 との間に は陽極酸化用電極 5を有する。 エッチング除去部 1 2 1 は最終構造 では除去される。
さ らに、 第 1 のデータ電極 8 1 と島状の下部電極 2 に接続する配 線接続部 7 6 も最終構造では除去される。 すなわち、 この第 3 7図 と第 3 8は、 製造工程の途中を仮想線にて示して説明を理解しやす レ、よ うにしている。
さ らに、 この陽極酸化用電極 5 と配線接続部 7 6 を介する島状の 下部電極 2 の表面には、 このタンタル膜を陽極酸化処理して形成す る酸化タンタル (T a 2 O 5 ) 膜からなる非線形抵抗層 3を設ける。 陽極酸化処理を行う場合には、 下部電極 2の上下の 2方向に配線 接続部 7 6 を設けることにより、 例えば片側の配線接続部 7 6が断 線した場合においても、 別の配線接続部 7 6 によ り陽極酸化用電極 5 に接続しているため、 下部電極 2の表面には陽極酸化膜を問題な く形成できる。
さ らに、 陽極酸化用電極 5 の重なり部 1 2 2上と基板 1上に透明 導電性膜を設けて表示電極 7 とする。 そして、 この表示電極 7に接
続する表示電極用上部電極 8 5を下部電極 2上に設ける。 さらに、 陽極酸化用電極 5上に第 2 のデータ電極 8 3を設け、 さ らに、 第 2 のデータ電極 8 3に接続するデータ電極用上部電極 8 4を設ける。 また、 外部回路から非線形抵抗素子部に信号を印加するためのタ ンタルからなる陽極酸化用電極 5上に透明導電性膜からなる接続鴛 極 8を設ける。 この接続電極 8においては、 タンタルは額縁状の形 状をしている。 また、 透明導電性膜は額縁状のタンタルを覆い、 四 角形をしている。 この形状にすることによ り、 外部回路と接続鼋極 8 との接続を行う場合に、 額縁状のタンタルによ り透明導電性膜よ り位置を明確にできるため、 合わせ精度が向上する。
さ らに、 額縁状タンタルの內と外に透明導電性膜を設けることに よ り 、 外部回路と入力部の接続状況を透明導電性膜を透して確認で きる。
そして、 島状の下部電極 2 と非線形抵抗層 3 とデータ電極用上部 電極 8 4 とによ り第 1 の非線形抵抗素子 (T F D素子) 8 6 を構成 する。 さ らに、 島状の下部電極 2 と非線形抵抗層 3 と表示電極用上 部電極 8 5 とによ り第 2の非線形抵抗素子 (T F D素子) 8 7を構 成する。
ここで、 表示電極用上部電極 8 5 とデータ電極用上部電極 8 4 と 表示電極 7 とは、 いずれも透明導電性膜、 たとえば酸化インジウム 錫 ( I T O ) 膜で構成する。
つぎに、 全面に非線形抵抗素子 (T F D ) の液晶表示装置への加 ェを行う場合の外力による劣化あるいは破損の防止と、 第 2のデー タ電極 8 3 と液晶表示装置を構成する対向電極 (図示せず) 間の電 気的短絡の防止と表示電極 7 と対向電極 (図示せず) 間の電気的短 絡の防止のために、 全面に絶縁膜 4 8を設ける。
この絶縁膜 4 8は、 スパッタ リ ング法による酸化タンタル膜 (T a 205) を設ける。
この絶縁膜 4 8に開口部 4 9 と して配線接続部 7 6を除去するた めの配線接続用開口部 9 1 (一点鎖線にて示す) を設ける。 さ らに、
陽極酸化用電極 5 と表示電極 7の重なり部 1 2 2の間のエッチング 除去部 1 2 1上にも、 分離用開口部 9 2を設ける。
さ らに、 接続電極 8においては、 絶縁膜 4 8の接続用開口部 9 3 を透明導電性膜の接続電極 8上に設け、 他の部分には絶縁膜 4 8 を 残してある。
このよ うに、 接続電極 8において、 絶縁膜 4 8を外部回路との接 続電極 8以外の領域に残しておく ことによ り、 絶縁膜 4 8がほとん どの配線上を被覆しているため、 ゴミ等によ り近接する入力部、 配 線同士が電気的短絡を起こすこ とがない。
また、 配線接続部 7 6は、 絶縁膜 4 8 の配線接続用開口部 9 1 と 表示電極 7の辺と同一な辺を有し、 島状の下部電極 2は、 陽極酸化 用電極 5から配線接続用開口部 9 1 と同一辺を有する。 また、 エツ チング除去部 1 2 1 は、 絶縁膜 4 8の分離用開口部 9 2 と表示電極 7の辺と同一な辺を有し、 エッチング除去部 1 2 1 によ り陽極酸化 用電極 5は第 1 のデータ電極 8 1 となり、 独立する表示電極 7の構 成となる。
このため、 陽極酸化用電極 5の幅は第 1 のデータ電極 8 1 と して の幅 W 2 となる。
したがって、 陽極酸化を行う時には、 陽極酸化用電極 5の幅を W 1 と して第 1 のデータ電極 8 1 の幅 W 2 よ り幅を広く しており、 表 示電極 7の下部まで広げておく。 さ らに隣接する表示電極 7の間も 陽極酸化用電極 5によ り連結している。
最後に、 第 2 のデータ電極 8 3 と表示電極 7 とを設け、 さ らに、 絶縁膜 4 8 を設けた後に、 第 1 のデータ電極 8 1 と島状の下部電極 2 との間を接続する配線接続部 7 6のエッチング加工を行い、 孤立 する島状の下部電極 2 を設ける と同時に第 1 のデータ電極 8 1 と表 示電極 7の間にあるエッチング除去部 1 2 1 のエツチング加ェを行 い、 孤立する表示電極 7 と第 1 のデーター電極 8 1 とする。
この構造を用いるこ とによ り 、 陽極酸化用電極を陽極酸化時には 幅を広く し、 短時間に均一な陽極酸化膜を形成可能となる。
5 さらに、 第 2 6図の例と同様に、 陽極酸化用電極の幅 (W 1 ) を 広く してあるため、 第 1 のデータ電極 8 1 の幅 (W 2 ) 内に断線箇 所がある場合には、 表示電極 7 と第 1のデーター極 8 1 め間の陽極 酸化用電極 5 の一部を利用して、 第 1 のデータ電極 8 1 の断線を防 止することができる。
さ らに、 この実施例によれば、 第 1のデータ電極 8 1 から島状の 下部電極 2を分離する必要がある、 さらに、 接続電極 8において絶 縁膜 4 8に開口部を設け、 外部回路との電気的接続を行う必要があ る。 そのため、 絶縁膜 4 8の加工を行う と同時に、 配線接続部 7 6 の除去と、 陽極酸化用電極 5から第 1のデータ一電極 8 1 に加工を 行う工程も同時に行う こ とができるため、 工程の增加には全く なら ない。
また、 絶縁膜 4 8 を第 2のデータ電極 8 3上、 あるいは表示電極 7上に設けることによ り 、 液晶表示装置と して利用する場合に使用 する対向電極との電気的短絡が発生しない。
さ らに、 2つの上部電極を設ける実施例で説明したが、 2つ以上 の上部電極を設けてもよい。
〔第 1 4実施例〕
つぎに、 この発明の第 1 4実施例による液晶表示装置について、 第 3 9図と第 4 0図に基づいて説明する。
この第 1 4実施例は、 T F T素子の構造に関するものである。
図 3 9図は、 この第 1 4実施例による液晶表示装置の T F T素子 を形成する第 1 の基板の一部領域を示す平面図であり、 第 4 0図は、 第 3 9図の Q— Q線に沿う断面図である。
T F T素子を形成するァクティブ基板である第 1 の基板 1 の上に は、 いずれも金属膜と してタンタル (T a ) 膜からなる陽極酸化用 電極 5 と、 陽極酸化用電極 5 の一部からなるゲー ト電極 1 0 1 を設 ける。 また、 陽極酸化用電極 5は、 ゲー ト電極 1 0 1 とエッチング 除去部 1 2 1 と重なり部 1 2 2からなる。
陽極酸化用電極 5の幅はゲー ト電極 1 0 1の周辺以外では幅 W 1 と広い。
この陽極酸化用電極 5は、 一方の端部では図示しない陽極酸化用 電極部によって複数本相互に接続されている構成を有する。 他方の 端部においては、 外部回路から T F T素子に信号を印加するための 接続部 8に被覆されている。 この陽極酸化用電極 5は、 ゲー ト電極 部 1 0 1の表面にゲー ト絶縁膜 1 0 2を陽極酸化処理により形成す るときの電極と して使用する。
この第 3 9図のゲー ト電極 1 0 1 と表示電極 7 との間には陽極酸 化用電極 5の一部を有する。 表示電極 7以外の領域であるェッチン グ除去部 1 2 1は最終構造では除去される。
すなわち、 これらの図では製造工程の途中を仮想線で示し、 説明 を理解しやすいよ うにしている。
さ らに、 この陽極酸化用電極 5 とゲー ト電極 1 0 1の表面には、 このタンタル膜を陽極酸化処理して形成する酸化タンタル (丁 a 2 05 ) 膜からなるゲー ト絶縁膜 1 0 2を設ける。
そ して、 ゲー ト電極 1 0 1の周辺にアモルファスシリ コン ( a — S i ) からなる半導体層 1 0 3を設ける。 さ らに、 半導体層 1 0 3 上に不純物イオンと してリ ン ( P) を含む半導体層 1 0 4を設ける, さ らに、 不純物イオンを含む半導体層 1 0 4上にソース電極 1 0 5 と ドレイ ン電極 1 0 6を設ける。 ソース電極 1 0 5 とデ一ター電 極 1 0 6はモリ ブデン (M o ) にて設ける。 不純物イオンを含む半 導体層 1 0 4はソース電極 1 0 5 と ドレイ ン電極 1 0 6 と半導体層 1 0 3の重なり合う部分に設けている。 また、 ソース電極 1 0 5は 外部回路に接続するデータ電極 8 1に接続する。
データ電極 8 1 とゲ一 ト電極 1 0 1の重なる部分では、 ゲー ト電 極 1 0 1が金属膜 (タ ンタル) 2 と陽極酸化膜 (酸化タンタル) 3 であり、 その上部に半導体層 1 0 3 と不純物ィオンを含む半導体層 1 0 4 と ソース電極 1 0 5の金属膜 (モリ ブデン) を設ける。
このよ う に、 ゲー ト電極 1 0 1の金属膜と ソース電極 1 0 5の金
属膜の間に多層の絶縁膜、 あるいは半導体層 1 0 3を設けることに よ り電気的短絡を防止できる。
さ らに、 陽極酸化用電極 5の重なり部 1 2 2上と基板 1上に表示 電極 7を設ける。
また、 外部回路から非線形抵抗素子に信号を印加するためのタン タルからなる陽極酸化用電極 5上に透明導電性膜からなる接続電極 .8を設ける。 この接続電極 8においては、 タンタルは額縁状の形状 をしている。 また、 透明導電性膜は額縁状のタンタルを覆い、 四角 形をしている。
この形状にすることによ り、 外部回路と接続電極 8 との接続を行 う場合に、 額縁状のタンタルによ り透明導電性膜より位置を明確に できるため、 合わせ精度が向上する。 さ らに、 額縁状タンタルの内 と外に透明導電性膜を設けることによ り、 外部回路と接続電極 8の 接続状況を透明導電性膜を透して確認できる。
ここで表示電極 7 と接続電極 8 とは、 いずれも透明導電性膜、 た とえば酸化インジウム錫 ( I T O ) 膜で構成する。
さ らに、 陽極酸化用電極 5の内、 表示電極 7 とゲー ト電極 1 0 1 の間にあるエッチング除去部 1 2 1 は、 エッチング処理法によりェ ツチング除去し、 陽極酸化用電極 5は、 ゲー ト電極 1 0 1 となり、 表示電極 7の下部にある重なり部 1 2 2 と分離する。
このため、 陽極酸化用電極 5の幅はゲー ト電極 1 0 1 と しての幅 W 2 となる。
したがって、 陽極酸化を行う時には、 陽極酸化用電極 5の幅を W 1 と してゲー ト電極 1 0 1 の幅 (W 2 ) よ り幅を広く し、 表示電極 7の下部まで広げておく。 さらに隣接する表示電極 7の間も陽極酸 化用電極 5によ り連結している。
最後に表示電極 7を設けた後に、 ゲー ト電極 1 0 1 と表示電極 7 の下部にある重なり部 1 2 2に分離する。 さらに、 孤立する表示電 極 7 となる。
この構造を用いることによ り、 陽極酸化用電極を陽極酸化時には
訂正された ( 91
幅を広く し、 短時間に均一な陽極酸化膜を形成可能となる。
さらに、 陽極酸化用電極 5の幅 (W 1 ) を広く してあるため、 ゲ 一ト電極 1 0 1 の幅 (W 2 ) 内に断線箇所がある場合には、 表示電 極 7 とゲー ト電極 1 0 1 の間の陽極酸化用電極 5の一部を利用しゲ 一ト電極 1 0 1 の断線を防止するこ とができる。
ここで、 この第 1 4実施例による液晶表示装置のアクティブ基板 の製造方法を、 第 4 1 乃至第 4 4図を用いて説明する。
第 4 1乃至第 4 4図は、 この第 1 4実施例による液晶表示装置の ァクティブ基板の製造方法を工程順に示す断面図である。
先ず始めに、 第 4 1 図に示すガラスからなるァクティブ基板であ る第 1 の基板 1上の全面に、 金属膜と してタンタル (T a ) 膜を 2 0 0 n mの膜厚でスパッタ リ ング法で形成する。
その後、 タンタル膜上の全面に感光性樹脂 (図示せず) を回転塗 布法により形成し、 所定のホ トマスクを用いて露光, 現像処理を行 い、 感光性榭脂をパターン形成し、 その後このパターニングした感 光性樹脂をエッチングマスクに用いてタンタル膜をェツチングする ホ トエッチング処理によ り、 陽極酸化用電極 5 と、 陽極酸化用電極 5に接続するグー ト電極 1 0 1 とをパターン形成する。
ここでタンタル膜のェツチングは、 R I E装置を用いて行う。 そのエッチング条件は、 エッチングガスと して六弗化硫黄 ( S F 6 ) と酸素 (O2 ) との混合ガスを用いる。 そして六弗化硫黄の流 量が 1 0 0〜 2 0 0 seem, 酸素流量が 1 0〜4 0 sccmで、 圧力が 4 〜 1 2 X 1 O - θΓΓと し、 使用電力が 0. 2〜 0.5 k WZ c m2 で 行う。
その後、 陽極酸化用電極 5を陽極と し、 陽極酸化液と して、 0 . 0 1〜 1 . 0 w t %のクェン酸水溶液あるいはホウ酸アンモニゥム 水溶液または燐酸水溶液を用いて、 6 0〜7 0 Vの電圧を印加して、 タンタル膜の陽極酸化処理を行う。
この結果、 ゲー ト電極 1 0 1 と陽極酸化用電極 5 との側壁と上面 の表面に、 酸化タンタル膜 (T a 2 O5 ) からなる絶縁膜 (図示せ
ず) を 1 2 0〜 1 3 0 n mの膜厚で形成する。
つぎに、 プラズマ C VD法を用いて、 半導体層 1 0 3 と してァモ ルファスシリ コ ン ( a — S i ) 膜を 7 0 n mで全面に形成する。 そ の後、 プラズマ CVD法を用いて不純物イオンと してリ ン (P) を 含む半導体層 1 04 ( n - a - S i ) を 2 0 n mで全面に形成する < その後、 第 4 2図に示すよ うに、 半導体層 1 0 3, 1 04をエツ チング処理して、 ゲー ト電極 1 0 1上の周囲とデータ電極 8 1の部 分にパターン形成する。
ここでアモルファスシリ コン膜のエッチングは、 R I E装置を用 いて行う。
そのエッチング条件は、 エッチングガスと して四弗化炭素 (C F 4) と酸素 (O2 ) との混合ガスを用いる。 そして四弗化炭素の流 量が 1 0 0〜 2 00 sccm、 酸素流量が 1 0〜 4 0 seemで、 圧力が 4 〜 1 2 X 1 0-2torrと し、 さらに使用電カが 0.2〜 0.5 k WZ c m2 で行う。
つぎに第 4 3図に示すよ うに、 スパッタ リ ング法を用いて、 モ リ ブデン膜 (M o ) を膜厚 2 0 0 n mで全面に形成する。 その後、 モ リブデン膜上に感光性榭脂 (図示せず) を形成する。
その後、 モリ ブデン膜をエッチング処理してソース電極 1 0 5 と、 ドレイ ン電極 1 0 6 と ソース電極 1 0 5に接続するデータ電極 8 1 とを同時にパターン形成する。
このモリブデン膜のエッチングは、 燐酸 (H3P O4) と硝酸(H NO 3) と酢酸( ^€ 001 ) のエツチャン トとを用いるゥエツ トエッチングにより行う。 なおこのときのエツチャン ト液温は 2 5 " 〜 2 6でに設定する。
さ らに、 その感光性樹脂をエッチング用のマスク と して不純物ィ オンを含む半導体層 1 04をエッチングする。 エッチングは、 R I E装置を用いて行い、 そのエッチング条件は、 下地の半導体層 1 0 3の劣化が起きない条件とする。
エッチングガスと して四弗化炭素(C F4) と酸素 (02 ) との混
合ガスを用いる。 そして四弗化炭素流量が 8 0〜 1 2 Osccm, 酸素 流量が 1 0〜 1 5 sccmとで、 圧力が 1 0〜: 1 2 X 1 0 -2torrと し、 さらに使用電力が 0.0 5〜 0. 1 k W/ c m2 で行う。
つぎにスパッタ リ ング法を用いて、 透明導電性膜と して酸化イ ン ジゥム錫 ( I T 0) 膜を膜厚 l O O n mで全面に形成する。 その後. 酸化インジウム錫膜上に感光性榭脂 (図示せず) を形成する。
. その後、 酸化インジウム錫膜をエッチング処理して ドレイ ン電極 1 0 6に接続し、 陽極酸化用電極 5の一部である重なり部 1 2 2上 に表示電極 7をパターン形成する。 さらに、 ゲー ト電極 1 0 1 に接 続する陽極酸化用電極 5上に接続電極 8 とデータ電極 8 1 に接続す る入力部 (図示せず) をパターン形成する。
この酸化インジウム錫のエッチングは、 臭素 (H B r ) の水溶液 エツチャン トを用いるゥエツ トエッチングによ り行う。 なおこのと きのエッチヤン ト液温は 2 5で〜 3 0*0に設定する。
つぎに第 4 4図に示すよ うに、 陽極酸化用電極 5の内表示電極 7 の重なり部 1 2 2 とゲー ト電極 1 0 1の間のエッチング除去部 1 2 1、 あるいは表示電極 7 と表示電極 7の間にあるエッチング除去部 1 2 1 をエッチング除去するために、 データー電極 8 1 とゲー ト電 極部 1 0 1の周への覆う感光性樹脂 1 2 5を形成する。
陽極酸化用電極 5の内、 エッチング除去部 1 2 1 は、 感光性樹脂 1 2 5 と酸化インジュ ゥム錫膜からなる表示電極 7から露出してい るため、 感光性樹脂 1 2 5 と表示電極 7をエッチング用のマスク と し、 ェツチング除去部 1 2 1 は R I Ε装置を使用したエッチング処 理によ り除去される。
このエッチング条件は、 エッチングガスと して六弗化硫黄 ( S F
6 ) と酸素 (02 ) との混合ガスを用いる。 そして六弗化硫黄の流 量が 1 0 0〜 2 0 0 sccm、 酸素流量が 1 0〜 4 0 seemで、 圧力が 4 〜 1 2 X 1 0 -2torrと し、 さらに使用電力が 0.2〜 0.5 kWZ c m 2 で行う。
上記のエッチング条件では、 酸化インジウム錫をほとんどエッチ
訂正された
ングするこ となく 、 タンタル膜 2 とゲー ト絶縁膜 1 0 2である酸化 タンタル膜だけをエッチングするこ とができる。
以上の工程によ り、 この実施例の第 3 9図と第 4 0図に示したよ うに、 陽極酸化用電極 5は、 ゲー ト電極 1 0 1 と、 表示電極 7 の下 部にある重なり部 1 2 2 とに分離するこ とができる。
この製造方法を用いるこ とによ り 、 陽極酸化用電極を陽極酸化時 には幅 (W 1 ) を広く し、 短時間に均一な陽極酸化膜を形成可能と なる。
さ らに、 陽極酸化用電極 5 の幅 W 1 を広く してあるため、 ゲー ト 電極 1 0 1 の幅 W 2内に断線箇所がある場合には、 表示電極 7 とゲ — ト電極 1 0 1 の間の陽極酸化用電極 5の一部を利用してゲー ト電 極 1 0 1 の断線を防止することができる。
〔第 1 0乃至 1 4実施例の変更例〕
以上説明した各実施例においては、 透明導電性膜と しては酸化ィ ンジゥムスズ ( I T O ) を用いた例で説明したが、 酸化インジウム ( I n 2 O 3 ) 、 酸化錫 ( S n O 2 ) 、 酸化亜鉛 ( Z n O ) などの 酸化物を用いてもよい。
また、 陽極酸化用電極 5 の材料と してタ ンタルを用いた例で説明 したが、 アルミニウムあるいは、 タンタルあるレ、は、 アルミニウム に炭素, シリ コ ン, ニオブ, 窒素, あるいはリ ンを含む金属膜を用 いてもよい。
さ らに、 第 1 0実施例乃至第 1 3実施例において、 上部電極と し て表示電極と同一の透明導電性膜を用いた例を説明したが、 上部電 極と表示電極を異なる材質で設けるよ うにしてもよい。
上部電極の材質と して、 ク ロム, チタン, タングステン, チタン シリサイ ド, タ ングステンシリサイ ド, あるいは窒素を含むク ロム 膜も使用するこ とができる。
産業上の利用性
この発明は、 各種電子機器に多用されている液晶表示装篋、 特に 微細化加工が可能でコス ト低減に有効な T F Dあるいは T F T等の 非線形抵抗素子をスィ ツチング素子に用いた液晶表示装置において 電極の陽極酸化処理による非線形抵抗層の形成を短時間に均一に行 う こ とができ、 その後に破壊が起こるのを防ぎ、 検査も容易にする ことができる。
また、 陽極酸化用電極を使用した後の残存部分を有効に利用して. 外部回路との接続電極などを形成したり、 遮光部と して見切り に利 用したり、 電極に欠陥が生じた場合の補修用に利用したりするこ と ができる。
したがって、 液晶表示装置の製作時の歩留まりの向上、 表示品質 の向上、 汎用性の拡大、 コス ト の低减などを実現することができ、 産業上の利用価値が高いものである。
訂正され
Claims
1 . 所定の間隔を もって対向する第 1 の基板および第 2 の基板と 、 その第 1 の基板上に設けた第 1 の電極および第 2 の電極と 、 その 第 1 の電極と第 2 の電極とが重な り合 う領城に設けた非線形抵抗 素子と、 前記第 1 の基板と第 2 の基板と の間に封入 した液晶 と を 備えた液晶表示装置において、
前記第 1 の電極は、 前記非線形抵抗素子を構成する下部電極と、 該非線形抵抗素子に外部信号を印加するための複数の信号電極と 、 前記下部電極を陽極酸化して非線形抵抗層を形成するための陽極 酸化用電極と を有し、 前記複数の信号電極は、 前記下部電極の陽 極酸化処理を行 う と き には、 前記陽極酸化用電極によ り相互に接 続されてお り 、
前記第 2 の電極は、 前記非線形抵抗層上に設ける上部電極と 、 該上部電極に接続される表示電極と 、 前記陽極酸化用電極の一部 を覆 う接続電極と を有し、
前記下部電極と 、 該下部電極の陽極酸化処理によ って形成され た非線形抵抗層 と 、 前記上部電極と によって前記非線形抵抗素子 を構成し、
前記陽極酸化用電極は、 前記陽極酸化処理後に前記接続電極に 覆われない部分が除去され、 それによつて前記各信号電極を分離 し独立させている こ と を特徴とする液晶表示装置。
2 . 所定の間隔を もって対向する第 1 の基板および第 2 の基板と 、 その第 1 の基板上に設けた第 1 の電極および第 2 の電極と 、 その 第 1 の電極と第 2 の電極とが重な り 合 う領域に設けた非線形抵抗 素子と 、 前記第 1 の基板と第 2 の基板と の間に封入した液晶 と を 備えた液晶表示装置において、
前記第 1 の電極は、 前記非線形抵抗素子を構成する下部電極と 、 該非線形抵抗素子に外部信号を印加するための複数の信号電極と 、 前記下部電極を陽極酸化 して非線形抵抗層を形成するための陽極
酸化用電極と を有 し、 前記複数の信号電極は、 前記下部電極の陽 極酸化処理を行う と きには、 前記陽極酸化用電極によ り相互に接 続されてお り 、
前記第 2 の電極と して前記非線形抵抗層上に設ける上部電極を、 第 3 の電極と して該上部鴛極に接続される表示電極を設け、 その 第 2 の電極あるいは第 3 の電極の少なく と も一方が前記陽極酸化 用電極の一部を覆 う接続電極を有し、
前記下部鹭極と 、 該下部電極の陽極酸化処理によって形成され た非線形抵抗層と 、 前記上部電極と によって前記非線形抵抗素子 を構成し、
前記陽極酸化用電極は、 前記陽極酸化処理後に前記第 2 の電極 あるいは第 3 の電極からなる接続電極に覆われない部分が除去さ れ、 それによつて前記各信号電極を分離し独立させている こ と を 特徴とする液晶表示装置。
3 . 所定の間隔を もって対向する第 1 の基板および第 2 の基板と 、 その第 1 の基板上に設けた第 1 の電極および第 2 の電極と 、 その 第 1 の電極と第 2 の電極と が重な り 合 う領域に設けた非線形抵抗 素子と 、 前記第 1 の基板と第 2 の基板と の間に封入した液晶 と を 備えた液晶表示装置において、
前記第 1 の電極は、 前記非線形抵抗素子を構成する下部電極と 、 該非線形抵抗素子に外部信号を印加するための複数の第 1 の信号 電極と 、 前記下部電極を陽極酸化して非線形抵抗層を形成するた めの陽極酸化用電極と を有し、 前記複数の第 1 の信号電極は、 前 記下部電極の陽極酸化処理を行 う と きには、 前記陽極酸化用電極 によ り相互に接続されてお り 、
前記第 2 の電極は、 前記非線形抵抗層上に設ける上部電極と、 該上部電極に接続される表示電極と 、 前記非線形抵抗素子に外部 信号を印加するための第 2 の信号電極と、 該信号電極に外部回路 から電圧を印加する入力電極と を有し、
該入力電極は前記陽極酸化用電極の一部を覆い、 その陽極酸化
用電極は前記入力電極と 同一辺にて分離されている こ と を特徴と する液晶表示装置。
4 . 所定の間隔を もって対向する第 1 の基板および第 2 の基板と 、 その第 1 の基板上に設けた第 1 の電極および第 2 の電極と 、 その 第 1 の電極と第 2 の電極とが重な り合 う領域に設けた非線形抵抗 素子と 、 前記第 1 の基板と第 2 の基板と の間に封入した液晶と を 備えた液晶表示装置において、
前記第 1 の電極は、 前記非線形抵抗素子を構成する下部電極と 、 該非線形抵抗素子に外部信号を印加するための複数の第 1 の信号 電極と 、 前記下部電極を陽極酸化して非線形抵抗層を形成するた めの陽極酸化用電極と を有し、 前記複数の第 1 の信号電極は、 前 記下部電極の陽極酸化処理を行 う と き には、 前記陽極酸化用電極 によ り相互に接続されてお り 、
前記第 2 の電極は、 前記非線形抵抗層上に設ける上部電極と、 該上部電極に接続される表示電極と 、 前記非線形素子に外部信号 を印加するための第 2 の信号電極と、 該信号電極に外部回路から 電圧を印加する入力電極と を有し、
前記非線形抵抗素子あるいは、 前記表示電極上を覆う絶縁膜を 形成し、 該絶縁膜の前記陽極酸化膜上と前記入力電極上に開口部 を設け、 前記陽極酸化用電極が前記開口部と 同一の辺にて分離さ れている こ と を特徴をする液晶表示装置。
5 . 第 1 の基板上に第 1 の電極を有し、 第 1 の電極は第 1 の電極 を陽極酸化するための陽極酸化用電極と非線形抵抗素子を構成す る下部電極と非線形抵抗素子に外部信号を印加するための信号電 極を有し、 信号電極は、 陽極酸化処理を行う と き には、 陽極酸化 用電極によ り 相互に接続 し、 さ らに第 2 の電極と して、 非線形抵 抗層上に設ける上部電極と上部電極に接続する表示電極と 陽極酸 化用電極の一部を覆う接続電極を有し、 下部電極と非線形抵抗層 と上部電極によ り 非線形抵抗素子を構成し、 さ らに陽極酸化用電
極は、 陽極酸化後に、 陽極酸化用電極の一部は、 第 1 の電極から なる独立する信号電極と表示領域の周囲に第 1 の電極と第 1 の電 極の陽極酸化膜である絶縁膜からなる遮光部を有する こ と を特徴 とする液晶表示装置。
6 . 第 1 の基板上に第 1 の電極を有し、 第 1 の電極は第 1 の電極 を! ¾極酸化するための陽極酸化用電極と非線形抵抗素子を構成す る下部電極と非線形抵抗素子に外部信号を印加するための信号電 極を有し、 信号電極は、 陽極酸化処理を行う と き には、 陽極酸化 用電極によ り 相互に接続し、 さ らに第 2 の電極と して、 非線形抵 抗層上に設ける上部電極と上部電極に接続する表示電極と 陽極酸 化用電極の一部を覆 う接続電極を有し、 下部電極と非線形抵抗層 と上部電極によ り 非線形抵抗素子を構成し、 さ らに陽極酸化用電 極は、 陽極酸化後に、 陽極酸化用電極の一部は、 第 1 の電極から なる独立する信号電極と表示領城の周囲に第 1 の電極と第 1 の電 植の陽極酸化膜である絶縁膜からなる遮光部を有し、 遮光部には 開口部を有する こ と を特徴とする液晶表示装置。
7 . 第 1 の基板上に第 1 の電極を有し、 第 1 の電極は第 1 の電極 を陽極酸化するための陽極酸化用電極と非線形抵抗素子を構成す る下部電極と非線形抵抗素子に外部信号を印加するための信号電 極を有し、 信号電極は、 陽極酸化処理を行 う と き には、 陽極酸化 用電極によ り相互に接続し、 さ らに第 2 の電極と して、 非線形抵 抗層上に設ける上部電極と上部電極に接続する表示電極と 陽極酸 化用電極の一部を覆う接続電極を有し、 下部電極と非線形抵抗層 と上部電極によ り 非線形抵抗素子を構成し、 さ らに陽極酸化用電 極は、 陽極酸化後に、 陽極酸化用電極の一部は、 第 2 の電極から なる接続電極と 同一な辺で分離し、 独立した信号電極と し、 さ ら に、 表示領域の周囲に第 1 の電極と第 1 の電極の陽極酸化膜であ る絶縁膜からなる遮光部と を有する こ と を特徴とする液晶表示装 置。
8 . 第 1 の基板上に第 1 の電極を有し、 第 1 の電極は第 1 の電極 を陽極酸化するための陽極酸化用電極と非線形抵抗素子を構成す る下部電極と非線形抵抗素子に外部信号を印加するための第一の 信号電極と を有し、 第 1 の信号電極は、 陽極酸化処理を行 う と き には、 陽極酸化用電極によ り相互に接続し、 さ らに第 2 の電極と して、 非線形抵抗層上に設ける上部電極と上部電極に接続する表 示電極と第 1 の信号電極上を覆 う第 2 の信号電極と陽極酸化用電 極の一部を覆う接続電極と を有し、 さ らに、 下部電極上には、 2 つの上部電極を有し、 一方の上部電極は、 第 2 の信号電極に接続 し、 他方は表示電極に接続し、 下部電極と非線形抵抗層と上部電 極によ り 非線形抵抗素子を構成し、 さ らに陽極酸化用電極は、 陽 極酸化後に、 陽極酸化用電極の一部は、 第 2 の電極からなる接続 電極と同一な辺で分離し、 独立した第 1 の信号電極と し、 さ らに、 表示領域の周囲に第 1 の電極と第 1 の電極の陽極酸化膜である絶 縁膜からなる遮光部と を有する こ と を特徴とする液晶表示装置。
9 . 第 1 の基板上に第 1 の電極を有し、 第 1 の電極は第 1 の電極 を陽極酸化するための陽極酸化用電極と非線形抵抗素子を構成す る下部電極と非線形抵抗素子に外部信号を印加するための信号電 極を有し、 信号電極は、 陽極酸化処理を行 う と き には、 陽極酸化 用電極によ り 相互に接続し、 さ らに第 2 の電極と して、 非線形抵 抗層上に設ける上部電極と上部電極に接続する表示電極と 陽極酸 化用電極の一部を覆う接続電極を有し、 下部電極と非線形抵抗層 と上部電極によ り 非線形抵抗素子を構成し、 さ らに、 第 1 基板上 には、 絶縁膜を有し、 絶縁膜には、 開口部を有し、 陽極酸化用電 極の一部は、 陽極酸化後に、 絶縁膜の開口部と 同一な辺にて分離 し、 第 1 の電極からなる独立する信号電極と表示領域の周囲に第 1 の電極と第 1 の電極の陽極酸化膜である絶縁膜と保護用絶縁膜 からなる遮光部を有する こ と を特徴とする液晶表示装置。
1 0 . 第 1 の基板上に第 1 の電極を有し、 第 1 の電極は第 1 の電
極を陽極酸化するための陽極酸化用電極と非線形抵抗素子を構成 する下部電極と非線形抵抗素子に外部信号を印加するための第一 の信号電極と を有 し、 第 1 の信号電極は、 陽極酸化処理を行う と きには、 陽極酸化用電極によ り 相互に接続し、 さ らに第 2 の電極 と して、 非線形抵抗層上に設ける上部電極と上部電極に接続する 表示電極と第 1 の信号電極上を覆 う第 2 の信号電極と陽極酸化用 電極の一部を覆う接続電極と を有し、 さ らに、 下部電極上には、 2つの上部電極を有し、 一方の上部電極は、 第 2 の信号電極に接 続し、 他方は表示電極に接続し、 下部電極と非線形抵抗層 と上部 髦極によ り 非線形抵抗素子を構成し、 さ らに、 第 1 の基板上には 絶縁膜を有し、 絶縁膜には開 口部を有し、 陽極酸化用電極は、 陽 極酸化後に、 保護用絶縁膜の開 口部と 同一辺にて分離し、 第 1 の 鴛極からなる独立する第 1 の信号電極と し、 さ らに、 表示領域の 周囲に第 1 の電極と第 1 の電極の陽極酸化膜である絶縁膜からな る遮光部と を有する こ と を特徴とする液晶表示装置。
1 1 . 第 1 の基板上に第 1 の電極を有し、 第 1 の電極は第 1 の電 極を陽極酸化するための陽極酸化用電極と非線形抵抗素子を構成 する下部電極と非線形抵抗素子に外部信号を印加するための信号 電極を有し、 信号電極は、 陽極酸化処理を行 う と き には、 陽極酸 化用電極によ り 相互に接続し、 さ らに第 1 の電極上の陽極酸化膜 をゲー ト絶縁膜と し、 ゲー ト絶縁膜上には、 半導体層を有し、 半 導体層上にソース電極と ド レイ ン電極と を有し、 ド レイ ン電極に 接続する表示電極を有し、 さ らに陽極酸化用電極は、 陽極酸化後 に、 陽極酸化用電極の一部は、 第 1 の電極からなる独立するゲー ト電極と表示領域の周囲に第 1 の電極と第 1 の電極の陽極酸化膜 である絶縁膜からなる遮光部を有する こ と を特徴とする液晶表示 装置。
1 2 . 第 1 の基板上に第 1 の電極を有し、 第 1 の電極は第 1 の電 極を陽極酸化するための陽極酸化用電極と非線形抵抗素子を構成
する下部電極と非線形抵抗素子に外部信号を印加するための信号 電極を有し、 信号電極は、 陽極酸化処理を行 う と きには、 陽極酸 化用電極によ り相互に接続し、 さ らに第 1 の電極上の陽極酸化膜 をゲー ト絶縁膜と し、 ゲー ト絶縁膜上には、 半導体層を有し、 半 導体層上にソース電極と ド レイ ン亀極と を有し、 ド レイ ン電極に 接統する表示電極を有し、 さ らに陽極酸化用電極は、 陽極酸化後 に、 陽極酸化用電極の一部は、 第 1 の電極からなる独立するゲー ト電極と表示領域の周囲に第 1 の電極と第 1 の電極の陽極酸化膜 である絶縁膜からなる遮光部を有し、 前記遮光部上には、 表示電 極と 同一な材質の膜が設けてあ り 、 前記遮光部は、 前記表示電極 と 同一な材質の膜と 同一な辺を有する こ と を特徴とする液晶表示 装置。
1 3 . 第 1 の基板上に第 1 の電極を有し、 第 1 の電極は第 1 の電 極を陽極酸化するための陽極酸化用電極と非線形抵抗素子を構成 する下部電極と非線形抵抗素子に外部信号を印加するための信号 電極を有し、 信号電極は、 陽極酸化処理を行 う と き には、 陽極酸 化用電極によ り 相互に接続し、 さ らに第 1 の電極上の陽極酸化膜 をゲー ト絶縁膜と し、 ゲー ト絶縁膜上には、 半導体層を有し、 半 導体層上に ソース電極と ド レイ ン電極と を有し、 ド レイ ン電極に 接続する表示電極を有し、 さ らに、 第 1 の基板上には絶縁膜を有 し、 絶縁膜には開 口部を有し、 さ らに陽極酸化用電極は、 陽極酸 化後に、 陽極酸化用電極の一部は、 第 1 の電極からなる独立する グー ト電極と表示領域の周囲に第 1 の電極と第 1 の電極の陽極酸 化膜である絶縁膜からなる遮光部を有し、 前記遮光部上には、 絶 縁膜が設けてあ り 、 前記遮光部は、 前記絶縁膜の開 口部と 同一な 辺を有する こ と を特徴とする液晶表示装置。
1 4 . 第 1 の基板上に第 1 の電極を有し、 第 1 の電極は第 1 の電 極を陽極酸化するための第 1 の陽極酸化用電極と第 1 の陽極酸化 用鼋極から独立する第 2 の陽極酸化用電極と第 1 の陽極酸化用電
極に接続する下部電極と非線形抵抗素子に外部信号を印加するた めの第 1 の陽極酸化用電極に接続する信号電極を有し、 信号電極 は、 陽極酸化処理を行 う と きには、 第 1 の陽極酸化用電極によ り 相互に接続し、 さ らに、 補助電極は、 第 2 の陽極酸化用鼋極に接 練し、 さ らに第 2 の電極と して、 非線形抵抗層上に設ける上部電 極と上部電極に接続する表示鴛極と第 1 の陽極酸化用電極と第 2 の陽極酸化用電極の一部を覆う接続電極を有し、 下部電極と非線 形抵抗層と上部電極によ り 非線形抵抗素子を構成し、 さ らに第 1 の陽極酸化用電極と第 2 の陽極酸化用電極の一部は、 陽極酸化後 に、 独立する信号電極と独立刷る補助電極と な り 、 第 2 の陽極酸 化用電極上に設ける非線形抵抗層の膜厚は、 第 1 の陽極酸化用電 棰上に設ける非線形抵抗層の膜厚よ り 厚いこ と を特徴とする液晶 表示装置。
1 5 . 第 1 の基板上と第 1 の陽極酸化用鼋極上の非線形抵抗層上 と第のの陽極酸化用電極上の非線形抵抗層上と信号電極上と補助 鴛極上と表示電極上および、 外部回路と の接続部に絶縁膜を有し、 第 1 の陽極酸化用電極と第 2 の陽極酸化用電極の一部に開 口部を 有し、 第 1 の陽極酸化用電極と第 2 の陽極酸化用電極は、 絶縁膜 の開 口部と 同一辺にて分離する こ と を特徴とする請求項 1 0 に記 載の液晶表示装置。
1 6 . 第 1 の基板上に第 1 の電極を有し、 第 1 の電極は第 1 の電 極を陽極酸化するための第 1 の陽極酸化用電極と第 1 の陽極酸化 用電極から独立する第 2 の陽極酸化用電極と非線形抵抗素子を構 成する下部電極と非線形抵抗素子に外部信号を印加するための第 1 の信号電極と を有し、 第 1 の信号電極は、 陽極酸化処理を行 う と きには、 第 1 の陽極酸化用電極によ り 相互に接続し、 さ らに補 助電極は第 2 の陽極酸化用電極に接続し、 さ らに第 2 の電極と し て、 非線形抵抗層上に設ける上部電極と 、 上部電極に接続する表 示電極と第 1 の信号電極上を覆 う第 2 の信号電極と第 1 の陽極酸
化用電極の一部を稷ぅ接続電極と を有し、 さ らに、 下部電極上に は、 2つの上部電極を有し、 一方の上部電極は、 第 2 の信号電極 に接続し、 他方は表示電極に接続し、 下部電極と非線形抵抗層と 上部電極によ り 非線形抵抗素子を構成し、 第 1 の陽極酸化用電極 は、 陽極酸化後に分離し、 第 1 の電極からなる独立する第 1 の信 号電極と し、 第 2 の陽極酸化用電極は、 陽棰酸化後に分離してな る補助電極と を有 し、 第 2 の陽極酸化用電極上の非線形抵抗層の 膜厚は、 第 1 の陽極酸化用電極上の非線形抵抗層の膜厚よ り厚い こ と を特徴とする液晶表示装置。
1 7 . 第 1 の基板上と第 1 の陽極酸化用電極上の非線形抵抗層上 と第 2 の陽極酸化用電極上の非線形抵抗層上と信号電極上と補助 電極上と表示電極上および、 外部回路と の接続部に絶縁膜を有し、 第 1 の陽極酸化用電極と第 2 の陽極酸化用電極の一部に開 口部を 有し、 第 1 の陽極酸化用電極と第 2 の陽極酸化用電極は、 絶縁膜 の開口部と 同一辺にて分離する こ と を特徴とする液晶表示装置。
1 8 . 基板上にいずれも金属膜からなる陽極酸化用電極と 陽極酸 化用電極に接続し陽極酸化用電極の一部からなる信号電極と信号 電極に接続する下部電極と 陽極酸化用電極の一部からなるエッチ ング除去部と表示電極かにある重な り 部と を有し、 この金属膜か らなる陽極酸化用電極と信号電極と 下部電極と重な り 部上には、 非線形抵抗層を有 し、 さ らに、 下部電極上の非線形抵抗層上には 上部電極を有し、 上部電極は表示電極に接続し、 下部電極と非線 形抵抗層 と上部電極によ り 非線形抵抗素子を構成し、 陽極酸化用 電極の一部が表示電極と重なる重な り 部を有 し、 重な り 部は表示 電極毎に分離している こ と を特徴とする液晶表示装置。
1 9 . 基板上にいずれも金属膜からなる陽極酸化用電極と 陽極酸 化用電極に接続し陽極酸化用電極の一部からなる信号電極と信号 電極に接続する下部電極と陽極酸化用電極の一部からなるエ ッチ
ング除去部と表示電極かにある重な り 部と を有し、 この金属膜か らなる陽極酸化用電極と信号電極と下部電極と重な り 部上には、 第 1 の電極の陽極酸化膜からなる非線形抵抗層を有し、 さ らに、 下部電極上の非線形抵抗層上には上部電極を有し、 上部電極は表 示電極に接続し、 下部電極と非線形抵抗層と上部電極によ り 非線 形抵抗素子を構成し、 陽極酸化用電極の一部がが表示電極と重な る重な り 部を有し、 重な り 部は表示電極毎に分離している こ と を 特徴とする液晶表示装置。
2 0 . 基板上にいずれも金属膜からなる信号電極と 島状の下部電 極と信号電極に平行するダミー電極と を有し、 この金属膜表面に 設ける絶縁膜と 、 下部電極上に絶縁膜を介 して設ける 2つの上部 電極と 、 ダミー電極上の重な り 部を覆 う透明導電膜からなる表示 電極と を備え、 上部電極は下部電極と交差し、 この上部電極と絶 縁膜と下部電極から 2つの非線形抵抗素子部を構成 し、 非線形抵 抗素子部を構成する上部電極の一方は信号電極に接続し、 非線形 抵抗素子部を構成する上部電極の他方は表示電極に接続し、 表示 電極の下部にはダミ ー電極の重な り 部を有し、 下部電極と ダミ ー 電極は同一の金属膜と絶縁膜と からなる こ と を特徴とする液晶表 示装置。
2 1 . 基板上にいずれも金属膜からなる初期陽極酸化用電極と 、 島状の下部電極と 、 初期陽極酸化用電極と 島状の下部電極を接続 する接続部と 、 初期陽極酸化用電極に接続するダミ ー電極と を有 し、 この金属膜表面に設ける絶縁膜と 、 下部電極上に絶縁膜を介 して設ける 2つの上部電極と、 ダミ ー電極上の重な り 部を覆う透 明導電膜からなる表示電極と を備え、 上部電極は下部電極と交差 し、 この上部電極と絶縁膜と下部電極から 2 つの非線形抵抗素子 部を構成し、 非線形抵抗素子部を構成する上部電極の一方は、 初 期陽極酸化用電極の一部からなる第 1 の信号電極上に設ける上部 電極と 同一材料からなる第 2 の信号電極に接続し、 非線形抵抗素
子部を構成する上部電極の他方は表示電極に接続し、 表示電極の 下部にはダミ ー電極の重な り 部を有し、 下部電極と ダミ ー電極は 同一の金属膜と絶縁膜と からなる こ と を特徴とする液晶表示装置。
2 2 . 基板上にいずれも金属膜からなる初期陽極酸化用電極と、 島状の下部電極と 、 初期陽極酸化用電極と 島状の下部電極を接続 する接続部と、 初期陽極酸化用電極に接続するダミ ー電極と を有 し、 この島状の下部電極は 2個の異なる接続部によ り 初期陽極酸 化用 «極に接続し、 この金属膜表面に設ける絶縁膜と、 下部電極 上に絶縁膜を介して設ける 2つの上部電極と 、 ダミ ー電極上の重 な り 部を覆 う透明導電膜からなる表示電極と を備え、 上部電極は 下部電極と 交差し、 この上部電極と絶縁膜と 下部電極から 2つの 非線形抵抗素子部を構成し、 非線形抵抗素子部を構成する上部電 極の一方は、 初期陽極酸化用電極の一部からなる第 1 の信号電極 上に設ける上部電極と 同一材料からなる第 2 の信号電極に接続し、 非線形抵抗素子部を構成する上部電極の他方は表示電極に接続し、 表示電極の下部にはダミ 一電極の重な り部を有し、 下部電極と ダ ミー電極は同一の金属膜と絶縁膜とからなる こ と を特徴とする液 晶表示装置。
2 3 . 基板上にいずれも金属膜からなる初期陽極酸化用電極と 、 島状の下部電極と 、 初期陽極酸化用電極と 島状の下部電極を接続 する接続部と 、 初期陽極酸化用電極に接続するダミ ー電極と を有 し、 この金属膜表面に設ける絶縁膜と 、 下部電極上に絶縁膜を介 して設ける 2 つの透明導電性膜からなる上部電極と 、 ダミ ー電極 上の重な り 部を覆 う透明導電膜からなる表示電極と を備え、 上部 電極は下部電極と 交差し、 この上部電極と絶縁膜と 下部電極から 2 つの非線形抵抗素子部を構成し、 非線形抵抗素子部を構成する 上部電極の一方は、 初期陽極酸化用電極の一部からなる第 1 の信 号電極上に設ける透明導電性膜からなる第 2 の信号電極に接続し、 非線形抵抗素子部を構成する上部電極の他方は表示電極に接続し、
表示電極の下部にはダミ ー電極の重な り 部を有し、 下部電極と ダ ミ ー電極は同一の金属膜と絶縁膜とからなる こ と を特徴とする液 晶表示装置。
2 4 . 基板上にいずれも金属膜からなる初期陽極酸化用電極と 、 島状の下部電極と 、 初期陽極酸化用電極と 島状の下部鸳極を接続 する接続部と 、 初期陽極酸化用電極に接続するダミ ー電極と を有 し、 こ の金属膜表面に設ける絶縁膜と 、 下部電極上に絶縁膜を介 して設ける 2つの上部電極と、 ダミ ー電極上の重な り 部を覆 う透 明導電膜からなる表示電極と を備え、 上部電極は下部電極と交差 し、 こ の上部電極と絶縁膜と 下部電極から 2 つの非線形抵抗素子 部を構成し、 非線形抵抗素子部を構成する上部電極の一方は、 初 期陽極酸化用電極の一部からなる第 1 の信号電極上に設ける上部 電極と 同一材料からなる第 2 の信号電極に接続し、 非線形抵抗素 子部を構成する上部電極の他方は表示電極に接続し、 表示電極の 下部にはダミ ー電極の重な り 部を有し、 さ らに、 非線形抵抗素子 部あるいは第 2 の信号電極の周辺には保護用絶縁膜を有し、 第 2 の信号電極と表示電極の間には保護用絶縁膜の開 口部を有し、 下 部電極と ダミ ー電極は同一の金属膜と絶縁膜と からなる こ と を特 徴とする液晶表示装置。
2 5 . 基板上にいずれも金属膜からなる初期陽極酸化用電極と初 期陽極酸化用電極に接続するゲー ト電極部を有し、 初期陽極酸化 用電極は、 ゲー ト電極と ダミ ー電極と に分離してお り 、 前記ゲー ト電極部の周囲にはゲー ト絶縁膜を有し、 グー ト絶縁膜上には、 半導体層を有し、 半導体層上には、 ソース電極と ド レイ ン電極と を有し、 ソース電極は、 データー電極に接続し、 ド レイ ン電極は、 表示電極に接続する構造を有する こ と を特徴とする液晶表示装置。
2 6 . 基板上にいずれも金属膜からなる初期陽極酸化用電極と初 期陽極酸化用電極に接続するゲー ト電極部を有し、 初期陽極酸化
用電極は、 ゲー ト電極と ダミ ー電極と に分離してお り 、 前記ゲー ト電極部の周囲にはゲー ト絶縁膜を有し、 ゲー ト絶縁膜上には、 半導体層を有し、 半導体層上には、 ソ ース電極と ド レイ ン電極と を有し、 ソ ース電極は、 データー電極 に接続し、 ド レイ ン電極 は、 表示電極に接続し、 前記ダミ ー電極は、 表示電極の下部に残 る構造を有する こ と を特徴とする液晶表示装置。
Family
ID=
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP3059487B2 (ja) | 液晶表示装置 | |
| KR100238795B1 (ko) | 액정 표시 장치의 구조 및 그 액정 표시 장치의 제조 방법 | |
| JP4354542B2 (ja) | 液晶表示装置及びその製造方法 | |
| KR100276442B1 (ko) | 액정표시장치 제조방법 및 그 제조방법에 의한 액정표시장치 | |
| US5402254A (en) | Liquid crystal display device with TFTS in which pixel electrodes are formed in the same plane as the gate electrodes with anodized oxide films before the deposition of silicon | |
| US5285301A (en) | Liquid crystal display device having peripheral dummy lines | |
| US5585290A (en) | Method of manufacturing a thin film transistor substrate | |
| US5751381A (en) | Active matrix LCD device with image signal lines having a multilayered structure | |
| US7732820B2 (en) | Substrate for display device having a protective layer provided between the pixel electrodes and wirings of the active matrix substrate, manufacturing method for same and display device | |
| JPH08122768A (ja) | 表示装置 | |
| US20010019373A1 (en) | TFT array substrate and method of manufacturing the same and method of manufacturing liquid crystal display using the same | |
| US7872698B2 (en) | Liquid crystal display with structure resistant to exfoliation during fabrication | |
| US6600546B1 (en) | Array substrate for liquid crystal display device and the fabrication method of the same | |
| US6337726B1 (en) | Array substrate for liquid crystal display element | |
| JP3307174B2 (ja) | 液晶表示装置 | |
| JP3231410B2 (ja) | 薄膜トランジスタアレイ及びその製造方法 | |
| WO1996014599A9 (ja) | ||
| JP3294509B2 (ja) | 液晶表示装置 | |
| JPH0695150A (ja) | 薄膜トランジスタ基板及び液晶表示装置及びその製造方法 | |
| KR100235593B1 (ko) | 액정 표시 장치 및 그 액정 표시 장치의 제조 방법 | |
| JP3508964B2 (ja) | 液晶表示装置とその製造方法 | |
| KR100812137B1 (ko) | 액정 표시 장치용 어레이 기판 및 그의 제조 방법 | |
| JP3333335B2 (ja) | 液晶表示装置 | |
| WO1996030801A1 (en) | Liquid crystal display | |
| JPH0895078A (ja) | 液晶表示装置 |