[go: up one dir, main page]

WO1996030720A1 - Methode et dispositif de relevement de la position et de l'orientation d'une excavatrice de galerie - Google Patents

Methode et dispositif de relevement de la position et de l'orientation d'une excavatrice de galerie Download PDF

Info

Publication number
WO1996030720A1
WO1996030720A1 PCT/JP1996/000825 JP9600825W WO9630720A1 WO 1996030720 A1 WO1996030720 A1 WO 1996030720A1 JP 9600825 W JP9600825 W JP 9600825W WO 9630720 A1 WO9630720 A1 WO 9630720A1
Authority
WO
WIPO (PCT)
Prior art keywords
angle
tunnel excavator
horizontal
point
light
Prior art date
Application number
PCT/JP1996/000825
Other languages
English (en)
French (fr)
Inventor
Hiroaki Yamaguchi
Original Assignee
Komatsu Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd. filed Critical Komatsu Ltd.
Priority to GB9718777A priority Critical patent/GB2314157A/en
Priority to DE19681330T priority patent/DE19681330T1/de
Publication of WO1996030720A1 publication Critical patent/WO1996030720A1/ja

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D9/00Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
    • E21D9/003Arrangement of measuring or indicating devices for use during driving of tunnels, e.g. for guiding machines
    • E21D9/004Arrangement of measuring or indicating devices for use during driving of tunnels, e.g. for guiding machines using light beams for direction or position control
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
    • G01C15/002Active optical surveying means

Definitions

  • the present invention relates to a method and an apparatus for measuring the position and orientation of a tunnel excavator. Background technology
  • Measuring the position and attitude of the tunnel excavator is an important technique for, for example, accurately correcting the direction of the tunnel excavator and avoiding interference with the segment assembled by the tunnel excavator in a later process.
  • the excavation line becomes complicated and becomes sharply curved, and in sewerage construction, etc., high accuracy is required for the construction alignment.
  • Technology is required. With the high-speed evolution of tunnel excavators, it is difficult to measure position and orientation manually, and automation of position and orientation measurement technology is also required. In response to such a request, various position and orientation measuring devices and methods for tunnel excavators have been proposed.
  • the excavation distance between measurements (usually, the length of the jack stalk of the tunnel excavator) is determined based on the azimuth of the tunnel excavator using the azimuth gyro and the angle indicated by the inclinometer.
  • the azimuth of the tunnel excavator is the angle between the direction in which the direction of the tunnel excavator is projected on the horizontal plane and the true north direction, that is, the joing angle.
  • the angles indicated by the inclinometer are the pitching angle, which is the angle between the direction of the tunnel machine and the horizontal plane, and the rolling angle, which is the angle component with the direction of the excavation as an axis.
  • the tunnel excavator may excavate while skidding, making it difficult to measure the excavation distance along the true excavation direction.
  • an automatic tracking distance measuring angle finder is used.
  • the position of the mobile object is detected by obtaining the three-dimensional coordinate position of the target before the movement of the mobile object with the three targets set as the survey reference, and then obtaining the three-dimensional coordinate position of the target after the movement.
  • a method for measuring the position and orientation of a moving body which detects the amount of inclination (that is, the posture) of the moving body from the coordinate change amounts of three targets before and after the movement.
  • this technique has a problem that the accuracy of the tilt amount is determined by the position measurement accuracy and the area of the three target arrangements.
  • the accuracy with respect to the length is required to be 1Z100 or more.
  • the accuracy with respect to the length is required to be 1Z100 or more.
  • a surveying instrument with a precision of 1 mm it is necessary to arrange the target so that the distance between them is 1 m.
  • many jacks and mud discharge pipes are installed in a complicated manner. For this reason, it is difficult to allocate a plurality of targets with such an arrangement interval and to secure a collimating space for each target. In particular, it is difficult to actually use it for turning construction that requires a larger collimation space.
  • Japanese Patent Publication No. 4-74649 discloses that a laser oscillator and an optical distance measuring device of the same direction, which are integrally held on a swingable base, and a movable body separated from the base.
  • an automatic fibre-measuring device and a surveying method comprising a position detecting target and a distance measuring target provided.
  • the target for position detection consists of a screen and a force camera, receives laser light from a laser oscillator with a screen, and detects the position coordinates of the light receiving spot with a camera.
  • the distance measurement target reflects the light from the optical distance measuring instrument back to the optical distance measuring instrument.
  • an object of the present invention is to provide a position and orientation measurement device for a tunnel excavator that can measure the position and orientation of the tunnel excavator with high accuracy.
  • the position and orientation measurement method for a tunnel excavator according to the present invention is a method for measuring the position and orientation of a tunnel excavator based on traverse survey
  • the position of the third measuring point is calculated using the angle and the distance from the second measuring point to the third measuring point and the position of the arbitrary point,
  • the attitude of the tunnel excavator is calculated from the angle from the third station to the second station and the horizontal level of the third station or the level of the tunnel excavator,
  • the position of the second measurement point is calculated by collimating the first measurement point at a known position further behind the second measurement point,
  • the position of the tunnel excavator is calculated from the first measurement point.
  • the angle from the third measurement point to the second measurement point is set to a predetermined angle. Therefore, the equipment provided at the second station (ie, the surveying instrument) and the equipment provided at the third station (ie, the surveying instrument) Can be directly opposed to each other. Then, the position of the third station is calculated using the angle and the distance from the second station to the third station and the position fi of the arbitrary point, and the angle and the angle to the second station from the third station are calculated.
  • the position of the third station can be determined based on the second station, and the third station can be determined from the second station. Based on the horizontal angle facing station C, the excavation direction and horizontal level attitude of the tunnel excavator can be determined. Then, at any time during the surveying of the tunneling machine, the position of the second measuring point is calculated by collimating the first measuring point at a known position further behind the second measuring point, and the first measuring point is calculated. The location of the tunnel machine is calculated from the first station, even if the point and the third station do not have a positional relationship that allows them to see each other. This corresponds to the construction of curves and curves.
  • the position S attitude measuring device S of the tunnel excavator is a device for measuring the position and attitude of the tunnel excavator.
  • a light-receiving device that receives light and detects an incident position and an incident angle, and a second reflecting prism are provided so as to be rotatable integrally in at least a horizontal direction, and detect a horizontal level of the light-receiving device or a horizontal level of a tunnel machine.
  • the third measuring point can be almost directly facing when looking forward, and when the first measuring point equipped with the first reflecting prism is provided behind, it can be almost facing when looking backward at the first measuring point.
  • a laser detector and a lightwave distance meter are provided so as to be rotatable integrally in the elevation and horizontal directions, and a photodetector that receives laser light from the laser oscillator reflected by the first and second reflecting prisms is provided.
  • a second station provided behind the tunnel tunnel with
  • Adjust the rotation angles of the laser oscillator and the lightwave distance meter in the elevation direction and the horizontal direction receive the rotation angles of the laser oscillator and the lightwave distance meter in the elevation direction and the horizontal direction, and reduce the number of light receivers and the second reflecting prism.
  • the laser oscillator and the optical distance meter are provided at the second measurement point behind the tunnel excavator so as to be rotatable in the elevation direction and the horizontal direction.
  • a photodetector that receives the laser beam from the laser oscillator and detects its incident position and angle, and a second reflecting prism are provided so as to be rotatable at least horizontally.
  • the controller can freely change the incident position on the light receiver by adjusting the elevation angle and horizontal angle of the laser oscillator and the lightwave distance meter.
  • the controller adjusts the angle of the gantry on which the receiver and the second reflecting prism are mounted at least horizontally so as to be freely rotatable, so that the angle of incidence at the receiver (in other words, from the third measurement point to the second measurement point from the third measurement point). (The angle facing the measuring point) can be set to a predetermined angle.
  • the laser oscillator and the light receiver can be arranged almost directly while the tunnel excavator is excavating by a command from the controller.
  • the lightwave distance meter measures the distance between the second reflecting prism and the first reflecting prism provided at the first measuring point.
  • the light receiver and the tunnel machine can be related to each other by conversion by rotation. Therefore, the attitude of the light receiver can be calculated by providing an inclinometer at the position where the horizontal level of the tunnel machine is detected. Therefore, an inclinometer 33 was installed to detect the horizontal level of the light receiver or the horizontal level of the tunnel machine. Then, the controller records the incident angle of the light detected by the light receiver 31 and the signal of the inclinometer, corrects the error caused by the rolling of the light receiver 31, and sets the incident angle of the light detected by the light receiver to absolute horizontal. Calculate the pitching component and pitching component based on the level.
  • the controller reads at least the angle at which the receiver is rotatable in the horizontal direction, and calculates the attitude of the tunnel excavator by performing rotation conversion.
  • This attitude includes the directional angle of the tunneling machine with respect to the horizontal component of the angle of incidence of light.
  • the first reflecting prism is installed at the first measuring point after the second measuring point, whose position is determined by another means (normal surveying), and the laser oscillator collimates the first reflecting prism.
  • the position S of the second measurement point can be obtained from the first measurement point at a known position based on the collimated elevation angle, horizontal angle, and distance measured by the lightwave distance meter.
  • whether or not the laser oscillator collimates the reflecting prism is configured such that a photodetector for receiving light returning from the reflecting prism is provided together with the laser oscillator.
  • FIG. 1 is an element layout diagram of a first embodiment of the present invention
  • FIG. 2 is a perspective view of the gantry in the first embodiment
  • FIG. 3 is an arrangement diagram of elements of the laser oscillation unit in the first embodiment
  • FIG. 4 is an element arrangement diagram of the light receiving unit in the first embodiment
  • FIG.5A is a side view of the element arrangement of the first example of the receiver in the first embodiment
  • FIG.5B is a perspective view of the element arrangement S of the first example of the optical receiver in the first embodiment
  • FIG. 6A is a side view of a second example of another element arrangement g of the light receiver in the first embodiment
  • FIG. 6B is a side view of a third example of the other elements of the light receiver in the first embodiment
  • FIG.7A is a sectional view of the reflecting prism in the first embodiment
  • FIG. 7B is a perspective view of the reflection prism in the first embodiment
  • FIG. 8 is a flowchart showing the procedure of installation and position and orientation measurement of the first embodiment
  • FIG. 9 is a view showing the relative rotation between the laser oscillator and the photodetector
  • FIG. 10 is an element arrangement S diagram of the second embodiment of the present invention.
  • Fig. 11 is a flow chart with a part of Fig. 8 modified.
  • the first reflecting prism 1 is placed at a known position behind the tunnel machine 5 (that is, the first measuring point A), and the laser oscillation unit base 2 is placed in the first reflecting prism.
  • the light receiving unit base 3 is placed at a known position of the tunnel excavator 5 (that is, the third measurement point C), and the controller 4 is moved to the position. It is arranged at an arbitrary position such as inside the shaft of channel 6. The details are as follows.
  • Each of the laser oscillating unit mount 2 and the light receiving unit mount 3 is configured by providing various devices, which will be described in detail later, on the device mount 7.
  • the device mounting base 7 has two axes that are orthogonal to each other, and the device mounting surface 73 can be freely rotated in the elevation direction and the horizontal direction around each axis by, for example, step motors 71 and 72.
  • the laser oscillator base 2 is used, as shown in FIG. 3, a laser oscillator 21, a beam splitter 22, a photodetector 23, an optical distance meter 4, etc.
  • Various devices are arranged.
  • the laser oscillator 21 and the lightwave distance meter 24 are arranged such that their optical axes are collimated in substantially the same direction.
  • various devices such as a light receiver 31 and a second reflection prism 32 are arranged.
  • the light receiver 31 and the second reflection prism 32 are arranged so that their light receiving surfaces face the same direction. Therefore, by rotating the light receiver 31 and the second reflection prism 32 in the elevation direction and the horizontal direction, the laser oscillator 21 and the lightwave distance meter 24 can be almost directly opposed.
  • an inclinometer 33 for detecting the horizontal level S (that is, the pitching angle 0 f2 and the rolling angle 0 s2) of the receiver 31 is also arranged on the receiver base 3 as shown in Fig. 1. I have. Hereinafter, details of each device will be described in order.
  • the laser oscillator 21 is a light source for projecting a laser beam to the light receiver 31 to obtain a light receiving position and an incident angle from the light receiver 31, and also a light source when the first reflection prism 1 is viewed backward. is there. Since the beam diameter of the laser beam is difficult to spread even over a long distance, the light receiving position at the light receiver 31 and the collimation to the first and second reflecting prisms 1 and 23 can be performed with a small spot diameter. Therefore, as will be described in detail later, more accurate position measurement, horizontal angle measurement, and attitude angle measurement can be performed.
  • the number of laser oscillators 21 is one in this example, they are individually determined in view of the characteristics of the light receiver 31 and the first and second reflecting prisms 1 and 32 (for example, in relation to the wavelength used, etc.). When it is better to provide, a plurality may be arranged.
  • the light source built into the optical distance meter 24 is a laser oscillator in this example, but even if it is an LED or the like, an LED or the like may be replaced with a laser oscillator when the beam diameter of light emission is difficult to spread due to an optical system. .
  • the electro-optical distance meter 24 needs to have a center detection function for the first and second reflecting prisms 1 and 32 in order to prevent collimation errors.
  • the beam splitter 22 transmits the laser beam from the laser oscillator 21 when the first reflecting prism 1 is viewed backward from the second measuring point B and when the second reflecting prism 32 is viewed forward, After that, the first reflection prism 1 and the second reflection prism 32 receive the laser light recursively reflected and change the optical path to the photodetector 23.
  • the photodetector 23 receives the reflected laser light from the first and second reflecting prisms 1 and 32.
  • a reflective prism returns reflected light in parallel to incident light, as shown in Fig. 7A, and has a smaller diameter than the diameter of the prism, which is shifted from the center of the prism, as shown in Fig. 7B. It has the property of returning light from a target position to the center of the prism for incident light with a small diameter. Therefore, the photodetector 23 can detect the center of the prism, and can eliminate a collimation error.
  • the photodetectors 23 are arranged in a large number in a plane so that a deviation between the irradiation laser light and the reflected laser light can be detected.
  • a device that can detect the incident position of light such as a light receiver 31 described later, may be used. Further, the center of the first and second reflecting prisms 1 and 32 may be detected by controlling the elevation angle and the horizontal angle of the laser oscillator 21 so that the above-mentioned displacement is made zero in the first place. Needless to say, another effective optical system may be interposed between the photodetector 23 and the laser oscillator 21 so as to make the above-mentioned misalignment in the first place.
  • the lightwave distance meter 24 measures the rear viewing distance L 1 from the laser oscillation unit base 2 to the first reflecting prism 1 and the front viewing distance L 2 from the second reflecting prism 32 respectively.
  • the light receiver 31 receives a thin light beam (in this case, the laser light from the laser oscillator 21), which causes a deviation between the center position of the light receiving surface and the light receiving position of the laser light and a normal direction of the light receiving surface. That can simultaneously measure the incident angle of the laser beam with respect to. As a result, when measuring the position and attitude of the tunnel machine 5 using light, Road space is secured.
  • a thin light beam in this case, the laser light from the laser oscillator 21
  • That can simultaneously measure the incident angle of the laser beam with respect to.
  • Road space is secured.
  • the light receiver 31 for example, as shown in FIG. 5A and FIG. 5B which is a perspective view thereof, a first light receiving surface 31 a having translucency and the rear of the first light receiving surface 31 a And a second light receiving surface 32b for receiving the transmitted light from the first light receiving surface 31a.
  • the light receiver 31 has a condensing lens 3 1 having the center 0 2 of the second light receiving surface 31 b between the light receiving surfaces 31 a and 31 b. Some with c are also good.
  • the light receiver 31 has a condenser lens 31c in front of the first light receiving surface 31a and having a focus on the center 02 of the second light receiving surface 31b. It may be a thing, and various other preparations are possible.
  • the illustrated coordinates (yl, z1) are the positional deviation of the receiver 31, and the illustrated coordinates (yl, zl) and (y From the incident angle obtained from (2, z 2), the bowing angle and the pitching angle of the light receiver 31 are obtained.
  • the bowing angle is “tan- 1 ((y2-yD / L)"), while the pitching angle is “ta ⁇ (z2-1zl) ZL ⁇ J. If the light receiving device 31 is not rolling, the amount of displacement, the pitching angle and the joing angle can be determined by the light receiving device 31.
  • the second reflecting prism 32 reflects the laser light from the lightwave distance meter 24 and can reflect the laser light from the laser oscillator 21.
  • the inclinometer 33 comprises two inclinometers orthogonal to each other in the horizontal plane on the receiver 31 and detects the horizontal level S (ie, pitching angle and rolling angle) of the receiver 31.
  • the horizontal level S of the receiver 31 and the horizontal level S 'of the tunnel machine 5 can be related by the angle of the rotation axis of the light receiving unit base 3, so that the inclinometer 33 is It may be attached to the tunnel excavator 5 itself instead of 31.
  • the pitching angle can be detected by the light receiver 31 as well, the better one of the pitching angles by the light receiver 31 or the inclinometer 33 may be adopted.
  • the inclinometer 33 may be a single inclinometer in the horizontal direction in the horizontal plane on the light receiver 31 and may measure only the rolling angle of the light receiver 31.
  • the rolling angle of the tunnel excavator 5 depends on the mounting position of the receiver 31 in the tunnel excavator 5 and the rolling angle of the receiver 31. Can be converted from the relationship with the swing angle.
  • the first reflecting prism 1 serves as a reference point in a traverse survey, which will be described later. As described above, the first reflecting prism 1 reflects the laser light from the laser oscillator 21 and uses the reflected laser light as a light detector 23. Is to be detected.
  • the laser oscillation base 2 is rotatable in the horizontal direction to collimate the front light receiver 31 and the rear first reflection prism 1, and may be installed at different heights or during excavation. It can be rotated in the elevating direction so that it can be collimated even if it changes.
  • the standards for the upward rotation and the horizontal rotation are as follows.
  • the reference of the horizontal angle 0 s i does not need to be set dare to measure only the included angle from the first reflecting prism 1 (backsight) to the light receiver 31 (forward vision).
  • the laser oscillator 21 when calculating the jogging angle of the tunnel excavator 5 as the excavation azimuth, taking into account that the azimuth from the first reflecting prism 1 to the laser oscillator 21 is used as a reference, the laser oscillator 21 generates the first reflection.
  • the collimation of the prism 1 when looking back may be used as a reference. If the horizontal rotation axis of the laser oscillation unit base 2 is tilted, an error will occur in the detection angle, so in this case, the verticality of the horizontal rotation axis is corrected by a separately prepared level to eliminate the error. I do.
  • the reference of the elevation angle may be based on, for example, when the laser oscillator 21 can emit laser in a horizontal plane.
  • the rolling angle of the tunnel excavator 5 can be calculated from the horizontal angle 0 s2 of the light receiving unit base 3 detected by the inclinometer 33. Also, if the radiation direction of the laser beam (for example, that it is radiated horizontally and to the north) is known in advance, the incident angle of the laser beam detected by the photodetector 31 and the elevation angle of the photodetector base 3 As described above, it is apparent that the jogging angle and the pitching angle of the tunnel excavator 1 can be calculated from the f2 and the horizontal angle 0 s2. That is, the attitude (rolling angle, jowing angle, pitching angle) of the tunnel machine 5 can be measured.
  • the light receiving position on the first light receiving surface 31a of the light receiver 31 (that is, the positional deviation amount (y1, z 1)) is transformed from an arbitrary position of the tunnel excavator 5 to obtain a tunnel excavator.
  • the position of the tunnel excavator 5 can be measured by taking into account the distance data L 1 and L 2 by the lightwave distance meter 24 and the traverse survey by the included angle.
  • the points to be considered in the above calculation are as follows.
  • the irradiation direction of the laser beam from the laser oscillator 21 is known in advance by the elevation angle ⁇ fl and the horizontal angle ⁇ s i of the laser oscillation unit base 2. Therefore, the laser beam does not need to be received perpendicular to the first light receiving surface 31a of the light receiver 31.
  • the light receiver 31 can detect the incident angle, the laser beam may be received perpendicular to the first light receiving surface 31a of the light receiver 31.
  • the elevation angle 0 f 2 and the horizontal angle 0 s2 of the light receiving unit gantry 3 may be automatically controlled by the controller 4 described in detail later.
  • the controller 4 is provided with a light receiver 3 for the tunnel machine 5.
  • the mounting position, the difference between the rotation reference when the receiver base 3 rotates horizontally and the excavation direction (jowing angle), and the pitching angle of the tunnel excavator 5 with respect to the rotation reference when the receiver base 3 descends Differences, etc., are input and stored in advance as information that can be known at the time of manufacturing, so that they can be used as appropriate.
  • controller 4 in the first embodiment performs the following control.
  • the elevation angle Q ⁇ and the horizontal angle 0 s i of the laser oscillation unit base 2 and the elevation angle ⁇ f 2 and the horizontal angle ⁇ s2 of the light receiving unit base 3 are controlled, respectively.
  • each of these controlled horizontal elevation angles ⁇ fl, ⁇ s ⁇ f 2,0 s2, the displacement amount and incident angle of the received laser light from the light receiver 31, and the light receiver 3 1 from the inclinometer 33 The position and attitude of the tunnel excavator 5 are calculated from the inclination of the tunnel excavator 5 and the distance data L 1 and L 2 from the lightwave distance meter 24 to the first and second reflecting prisms 1 and 32 and the included angle. calculate.
  • the elevation angle ⁇ fl and the horizontal angle ⁇ si of the laser oscillation unit base 2 are set to angles for the backsight.
  • the self-position of the laser oscillator 21 viewed from the first reflecting prism 1 is detected based on the horizontal swing angle and the distance data L 1 at the time of, and the calculated values of the position and orientation of the tunnel excavator 5 are corrected. Verify presence and correct any corrections.
  • the elevation angle ⁇ ⁇ and the horizontal angle 0 s i of the laser oscillation unit gantry 2 and the elevation angle ⁇ f2 and the horizontal angle 0 s2 of the light receiving unit gantry 3 are set to certain angles. Thereafter, when the incident position and the incident angle of the laser beam, which should be the detection data of the light receiver 31, cannot be obtained, the setting of the elevation angle 0 ° and the horizontal angle 0 si of the laser oscillation unit base 2 is adjusted. At the same time, readjustment of the elevation angle ⁇ f2 and the horizontal angle 0 s2 of the light receiving unit gantry 3 is readjusted so that the light receiving unit 31 can obtain the data of the human projection position and the incident angle.
  • the elevation angle ⁇ fl and the horizontal angle s s i of the laser oscillation unit gantry 2 and the elevation angle 2 f 2 and the horizontal angle ⁇ s2 of the light receiving unit gantry 3 are set to certain angles. Thereafter, when the first reflecting prism 1 cannot be viewed backward, the settings of the elevation angle 0 il and the horizontal angle 0 s i of the laser oscillation unit base 2 are readjusted.
  • the laser beam from the laser oscillator 21 is appropriately projected on the first light receiving surface 31 a of the receiver 31 and the first reflection prism 1, the laser beam from the lightwave When the light is not projected on the first and second reflection prisms 1 and 32, the setting of the elevation angle 0 fl and the horizontal angle 0 si of the laser oscillation unit base 2 is also adjusted at this time.
  • the automation of the following operation by the controller 4 includes the mounting position of the light receiver 31 on the tunnel excavator 5, the rotation reference when the light receiver base 3 is horizontally rotated, and the drilling direction. Angle) and the pitching angle of the tunnel excavator 5 with respect to the rotation reference when the light receiving unit base 3 is raised. It is also necessary to preliminarily input and accumulate various kinds of data known at the time of manufacturing, and to use the data appropriately in calculations.
  • Step 100 The first reflecting prism 1 is installed behind the tunnel machine 5 so as to face the laser oscillating unit base 2 S, and the laser is located at the intermediate position S between the tunnel machine 5 and the first reflecting prism 1. Oscillator base 2 is installed. Both installation positions shall be positions that have been known by precision surveying or surveying during construction.
  • Step 200 Next, the elevation horizontal angles 0 fl and 0 sl of the laser oscillation unit base 2 are set.
  • the details are as follows.
  • the positions of the first reflection prism 1 and the laser oscillation unit base 2 are known as described above. Therefore, the reference rotation angle in the horizontal direction can be predetermined in the direction of the tunnel excavator 5, for example.
  • the controller 4 rotates the laser oscillation unit base 2 in the horizontal direction in which the laser oscillation unit is raised, and causes the laser oscillator 21 to face the first reflection prism 1.
  • the laser oscillator 21 is oscillated, and the reflected laser light from the first reflecting prism 1 is detected by the photodetector 23. As described earlier with reference to FIGS.
  • the control unit 4 admires the horizontal elevation angles 0 fl and 0 sl of the laser oscillation unit base 2.
  • the control unit 4 may read the measured values. Note that, as described above, the elevation horizontal movement and collimation up to the collimation are not automatically performed by the controller 4, but are provided on the laser oscillation unit base 2 or in the vicinity thereof and connected to the controller 4.
  • the controller may automatically operate based on a command from the controller 4. Needless to say, the operation up to the collimation and the collimation may be manually performed, and the horizontal elevation angles 0 ° and 0 si obtained as the operation results may be separately input to the controller 4.
  • Step 300 the lightwave distance meter 24 is used to move the laser 1 Measure the distance L1 to the reflecting prism 1.
  • the controller 4 inputs and stores the distance L1.
  • the output from the lightwave distance meter 24 is output ( That is, the distance L 1) cannot be obtained.
  • the elevation horizontal angles 0 fl and 0 si are readjusted so that the output can be obtained from the lightwave distance meter 24. Note that the elevation horizontal angles 0 fl and 0 sl required for this correction differ depending on the positional relationship between the measurement points.
  • step 2000 As 0, it is executed between step 2000 and step 300.
  • the setting in steps 100 to 300 is based on the premise that the respective positions of the first reflecting prism 1 and the laser oscillating unit base 2 are known in advance. However, if the reference of the horizontal angle of the laser oscillator base 2 is clear in advance, it is not necessary to know the position of the laser oscillator base 2 in advance. Also, behind the tunnel excavator 5, there are no attached machines, etc., and the space available for surveying is wide. Therefore, a plurality of first reflecting prisms 1 may be arranged. At this time, the position of the laser oscillation unit gantry 2 can be obtained by a surveying means such as the rear resection method, and at the same time, the reference of the horizontal angle can be obtained. Therefore, it is not necessary to know the position of the laser oscillation unit base 2 and the reference of the horizontal angle in advance. In this case, steps 100 to 300 may be repeated by the number of the first reflecting prisms 1 arranged by a loop (not shown).
  • Step 400 Next, the reference of the position and the horizontal angle of the laser oscillation unit base 2 is reviewed.
  • the controller 4 calculates the position SI of the laser oscillation unit base 2 from the above described elevation horizontal angles 0 fl and 0 sl and the distance L 1, and resets the reference of the horizontal angle. Then, if there is a difference between the position of the laser oscillation unit base 2 and the reference of the horizontal angle which the controller 4 has accumulated, it is corrected.
  • the positions of the first reflecting prism 1 and the laser oscillating unit base 2 are known in advance by another means. Therefore, this step 400 is omitted or simply redefined with reference to the horizontal angle 0 si of the laser oscillation unit base 2 obtained in step 200.
  • this step 400 is to collimate the first reflecting prism 1 at an appropriate time during the excavation of the tunnel excavator 5 and It is time to verify the reference of the position and the horizontal angle of the laser oscillation unit base 2 by moving forward. If the reference of the position or the horizontal angle of the laser oscillation unit base 2 is not known in advance as described above, this step 400 is effective also in the processing in the installation procedure of the apparatus. Also, there is no problem even if a process such as a back intersection method is performed in this step 400 to calculate the position of the laser oscillation unit base 2.
  • the controller 4 stores the data used in the present step 400, and can be executed in a step 600 of calculating the position of the tunnel excavator 5 described later.
  • Step 500 Next, the shape of the laser oscillation unit base 2 and the light receiving unit base 3 is adjusted. The details are as follows.
  • Step 5 10 The direction of the laser oscillator 21 with respect to the light receiver 3 1 is adjusted by the horizontal elevation angles 0 fl and 0 si of the laser oscillation unit base 2. Further, the elevation horizontal angles ⁇ f 2 and ⁇ s2 of the light receiving unit base 3 are adjusted so that the light receiving surface of the light receiver 31 can receive the laser beam.
  • Step 5 20 Perform Step 5 10 to determine whether the photodetector 31 is receiving light, or whether the laser beam hits the second reflecting prism 32 and the reflected light is detected by the photodetector 23.
  • the controller 4 reads and judges each data.
  • Step 5 21 When the light receiver 31 does not receive light at the above step 5 20 or when the laser light hits the second reflecting prism 32 and the reflected light cannot be detected by the light detector 23. Then, the light receiving unit base 3 is fixed (that is, the positions of the light receiving unit 31 and the second reflecting prism 32 are fixed), and the laser oscillation unit base 2 is turned horizontally by the controller 4 in a procedure previously stored. The light is received by the light receiver 31 or the reflected light from the second reflection prism 32 is detected by the light detector 23. If the light from the laser oscillator 21 is reflected by the second reflecting prism 32 and detected by the photodetector 23, the geometrical difference between the installation of the light receiving device 31 and the second reflecting prism 32 will be described.
  • the elevation horizontal angle ⁇ i ⁇ si of the laser oscillation unit base 2 is finely adjusted again so that the light receiver 31 can receive the light of the laser oscillator 21.
  • the light receiver 31 simply receives light, and the incident angle may not be in the detection range of the light receiver 31.
  • Step 5 2 2 Judge that the search procedure of Step 5 2 1 has been completed normally. You. If the process does not end normally, the direction in which the light receiving surface of the light receiver 31 faces the laser oscillator 21 and is completely invisible even though the position of the light receiver base 3 has been set in this step 500. And so on.
  • Step 5300 Fix the laser oscillation base 2 so that the incident angle of the laser beam falls within the detection range of the receiver 31 (that is, fix the posture of the laser oscillator 21 and the lightwave distance meter 24).
  • the controller 4 rotates the light receiving unit base 3 in a procedure stored in advance so that the elevation horizontal angle 0 f 2 and ⁇ s2 are rotated within a range where light can be received, so that the incident angle of light can be detected.
  • Step 540 According to the procedure previously stored in the controller 4, it is determined whether the incident angle is within the detectable range of the light receiver 31 by incorporating the data into the data.
  • Step 5 4 1 If the angle of incidence does not fall within the detection range of the receiver 31 after performing Step 5 30, the attitude of the receiver base 3 needs to be changed further so that it falls within the range of detection of the angle of incidence. There is. However, if the attitude of the light receiving unit base 3 is significantly changed, the laser light may not be applied to the light receiving unit 31. For example, the following operation is performed. When searching for the detectable range of the incident angle near the position where the light receiving surface of the receiver 31 faces downward, first fine-adjust the elevation horizontal angles 0 fl and 0 sl of the laser oscillation unit base 2 so that the laser light Make sure that light is received at the lower position of the receiver 31 (the negative side of the Z axis when referring to Fig. 5). Return to 0, and search for the attitude of the receiver 31 that falls within the incident angle detection range.
  • Step 542 The procedure for searching for the attitude of the light receiver 31 is also stored in the controller 4 in advance. In this procedure, a posture range to be searched is determined in advance, and it is determined whether or not an area to be searched remains.
  • the elevation horizontal angles 0 fl and 0 sl of the laser oscillation unit base 2 are finely adjusted so that the laser beam strikes an arbitrary light receiving position determined by the light receiver 31.
  • the determined arbitrary position can be a position away from the second reflecting prism 32 by a distance S between the equipment of the laser oscillator 21 and the lightwave distance meter 24.
  • 31 can measure the incident position S and the incident angle of light, and at the same time, can measure the distance L 2 between the lightwave distance meter 24 and the second reflecting prism 32.
  • the position obtained by correcting the rolling angle of the light receiver 31 measured by the inclinometer 33 may be the determined light reception position.
  • the incident angle of light is monitored, and when the incident angle is in a range that can be detected by the light receiver 31, the processing is stopped, and the process proceeds to the next step 560.
  • Step 560 Next, the attitude of the photodetector 31 is adjusted with reference to the incident angle at that time so that the incident angle is in an arbitrarily determined range. , ⁇ s2 is finely adjusted. For example, the attitude is adjusted by setting the incident angle perpendicular to the light receiving surface. However, also in this step 560, the incident position is monitored, and the operation is terminated when there is a light receiving range in the light receiver 31.
  • Step 570 In steps 550 and 560, it is determined whether the incident position and the incident angle of the laser light received by the light receiver 31 are the desired values. If not, the process returns to step 550 as shown in FIG. 9 and repeats to the desired value. It is to be noted that, in the determination 570, a determination is made that a range is provided for the determined incident position P and the incident angle, and that it is only necessary that the range be within the range.
  • the laser oscillation unit gantry 2 and the light receiving unit gantry 3 can be formed almost directly facing each other without any human intervention, so that automation is easy.
  • the controller 4 sends an error signal to a display (not shown) or the like.
  • a display not shown
  • one or both of the positions of the laser oscillation unit gantry 2 and the light-receiving unit gantry 3 may be readjusted manually, and the process may return to the next step or step 5 10 where an error has occurred.
  • the posture data of one or both of the laser oscillation unit gantry 2 and the light receiving unit gantry 3 manually adjusted may be input to the control unit 4.
  • step 500 is performed when the position of the tunnel excavator 5 is approximately clear (for example, while the tunnel excavator 5 is excavating, the first reflecting prism 1 is collimated, and the tunnel excavator 5 is again 5) collimate the light receiving unit base 3 in order to measure the position and orientation, and if it is unclear (the first installation of the device or the laser oscillation unit base 2) In case of relocation (replacement, etc.), the positions of the laser oscillating unit base 2 and the light receiving unit base 3 are manually set, the installation values are input to the controller 4, and the processing of step 500 is performed. Alternatively, if the adjustment of the posture is accurate, the processing of step 500 may be skipped.
  • Step 600 the controller 4 sets the elevation horizontal angles ⁇ fl and ⁇ sl of the laser oscillation unit base 2, the elevation horizontal angles ⁇ f 2 and ⁇ s2 of the light receiving unit base 3, and the optical distance meter 24.
  • the distance L2 from the reflection prism 32, the incident position and angle of incidence detected by the receiver 31 and the horizontal level S of the receiver 31 detected by the inclinometer 33 are read as data, and tunnel excavation is performed. Calculate the position and attitude of machine 5.
  • the incident angle detected by the light receiver 3 1 and the horizontal level S of the light receiver 3 1 measured by the inclinometer 3 3 and the elevation horizontal angle ⁇ f 2, ⁇ s2 of the light receiving unit base 3 indicate that the tunnel excavator 5 ⁇ ⁇ , s s U
  • the horizontal angle of elevation of the laser oscillation unit base 2 ⁇ ⁇ , ⁇ s U Receives light from the distance L 2 between the lightwave distance meter 24 and the second reflecting prism 32 and the incident position detected by the receiver 31
  • the position of the device 31 or the second reflecting prism 32 is calculated. However, since this position is based on the laser oscillation unit base 2, the position from the first reflecting prism 1 can be calculated by using the position of the laser oscillation unit base 2 obtained in step 400. .
  • the position of the tunnel excavator 5 is at the tip, but if the position of the light receiver 31 or the second reflecting prism 32 is obtained and the attitude of the tunnel excavator 5 is determined, the position coordinates Can be easily converted.
  • the obtained attitude of the tunnel excavator 5 is calculated based on the pitching angle and the rolling angle based on the gravity, but the bowing angle is based on the horizontal angle of the laser beam from the laser oscillator 21.
  • the angle is calculated.
  • the horizontal angle reference of the laser oscillator 21 is based on the angle facing the first reflecting prism 1 installed at the rear, so when it is packed, the direction of the line connecting the laser oscillator base 2 and the first reflecting prism 1 is changed.
  • joing angle of the tunnel machine 5 is calculated based on the standard. Therefore, if the direction of the line connecting the laser oscillation unit base 2 and the first reflection prism 1 is associated with the direction, the pointing angle of the tunnel excavator 5 can be expressed as the direction of excavation.
  • step 5500 i.e. Then, the process is passed to step 500), and the measurement of the position of the tunnel excavator 5 is repeated (loop 701).
  • the tunneling machine 5 has a first reflecting prism 1 at the rear every 50 cm.
  • the control is passed to step 200 (loop 702).
  • the excavation of the tunnel excavator 5 proceeds and the laser oscillation unit base 2 is relocated (that is, when the laser oscillating unit base 2 is rearranged), the position of the laser oscillation unit gantry 2 after the relocation is easily set. The position and orientation of the tunnel excavator 5 are stored, and the measurement process is completed.
  • the routine of the installation procedure (steps 100 to 500). 0) is performed first, and the portion of the position and orientation measurement method during excavation of the tunnel excavator 5 is a routine (steps 200 to 700).
  • the first embodiment has the following advantages.
  • the receiver 31 Since the receiver 31 is mounted on a base 7 that can be turned upside down and horizontally rotated, even when making sharp turns, the receiver can be rotated horizontally to limit the incident angle of the receiver 31 to the limited range.
  • the position and attitude of the tunnel excavator can be measured with high accuracy even in the case of sharply curved construction, a construction example of which has occurred in recent years, a construction in which the construction gradient changes significantly, or a construction in which the height changes halfway.
  • the laser oscillating unit base 2 is provided with a single first reflecting prism 1 at the rear, a second reflecting prism 32 at the front, and a light receiving surface of a light receiver 31 disposed close to the second reflecting prism 32. It can be installed freely wherever you can. That is, the degree of freedom in setting the collimation space is increased. For example, when collimation becomes impossible due to the excavation of the tunnel excavator 5, a sharp turn, or a gradient, the laser oscillator base 2 can be freely collimated. Thus, the position and orientation of the tunnel machine 5 can be measured with high accuracy.
  • the receiver 31 receives only one narrow light beam, and the amount of misalignment between the light receiving center position S of the light receiving surface and the laser light receiving position S and the angle of incidence relative to the normal direction of the light receiving surface That can be measured simultaneously. For this reason, securing the optical path, which has conventionally been a problem when measuring position and orientation using light, becomes easier.
  • the position and attitude of the tunnel excavator 5 can be increased even in a sharply curved construction, a construction in which the construction gradient changes significantly, or a construction in which the height changes halfway. It is the cause that can be measured accurately.
  • the light receiving unit gantry 3 is an example in which the light receiving unit gantry 3 of the first embodiment can rotate only in the horizontal direction, while the light receiving unit gantry 3 can rotate in the horizontal direction. Others are the same as in the first embodiment. In addition, as shown in FIG.
  • the mount of the laser oscillation unit mount 2 of the present embodiment has a horizontal rotation stage formed into a U-shaped block, a horizontal axis provided between the U-shapes, and around this horizontal axis.
  • a laser oscillator 21, a beam splitter 22, a photodetector 23, and a lightwave distance meter 24 are fixedly mounted so as to be able to rotate vertically.
  • Such a second embodiment is effective for measuring the position and orientation of the tunnel excavator 1 when the construction of the tunnel excavator 5 with a small rolling is performed or the operation of the tunnel excavator 5 is reduced.
  • the latter rolling operation in which the rolling is reduced can be exemplified by an operation in which the tunnel excavator 1 is reverse-rotated in order to prevent the occurrence of the rolling where the rolling is likely to be large.
  • Step 5 3 OA Adjust the attitude of the laser oscillation unit base 2 so that the lightwave distance meter 24 can collimate the reflection brain 32 from the light receiving position information of the light receiver 3 1, and Measure the distance L 2 between the reflecting prisms.
  • Step 54OA The controller 4 or another computer based on the position of the laser oscillator base 2 and the distance L2 between the lightwave distance meter 24 and the reflecting prism measured in step 53a.
  • the current position and orientation of the tunnel excavator 5 are estimated with reference to the construction plan line data of the tunnel excavator 5 above.
  • Step 55OA Determine the attitude of the light receiving unit base 3 from the estimated position and attitude, and adjust at least the horizontal angle. At this time, if the position of the incident position can be detected by the light receiver 31, the posture of the laser oscillation base 2 is left as it is, and if it is deviated, the posture is set to the horizontal angle of elevation held before entering step 5300 A. Readjust.
  • Step 56OA From this, it is determined whether the incident angle has been detected by the light receiver 31 "" "3".
  • Step 57 O A If the incident angle is not within the detectable range, fix the posture of the laser oscillation unit base and adjust the posture of the receiver 31. This procedure is stored in the controller 4 in advance.
  • Step 580 A It is determined whether or not Step 570 A has been completed normally.
  • Step 5 2 3 Step 5 2 3 can be used as described above.
  • step 53 of the routine shown in FIG. It may be set to 0.
  • the present invention can be applied to suddenly curved construction where construction It is useful as a method and apparatus for measuring the position and orientation of a tunnel excavator that can measure the position S and attitude of the tunnel excavator with high accuracy even in construction where the height changes halfway.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Excavating Of Shafts Or Tunnels (AREA)

Description

明 細 トンネル掘進機の位置姿勢計測方法及び装置 技 術 分 野
本発明は、 ト ンネル掘進機の位置姿勢計測方法及び装置に関する。 背 景 技 術
卜ンネル掘進機の位置及び姿勢の計測は、 例えばトンネル掘進機を的確に方向 修正したり、 トンネル掘進機が後工程で組立てたセグメ ン 卜との干渉を回避する 上で重要な技術である。 特に地下構造物や既存ト ンネルの多い地域では、 掘進線 形が複雑化し急曲線化するため、 また下水道施工等では、 施工線形の高精度化が 要求されるため、 より高度な位 S姿勢計測技術が要請される。 そしてト ンネル掘 進機の高速掘進化に伴い、 人手による位置姿勢計測では対応し辛く、 位置姿勢計 測技術の自動化も要請される。 かかる要請に対し従来、 種々の トンネル掘進機の 位置姿勢計測装置及び方法が提案されている。
例えば重力を利用した傾斜計や地球の自転を利用した方位ジャィ口を用いた 卜 ンネル掘進機の位置及び姿勢測定がある。 即ち、 方位ジャイ ロによる ト ンネル掘 進機の方位と傾斜計の示す角とを基に測定間の掘進距離 (通常、 ト ンネル掘進機 のジャ ッキス トローク長) を穂分し、 これにより トンネル掘進機の位置及び姿勢 を知る。 尚、 ト ンネル掘進機の方位は、 ト ンネル掘進機の向きを水平面に投影し た方向と真北方向とのなす角であってョーィング角である。 また傾斜計の示す角 は、 トンネル掘進機の向きと水平面のなす角度であるピッチング角及び掘進方向 を軸とする角度成分なるローリ ング角である。 ところがこの場合、 ト ンネル掘進 機が横滑り しながら掘進することがあるため、 真の掘進方向に沿った掘進距離の 計測が実際上困難である。
また例えば日本特開平 6 - 1 1 3 4 4号公報では、 自動追尾式測距測角儀によ り測量基準となる 3点のターゲッ 卜を設置した移動体の移動前のターゲッ 卜の 3 次元座標位置を求め、 次いで移動後のターゲッ 卜の 3次元座標位置を求めること によって移動体の位置を検出する。 またこれと共に、 移動前後の 3点のターゲッ 卜の座標変化量から移動体の傾斜量 (即ち、 姿勢) を検出する移動体の位置姿勢 測量方法が開示されている。 ところがこの技術では、 傾斜量の精度が位置測定精 度と 3点のターゲッ 卜の配置面積とで決定されるという問題がある。 具体的には 、 回転角度精度を例えば 3分で測定しょうとしたとき、 長さに対する精度は 1 Z 1 0 0 0以上必要である。 例えば 1 m m精度の測量器を用いたとすれば、 相互間 隔が 1 mであるようなターゲッ 卜配置が必要である。 ところがトンネル掘進機の 内部はジャッキゃ泥排送管等が多数煩雑に設置されている。 このためこのような 配置間隔のターゲッ トを複数配蠹し、 また各ターゲッ 卜に対して視準できる空間 を確保することは困難である。 特により大きな視準空間を必要とする曲進施工で は実際使用が困難である。
また例えば日本特公平 4一 7 4 6 4 9号公報には、 首振り可能な架台上に一体 的に保持した、 同じ向きのレーザ発振器及び光測距器と、 架台から離間した移動 体上に設けた位置検出用ターゲッ 卜及び測距用ターゲッ 卜とからなる自動測 fi装 置及び測量方法が開示されている。 位置検出用ターゲッ 卜はスク リ一ン及び力メ ラからなり、 レーザ発振器からのレーザ光をスク リ一ンで受光し、 受光スポッ ト の位置座標をカメラで検出するものである。 測距用ターゲッ 卜は光測距器からの 光を光測距器に回帰反射させるものである。 即ちレーザ発振器の光をスク リーン に垂直に当たるように、 ハウジングを回転させるとの測量方法が開示されている 。 ところがこの技術では、 スク リ ーンをレーザ発振器に対して垂直に向ける方法 の記載が無い。 このため直線施工部と曲線施工部との複合施工の場合や、 曲率が 掘進途中で変化したり、 また掘進結果として若干蛇行したような場合、 自動追従 が困難である。 従って人手による頻繁な調整が必要であり、 そのため時間的効率 が低下する実用上の問題が生じる。 さらになお、 この技術は位匾検出技術であり 、 姿勢検出については何ら記載してない。 即ち、 従来技術によれば、 視準空間の確保が困難なターゲッ 卜が必要であった り、 光の入射角に制限があるため自動追従しにく い等の問題があり、 この結果、 急曲進施工や施工勾配の大きく変化する施工や高さが途中で変化する施工では、 トンネル掘進機の位置及び姿勢を高精度に計測でき難いという問題がある。 発 明 の 開 示
本発明は、 かかる従来技術の問題点を解消するためになされたもので、 近年施 工事例が生じた急曲進施工や、 施工勾配の大きく変化する施工や、 高さが途中で 変化する施工でも、 トンネル掘進機の位置及び姿勢を高精度に計測できる 卜ンネ ル掘進機の位置姿勢計測装置を提供することを目的とする。
本発明に係る ト ンネル掘進機の位置姿勢計測方法は、 トラバース測量に基づく トンネル掘進機の位 S姿勢計測方法において、
卜ンネル掘進機の後方に設けた第 2測点から トンネル掘進機に設けた第 3測点を 視準する際に、 第 3測点の任意点を第 2測点から視準し、 かつ第 3測点から第 2 測点を臨む角が所定角となるようにし、
第 2測点から第 3測点を臨む角度及び距離と、 任意点の位置とを用いて第 3測点 の位置を算出し、
第 3測点から第 2測点を臨む角度と、 第 3測点の水平レベル或いはトンネル掘進 機の水平レベルとから トンネル掘進機の姿勢を算出し、
トンネル掘進機の位置姿勢計測中の所望時に、 第 2測点からさらに後方に設けた 既知位置の第 1測点を視準することにより第 2測点の位置を算出し、
以上により前記卜ンネル掘進機の位置を第 1測点から算出することを特徴と して いる。
かかる構成により、 例えばト ンネル掘進機の後方に設けた第 2測点から ト ンネ ル掘進機の第 3測点を視準する際に、 第 3測点の任意点を第 2測点から視準し、 かつ第 3測点から第 2測点を臨む角度が所定角になるよう している。 このため、 第 2測点に設けた機器 (即ち測量器) と第 3測点に設けた機器 (即ち測量器) と を互いに正対可能となる。 そして第 2測点から第 3測点を臨む角度及び距離と任 意点の位 fiとを用いて、 第 3測点の位置を算出し、 第 3測点から第 2測点を臨む 角度と水平レベル或いは卜ンネル掘進機 5の水平レベルから ト ンネル掘進機の姿 勢を算出することにより、 第 2測点を位置基準として、 第 3測点の位置が分かり 、 第 2測点から第 3測点 Cを臨む水平角を基準に トンネル掘進機の水平角と して の掘進方向と水平レベルの姿勢が分かる。 そしてトンネル掘進機の測量中の任意 時に、 第 2測点からさらに後方に設けた既知位置の第 1測点を視準することによ り、 第 2測点の位置を算出し、 第 1測点と第 3測点が互いに見通せる位置関係で なく とも、 ト ンネル掘進機の位置を第 1測点から算出している。 この桔果、 曲線 施工に対応している。
—方、 本発明に係る ト ンネル掘進機の位 S姿勢計測装 Sは、 ト ンネル掘進機の 位置及び姿勢を計測する トンネル掘進機の位 S姿勢計測装 Sにおいて、 レーザ発振器からのレーザ光を受光して入射位 及び入射角を検出する受光器と 、 第 2反射プリズムとを少なく とも水平方向へ一体的に回転自在に備えると共に 、 受光器の水平レベル或いはトンネル掘進機の水平レベルを検出する傾斜計を備 えて卜ンネル掘進機に設けた第 3測点と、
この第 3測点を前視したときほぼ正対可能となるように、 かつ第 1反射プリズム を備えた第 1測点を後方に設けたときには第 1測点を後視したときほぼ正対可能 となるように、 レーザ発振器及び光波距離計を俯仰方向及び水平方向へ一体的に 回転自在に備えると共に、 第 1及び第 2反射プリズムで反射したレーザ発振器か らのレーザ光を受光する光検出器を備えて卜ンネル掘進機の後方に設けた第 2測 点と、
レーザ発振器及び光波距離計の俯仰方向及び水平方向への回転角度を調整すると 共に、 レーザ発振器及び光波距離計の俯仰方向及び水平方向への回転角度を受け 、 かつ受光器及び第 2反射プリズムの少なく とも水平方向への回転角度と、 受光 器で検出した光の入射位置及び入射角と、 光波距離計で検出した第 1及び第 2反 射プリズムまでの夫々の距離と、 水平レベル或いは水平レベルとを受けてトンネ ル掘進機の位置及び姿勢を算出する制御器とを有することを特徴と している。 かかる構成により、 ト ンネル掘進機の後方の第 2測点に、 レーザ発振器及び光 波距離計を俯仰方向及び水平方向へ回転自在に設ける。 また 卜ンネル掘進機の第 3測点に、 レーザ発振器からのレーザ光を受光してその入射位置及び入射角を検 出する受光器と、 第 2反射プリズムとを少なく とも水平方向へ回転自在に設けて いる。 このため制御器はレーザ発振器及び光波距離計の俯仰角及び水平角を調整 することにより、 受光器での入射位置を自在に変更できる。 また制御器は受光器 及び第 2反射プリズムが少なく とも水平方向に回転自在に取り付けた架台の角度 を調整することにより、 受光器での入射角 (逆に見れば、 第 3測点から第 2測点 を臨む角) を所定角にできる。 つまり レーザ発振器及び受光器は、 ト ンネル掘進 機が掘進中でもほぼ正対した配置を制御器からの指令で成し得る。 そして光波距 雜計は、 第 2反射プリズム及び第 1測点に設けた第 1反射プリズムとの間の距離 を計測する。 レーザ発振器と光波距離計との俯仰角及び水平角、 光波距離計で計 測された距離、 さらに受光器で検出された光の入射位置を加味することにより、 第 2測点の位 Sから第 3測点の位置を算出することができる。
ところで受光器と ト ンネル掘進機とは回転による変換によって互いに関係づけ けることができる。 従ってト ンネル掘進機の水平レベルを検出する位置に傾斜計 を設けて受光器の姿勢を演算できる。 そこで受光器の水平レベル或いはト ンネル 掘進機の水平レベルを検出する傾斜計 3 3を設けた。 そして制御器は受光器 3 1 が検出する光の入射角と傾斜計の信号を銃込み、 受光器 3 1のローリ ングにより 生じる誤差を補正し、 受光器が検出する光の入射角を絶対水平レベルを基準にョ ーィング成分とピッチング角成分に演算する。 さらに制御器は受光器の少なく と も水平方向への回転自在の取り付けられた角度を読込み、 回転変換を行うことに より ト ンネル掘進機の姿勢を演算する。 この姿勢には、 光の人射角の水平成分を 基準と した トンネル掘進機の掘進方向のョーィング角が含めまれる。
また、 別な手段 (通常の測量) により位置を定めた、 第 2測点のさらに後方の 第 1測点に第 1反射プリズムを設置し、 レーザ発振器が第 1反射プリズムを視準 することにより、 視準した俯仰角、 水平角及び光波距離計が測定した距離を基に 第 2測点の位 Sを既知位置の第 1測点より求めることが可能な構成となっている 。 このとき、 レーザ発振器が反射プリズムを視準しているかどうかを、 反射プリ ズムから戻ってく る光を受光する光検出器をレーザ発振器と共に設けた構成にし ている。 図面の簡単な説明
図 1 は本発明の第 1実施例の要素配置図、
図 2は第 1実施例における架台の斜視図、
図 3は第 1実施例におけるレーザ発振部の要素配置図、
図 4は第 1実施例における受光部の要素配置図、
図 5 Aは第 1実施例における第 1例なる受光器の要素配置の側面図、
図 5 Bは第 1実施例における第 1例なる受光器の要素配 Sの斜視図、
図 6 Aは第 1実施例における受光器の他の要素配 gの第 2例の側面図、 図 6 Bは第 1実施例における受光器の他の要素の要の第 3例の側面図、 図 7 Aは第 1実施例における反射プリズムの断面図、
図 7 Bは第 1実施例における反射プリ ズムの斜視図、
図 8は第 1実施例の設置及び位置姿勢計測の手順を示すフローチヤ一ト、 図 9はレーザ発振器と受光器との相対回転を示す図、
図 1 0は本発明の第 2実施例の要素配 S図、
図 1 1 は図 8の一部を変更したフローチャー トである。 発明を実施するための最良の形態
本発明に係る トンネル掘進機の位置姿勢計測方法及び装置の好ましい実施例を 添付図面に従って以下に詳述する。
第 1実施例は、 図 1に示すように、 第 1反射プリズム 1を卜ンネル掘進機 5の 後方の既知位置 (即ち、 第 1測点 A ) に、 レーザ発振部架台 2を第 1反射プリズ ム 1 と トンネル掘進機 5 との間 (即ち、 第 2測点 B ) に、 受光部架台 3をトンネ ル掘進機 5の既知位置 (即ち、 第 3測点 C ) に、 制御器 4をト ンネル 6の立坑内 等の任意位置に配置して構成される。 詳しく は次の通りである。
レーザ発振部架台 2及び受光部架台 3はいずれも機器取付台 7上に、 詳細を後 述する各種機器を設けて構成される。 先ず図 2を参照して機器取付台 7を説明す る。 機器取付台 7は、 直交する 2軸を備え、 例えばステップモータ 7 1、 7 2に よって機器取付面 7 3を各軸回りに俯仰方向及び水平方向へ回転自在とした。 機器取付面 7 3上には、 レーザ発振部架台 2であれば、 図 3に示すように、 レ 一ザ発振器 2 1、 ビームスプリ ッタ 2 2、 光検出器 2 3及び光波距離計 4等の 各種機器が配置されている。 尚、 ここでレーザ発振器 2 1及び光波距離計 2 4 と は夫々の光軸がほぼ同一方向に向けて視準されるように配置してある。 他方、 受 光部架台 3であれば、 図 4に示すように、 受光器 3 1及び第 2反射プリズム 3 2 等の各種機器が配置されている。 尚、 ここで受光器 3 1及び第 2反射プリズム 3 2は夫々の受光面が同一方向を向くように配置してある。 従って受光器 3 1 と第 2反射プリズム 3 2とを俯仰方向及び水平方向へ回転させることにより、 前記レ 一ザ発振器 2 1及び光波距離計 2 4に対してほぼ正対可能となっている。 またこ の受光部架台 3には、 図 1 に示すように、 受光器 3 1の水平レベル S (即ち、 ピ ツチング角 0 f 2及びローリ ング角 0 s2) を検出する傾斜計 3 3 も配置してある。 以下、 各機器の詳細を順を追って説明する。
レーザ発振器 2 1 は、 受光器 3 1 にレーザ光を投射して受光器 3 1から受光位 置及び入射角度を得るための光源であると共に、 第 1反射プリズム 1を後視した ときの光源でもある。 レーザ光は、 長距離でもビーム径が広がり難いため、 受光 器 3 1 での受光位置や第 1及び第 2反射プリズム 1、 2 3への視準を小さなスポ ッ ト径で行える。 このため詳細を後述するように、 より高精度な位置測定、 水平 角測定及び姿勢角測定を行うことができる。
尚、 レーザ発振器 2 1 は、 本例では 1個であるが、 受光器 3 1や第 1及び第 2 反射プリズム 1、 3 2の特性 (例えば使用波長等との兼ね合い) から見て個別に 備えた方がよいときは複数配置してもよい。 また光波距離計 2 4に内蔵する光源 は、 本例ではレーザ発振器であるが、 L E D等であっても光学系により光放射の ビーム径が広がり難いときは L E D等をレーザ発振器に代替えさせてよい。 また 光波距離計 2 4は視準誤差を防ぐため第 1及び第 2反射プリズム 1、 3 2に対し て中心採知機能を備えている必要がある。
ビームスプリ ッタ 2 2は、 第 2測点 Bから第 1反射プリズム 1を後視したとき 、 また第 2反射プリズム 3 2を前視したとき、 レーザ発振器 2 1からのレーザ光 を透過し、 その後、 第 1反射プリズム 1、 またび第 2反射プリズム 3 2で回帰反 射したレーザ光を受光して光路を光検出器 2 3へと変更するものである。
光検出器 2 3は、 第 1及び第 2反射プリズム 1、 3 2からの反射レーザ光を受 光する。 反射プリズムは、 一般的に、 図 7 Aに示すように、 入射光に対し平行に 反射光を返す特性、 また図 7 Bに示すように、 プリズム中心からずれた位置に入 射したプリズム径より小さな径の入射光に対しプリズム中心に対象な位置から光 を返す特性を有している。 このため光検出器 2 3は、 プリズム中心を探知するこ とができるので視準誤差をなくすことができる。 尚、 光検出器 2 3は、 照射レー ザ光と反射レーザ光とのズレを検出できるように、 平面状に多数配列する。 尚、 この場合、 後述する受光器 3 1等のように、 光の入射位置を検出できるものを用 いてもよい。 また前記ズレをそもそもゼロにするように、 レーザ発振器 2 1の俯 仰角や水平角を制御して第 1及び第 2反射プリズム 1、 3 2の中心を探知しても よい。 勿論、 光検出器 2 3 とレーザ発振器 2 1 との間に、 前記ズレをそもそもゼ 口にするような他の有効な光学系を介在させてもよい。
光波距離計 2 4は、 レーザ発振部架台 2から第 1反射プリズム 1 までの後視距 雜 L 1及び第 2反射プリズム 3 2までの前視距離 L 2を夫々測定する。
受光器 3 1 は、 細い光ビーム (本では、 レーザ発振器 2 1からのレーザ光) が 入射することで、 受光面の中心位置とレーザ光の受光位置との位置ズレ及び受光 面の法線方向に対するレーザ光の入射角を同時計測できるものを用いる。 これに より、 光を用いてトンネル掘進機 5の位置及び姿勢を計測する際に問題となる光 路空間を確保している。 受光器 3 1 としては、 例えば図 5 A及びその斜視図であ る図 5 Bに示すように、 透光性を備えた第 1受光面 3 1 a及びこの第 1受光面 3 1 aの後方に配 Sされて第 1受光面 3 1 aからの透過光を受光する第 2受光面 3 2 bを備えたものがよい。 また受光器 3 1 としては、 図 6 Aに示すように、 両受 光面 3 1 a、 3 1 bの間に第 2受光面 3 1 bの中心 0 2 を焦点と した集光レンズ 3 1 cを備えたものもよい。 または受光器 3 1 としては、 図 6 Bに示すように、 第 1受光面 3 1 aの前方に第 2受光面 3 1 bの中心 0 2 を焦点とした集光レンズ 3 1 cを備えたものでもよく、 その他各種準備できる。 かかる受光器 3 1を、 図 5 A及び図 5 Bに基づき説明すれば、 図示座標 (y l 、 z 1 ) が受光器 3 1の位 置ズレであり、 図示座標 (y l 、 z l ) と (y 2 、 z 2 ) とから得られる入射角 から受光器 3 1のョーイング角及びピッチング角である。 ここでョーイング角は 「 t a n - 1 { ( y 2 - y D / L } 」 であり、 一方ピッチング角は 「 t a { ( z 2 一 z l ) Z L } J である。 即ち、 レーザ光が水平に放射され、 かつ受光器 3 1 がローリ ングしていないとすれば、 この受光器 3 1 によってその位匱ズレ量、 ピ ツチング角及びョーイング角が分かる。
第 2反射プリズム 3 2は、 光波距離計 2 4からのレーザ光を反射すると共に、 レーザ発振器 2 1からのレーザ光を反射可能とされている。
傾斜計 3 3は受光器 3 1上の水平面内で直交した 2個の傾斜計からなり、 受光 器 3 1 の水平レベル S (即ち、 ピッチング角及びローリ ング角) を検出する。 こ こで受光器 3 1 の水平レベル Sと ト ンネル掘進機 5の水平レベル S ' とは受光部 架台 3の可勳回転軸の角度を以て関連づけることができるため、 傾斜計 3 3を受 光器 3 1でなく 卜ンネル掘進機 5自体に取付けてもよい。 尚、 ピッチング角は、 前述の通り、 受光器 3 1でも検出できるから、 受光器 3 1又は傾斜計 3 3による ピッチング角の内、 いずれか精度の良い方を採用すればよい。 又は傾斜計 3 3は 受光器 3 1上の水平面内で横方向の 1個の傾斜計だけとし、 受光器 3 1のローリ ング角だけを計測するようにしてもよい。 尚、 卜ンネル掘進機 5のローリ ング角 は、 ト ンネル掘進機 5における受光器 3 1の取付け位匿と、 受光器 3 1のローリ ング角との関係づけから換算できる。
尚、 第 1反射プリズム 1 は、 後述する トラバース測量における基準点となるも ので、 前述したように、 レーザ発振器 2 1からのレーザ光を反射してこの反射レ 一ザ光を光検出器 2 3で検知させるものである。
制御器 4の説明に先立ち、 その理解を助けるために、 上記各機器の相互関連を 次に説明する。
レーザ発振部架台 2は、 前方の受光器 3 1及び後方の第 1反射プリズム 1 を視 準するために水平方向へ回転可能とされ、 また夫々の設置高さが違ったり、 掘進 中に高さが変化しても視準できるように、 俯仰方向へ回転可能とされている。 尚 、 これら俯仰回転及び水平回転の基準は次の通りである。
水平角 0 s iの基準は、 第 1反射プリズム 1 (後視) から受光器 3 1 (前視) ま での挟角を測定するだけであるから敢えて設定する必要はない。 但し、 トンネル 掘進機 5のョーィング角を掘進方位として算出するときに、 第 1反射プリズム 1 からレーザ発振器 2 1を結んだ方位を基準とすること等を考慮し、 レーザ発振器 2 1が第 1反射プリズム 1を後視したときの視準を基準としもよい。 尚、 レーザ 発振部架台 2の水平回転軸が傾いていると、 検出挟角に誤差が伴うから、 この場 合は別途用意した水準器で水平回転軸の鉛直性を補正し、 前記誤差の解消する。 俯仰角 の基準は、 レーザ発振器 2 1が水平面内にレーザ放射が可能である とき等を基準とすればよい。
傾斜計 3 3で検出した受光部架台 3の水平角 0 s2から 卜ンネル掘進機 5のロー リ ング角を算出できることは、 前述の通り、 明らかである。 また仮にレーザ光の 放射方向 (例えば、 水平かつ真北に放射されていること) が予め知れておれば、 受光器 3 1が検出したレーザ光の入射角と、 受光部架台 3の俯仰角 0 f 2及び水平 角 0 s2とにより、 トンネル掘進機 1のョーィング角及びピッチング角も算出でき ることも、 前述の通り、 明らかである。 即ち、 トンネル掘進機 5の姿勢 (ローリ ング角、 ョーイング角、 ピッチング角) を計測できる。
受光器 3 1 の第 1受光面 3 1 aでの受光位置 (即ち、 前記位置ズレ量 (y 1 、 z 1 ) ) をト ンネル掘進機 5の任意位置から座標変換することで ト ンネル掘進機
5に対する受光器 3 1の受光位置を算出できることも明らかである。 従って光波 距離計 2 4による距離データ L 1、 L 2と、 挟角とによる トラバース測量を加味 することにより、 トンネル掘進機 5の位置を計測できる。
尚、 上記算出における留意事項は次の通りである。 レーザ発振部架台 2の俯仰 角 θ f l及び水平角 Θ s iによってレーザ発振器 2 1からのレーザ光の照射方向が予 め知れている。 このためレーザ光は受光器 3 1の第 1受光面 3 1 aに対し垂直に 受光される必要はない。 言い換えれば、 受光器 3 1 は入射角を検出できるため、 レーザ光が受光器 3 1の第 1受光面 3 1 aに垂直に受光されていてもよい。 そし てこのようになるように、 詳細を後述する制御器 4によつて受光部架台 3の俯仰 角 0 f 2及び水平角 0 s2を自動制御してもよい。 尚、 制御器 4によってこのような 追従動作の自動化を行うときは、 制御器 4はトンネル掘進機 5に対する受光器 3
1 の取付け位置、 受光部架台 3が水平回転するときの回転基準と掘進方向 (ョー イング角) との差異及び受光部架台 3が俯仰するときの回転基準に対する トンネ ル掘進機 5のピッチング角の差異等を、 製造時に知り得る情報として、 予め入力 し、 記憶し、 適宜使用できるようにしておく。
以上の説明から明らかなように、 第 1実施例における制御器 4は、 次に列記す るような制御を行う。
レーザ発振部架台 2の俯仰角 Q Π及び水平角 0 s iと、 受光部架台 3の俯仰角 Θ f 2及び水平角 Θ s2とを夫々制御する。 同時にこれら制御された各俯仰水平角 Θ f l 、 Θ s Θ f 2, 0 s2と、 受光器 3 1からの受光レーザ光の位 ズレ量及び入射角 と、 傾斜計 3 3からの受光器 3 1の傾きと、 光波距離計 2 4からの 2つの第 1及 び第 2反射プリズム 1、 3 2までの距離データ L 1、 L 2と、 挟角とから トンネ ル掘進機 5の位置及び姿勢を算出する。
レーザ発振器 2 1の取付け時やト ンネル掘進機 5の掘進中の適当な時刻に、 第 1反射プリズム 1を後視する必要がある。 このためこの後視時、 レーザ発振部架 台 2の俯仰角 Θ f l及び水平角 Θ s iを後視するのための角度に設定する。 同時にこ のときの水平振り角と、 距離データ L 1 とから第 1反射プリズム 1から見たレー ザ発振器 2 1の自己位置を検 SEし、 ト ンネル掘進機 5の位置及び姿勢の算出値の 修正の有無を検証し、 修正があれば、 これを修正する。
レーザ発振部架台 2の俯仰角 θ Π及び水平角 0 s iと、 受光部架台 3の俯仰角 Θ f2及び水平角 0 s2とを夫々ある角度に設定する。 その後、 受光器 3 1 の検出デー タであるべきレーザ光の入射位置と入射角とが得られないときは、 レーザ発振部 架台 2の俯仰角 0 Π及び水平角 0 s iの設定を調整する。 同時に受光器 3 1 が人射 位置及び入射角のデータを得られる範囲となるように、 受光部架台 3の俯仰角 Θ f 2及び水平角 0 s2の設定を再調整する。 また同様に、 レーザ発振部架台 2の俯仰 角 θ f l及び水平角 Θ s iと、 受光部架台 3の俯仰角 Θ f2及び水平角 Θ s2とを夫々あ る角度に設定する。 その後、 第 1反射プリズム 1を後視できないときは、 レーザ 発振部架台 2の俯仰角 0 i l及び水平角 0 s iの設定を再調整する。 他方、 仮にレー ザ発振器 2 1からのレーザ光が受光器 3 1の第 1受光面 3 1 aと第 1反射プリズ ム 1 とに適当に投射されたとしても、 光波距離計 2 4からのレーザ光が第 1及び 第 2反射プリズム 1、 3 2に投射されないときは、 このときも、 レーザ発振部架 台 2の俯仰角 0 f l及び水平角 0 s iの設定を調整する。
制御器 4による上記追従動作の自動化には、 上記したように、 ト ンネル掘進機 5への受光器 3 1 の取付け位置や、 受光部架台 3が水平回転するときの回転基準 と掘進方向 (ョーイング角) との差異や、 受光部架台 3が俯仰するときの回転基 準に対する 卜ンネル掘進機 5のピッチング角の差異等が必要となる。 また製造時 に既知となる各種データを予め入力して蓄積しておき、 計算時に適宜使用する必 要がある。
以下、 第 1実施例装 Sにおける設置手順例と、 本発明における ト ンネル掘進機 5の位置及び姿勢の計測方法を図 8を参照し説明する。 先ず、 第 1反射プリズム 1 (即ち、 第 1測点 A ) 及びレーザ発振部架台 2 (即ち、 第 2測点 B ) の設 fi手 順例と、 制御器 4によるレーザ発振部架台 2 (即ち、 第 2測点 B ) 及び受光部架 台 3 (即ち、 第 3測点 C ) の姿勢調整手順例とを述べる。 (ステップ 1 0 0 ) トンネル掘進機 5の後方に第 1反射プリズム 1を概ねレー ザ発振部架台 2に向けて設 Sし、 また トンネル掘進機 5 と第 1反射プリズム 1の 中間位 Sにレーザ発振部架台 2を設置する。 両設置位置は、 予め行った精密測量 又は施工中の測量によって既知とされた位置とする。
(ステップ 2 0 0 ) 次に、 レーザ発振部架台 2の俯仰水平角 0 f l、 0 slを設定 する。 詳しく は次の通りである。 第 1反射プリズム 1及びレーザ発振部架台 2の 位置は上述の通り既知である。 従って水平方向の回転基準角を例えばトンネル掘 進機 5の方向に予め決めておく ことができる。 この基準角を元に、 制御器 4はレ 一ザ発振部架台 2を俯仰水平方向に回転させ、 レーザ発振器 2 1 を第 1反射プリ ズム 1 に正対させる。 次いでレーザ発振器 2 1を発振させて第 1反射プリズム 1 からの反射レーザ光を光検出器 2 3で検出する。 先に図 7 ( a ) 、 ( b ) を参照 して説明したように、 反射プリズムの光の反射特性から、 レーザ発振部架台 2を 俯仰水平方向に微旋回させると第 1反射プリズム 1 の中心を検出できる。 このた め第 1反射プリズム 1を臨むレーザ発振部架台 2の精密な俯仰水平角を測定でき る。 光検出器 2 3が反射レーザ光を検出できないとき、 制御器 4はレーザ発振部 架台 2を俯仰水平方向へ微旋回させ、 第 1反射プリズム 1 を検索させる。
以上において、 光検出器 2 3が反射レーザ光を受光し、 この受光信号が制御器 4に 力されると、 第 1反射プリズム 1 に対する視準 (後視) が達成される。 第 1反射プリズム 1の視準が達成されたならば、 制御部 4は、 レーザ発振部架台 2 の俯仰水平角 0 f l、 0 s lを記憧する。 尚、 俯仰水平角 0 f l、 0 s lを図示しない口 一夕リエンコーダ等により測定するときには、 その測定値を制御部 4が読込んで もよい。 尚、 上記視準までの俯仰水平動作及び視準は、 上記のように、 制御器 4 で自動動作せず、 レーザ発振部架台 2又はその近傍に設けられ、 かつ制御器 4に 接続されたサブ制御器が制御器 4からの指令に基づき自動動作してもよい。 勿論 、 上記視準までの動作及び視準を人手で行い、 その動作結果である俯仰水平角 0 Π、 0 s iを制御器 4に別途入力してもよい。
(ステップ 3 0 0 ) 次に、 光波距離計 2 4によってレーザ発振部架台 2から第 1反射プリズム 1 までの距離 L 1を測定する。 制御器 4は距離 L 1を入力し記憶 する。 尚、 レーザ発振器 2 1 と光波距離計 2 4との取付け上の位置ズレのため、 第 1反射プリズム 1が光波距離計 2 4の視準内に入らないとき、 光波距離計 2 4 から出力 (即ち、 距離 L 1 ) が得られない。 このようなときは、 取付け上の位置 ズレを捕正するために、 俯仰水平角 0 f l、 0 siを再調整して光波距離計 2 4から 出力が得られるようにする。 尚、 この補正に必要な俯仰水平角 0 f l、 0 s lは、 互 いの測点間の位置関係によって異なるため、 その手順は図示しないステップ 2 5
0として、 ステップ 2 0 0とステップ 3 0 0の間に実行される。
尚、 上記ステツプ 1 0 0〜 3 0 0での設定は、 第 1反射プリズム 1及びレーザ 発振部架台 2の夫々の位置が予め判っていることが前提である。 但し、 レーザ発 振部架台 2の水平角の基準が予め明確であれば、 レーザ発振部架台 2の位置は予 め判っている必要は無い。 また トンネル掘進機 5の後方は、 付属機械等が無くな り、 測量のために使える空間が広い。 このため、 第 1反射プリズム 1を複数配置 できることがある。 このときには、 後方交会法等の測量手段により レーザ発振部 架台 2の位置を求めることができると同時に、 水平角の基準も得ることができる 。 このためレーザ発振部架台 2の位置及び水平角の基準を予め判っている必要は ない。 そしてこの場合、 ステップ 1 0 0〜 3 0 0を図示しないループによつて設 置した第 1反射プリズム 1の個数だけ繰り返せばよい。
(ステップ 4 0 0 ) 次に、 レーザ発振部架台 2の位置と水平角の基準の見直し を行う。 制御器 4は、 記 «した俯仰水平角 0 f l、 0 s l及び距離 L 1 より レーザ発 振部架台 2の位 SIを算出すると共に、 水平角の基準を再設定する。 そして制御器 4が蓄穣していたレーザ発振部架台 2の位置と水平角の基準に差異があればそれ を修正する。 通常、 装置の設置手順内においては、 第 1反射プリズム 1及びレー ザ発振部架台 2は別の手段で予め位置が判つている。 そこで本ステツプ 4 0 0は 省略するか、 又はステップ 2 0 0で得られたレーザ発振部架台 2の水平角 0 s iを 基準として再定義してやるだけである。 従って本ステップ 4 0 0が機能するのは 、 ト ンネル掘進機 5の掘進中の適当な時刻に、 第 1反射プリズム 1を視準し、 掘 進によりレーザ発振部架台 2の位置や水平角の基準を検証する時である。 尚、 前 記のようにレーザ発振部架台 2の位置又は水平角の基準が予め判っていないとき は、 装置の設置手順内の処理においても、 本ステップ 4 0 0は有効である。 また レーザ発振部架台 2の位置を算出するに後方交会法などの処理を本ステツプ 4 0 0の中で行っても何等問題は無い。 また本ステップ 4 0 0に使用されるデータを 制御器 4が記憶し、 後述する 卜ンネル掘進機 5の位置を演算するステツプ 6 0 0 の中で実施することもできる。
(ステップ 5 0 0 ) 次に、 レーザ発振部架台 2と受光部架台 3との姿^を調整 する。 詳しく は次の通りである。
(ステップ 5 1 0 ) 受光器 3 1 に対するレーザ発振器 2 1の向きをレーザ発振 部架台 2の俯仰水平角 0 f l、 0 s iで調整する。 また受光器 3 1の受光面がレーザ 光を受光できそうな向きに受光部架台 3の俯仰水平角 Θ f 2、 Θ s2を調整する。
(ステップ 5 2 0 ) ステップ 5 1 0を実施し、 受光器 3 1が受光しているか、 又はレーザ光が第 2反射プリズム 3 2に当たりその反射光を光検出器 2 3が検出 できているかをそれぞれのデータを制御器 4は読込み判断する。
(ステップ 5 2 1 ) 前記ステツブ 5 2 0で、 受光器 3 1が受光しないとき、 又 はレーザ光が第 2反射プリズム 3 2に当たりその反射光を光検出器 2 3が検出で きないときは、 受光部架台 3を固定し (即ち、 受光器 3 1 と第 2反射プリズム 3 2の姿勢を固定し) 、 レーザ発振部架台 2を制御器 4が予め記億した手順で俯仰 水平へ回転させて受光器 3 1で受光するか、 又は第 2反射プリズム 3 2からの反 射光を光検出器 2 3で検出できるようにする。 もし、 レーザ発振器 2 1からの光 を第 2反射プリズム 3 2が反射し、 光検出器 2 3が検知したときには、 受光器 3 1 と第 2反射プリズム 3 2との設置時の幾何学的な関係から、 再度レーザ発振部 架台 2の俯仰水平角 Θ i Θ s iを微調整し、 受光器 3 1 にレーザ発振器 2 1 の光 を受光できるようにする。 このとき、 受光器 3 1 は只単に受光することが基準で あり、 入射角が受光器 3 1の検出範囲でなく ともよい。
(ステップ 5 2 2 ) ステップ 5 2 1の探索手順が正常に終了したことを判断す る。 ここで正常に終了しない場合は、 本ステップ 5 0 0で受光部架台 3の姿勢を 設定したにも係わらず、 受光器 3 1の受光面がレーザ発振器 2 1から臨んで全く 見えないような向きであつた場合などである。
(ステップ 5 3 0 ) レーザ光の入射角が受光器 3 1の検出範囲に入るように、 レーザ発振部架台 2を固定し (即ち、 レーザ発振器 2 1 と光波距離計 2 4の姿勢 を固定し) 、 受光部架台 3を制御器 4が予め記憶した手順で俯仰水平角 0 f 2、 Θ s2を受光が可能な範囲内で回転させて光の入射角を検出できるようにする。
(ステツプ 5 4 0 ) 制御器 4に予め記億させている手順で、 入射角が受光器 3 1で検出可能範囲に入つたかをデータを銃込み判断する。
(ステップ 5 4 1 ) ステップ 5 3 0を行って入射角が受光器 3 1の検出範囲に 入らないときは、 入射角検出範囲に入るように、 受光部架台 3の姿勢をさらに大 きく変える必要がある。 但し、 受光部架台 3の姿勢を大きく変えると、 受光器 3 1 にレーザ光が当たらなくなることもあり得るので、 例えば次のように行う。 受 光器 3 1の受光面を下に向けるような姿勢付近において入射角の検出可能範囲を 探す場合、 先ずレーザ発振部架台 2の俯仰水平角 0 f l、 0 s lを微調整し、 レーザ 光が受光器 3 1の下の位置 (図 5を参照したとき、 Z軸のマイナス側) で受光で きているようにし、 次に、 受光器 3 1の姿勢操作の処理を、 先のステップ 5 3 0 に戻して、 入射角検出範囲に入る受光器 3 1の姿勢を探索してゆく。
(ステップ 5 4 2 ) 受光器 3 1 の姿勢を探索する手順も制御器 4に予め記億さ せておく。 この手順に、 予め探索する姿勢範囲を定めておき、 探索する領域が残 つているかを判断する。
(ステップ 5 5 0 ) 次に、 受光器 3 1の定められた任意の受光位置に、 レーザ 光が当たるようにレーザ発振部架台 2の俯仰水平角 0 f l、 0 s lを微調整する。 例 えば、 定められた任意の位置は、 第 2反射プリズム 3 2からレーザ発振器 2 1 と 光波距離計 2 4 との装 の設 S間隔だけ離れた位置とすることができ、 このとき 、 受光器 3 1が光の入射位 Sと入射角を計測すると同時に、 光波距離計 2 4 と第 2反射プリズム 3 2間の距離 L 2を計測できる。 また、 同時計測を行うために、 傾斜計 3 3により測定された受光器 3 1のローリ ング角度分を補正した位置を定 められた受光位置としてもよい。 但し、 この処理を実施するに当たり、 光の入射 角を監視し、 入射角が受光器 3 1で検出可能な範囲にあるところでその処理中止 し、 次のステツプ 5 6 0に移るものとする。
(ステップ 5 6 0 ) 次に、 入射角が任意に定めた範囲になるように、 受光器 3 1の姿勢を、 その時点の入射角を参照して、 受光部架台 3の俯仰水平角 S f2、 θ s2を微調整する。 例えば入射角は受光面に垂直として姿勢を調整する。 但し、 こ のステップ 5 6 0においても、 入射位置を監視し、 受光器 3 1での受光範囲をあ るところでその操作を終了する。
(ステップ 5 7 0 ) ステップ 5 5 0、 5 6 0により受光器 3 1で受光されたレ 一ザ光の入射位置と入射角が所望の値になっているか判断する。 値になっていな ければ、 図 9に示すように、 ステップ 5 5 0にその処理を戻し、 所望の値まで繰 り返す。 尚、 判断 5 7 0において、 定められた入射位置 Pと入射角に範囲を設け て、 その範囲内であればよいとする判断も本ステップ 5 7 0の中に含まれる。 以上のステップ 5 0 0の関する処理を通して、 レーザ発振部架台 2と受光部架 台 3は、 ほぼ正対した状態に人手をかけずに成し得るので自動化が容易である。 またステップ 5 2 3として、 各判断の段階で、 受光器 3 1が探索できない、 又は 光の人射角が適当範囲内の入らない等のときには、 制御器 4はエラー信号を図示 されない表示器等に出力し、 人手によるレーザ発振部架台 2と受光部架台 3との 姿勢を、 一方又は両方を再調整し、 エラーのあった次のステップ或いはステップ 5 1 0に戻るようにしてもよい。 そのときには、 人手により調整されたレーザ発 振部架台 2と受光部架台 3の一方若しく は両方の姿勢データを、 制御部 4に入力 してもよい。
尚、 ステップ 5 0 0の手順は、 ト ンネル掘進機 5の位置がおおよそ明確な場合 (例えば、 トンネル掘進機 5の掘進途中において、 第 1反射プリズム 1を視準し 、 再度、 ト ンネル掘進機 5の位置姿勢を計測するために受光部架台 3を視準する ような埸合) であり、 不明確な場合 (最初の装置設置や、 レーザ発振部架台 2の 場所の移設 (盛り換え) 等による場合) は、 人手によってレーザ発振部架台 2 と 受光部架台 3の姿勢を設置し、 その設置値を制御器 4 に入力し、 ステップ 5 0 0 の処理を行うか、 又は姿勢を調整が正確であればステップ 5 0 0の処理を飛ばし てもよい。
(ステップ 6 0 0 ) 次に制御器 4は、 レーザ発振部架台 2の俯仰水平角 Θ f l、 Θ s l、 受光部架台 3の俯仰水平角 Θ f 2、 Θ s2、 光波距離計 2 4 と第 2反射プリズ ム 3 2 との距離 L 2、 受光器 3 1 の検出する入射位置、 入射角及び傾斜計 3 3の 検出する受光器 3 1の水平レベル Sをデータと して読込み、 ト ンネル掘進機 5の 位置及び姿勢を演算する。 さらに言えば、 受光器 3 1 の検出する入射角と傾斜計 3 3の計測する受光器 3 1 の水平レベル S及び受光部架台 3の俯仰水平角 Θ f 2、 Θ s2から ト ンネル掘進機 5の姿勢を算出し、 レーザ発振部架台 2 の俯仰水平角 Θ Π、 Θ s U 光波距離計 2 4 と第 2反射プリズム 3 2との距離 L 2及び受光器 3 1 の検出する入射位置より受光器 3 1又は第 2反射プリズム 3 2の位置を算出する 。 但し、 これはレーザ発振部架台 2を基準とした位置であるので、 ステップ 4 0 0で求めたレーザ発振部架台 2の位置を使えば、 第 1反射プリズム 1からの位置 を算出することができる。 通常ト ンネル掘進機 5の位置は、 先端部にとるが、 受 光器 3 1又は第 2反射プリズム 3 2の位置が求められ、 ト ンネル掘進機 5の姿勢 が決定されれば、 その位置座標の変換は容易にできる。 尚、 求められた ト ンネル 掘進機 5の姿勢は、 ピッチング角及びローリ ング角が重力を基準と して算出され るが、 ョーイング角はレーザ発振器 2 1からのレーザ光の水平角を基準とした角 度が算出される。 レーザ発振器 2 1の水平角基準は、 後方に設置された第 1反射 プリズム 1を臨む角を基準としているので、 詰まるところ、 レーザ発振部架台 2 と第 1反射プリズム 1を結んだ線の向きを基準に 卜ンネル掘進機 5のョーィング 角を算定していることになる。 従ってこのレーザ発振部架台 2と第 1反射プリズ ム 1を結んだ線の向きを方位と関係付けておけば、 トンネル掘進機 5のョ一イン グ角を掘進する方位として表すことができる。
(判断 7 0 0 ) ト ンネル掘進機 5の掘進中においては、 ステップ 5 5 0 (即ち 、 ステップ 5 0 0 ) に処理を渡し、 トンネル掘進機 5の位匱姿勢計測を繰り返す (ループ 7 0 1 ) 。 またレーザ発振部架台 2の微調整を繰り返すため、 その水平 角基準が狂っていないかを検証するために、 例えばト ンネル掘進機 5の掘進距雜 5 0 c m毎に後方の第 1反射プリズム 1を視準する動作を行わせるときには、 ス テツプ 2 0 0へ制御を渡す (ループ 7 0 2 ) 。 そして、 トンネル掘進機 5の掘進 が進み、 レーザ発振部架台 2を移設させるときには (即ち、 盛り替えするときに は) 、 移設後のレーザ発振部架台 2の姿勢設定が容易になるように、 ト ンネル掘 進機 5の位置姿勢を保管し、 計測の処理を終了させる。
以上のステップ 1 0 0〜 7 0 0の内、 装 Sの設置、 又は装置の移設により、 人 手が介在することがあり得るのは、 設置手順の部分のルーチン (ステップ 1 0 0 〜 5 0 0 ) を最初に行う時であり、 卜ンネル掘進機 5の掘進中での位置姿勢計測 方法の部分はルーチン (ステップ 2 0 0〜 7 0 0 ) である。
上記第 1実施例によれば、 次の効果を奏する。
( 1 ) 受光器 3 1 は俯仰水平回転自在な架台 7上に備えてあるため、 急曲進施 ェでも、 水平回転させることにより、 受光器 3 1が持つ入射角の制限範囲に抑え ることができ、 また勾配施工や高さが途中で変化する施工でも、 俯仰回転させる ことにより、 上記同様、 受光器 3 1が持つ入射角の制限範囲に抑えることができ る。 即ち、 近年施工事例が生じた急曲進施工や、 施工勾配の大きく変化する施工 や、 高さが途中で変化する施工でも、 ト ンネル掘進機の位置及び姿勢を高精度に 計測できる。
( 2 ) レーザ発振部架台 2は、 後方の 1個の第 1反射プリズム 1、 前方の第 2 反射プリズム 3 2及びこの第 2反射プリズム 3 2に近接設置された受光器 3 1の 受光面を臨めるところであれば、 どこでも自在に設置できる。 即ち、 視準空間の 設定自由度が高くなる。 例えばト ンネル掘進機 5の掘進が進んだり、 急曲進した り、 勾配が生じたり して視準が不能となったときでも、 レーザ発振部架台 2の設 置位置を視準できる位置へ自在に変えることにより、 ト ンネル掘進機 5の位置及 び姿勢を高精度に計測できる。 ( 3 ) しかも受光器 3 1 は、 1本の細い光ビームが入射するだけで、 受光面の 受光中心位 Sとレーザ受光位 Sとの位置ズレ量及び受光面の法線方向に対する入 射角を同時に計測できるものを用いている。 このため従来、 光を用いて位置及び 姿勢を計測する際に問題となっていた光路確保が容易となる。 この光路確保の容 易化も、 引いては、 急曲進施工や、 施工勾配の大きく変化する施工や、 高さが途 中で変化する施工でも、 卜ンネル掘進機 5の位置及び姿勢を高精度に計測できる 原因となっている。 そして受光面の受光中心位置と受光位置との位置ズレ量及び 受光面の法線方向に対する入射角を同時に計測できるものを用いているので、 レ 一ザ発振部架台 2と受光部架台 3をほぼ正対させる条件を容易に求めることがで きるので、 自動化により人手による煩雑な視準調整を省く原因ともなつている。 第 1 0図の第 2実施例装 Sを説明する。 この受光部架台 3は、 上記第 1実施例 の受光部架台 3が俯仰水平方向へ回転できるのに対し、 水平方向の回転しかでき ない例である。 他は、 上記第 1実施例に準ずる。 尚、 本実施例のレーザ発振部架 台 2の架台は、 図 1 0に示すように、 水平回転ステージを U字形ブロッ クに成形 し、 U字形間に水平軸を設け、 この水平軸回りにレーザ発振器 2 1 、 ビームスプ リ ツ夕 2 2、 光検出器 2 3及び光波距離計 2 4がー体的に俯仰回転可能に固設さ れている。
このような第 2実施例は、 トンネル掘進機 5のローリ ングが少ない施工や、 少 なくなるような運転を行う場合のトンネル掘進機 1の位置及び姿勢の計測に有効 である。 尚、 後者ローリ ングが少なくなるような連転とは、 ローリ ングが大きく なりそうなところでは、 ローリ ングの発生を阻止するために、 ト ンネル掘進機 1 を逆回転掘削させる運転を例示できる。
尚、 本第 2実施例は、 上記第 1実施例と同様の効果を得られることは言うまで もない。
尚、 先に説明した装置の設置手順及び位置姿勢計測方法のうち、 ステップ 5 3 0〜5 7 0 ( 5 4 1、 5 4 2を含む) の手順は、 図 1 1 に示すように、 以下のよ うにしてもよい。 (ステップ 5 3 O A ) 受光器 3 1の受光位置情報から光波距離計 2 4が反射ブ リズム 3 2を視準できるように、 レーザ発振部架台 2の姿勢を調整し、 光波距離 計 2 4 と反射プリズム間の距離 L 2を計測する。
(ステップ 5 4 O A ) レーザ発振部架台 2の位置とステツプ 5 3 0 aで計測さ れた光波距離計 2 4 と反射プリズム間の距離 L 2を基に、 制御器 4若しく は別の コンピュータ上にある トンネル掘進機 5の施工計画線データを参照し、 現在のト ンネル掘進機 5の位置姿勢を推定する。
(ステップ 5 5 O A ) 推定された位置姿勢から、 受光部架台 3の姿勢を決め、 少なく とも水平角を調整する。 このとき、 レーザ発振架台 2の姿勢は、 受光器 3 1 により入射位置が検出できる位置にあればそのままにしておき、 はずれるよう であればステップ 5 3 0 Aに入る前にもっていた俯仰水平角に再調整する。
(ステップ 5 6 O A ) これにより、 入射角が受光器 3 1で検出できているか判 断"" 3 る。
(ステップ 5 7 O A ) 入射角が検出できる範囲でなければ、 レーザ発振部架台 の姿勢を固定し、 受光器 3 1 の姿勢を調整する。 この手順は予め制御器 4 に記憶 されている。
(ステツプ 5 8 0 A ) ステップ 5 7 0 Aが正常に終了したかを判断する。
(ステップ 5 2 3 ) このステップ 5 2 3 は前出のまま使用できる。
本ルーチンは、 ト ンネル掘進機 5が施工計画線から大きく離れていない (具体 的には、 受光器 3 1の受光面の大きさの半分程度) ときに受光器 3 1が素早く入 射位 Sと入射角を検出できるようになるには非常に有効な手順である。 尚、 本ル 一チンと先に示したルーチンを混合して、 本ルーチンにて受光器 3 1がレーザ光 の入射位置、 入射角を検出できなければ、 図 8に示したルーチンのステップ 5 3 0に入るようにしてもよい。 産業上の利用可能性
本発明は、 近年施工事例が生じた急曲進施工や、 施工勾配の大きく変化する施 ェゃ、 高さが途中で変化する施工でも、 ト ンネル掘進機の位 S及び姿勢を高精度 に計測できる トンネル掘進機の位置姿勢計測方法及び装置どして有用である。

Claims

請 求 の 範 囲
1 . トラバース測量に基づく トンネル掘進機の位置姿勢計測方法において、 前記ト ンネル掘進機(5) の後方に設けた第 2測点(B) から前記ト ンネル掘進機 (5) に設けた第 3測点(C) を視準する際に、 前記第 3測点(C) の任意点を前記第 2測点(B) から視準し、 かつ前記第 3測点(C) から前記第 2測点(B) を臨む角が 所定角となるようにし、
前記第 2測点(B) から前記第 3測点(C) を臨む角度及び距離(L2)と、 前記任意 点の位置とを用いて前記第 3測点(C) の位置を算出し、
前記第 3測点(C) から前記第 2測点(B) を臨む角度と、 前記第 3測点(C) の水 平レベル(S) 或いは前記ト ンネル掘進機(5) の水平レベル(S' )とから前記ト ンネ ル掘進機(5) の姿勢を算出し、
前記ト ンネル掘進機(5) の位置姿勢計測中の所望時に、 前記第 2測点(B) から さらに後方に設けた既知位置の第 1測点(A) を視準することにより第 2測点(B) の位置を算出し、
以上により前記トンネル掘進機(5) の位置を第 1測点(A) から算出することを 特徴とする 卜ンネル掘進機の位置姿勢計測方法。
2 . トンネル掘進機の位置及び姿勢を計測する トンネル掘進機の位置姿勢計測装 置において、
レーザ発振器(21)からのレーザ光を受光して入射位置((yl, zl) ) 及び入射角を 検出する受光器(31)と、 第 2反射プリズム(32)とを少なく とも水平方向へ一体的 に回転自在に備えると共に、 前記受光器(31)の水平レベル(S) 或いは前記トンネ ル掘進機(5) の水平レベル(S' )を検出する傾斜計(33)を備えて前記トンネル掘進 機(5) に設けた第 3測点(C) と、
前記第 3測点(C) を前視したときほぼ正対可能となるように、 かつ第 1反射プ リズム(1) を備えた第 1測点(A) を後方に設けたときには前記第 1測点(A) を後 視したときほぼ正対可能となるように、 前記レーザ発振器(21)及び光波距離計(2 4)を俯仰方向及び水平方向へ一体的に回転自在に備えると共に、 前記第 1及び第 2反射プリズム(1, 32)で反射した前記レーザ発振器(21 )からのレーザ光を受光す る光検出器(23)を備えて前記ト ンネル掘進機(5) の後方に設けた第 2測点(B) と 前記レーザ発振器(21 )及び前記光波距離計(24)の俯仰方向及び水平方向への回 転角度を調整すると共に、 前記レーザ発振器(21 )及び前記光波距離計(24)の俯仰 方向及び水平方向への回転角度を受け、 かつ前記受光器(31 )及び前記第 2反射プ リズム(32)の少なく とも水平方向への回転角度と、 前記受光器(31 )で検出した光 の入射位 S及び入射角と、 前記光波距離計(24)で検出した第 1及び第 2反射プリ ズム(1. 32)までの夫々の距離(L1. L2) と、 前記水平レベル(S) 或いは前記水平レ ベル(S' )とを受けて前記ト ンネル掘進機(5) の位 S及び姿勢を算出する制御器(4 ) とを有することを特徴とする トンネル掘進機の位置姿勢計測装置。
PCT/JP1996/000825 1995-03-29 1996-03-28 Methode et dispositif de relevement de la position et de l'orientation d'une excavatrice de galerie WO1996030720A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
GB9718777A GB2314157A (en) 1995-03-29 1996-03-28 Method and apparatus for measuring position and posture of tunnel excavator
DE19681330T DE19681330T1 (de) 1995-03-29 1996-03-28 Verfahren und Einrichtung zur Messung der Position und der Ausrichtung einer Auffahrmaschine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP7/98130 1995-03-29
JP7098130A JPH08271251A (ja) 1995-03-29 1995-03-29 トンネル掘進機の位置姿勢計測方法及び装置

Publications (1)

Publication Number Publication Date
WO1996030720A1 true WO1996030720A1 (fr) 1996-10-03

Family

ID=14211683

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/000825 WO1996030720A1 (fr) 1995-03-29 1996-03-28 Methode et dispositif de relevement de la position et de l'orientation d'une excavatrice de galerie

Country Status (6)

Country Link
JP (1) JPH08271251A (ja)
KR (1) KR100192851B1 (ja)
DE (1) DE19681330T1 (ja)
GB (1) GB2314157A (ja)
TW (1) TW324045B (ja)
WO (1) WO1996030720A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109540086A (zh) * 2019-01-28 2019-03-29 中交公局重庆城市建设发展有限公司 小导坑指向仪及其指向方法
CN109555543A (zh) * 2019-02-01 2019-04-02 中国铁建重工集团有限公司 一种管片自动输送及识别系统

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100436878B1 (ko) * 2002-06-18 2004-06-23 건양씨앤이 주식회사 강관압입 추진공법시 사용되는 추진강관의 수평유지방법및 그 장치
JP4748448B2 (ja) * 2005-12-26 2011-08-17 横浜ゴム株式会社 ビード保持装置の傾倒検知装置
JP5107600B2 (ja) * 2007-04-06 2012-12-26 アイレック技建株式会社 光ビームの角度設定方法
JP5538929B2 (ja) * 2010-02-02 2014-07-02 新菱冷熱工業株式会社 三次元位置計測及び墨出しシステムとその使用方法
CN102052078B (zh) * 2010-11-04 2012-09-26 华中科技大学 一种多传感器数据融合的盾构机实时导向系统
ES2526135B1 (es) * 2013-05-30 2015-08-18 Universidad Carlos Iii De Madrid Sistema y método para la verificación de la trayectoria de un túnel
JP6310784B2 (ja) * 2014-06-23 2018-04-11 鹿島建設株式会社 切羽面監視方法
CN111425183B (zh) * 2020-02-24 2023-12-08 中铁第四勘察设计院集团有限公司 一种地质勘探孔位定位方法及定位机器人

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01221613A (ja) * 1988-03-01 1989-09-05 Nishimatsu Kensetsu Kk トンネルの測量装置
JPH04309809A (ja) * 1991-04-05 1992-11-02 Pub Works Res Inst Ministry Of Constr トンネル掘進工事における坑内測量方法
JPH06213622A (ja) * 1991-03-25 1994-08-05 Heidelberger Druckmas Ag 距離を光学的に測定する方法および装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60212593A (ja) * 1984-04-06 1985-10-24 株式会社小松製作所 シ−ルド掘進機の方向検出方法
JPS62293115A (ja) * 1986-06-12 1987-12-19 Takenaka Komuten Co Ltd 移動物体の位置姿勢自動測量装置
JPH01136012A (ja) * 1987-11-20 1989-05-29 Aisawa Kogyo Kk 被推進体の姿勢及び位置の測定方法
JPH0559884A (ja) * 1991-09-04 1993-03-09 Sekisui Chem Co Ltd 掘進方向制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01221613A (ja) * 1988-03-01 1989-09-05 Nishimatsu Kensetsu Kk トンネルの測量装置
JPH06213622A (ja) * 1991-03-25 1994-08-05 Heidelberger Druckmas Ag 距離を光学的に測定する方法および装置
JPH04309809A (ja) * 1991-04-05 1992-11-02 Pub Works Res Inst Ministry Of Constr トンネル掘進工事における坑内測量方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109540086A (zh) * 2019-01-28 2019-03-29 中交公局重庆城市建设发展有限公司 小导坑指向仪及其指向方法
CN109540086B (zh) * 2019-01-28 2023-12-22 中交一公局重庆隧道工程有限公司 小导坑指向仪及其指向方法
CN109555543A (zh) * 2019-02-01 2019-04-02 中国铁建重工集团有限公司 一种管片自动输送及识别系统
CN109555543B (zh) * 2019-02-01 2024-03-29 中国铁建重工集团股份有限公司 一种管片自动输送及识别系统

Also Published As

Publication number Publication date
KR970065962A (ko) 1997-10-13
TW324045B (en) 1998-01-01
JPH08271251A (ja) 1996-10-18
DE19681330T1 (de) 1998-05-20
KR100192851B1 (ko) 1999-06-15
GB9718777D0 (en) 1997-11-12
GB2314157A (en) 1997-12-17

Similar Documents

Publication Publication Date Title
JP4309014B2 (ja) レーザ基準面による建設機械制御システム
EP1434029B1 (en) Position measuring system comprising a rotary laser
US7081606B2 (en) Position measuring system
CA2602332C (en) Method and system for determining position and orientation of an object
US8745884B2 (en) Three dimensional layout and point transfer system
US7742176B2 (en) Method and system for determining the spatial position of a hand-held measuring appliance
CN1195927C (zh) 用于建筑机械的控制系统
US7764365B2 (en) Combination laser detector and global navigation satellite receiver system
JP2846950B2 (ja) 測定点の位置を形成又は画成するための装置
US7760369B2 (en) Apparatus and method for determining an elevation of working tools based on a laser system
US4688937A (en) Methods of, and systems, for monitoring and/or controlling mobile cutting means
JP3347035B2 (ja) 光学式偏角測定装置及び地中掘進機の位置計測装置
JP2001241950A (ja) ターゲット、測量装置及び測量方法
US20050077454A1 (en) Photodetection device for rotary laser system
WO1996030720A1 (fr) Methode et dispositif de relevement de la position et de l'orientation d'une excavatrice de galerie
JP4315860B2 (ja) 建設機械制御システム
US5757504A (en) Positional measurement projecting device and mounting structure therefor
JP4376401B2 (ja) レーザ基準面形成装置及び建設機械制御システム
JP2000234929A (ja) 中継式自動位置姿勢計測システム
JP2024043881A (ja) 測量装置、測量装置の動作方法およびプログラム
EP4242584B1 (en) A reference free calibration method for a point cloud measuring module combined with a geodetic single point measurement unit
JP4477209B2 (ja) 建設機械用の方向角測定装置
JPH02307088A (ja) 3次元位置計測装置
JPH07119382A (ja) シールド掘進機の自動測量方法
JP2000298020A (ja) 光学式偏角測定装置及び地中掘進機の位置計測装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): DE GB

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
RET De translation (de og part 6b)

Ref document number: 19681330

Country of ref document: DE

Date of ref document: 19980520

WWE Wipo information: entry into national phase

Ref document number: 19681330

Country of ref document: DE

NENP Non-entry into the national phase

Ref country code: GB

Free format text: 19960328 A 9718777