[go: up one dir, main page]

WO1997032600A1 - Agent immunotherapeutique a base peptidique pour le traitement des allergies - Google Patents

Agent immunotherapeutique a base peptidique pour le traitement des allergies Download PDF

Info

Publication number
WO1997032600A1
WO1997032600A1 PCT/JP1997/000740 JP9700740W WO9732600A1 WO 1997032600 A1 WO1997032600 A1 WO 1997032600A1 JP 9700740 W JP9700740 W JP 9700740W WO 9732600 A1 WO9732600 A1 WO 9732600A1
Authority
WO
WIPO (PCT)
Prior art keywords
peptide
cry
cell
cells
antigen
Prior art date
Application number
PCT/JP1997/000740
Other languages
English (en)
French (fr)
Inventor
Toshio Sone
Akinori Kume
Kazuo Dairiki
Akiko Iwama
Kohsuke Kino
Original Assignee
Meiji Milk Products Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meiji Milk Products Co., Ltd. filed Critical Meiji Milk Products Co., Ltd.
Priority to DE69738962T priority Critical patent/DE69738962D1/de
Priority to JP53167497A priority patent/JP3732231B2/ja
Priority to EP97906863A priority patent/EP0923940B1/en
Priority to US09/142,524 priority patent/US6719976B1/en
Priority to CA2248937A priority patent/CA2248937C/en
Publication of WO1997032600A1 publication Critical patent/WO1997032600A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/35Allergens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/08Antiallergic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide

Definitions

  • the present invention relates to a multi-engineered vitobu peptide which is effective for peptide immunotherapy for allergic diseases.
  • An allergic disease is defined as a type I hypersensitivity immune response, ie, a dysfunction or a group of diseases caused by a type I immune response mediated by an IgE antibody.
  • the conditions include hay fever, bronchial asthma, allergic rhinitis, arthritis-pericarditis, and anaphylactic shock. Pollinosis is a typical allergic disease. In Japan, about 10% of people suffer from cedar hay fever, but the number is increasing steadily. In the United States, it is estimated that 5 to 15% of patients have hay fever hay fever.
  • hay fever is socially and economically significant because it has a large number of patients, is accompanied by severe symptoms such as itchy eyes, runny nose, sneezing, and stuffy nose, and once it becomes ill, it repeats every year. It is a problem, and there is a long-awaited need for the development of radical treatments.
  • T cells The initiation of an immune response to foreign antigens, including allergens, depends on the antigen-presenting cells of the immune system.
  • Antigen-presenting cells including B cells, macrophages, and dendritic cells, take in foreign antigens, fragment them into antigenic peptides (T-cell epitope peptides), and chain MHC class III molecules (HLA class II in humans). And formed by chains It is housed in a pocket, expressed on the cell surface, and presents antigen to antigen-specific CD4-positive helper T cells (Th cells).
  • HLA class II molecules consist of DR, DQ and DP molecules
  • the heavy chain of the DR molecule is encoded by HLA-DRA
  • the? Chain is encoded by the HLA-DRB1, -DRB3, -DRB4 or -DRB5 gene
  • the heavy chain of the DQ molecule is The HLA-DQA1 and? Chains are encoded by the HLA-DQB1 gene
  • the heavy chain of the DP molecule is encoded by HLA-DPA1
  • the three chains are encoded by the HLA-DPB1 gene.
  • Each gene except HLA-DRA contains many alleles, and the pockets containing the antigenic peptides show a high degree of polymorphism, and their structures are slightly different. As a result, the type of antigen peptide that binds to a pocket and is presented to T cells is naturally limited to its structure.
  • Th cells that receive HLA class II-restricted antigen information via the T cell receptor Yuichi are activated, proliferate by secreting various site forces, and proliferate B cells. Differentiates into plasma cells and induces antibody production. Th cells activated by antigen stimulation produce inuichikin 2 (IL-2), inuin leukinha (IFN-y), and lymphotoxin (TNF-?) Due to differences in cytokine production patterns. Th1 cells that produce IL-4, IL-5, IL-6, IL-10, and IL-13, and ThO cells that produce both site-in. The production of IgE antibodies, which cause allergy, is stimulated by IL-14 and IL-13, but suppressed by IFN- ⁇ .
  • IL-2 inuichikin 2
  • IFN-y inuin leukinha
  • TNF- lymphotoxin
  • Th1 cells suppress IgE production, and Th2 cells promote it. It can be said that whether or not Th1 cells or Th2 cells work when invading the antigen determines whether or not allergic sensitization occurs. In fact, it is known that Th2 cells are predominantly working in one patient. Allergen-specific IgE antibodies adhere to basophils and mast cells in tissues in peripheral blood, and subsequent invasion of allergen causes IgE antibodies to cross-link on basophils and mast cells via allergens This results in the release of inflammatory mediators, including histamine, broth evening glandin and leukotrienes, causing an immediate allergic reaction. In response to all of these inflammatory media, locally accumulated lymph Activated spheres, monocytes, basophils, and eosinophils cause delayed allergic reactions by releasing mediators that cause various reactions, including damage to tissues.
  • Desensitization therapy has a long-lasting effect that can not be obtained with drug therapy, and although it is close to the only radical treatment, it is not always recognized as a general treatment . The reason for this is that, besides the dangers of side effects associated with this treatment (such as local swelling and anaphylactic shock), it is still unclear how this treatment works and how it works.
  • the peptide fragment containing the T cell epitope on the allergen molecule used in this treatment method is monovalent without or with the B cell epitope, and has a high affinity for mast cells. It is considered that side effects such as anaphylaxis do not occur even when administered to patients for reasons such as inability to crosslink.
  • T-cell ebitopes are administered to a living body, T cells are inactivated in an antigen-specific manner (anergy, anergy) (La Salle JM, et al .: J. Exp. Med. 176: 177-186, 1992).
  • an object of the present invention is to provide a peptide immunotherapeutic agent which is effective even for allergic patients sensitive to two or more different allergens.
  • Major cedar pollen allergens include Cry j KYasueda, H. et al .: J. Allergy Clin. Immunol. 71: 77-86, 1983) and Cry j 2 (Taniai,. Et al .: FEBS Letter 239: 329-).
  • a multi-engineered bitope containing the Cry j1 T cell epitope and the Cry j 2 T cell epitope in the same molecule was prepared. Then, the multi-engineered vitobu peptide activates T cells of hay fever patients in vitro, and does not react with IgE antibodies of the patients, and is used in vivo in mice. In addition, the present inventors have found that they induce an immune response, and from this new finding, it has been proved that the multi-peptide peptide is effective as a peptide immunotherapy for cedar pollinosis patients.
  • the present inventors have advanced this idea, and in many cases of Japanese cedar pollinosis, cypress pollen also expresses clinical symptoms. Therefore, the T cell ebitope of cypress pollen allergen Cha01 ( Japanese Patent Application No. 8-153527) and a T cell ebitope of the cedar pollen allergen Cry j 1 were prepared in a single molecule to produce a multiplex peptide, and the multiplexed biteotope peptide reacted with each ⁇ cell ebitope. It was found that ⁇ cells were activated in cedar pollinosis patients and cypress hay fever patients who did not. Based on these new findings, it was found that such a design of multiple epitopes can be applied to ⁇ -cell ebitoves derived from various other allergens, not limited to cedar pollen allergens and hinoki pollen allergens.
  • HLA haplotypes in patient populations were investigated, so that the effect would be expected for more patients. Consideration should be given to selecting the best possible HLA haplotypes that bind to HLA, where the frequency of HLA haplotypes in the population is high. It has been clarified that the selection of ⁇ cell epitope peptides that are presented as antigens by the HLA class II molecule of the type obtained further expands the effective target patients.
  • the invention consists of the above-mentioned items.
  • allergens that have already been identified--for example, black croaker (Amba1, Amba2, Amba5, Ambt5, Ambp5), camouflage (Dac g2), hosum Plant pollen such as Gi (Lo lp l, Lo lp2, Lo lp3), tree pollen such as alder (Alng 1), hippopotamus (Betvl, Betv2), mountain cedar (Juns l), Jenbibyaksin (Junvl) or other places
  • the technical idea of the present invention can be applied to various allergens not described in the above.
  • the “multi-engineered bitope peptide” refers to a peptide in which T cells containing different allergen molecules are contained (also referred to as antigenic peptides or simply peptides) are linearly linked. Means one peptide.
  • the multi-engineered bitope peptide is cleaved into individual antigen peptides in the cleavage region, and the same effect as when individual antigen peptides are administered as a mixture is expected.
  • the cleavage region may have any structure as long as it is cleaved in vivo, but arginine dimer or lysine dimer, which is a recognition sequence of cathepsin B which is an enzyme contained in lysosome, can be used.
  • the multiplex shrimp peptide design of the present invention will be described using cedar pollen allergens Cry j 1 and Cry j 2 as examples.
  • HLA class II molecules that bind to these antigenic peptides are typed.
  • DR, DQ and DP molecules exist at the locus of HLA class II molecules. This implies that the differentiation of T cells may be regulated by the antigen-presenting molecules DR, DQ, and DP that present antigens. Therefore, Cry j 1 Indicates the loci from which the antigen peptide of Cry j 2 is presented by the antigen presenting molecule, and the T cells that receive the antigen peptide information via DR, DQ, or DP molecules are ⁇ hi or Th2 cells. Which cell is more likely to differentiate is determined by using a cell clone established for each patient ( Figures 3 and 4).
  • the criteria for selecting a peptide for a multiple peptide peptide design are as follows: (1) First, select peptides in descending order of importance index (WO 94/01560) (however, the importance index is about 100 (2) Select a peptide that uses the frequently occurring HLA class II molecule as the antigen-presenting molecule. (3) Increase the efficacy if there is not much difference in the significance index. To do this, it is necessary to select peptides that are presented in different evening restraint molecules.
  • the HLA haplotype of a certain group of allergic patients is analyzed, and the gene frequency of the HLA haplotype of the population to which the patient group belongs is determined. Choosing a high T cell epitope is the most effective choice. In other words, this means that the T cell vector selected in this way may not be effective at all in other populations.
  • HLA haplotype ⁇ 0501 For example, taking the HLA haplotype ⁇ 0501 as an example, suppose that a Japanese patient with a certain allergic disease has this HLA haplotype at high frequency and has selected this HLA haplotype-restricted T cell receptor. On the other hand, the peptides selected in this way are unlikely to be effective in North Americans with the same allergic disease. This is because this HLA haplotype has a very high gene frequency of 39.0% in the Japanese population. However, it is very low in North America, at 1.3% for whites and 0.8% for blacks. If you select an HLA-DP-restricted T cell epitope from North Americans, you should select DPB1 * 0401 (North America; 30.2% white, 11.1% black, Japanese; 4.8%). Furthermore, it is important to select peptides whose antigen-presenting molecules are presented at different loci such as DR, DQ, and DP or antigen-presenting molecules of different haplotypes even if the loci are the same.
  • a cysteine residue is not contained in the epitope site to be selected. If a cysteine residue is contained in the ebitope site, it may bind non-specifically to HLA class II molecules, and when immunized with an antigen peptide containing a cysteine residue, a site that is not originally an antigen will be newly added. It may be recognized as a small ebitope. If it is recognized as a webtop, it is expected that the second and third doses of the peptide will recognize the webtop containing cysteine and increase the risk of side effects.
  • the importance index of T cell epitope in Cry j 1 is the amino acid number 2U-225 of peptide number 43 (hereinafter P211-225).
  • P211-225 the amino acid number 2U-225 of peptide number 43
  • peptide number 22 pl06-120 restricted molecule DRB5 * 0101
  • the importance index of Cry j 2 is high for peptide No.
  • Cry j 1 peptide number No.4 pl6-30 is restricted by DQA1 * 0102-DQB1 * 0602, but cannot be selected because it contains a cystine residue in the center of the ebitove.
  • P341-360 which corresponds to peptide numbers 69 to 70 of Cry j2, is a peptide represented by DQA1 * 0102-DQB1 * 0602, which also contains cysteine in peptide number 70.
  • P344-355 (ISLKLTSGKIAS) can be selected immediately, with only 12 residues.
  • peptide number 22 p106-120 of Cry j 1 contains cysteine at position 107, but the minimum required sequence is determined by pl09-117 (FIKRVSNVI ) Of 9 residues. That is, it can be used even if the Pro-Cys residue at positions P106 to 107 is removed, and the antigen taken into the antigen-presenting cells is degraded by lysosomes. How exogenous proteins are incorporated into antigen-presenting molecules, how they are processed, and how they bind to HLA class II molecules remain unresolved. However, it has now been pointed out that cathepsin B may be involved in antigen cleavage in this complicated mechanism (Nobuhiko Katsunuma, The Immunology Society of Japan (1995) 25:75).
  • HLA-binding amino acid motif of antigenic peptides has been determined. Although binding to HLA class II molecules has specificity, a peptide that satisfies certain rules for a specific HLA class II type can bind a considerable variety of antigenic peptides (Rammensee, H. -G. Et. al. Immunogenetics. (1995) 41: 178-228). For this reason, a newly recognized epitope site may be generated at the site where the antigen peptide is connected. In order to avoid this, it is preferable to design a multi-engineered vitopeptide so that each antigen peptide is cleaved in an antigen-presenting cell.
  • Arg-Arg or Lys-Lys is added to the latter half of the peptide containing the peptide.
  • the next epitope sequence is arranged so that the hydrophobic amino acid sequence is located following Arg-Arg or Lys-Lys.
  • Arg-Arg was interposed between the antigenic peptides, so it is thought that there is no need to ask for the order, but Cry j 2 peptide number 14 Regarding (Fig.
  • Tyr 73 becomes the first anchor, and the added Arg residue becomes the ninth amino acid of the DRB5 * 0101 peptide binding motif. It may be the second anchor. As a result, it may be recognized as a new web site. For this reason, this sequence is preferably located at the end of the multi-vitro peptide.
  • the multi-engineered vitopeptide obtained in this manner is shown in SEQ ID NO: 1.
  • the constrained molecules of this multiplex pitove are DRB4 * 010K DRB5 * 010U DPAl'0101-solid, 1, DPAr0101-DPBl * 050K DQAl * 0102-DQBr0602.
  • the frequency of these genes in the Japanese population has been calculated at the 11th International Histocompatibility Congress (Tsuji, K. et al. HLA 1991 vol, 1 (1992) Oxford University Press).
  • DRB4 * 0101 is calculated as 0.291
  • DRB5 * 0101 is calculated as 0.056
  • ⁇ * 0201 is calculated as 0.208
  • 0 ⁇ 0501 is calculated as 0.399
  • DQB1 * 0602 is calculated as 0.053 (DQBr0601 is calculated as 0.204).
  • DRB4 * 0101 0.50
  • DRB5 * 0101 0.11
  • DRB5 * 0102 0.14
  • ⁇ 201 0.37
  • DPB "0501 0.64 (0.79 according to the observations of Hori et al.)
  • DQB1 * 0602 0.10
  • D QBr0601 0.37 Since DRB5 * 0101 and DQB1 * 0602 have linkage disequilibrium, they can be regarded as identical, so the value of DRB5 * 0101 can be used.
  • the probability of having both or one of DPBr0201 and DPBr0501 in the evening is calculated as 0.85, and the probability of having both or one of DRB4 * 0101 and DRB5 * 0101 is calculated as 0.56. From the values, it is estimated that approximately 90% of patients can recognize one or more T-cell epitopes contained in the multi-engineered vitope peptide of SEQ ID NO: 1. However, T-cells can be recognized even in patients having these HLA-types. Even if antigen information is presented by these binding molecules on the side, these ebitope peptides Whether recognizable T cell repertoire exists is not known.
  • multi-engineered vitope peptides containing more T cell ebitoves can be designed to increase the effective target population.
  • a multi-factory vitobe consisting of Cry j 1 p213-225, pl08-120, Cry j 2 pl82-200, p79-98, Cry j 1 p80-95, and Cry j 1 p66-80 in this order Peptide (SEQ ID NO: 2), or p213-225, pl08-120 of Cry j1, pl82-200, p79-98 of Cry j2, p67-95 of Cry j1, p238-251 of Cry j2, This is a multi-functional peptide (SEQ ID NO: 3) obtained by connecting p66-80 in this order.
  • Modification of the antigenic peptide portion used in the multi-engineered vitopeptide to regulate the activity of T cells is also included in the present invention.
  • An alteration refers to the substitution, deletion, or insertion of one or more amino acids. Examination of the qualitative change given to T cells by amino acid substitution of the antigen peptide can be performed by a known method.
  • Multi-engineered vitopeptides that are immunologically equivalent (importance index, T-cell activating ability, etc.) to the multi-peptide vito peptide of the present invention by the analog peptide thus obtained are also included in the present invention. Sa It is.
  • T cells that react with the antigenic peptide derived from Cry j 1 or Cry 2 have Th2 and Th0 properties (FIGS. 3 and 4).
  • the BCG vaccine prevents infection from M. tuberculosis by activating the cellular immunity.
  • Thl-Eve T cells In order to activate cell-mediated immunity, Thl-Eve T cells must be induced.However, the nature of the T cell clone in BCG-inoculated humans has revealed that Thl-Eve T cells are abundant. (Sho Matsushita, The 45th Annual Meeting of the Japanese Society of Allergology, 836, 1995).
  • Thl clones that recognize the 84-100 amino acid sequence (EEYLILSARDVLAVVSK) of the Mycobacterium tuberculosis BCGa protein in an HLA-DR14 (DRB1 * 1405) restricted manner. Therefore, we selected the DPA1-DPB1 * 0501-restricted T cell epitope, which is an HLA haplotype possessed by more than 60% of Japanese (for example, Cry j143 peptide No. 43 in Figure 1 (p21-225)).
  • T cell clones specific to the Der p 1 antigen one of It is said to be induced. Therefore, by using a multi-peptide peptide that combines a T cell ebitope with Thl inducing ability and an allergen-reactive T cell epitope, Th2 or ThO type T cells can be converted into Th1 or ThO type T cells by nature. Is expected to be induced.
  • T cell analogs are generated when the mouse is exposed to cedar pollen allergen (FIG. 13). , 14), the production of IL-12 is also significantly reduced as compared to the control group.
  • IL-2 decreases during human desensitization therapy (J. Allergy C1 in. Immunol. 76: 188, 1985).
  • the multi-engineered bitope peptide of the present invention activates each of the T cell clones for each of the T cell peptides constituting the peptide (FIG.
  • the multiple ebiteobeptide of the present invention can be administered together with a pharmaceutically acceptable carrier or diluent.
  • the effective amount will vary according to factors such as the degree of sensitivity to cedar pollen allergen, age, gender and weight of the patient, and the ability of the peptide to elicit an immune response in the patient.
  • the administration route can be a simple method such as injection (subcutaneous or intravenous), nasal drop, eye drop, oral, inhalation, and dermal.
  • FIG. 1 shows the average stimulus coefficient, the appearance frequency, and the significance index (mean stimulus coefficient X appearance frequency) of Cry j 1 overlapping peptide in a cell line derived from a cedar pollinosis patient.
  • FIG. 2 is a diagram showing an average stimulation coefficient, an appearance frequency, and a significance index (average stimulation coefficient X appearance frequency) of a cell line derived from a cedar pollinosis patient with respect to Cry j 2 overlapping peptide.
  • FIG. 3 is a diagram showing HLA class II type that restricts the antigen peptide of Cry j 1 and Th type of a T cell clone that recognizes a complex of the antigen peptide and an HLA class II restriction molecule.
  • FIG. 4 is a diagram showing HLA class II type that restricts the antigen peptide of Cry j2 and Th type of a T cell clone that recognizes a complex of the antigen peptide and an HLA class II restriction molecule.
  • FIG. 5 is a diagram showing the results of identification at the locus level (DR, DQ, DP) of HLA class II molecules that bind to antigenic peptides.
  • FIG. 6 is a diagram showing the results of identification at the allele level of each locus of an HLA class II molecule that binds to an antigen peptide.
  • FIG. 7 is a diagram showing an antigen-peptide binding sequence used for a multiplex evitrobe peptide.
  • a and b correspond to the peptides of Nos. 43 and 22 of Cry j 1
  • c corresponds to No. l4 of Cry j 2
  • d and e correspond to Nos. 37-38 (pl81-200).
  • No.69-71 (p346-365).
  • FIG. 8 is a diagram showing the reactivity of the multi-engineered bitope peptide, CA # 1, A. # 2, CA # 3, A. # 4, CA # 5, and A. # 6 with human IgE. .
  • FIG. 9 is a diagram showing recognition results of T cell epitopes contained in C.A. # 4, a multi-engineered vitopeptide by a T cell clone.
  • FIG. 10 is a graph showing the lymphocyte proliferation responsiveness to peripheral blood lymphocytes of cedar pollinosis patients and healthy subjects stimulated with various concentrations of a multi-epitope peptide (SEQ ID NO: 1).
  • FIG. 11 is a diagram showing the proliferation responsiveness of two healthy subjects and 17 cedar pollinosis patients to peripheral blood lymphocytes stimulated by multiple engineered bitopeptides of SEQ ID NO: 1.
  • FIG. 12 is a diagram showing induction of immune tolerance by administration of cedar pollen allergen Cry j 1 to CB6F1 mice.
  • FIG. 13 is a diagram showing the immunological tolerance of Cry j 2 No. 14 peptide (p66-80) administration to CB6F1 mice.
  • FIG. 14 is a diagram showing immunological tolerance to CB6F1 mice by administering Cry j 2 No. 48 peptide (p236-250).
  • FIG. 15 shows the determination of the core amino acid sequence of the Cry j 1 No. 22 peptide (pl06-120).
  • Fig. 16 shows the lymphocyte reactivity of cedar pollinosis patients and cypress pollinosis patients to a multiplex pitobeptide consisting of cedar pollen-specific T-cell ebitopeptide and hinoki pollen-specific T-cell ebitotopeptide.
  • FIG. 17 is a graph showing the proliferation response of the T cell clone PJ7-9 to the amino acid-substituted analog peptide of the Cry jl # 22core peptide and the amount of cytokine produced at that time.
  • FIG. 18 is a graph showing the growth responsiveness of T cell clone PB10-18 to the same analog peptide and the subsequent production of cytokin.
  • the value of [3 H] thymidine cellular uptake upon addition of peptide, without the addition of peptide control [3 H] cellular uptake of Oconnection obtained value to be divided by the value of thymidine (stimulation index / Stimulation Index) is 2 or more.
  • a peptide is defined as being recognized as an antigenic peptide.
  • the recognized T cell epitope is expected to be different for each HLA-class II type. Therefore, the antigenic peptides recognized by each patient were mapped for each patient. As a result, on the Cry 1 and Cry j 2 molecules, the sites that could be recognized in each patient were different. On the allergen molecule, there are sites that are easily recognized by individuals as T cell epitopes and sites that are hardly recognized by individuals. In addition, since the proliferation rate of T cells differs for each T cell web, it is not possible to determine which antigen peptide can be selected for the design of a multi-engined bitop using only this ebit map.
  • the average stimulation coefficient was calculated for the antigen peptide when the stimulation coefficient was 2 or more, and this value was multiplied by the percentage (appearance frequency) of patients holding the antigen peptide to obtain the ebitope.
  • An “importance index” was calculated, which indicates the superiority of each (see WO 94/01560).
  • Figures 1 and 2 show the results.
  • peptide number 43 (p211-225) has the highest importance index at 679, followed by peptide number 22 at 578 and peptide number 4 at 373.
  • the index of peptide number 14 is the highest at 709
  • the index of peptide number 38 is 680
  • the index of peptide number 48 is 370.
  • peptide immunotherapy there is a method to select an antigenic peptide with a high importance index and use it as a peptide immunotherapy, but it is effective only in 72% of patients even at the highest frequency of occurrence. Unexpected, the actual effectiveness will fall even further. Combine several T-cell webs to increase efficacy There is a need to show.
  • T-cell epitopes are a candidate with a high significance index, but no matter how much the epitope with a high significance index is selected, HLA class II that presents these ebitopes as antigens The efficiency cannot be increased if the molecules are the same. Therefore, it is necessary to identify the type of HLA class II molecule that presents the T-cell epitope peptide.
  • PJ A24 /-one B61 / 51-Cw3 /--DRBri501 / 0802-DRB5 * 010 DQA1 * 0102/0401-DQBl * 0602/0402 one DPA1 *-/--DPB1 * 0501/0402.
  • PR A-11 /--B60 / 35-C 7/3-DRB1 * 0901/1501-DRB4 * 0101-DRB5 * 0101-DQA1 * 0301/0102-DQBl * 0303/0602-DPAl * 01/0202-DPB1 * 0201/0201).
  • T cell clones specifically recognizing Cry j 1 were established from ⁇ -derived peripheral blood lymphocytes and a total of 14 types from PJ-derived peripheral blood lymphocytes.
  • a total of 31 T cell clones that specifically recognize Cry j2 were established from PB-derived peripheral blood lymphocytes, 10 from PC-derived peripheral blood lymphocytes, and 17 from PR-derived peripheral blood lymphocytes.
  • all of these T cell clones are CD3 +, CD4 ⁇ CD8—, 7CRa3 TCR ⁇ ⁇ , the restriction molecule is HL It turned out to be an A-class II molecule.
  • T cell clones that recognize Cry j 1 69% (34/49) showed a proliferative response to stimulation with an antigen-containing peptide, and the antigen peptide could be identified.
  • T cell clones recognizing Cry j 2, 69% (40/58) could identify antigenic peptides.
  • T cell clones that specifically recognize Cry j 1 are peptide numbers 4, 13, 19, 22, 30, 30, 31, 39, 43, 51, 66, and T cell clones that specifically recognize Cry j 2.
  • the constrained molecules of Cry 1 P106-120, Cry j 2 p66-80 and Cry j 2 pl86-200 peptides are DR, Cry j 2 p341-355 peptide. It can be seen that the restricted molecule of tide is DQ, the restricted molecule of Cry j 1 p21 to 225, and the restricted molecule of Cry j 2 pl81-195 is DP. Restricted molecules of other T cell clones were analyzed in the same manner (see FIGS. 3 and 4).
  • restriction molecules at the HLA class 11 locus level could be identified, for DIU, mouse cells transfected with each type, for DQ or DP, for haplo
  • DIU mouse cells transfected with each type, for DQ or DP, for haplo
  • Restriction molecules can be identified when a proliferative response of the T cell clone is observed.
  • the binding molecule that presents the Cry j 1 P106-120 peptide is DRB5 * 0101
  • the binding molecule that presents the Cry j 1 p211-225 peptide is DPArOlOl-DPBr0501
  • the binding molecule that presents the Cry j 2 p66-80 peptide is DRB5 * 0101
  • the constraining molecule presenting the Cry j 2 pl81-195 peptide is DP ⁇ 0101-PDBr0201
  • the constraining molecule presenting the Cry j 2 pl86-200 peptide is DRB4 * 01 01
  • the constraining molecule presenting the Cry j 2 p34 355 peptide Was DQAr0102-DQB1 * 0602 (Fig. 6).
  • the analysis results for other ebitope sites are shown in FIGS. 3 and 4.
  • Th2 cells are involved in the development of allergy.
  • T cells differentiate into Thl or Th2 cells, a specific ebitope peptide Or, whether it is defined at the HLA-class 11 locus level is still largely unresolved.
  • Th2 cells are predominantly induced after stimulation with the peptide, there is a high possibility that cedar pollinosis will worsen due to the administration of peptide.
  • the T cell clone prepared in Example 2 was stimulated with an ebitove peptide recognized by T cells, and the Th type was determined by measuring the production of IL-2, IL-4, and IFNa.
  • FIGS 3 and 4 show the amount of IL-2, IL-4 and IFN ⁇ produced by each T cell clone.
  • the T cell clones that recognize Cry j 1 were 12 Th2 cells, 1 Thl cells, and 16 ThO cells, and the Th2 cells were more than Thl. 10, T hi cells were 8, ThO cells were 8, Th 2 and Thl were comparable. Comparing the T cell evidotopes, restriction molecules, and Th types recognized by individual T cell clones, the Th2, Thl, and ThO types differ depending on the individual T cell clones, and the same ebitope and the same antigen-presenting molecule are detected. Th2 cells and Thl cells have been found in several T cell clones to recognize.
  • Cry j 1 does not have an IgE ebitope that recognizes this primary structure. It was found that there were at least four IgE antibody sites, but these IgE antibody sites were different from the T cell sites. Based on this finding, the peptides shown in FIG. 7 were selected from the T cell ebitope sites of Cry j1 and Cry j2.
  • Peptides a and b in FIG. 7 correspond to peptide Nos. 43 and 22 of Cry j 1 in FIG. 1, respectively, and peptide c corresponds to No. 14 in Cry j 2 in FIG. Consists of a part of the amino acids 37-38 and 69-71 of Cry j 2 in FIG. 2, respectively.
  • Example 6 Six types of multi-processed bite peptides WA # 1 to # 6) obtained in Example 6 were dissolved in 0.2 M acetate buffer (pH 4.5), and 0.1 ml / ⁇ l was added to a black plate (Dainippon Pharmaceutical Co., Ltd.). It was left 4 e C De ⁇ in addition to). After removing the antigen solution, the cells were washed three times with a washing solution, and 29 cedar pollen patients and healthy human serum (4-fold dilution) were added and reacted at 37 ° C for 4 hours. After removing the serum, the cells were washed three times with a washing solution, and reacted with an anti-human IgE antibody (Pharmacia) at room temperature for one hour.
  • an anti-human IgE antibody Pharmacia
  • T cell clone PB8-3 recognizing Cry j 1 pl06-120
  • T cell clone PB8-34 recognizing Cry j 1 p211-225
  • T cell clone PB4-22 recognizing Cry j 2 p66-80
  • Cry T cell clone PB14-5 that recognizes j2P181-195
  • All cell clones PB14-34 respond well to antigenic peptides.
  • T cell clones respond to proliferation with the same strength as individual peptides.
  • T cell clone PB14-19 recognizing Cry j 2 p341_355
  • a somewhat weak proliferative response was observed in response to stimulation with heavy-duty peptide.
  • multi-bitetopeptides contain ⁇ -cell ebitobe sites, it is necessary to elicit a proliferative response in peripheral blood lymphocytes when attempting peptide immunotherapy.
  • Peripheral blood lymphocytes were stimulated with multiple ebitopeptides to investigate whether a proliferative response was observed.
  • peripheral blood lymphocytes showed a proliferative response to multiple ebiteobeptides.
  • Peripheral blood lymphocytes from one patient and two healthy subjects showed no proliferative response (Figure 10).
  • Peripheral blood lymphocytes from 17 cedar pollinosis patients and 2 healthy subjects were stimulated with 10 ⁇ g / ml of multiple epitope peptides, and T cell responses were calculated. No T cell proliferation response was observed in peripheral blood lymphocytes of healthy subjects. Up to 9,652 cpni of [ 3 H] thymidine incorporation were observed in 17 patients. Without antigen stimulation of peripheral blood lymphocytes [3 H] thymidine incorporation 1 and calculates the uptake values of [3 H] thymidine in peripheral blood lymphocytes in the presence of an antigen expressed by stimulation index (SI), the result Is shown in FIG.
  • SI stimulation index
  • Example 10 Induction of immune tolerance by administration of cedar pollen allergen using mice
  • the details of the mechanism of so-called hyposensitization treatment in which treatment is performed by administering sigma allergen are not known in detail. Therefore, an animal experiment using a mouse was performed.
  • the cedar pollen allergen, Cry j 1 was administered subcutaneously twice at 5 days intervals to CB6F1 mice (female, 5 mice) at 300 g per animal.
  • the same volume of PBS was subcutaneously administered (female, 5 animals).
  • Seruha base star performs a Pal Suraberu with [3 H] _ thymidine for the last 6 hours, 0.5 Ci / Ueru (Inoteck, belt - field Japan Co., Ltd.) cells were scavenged on a glass filter, dried, liquid scintillator [ 3 H] -thymidine uptake in cells was measured using Yuichi Ichiyon Counsel (TRI-CARB 4530, manufactured by Packard Japan).
  • CB6F1 mice immunized with rCry j 2 showed strong reactivity with the antigen rCry j 2, but did not react with Cry j 1, another major cedar pollen allergen. It was confirmed that there was. Then, CB6F1 mice immunized with rCry j 2 showed remarkable responsiveness to No. 14 and No. 48 peptide shown in FIG. 2 among the 74 overlapping peptides examined. For this reason, No. 1 in the CB6F1 The peptides No. 4 and No. 48 were shown to be involved in antigen presentation as major T cell evitoves. Even in humans, No. 14 and No.
  • mice Eight male CB6F1 (8-week-old, male) mice per group 3 mg No. 14 peptide dissolved in physiological saline per mouse was subcutaneously administered twice at 5 intervals. As a control group, an equal volume (100 1) of physiological saline was similarly administered. On day 5 after the second peptide administration, all mice were subcutaneously immunized with rCry j 2 (50 ⁇ g / animal) mixed with Inject Arm (Imject Alum). One week after immunization, spleen cells were prepared from each mouse.
  • Cytokine measurements were performed on the cultures when stimulated with 0.3 ⁇ 1111 ( ⁇ j2) in 0.310 for the three peptide-administered groups including the control (0.3, 1.3, lO / zg / ml). Qing was used.
  • mice Six-week-old male CB6F1 mice were subcutaneously administered twice at 5 day intervals with 3 mg No. 48 peptide dissolved in physiological saline. As a control group, an equal volume (200/1) of physiological saline was similarly administered. The number of animals in each of the peptide administration group and the control group was 8, and the second bepti All mice were immunized subcutaneously with rCry j 2 (50 g) mixed with an adjuvant (Imject Alum) on the 5th day after administration of the drug. One week after immunization, spleen cells were prepared from each mouse.
  • the N-terminus of this peptide was determined as shown in Figure 15 And deleting each amino acid from the C-terminus, pl07-120 (p22-2), pl08-120 (p22-3), pl09-120 (p22-4), pl0-120 (p22-5), plll-120 (p22-6), pl06-119 (p22-7), pl06-118 (p22-8), pl06-117 (p22-9), pl06-116 (p22-10), pl06-115 ( One kind of peptide of p22-ll) was synthesized using a peptide synthesizer (PSSM-8, manufactured by Shimadzu Corporation).
  • PSSM-8 a peptide synthesizer
  • T cell lines (PJ, PR, PB) of three cedar pollinosis patients reacting with pl06-120 of Cry j 1 peptide No. 22, and T cell clones of one patient ( ⁇ 8-3, ⁇ 8) -2, 9-39), the reactivity of these 11 peptides was examined using the methods of Examples 1 and 2.
  • Two ⁇ cell lines (PJ, ⁇ ) and two ⁇ cell clones ( ⁇ 8-2, ⁇ 9-39) recognized ⁇ 106-120 ( ⁇ 22-1) and proliferated.
  • T cell lines and T cell clones showed no proliferative response (FIG. 15).
  • the P106-120 core sequence was found to be 9 residues of “FIKRVSNVI” (the 9 residues are designated as Cry j 1 # 22 core).
  • Peptide No. 8 (p7 90; IFSKNLNIKLNMPLYIAGNK) or Peptide No. 32 (P3 11-330; SSGKNEGTNIYNNNEAFKVE), which is the T cell epitope of Japanese cypress pollen allergen Cha 01 (Japanese Patent Application No. 8-153527) Cry j 1 # 2 2 core sequence "F IKRVSNVI" obtained by connecting two kinds of peptides (Cha o 1 # 8-Cry ji # 22 core, Cha o 1 # 32-Cry j 1 # 22 core) The peptide was synthesized using a peptide synthesizer (PSSM-8; manufactured by Shimadzu Corporation).
  • PSSM-8 a peptide synthesizer
  • a Cry j 1-specific T cell line and a Cha 01 -specific T cell line were prepared from cedar pollinosis patients and cypress pollinosis patients, respectively.
  • Cry j 1 -specific and Cha 0 1 -specific T cell lines do not react with Mycobacterium tuberculosis antigen (PPD) or streptococcal cell wall (SCW) antigen
  • Cry j 1 -specific T cell line is Reacts with j 1 # 22 or Cry j 1 # 22 core but not with Cha o 1 # 8 or # 32
  • the Chao 1 specific T cell line is Cha o 1 # 8 or # 32 But did not react with Cry j 1 # 22 or Cry jl # 22core (Fig. 16).
  • Example 16 Proliferation response and cytokine production of analog peptide Using two clones, PJ7-9 and PM0-18, it was determined whether T cell activity could be regulated by substituting amino acids in the T cell epitope peptide of Cry j 1 # 22 core. Examined. T cell clones PJ7-9 and PB10-12, which react with Cry j1 peptide number 22 pl06-120, recognize DRB5 * 0101 as a restriction molecule and recognize 9 residues of Cry jl # 22core.
  • the amount of IFN a, IL-4, IL-2, and IL-5 produced in the supernatant reacted with the peptide of 13 residues without amino acid substitution and the amount of [ 3 H] thymidine taken up by the cells were measured.
  • the amino acids at the 3rd, 4th, and 6th positions of the Cry jl # 22core "FIKRVSNVI" are similar and non-similar amino acid substitutions for "K", "R", and "S”. Both, or dissimilar amino acid substitutions, significantly suppressed the incorporation of [ 3 H] thymidine and the production of cytokinin (Fig. 17).
  • amino acids are considered to be important for the peptide-mediated formation of a complex between the HLA molecule and the T cell receptor molecule.
  • first amino acid (F) a change in the production amount of be replaced with a similar amino acid Y [3 H] and uptake of thymidine 1 Les 4, IL-5 is not observed, nonendometrioid similar amino acids
  • Substitution of a certain “S” markedly increased the production of IFN ⁇ and IL-2, despite no change in [ 3 H] thymidine incorporation.
  • the first Cry jl # 22core, 2, 3 , 4, 6, 7, 8 th amino acid substitutions Te cowpea of [3 H] thymidine incorporation is inhibited, these portions
  • These amino acids are considered to be an important part of peptide-mediated formation of a complex between the HLA molecule and the T cell receptor molecule.
  • the substitution of the sixth, seventh and eighth amino acids suppressed the production of IL-2 compared to the amount of IL-5 produced (Fig. 18). From these results, the first Cry jl # 22core “SIKRVSNVI”, in which the amino acid F was substituted with S, increased the amount of IFN- ⁇ production, indicating that it is useful as a therapeutic agent for allergy.
  • the multiple shrimp peptides of the present invention include T cell peptide peptides derived from different allergen molecules, and include peptides represented by HLA class II molecules whose gene frequency is high in allergic patient populations. Contains several peptides that are represented by different molecules between the HLA class II loci (DR, DQ, DP), so it is hoped that the peptide immunotherapy will expand the number of patients to be effective with the minimum length of multiple peptide peptides it can.
  • peptide immunotherapy is attempted on an allergic patient using the multi-engineered vitobe peptide of the present invention
  • the proliferation responsiveness of peripheral blood lymphocytes derived from the patient to the peptide is investigated in advance, and the proliferation response is examined.
  • the patient to be elicited can be selected. This study makes it possible to determine whether or not multiple immunopeptide peptide-based immunotherapy can be applied to the patient, and it is possible to predict the therapeutic effect to some extent based on the high proliferative responsiveness.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Organic Chemistry (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Mycology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biochemistry (AREA)
  • Botany (AREA)
  • Pulmonology (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Description

明細書 アレルギー疾患に対するべプチド免疫療法剤 技術分野
本発明は、 アレルギー疾患に対するべプチド免疫療法に有効な多重工ビトーブ ベプチドに関する。 背景技術
アレルギー疾患は、 I型過敏症(hypersensitivity)免疫反応、 すなわち、 IgE抗 体を介した I型免疫反応が基盤となって生じた機能障害、 あるいは障害による疾患 群と定義される。 その病態は、 花粉症、 気管支喘息、 アレルギー性鼻炎、 ァトビ —性皮廣炎、 アナフィラキシーショックなどである。 花粉症は、 アレルギー疾患 の代表的疾患であり、 我が国では、 約 10%の人達がスギ花粉症に苦しめられてい るが、 なお、 その数は増加の一途をたどっている。 米国では、 ブ夕クサ花粉症の 患者が 5〜15%いると推測されている。 このように花粉症は、 その患者数が多いこ と、 眼のかゆみ、 鼻水、 くしゃみ、 鼻づまり等のつらい症状を伴うこと、 一度発 病すると毎年繰り返すこと等から社会的、 経済的にも大きな問題であり、 根本的 治療法の開発が切望されている。
I型アレルギー反応の成立に関する研究は、 アレルギー疾患の理解と治療にあた つて重要である。 現在、 アレルゲン特異的免疫反応における初期の反応、 特に、 T細胞によるアレルギー反応制御のメカニズムの解明に焦点があてられている。 アレルゲンを含む外来抗原に対する免疫反応の開始は、 免疫システムの抗原提示 細胞に依存する。 B細胞、 マクロファージ、 および樹状細胞を含む抗原提示細胞 は、 外来抗原を取り込み、 抗原ペプチド (T細胞ェビトープペプチド) まで断片 化して MH Cクラス Π分子 (ヒトでは HLAクラス II) のひ鎖および 鎖で形成され るポケットに収容し、 細胞表面に表現し、 抗原特異的 CD 4陽性ヘルパー T細胞 (Th細胞) に抗原提示する。 HLAクラス II分子は DR、 DQおよび DP分子からなり、 D R分子のひ鎖は HLA-DRA、 ?鎖は HLA-DRB1、 -DRB3, -DRB4または- DRB5遺伝子により コードされ、 DQ分子のひ鎖は、 HLA-DQA1、 ?鎖は HLA-DQB1遺伝子によりコードさ れ、 DP分子のひ鎖は HLA-DPA1、 3鎖は HLA-DPB1遺伝子によってコードされている 。 HLA-DRAを除く各々の遺伝子は多くの対立遺伝子を含み、 抗原ペプチドを収容す るポケッ トは高度の多型性を示し、 その構造が微妙に異なる。 その結果、 ポケッ 卜に結合し T細胞に提示される抗原べプチドの種類はおのずとその構造に制限さ れる。
HLAクラス II拘束性の抗原情報を T細胞レセプ夕一(TCR)を介して受け取った Th 細胞は、 活性化し、 種々のサイ ト力インを分泌することにより自ら増殖するとと もに、 B細胞を形質細胞に分化させ、 抗体産生を誘導する。 抗原刺激によって活 性化された Th細胞は、 サイ トカインの産生パターンの相違によってイン夕一口 ィキン 2 (IL— 2) 、 イン夕一ロイキンァ (I FN— y)、 リンホトキシン ( TNF- ?) を産生する Thl細胞、 IL-4,IL- 5,IL-6,IL-10,IL- 13を産生する Th 2細胞、 両方のサイ ト力インを産生する ThO細胞、 に分類される。 アレルギーの原 因となる I gE抗体の産生は、 IL一 4、 I L一 13によって促進されるが、 I FN—ァによって抑制される。 すなわち、 Th 1細胞は I gEの産生を抑制し、 Th2細胞はそれを促進する。 抗原の侵入に際し、 Th 1細胞が働くか Th2細 胞が働くかでアレルギーの感作が生じるか否かが定まるともいえる。 実際、 ァレ ルギ一患者では T h 2細胞が優位に働いていることが知られている。 アレルゲン 特異的 I gE抗体は、 末梢血中の好塩基球および組織のマスト細胞に固着し、 引 き続くアレルゲンの侵入により、 アレルゲンを介して I gE抗体が好塩基球やマ スト細胞上で架橋し、 その結果、 ヒスタミン、 ブロス夕グランジンおよびロイコ トリエンを含む炎症性メディエー夕一が放出され、 即時性アレルギー反応が引き 起こされる。 これらの炎症性メデイエ一夕一に応答して、 局所に集積したリンパ 球、 単球、 好塩基球、 および好酸球が活性化され、 組織に障害を含む様々な反応 をもたらすメデイエ一ターを遊離することにより遅発アレルギー反応が引き起こ される。
抗原特異的に I g E抗体産生を抑制することで特定のアレルギーを治療しょう とする試みの一つに、 アレルゲンタンパク分子を用いた減感作療法がある。 減感 作療法は、 薬物療法では得ることの出来ない長期にわたる持続効果があり、 唯一 の根本的治療に近いにもかかわらず、 かならずしも一般的な治療法として認知さ れていないのが現状である。 その理由として、 この治療法に伴う副作用 (局所の 腫脹やアナフィラキシーショックなど) の危険性のほかに、 この治療法がどうし て有効なのかその作用機序がいまだに不明である点があげられる。
そこで登場したのが T細胞ェビト一プを有するぺブチド抗原を用いた減感作の 考え方である。 この治療方法に用いられるアレルゲン分子上の T細胞ェビト一プ を含むペプチド断片は、 B細胞ェビトーブを含まない、 あるいは含んでいても 1 価であり、 マスト細胞の高親和性 I g Eレセプ夕一をクロスリンクできない、 な どの理由により、 患者に投与してもアナフィラキシーなどの副作用がおこらない と考えられる。 さらに、 T細胞ェビトープを生体に投与すると、 T細胞が抗原特 異的に不活性化 (ァナジ一、 anergy) される現象が知られている(La Salle JM, et al. : J. Exp. Med. 176 : 177-186, 1992)。 このような理論的背景のもとにネ コの毛アレルゲン Fel d 1の主要 T細胞ェビトープを含むペプチドを用いた減感作 の動物実験が行われ、 in vitroで T細胞アナジ一が誘導されることが報告されて おり(Briner, T. J. et al .: Proc. Natl. Acad. Sci . USA, 90 : 7608-7612, 19 94)、 現在このペプチドを用いた減感作の臨床試験が行われている(Norman, P. S . et al.: Am. J. Respir. Crit. Care Med. 154: 1623-1628, 1996; Simons, F . E. et al .: Int. Immunol . 8: 1937-1945, 1996 )。 このようなアレルゲン分子 上の主要 T細胞ェビト一プを含むぺブチドを用いた減感作療法は 「Peptide- base d I腿 unotherapy」 (ペプチド免疫療法あるいはペプチド減感作療法) と呼ばれて いる。
ぺプチド免疫療法に用いる T細胞ェビト一ブぺプチドの選定基準として、 重要 度指数 (Positivity Index; 平均 T細胞刺激係数 x出現頻度) が考案されている (国際公開第 94/01560号)。 また、 ペプチドデザインに際して患者集団における HL Aハプロタイプの多様性をカバ一すべきであるとの報告がある(Wallrer, B. P. & Gefter M. L.: Allergy, 49: 302-308, 1994)。 発明の開示
アレルギー患者の中には異なる 2種類以上のアレルゲン分子のそれぞれに特異 的 I g E抗体を持っている者が多い。 このような患者にも有効なぺプチド免疫療 法剤を開発することはァレルギ一の根本治療に必要である。 しかしながらこれま でにこのような免疫療法剤は開発されてはおらず、 上記文献にもこのような発想 は示されていない。 従って、 本発明は、 異なる 2種以上のアレルゲンに感受性の アレルギー患者にも有効なぺプチド免疫療法剤を提供することを課題とする。 スギ花粉主要アレルゲンには、 Cry j KYasueda, H. et al.: J. Allergy Clin. Immunol . 71 : 77-86, 1983)及び Cry j 2(Taniai, . et al . :FEBS Letter 239 : 329-332, 1988; Sakaguchi , M. et al . : Allergy. 45 : 309-312, 1990 )があるが、 スギ花粉症患者の 9 0 %以上は Cry j 1と Cry j 2それぞれに対する特異的な I g E抗体をもっており、残り 1 0 %弱の患者は、 Cry j 1又は Cry j 2のどちらか一方 に対する特異的 I g E抗体をもっている(Hashimoto, M. et al .: Clin. Exp. All ergy 25 :848-852, 1995 )。従って、本発明者らは、スギ花粉症に対するペプチド免疫 療法に Cry j 1のみ、或いは Cry j 2のみの T細胞ェビトーブを用いた場合には、患 者の 9 0 %に対して十分な有効性は期待できないと考え、 Cry j 1の T細胞ェビト —プ及び Cry j 2の T細胞ェビト一ブを同一分子内に含む多重工ビトープを作製し た。 そして、 当該多重工ビトーブペプチドが in vitroにおいて、花粉症患者の T細 胞を活性化し、 かつ当該患者の I g E抗体と反応せず、 マウスを用いた in vivoに おいても免疫応答を誘導することを見出し、 この新規な知見から、当該多重ェピト ープぺプチドがスギ花粉症患者に対するべプチド免疫療法剤として有効であるこ とが判明した。
更に、 本発明者らはこの考え方を進展させて、スギ花粉症の症例では、ヒノキ花 粉に対しても臨床症状を発現する例が多いことから、ヒノキ花粉アレルゲン Cha 0 1の T細胞ェビトープ (特願平 8-153527号) とスギ花粉アレルゲン Cry j 1の T細 胞ェビトープとを同一分子内に含む多重ェビト一プを作製し、当該多重工ビトープ ベプチドが、それぞれの Τ細胞ェビトープには反応しないスギ花粉症患者及びヒノ キ花粉症患者の Τ細胞を活性化することを見出した。 これらの新規な知見に基づ き、このような多重ェピトープのデザィンは、スギ花粉アレルゲン及びヒノキ花粉 アレルゲンに限定されず他のさまざまなアレルゲン由来の Τ細胞ェビトーブに適 用できることが判明した。
さらにまた、 より多くの患者に効果が期待されるように、多重ェビトープをデザ インする際の Τ細胞ェピトーブの選定基準として、患者集団 (民族も含めて) にお ける HLAハプロタイプを調査し、 母集団における HLAハプロタイプの出現頻度が 高い HLAに結合するェビト一プをなるベく選択するように配慮すると共に、 各ェビ トープがなるべく同一の HLAクラス Π分子によって抗原提示されるものではなく、 異なったタイブの HLAクラス II分子によつて抗原提示される Τ細胞ェビトープぺプ チドを選定することにより、さらに有効対象患者を拡大させることを明らかにした すなわち、 本発明は、 請求の範囲の各請求項に記載の発明からなる。
以下に本発明をスギ花粉、或いはヒノキ花粉に感受性の患者、またはその双方に 感受性の患者に有効な多重ェビト一プベプチドのデザィンについて説明するが、本 発明はこれらのアレルゲンに感受性の患者のみに限定されない。 例えば、すでに -- 次構造が明らかにされている他のアレルゲン、 例えば、ブ夕クサ (Amba l,A mba2,Amba 5,Ambt 5,Ambp 5) 、カモガヤ (Dac g2) 、ホソム ギ (Lo lp l,Lo lp2,Lo lp3) などの草木花粉、ハンノキ (Alng 1 ) 、カバ (Betvl,Betv2) 、マウンテンセダー (Juns l) 、ェンビッ ビヤクシン (Junvl) などの樹木花粉、或いはその他ここに記載しないさまざ まなアレルゲンにも本発明の技術思想は適用され得る。
本明細書において、 「多重工ビトープペプチド」 とは、 異なるアレルゲン分子 由来の T細胞ェビト一プが含まれているべプチド (抗原べプチド又は単にべプチ ドともいう) を直鎖状に連結して 1分子としたペプチドを意味する。 また、 T細 胞ェビト一プを含むぺプチド領域の間に、 新たに認識されるェビトープ部位が生 じる可能性を減少させるために、 生体内で切断される領域を介在させることが好 ましい。 結果として、 該切断領域で多重工ビトープペプチドが個々の抗原べプチ ドに切断されるので、 個別の抗原べプチドを混合物として投与した場合と同等の 効果が期待される。 なお、 該切断領域は、 生体内で切断を受ける限りはいかなる 構造でもよいが、 ライソゾームに含まれる酵素であるカテブシン Bの認識配列で あるアルギニンダイマーまたはリシンダイマ一を用いることができる。
本発明の多重ェビトープぺプチドデザィンについて、 スギ花粉アレルゲン Cry j 1および Cry j 2を例として説明する。
スギ花粉症患者末梢血リンパ球を Cry j 1または Cry j 2で刺激し、 患者ごとの T細胞ラインを作製する。 Cry j 1(国際公開第 94/01560号)または Cry j 2(Komiya ma, N. et al.: Biochem. Biophys. Res. Commun. 201: 1201, 1994)の全一次構 造をカバーする 15アミノ酸程度のォ一パーラッビングべプチドで T細胞ラインを剌 激することにより、 Cry j 1または Cry j 2分子上で T細胞ェビトープとして認識さ れるアミノ酸配列を同定する (図 1、 図 2) 。
次に、 これら抗原べプチドと結合する HLAクラス II分子をタイピングする。 ヒトの場合、 HLAクラス II分子の遺伝子座には、 DR、 DQ及び DP分子が存在するこ とが知られている。 このことは、 抗原を提示する抗原提示分子 DR、 DQ及び DPによ り T細胞の分化が規定されている可能性を意味している。 そのため、 Cry j 1また は Cry j 2の抗原ペプチドがどの遺伝子座由来の抗原提示分子で提示されるのか、 また、 DR、 DQ、 または DP分子を介して抗原ペプチド情報を受け取った T細胞は、 Τ hiまたは Th2細胞のどちらに分化しやすい傾向にあるのかを患者毎に樹立した Τ細 胞クローンを用いて決定する (図 3、 4 ) 。
図 3、 4から、 抗原ペプチドの刺激後の Thl、 Th2または ThOへの分化は特定のェ ビト一プ、 特定の HLA分子の組み合わせでは規定されていないことが明らかである 。 すなわち、 本発明の多重工ビト一プペプチドのデザインのためにペプチドを選 定する場合には、 最低限 T細胞ェビトーブ部位を含むペプチドであれば、 T細胞を 刺激することができるため、 抗原べプチド選定の候補となり得る。
多重ェピトープぺプチドデザィンのためのぺプチドを選定する基準は、 ( 1 ) まず重要度指数 (国際公開第 94/01560号) の高い順番にペプチドを選定する (但 し重要度指数は約 1 0 0以上のものを選定する) 、 (2 ) 出現頻度の高い HLAクラ ス I I分子を抗原提示分子としているペプチドを選定する、 (3 ) 重要度指数にあ まり差がない場合、 有効性を上昇させるために、 異なった夕イブの拘束分子で提 示されるぺプチドを選定することである。 つまりあるアレルギー疾患に対する当 該アレルゲンの T細胞ェビトーブを選択するとき、 ある集団のアレルギー患者の HLA ハプロタイプの解析を行ない、 かつその患者集団が属する母集団の当該 HLAハ プロタイプの遗伝子頻度の高い T細胞ェビトープを選択するのが最も効果が期待 される選択である。 逆の言い方をすれば、 このようにして選択した T細胞ェビ卜 —プは他の集団では全く有効性が認められなくなる場合があることを意味してい る。
例えば HLAハプロタイプの ΟΡΒΓ0501 を例にすると、 あるアレルギー疾患で日 本人患者がこの HLA ハプロ夕イブが高頻度で認められ、 この HLA ハプロタイプ 拘束性の T細胞ェビト一プを選択したとする。 一方こうして選択したぺプチドは 北ァメリカ人で同じアレルギー疾患の患者に有効性はほとんど期待されない。 な ぜなら、 この HLAハプロタイプは日本人集団での遺伝子頻度が 39. 0%と非常に高 いが、 北アメリカでの白人集団で 1.3%、 黒人集団で 0.8%と非常に低いからであ る。 北アメリカ人から HLA-DP 拘束性の T細胞ェピトープを選択するなら DPB1 * 0401 (北アメリカ; 白人 30.2%、 黒人 11.1%、 日本人; 4.8%) 等を選択すべきで ある。 さらに、 抗原提示分子が DR、 DQ、 DPというように異なる遺伝子座レベル、 または遺伝子座が同一でも異なったハプロタイプの抗原提示分子で提示されるぺ プチドを選定することが重要である。
この際、 選定すべきェピト一プ部位にシスティン残基が含まれていないことが 好ましい。 システィン残基がェビトープ部位に含まれていると、 HLAクラス I I分子 に非特異的に結合する可能性があり、 システィン残基を含む抗原べプチドで免疫 すると、 本来は抗原ではない部位が、 新たなェビトープとして認識される可能性 がある。 ェビト一プとして認識された場合には、 2回目、 3回目のペプチド投与に より、 システィンを含むェビト一プが認識され、 副作用が現れる危険性が高くな ると予測される。
以下、 多重工ビトープデザインの具体例を示す。 図 1と図 2に示した Cry 1と Cry j 2の重要度指数を用いると、 Cry j 1における T細胞ェピトープの重要度指数 は、 ペプチド番号 43番のアミノ酸番号 2U-225 (以下 P211-225と表示する) (拘束 分子 ΟΡΑ ΟΙΟΙ - DPB1*0501) が一番高く、 ペプチド番号 22番 pl06-120 (拘束分 子 DRB5*0101 ) が 2番目である。 この 2者は多重工ビトープペプチドに使用する抗 原ペプチドとして選定できる。 また、 Cry j 2における重要度指数は、 ペプチド番 号 14番 p66-80 (拘束分子 DRB5*0101 ) と 38番 pl86-190 (DRB4*0101 ) が高く同様に 抗原ペプチドとして選定できる。 Cry j 2のペプチド番号 38番の前に位置するぺプ チド番号 37番 P181-195は、 重要度指数が 280であるが拘束分子が DPA1 *0101 - DPB 0201であり、 38番の拘束分子とは異なる。 ペプチド 37番 P181-195はペプチド番 号 38番 P186-200と 10残基オーバーラッブしており、 38番の前に 37番の 5残基を付加 し、 HLA- DP分子拘束性のペプチドとして選択できる。 これまで選定してきたぺプ チドの中には DQ拘束性を示す抗原ペプチドは存在しない。 Cry j 1のペプチド番号 4番 pl6- 30は DQA1*0102-DQB1 *0602が拘束分子であるが、 ェビトーブの中央にシス ティン残基が含まれるため選定できない。 Cry j 2のペプチド番号 69〜70番に該当 する p341- 360は DQA1 *0102-DQB1*0602 で提示されるペプチドであるが、 これも 70 番のペプチドの中にはシスティンが含まれている。 しかし、 システィンを含まな い 69番のペプチドのみでも T細胞を活性化することができるため、 12残基のみ、 即 ち P344-355 ( ISLKLTSGKIAS) を選定できる。 また、 Cry j 1のペプチド番号 22番 p 106-120は 107番目にシスティンを含むが、 T細胞クローンを使用した T細胞ェビト ーブのコア配列の決定によって最低必要な配列は pl09-117 (FIKRVSNVI ) の 9残基 である。 すなわち、 P106-107番目の Pro-Cys残基を除去しても使用することができ 抗原提示細胞内に取り込まれた抗原はライゾゾームで分解される。 抗原提示分 子に外来性の蛋白質が取り込まれ、 どのようにプロセスされ、 またどのように H LAクラス I I分子に結合するかは未だに未解決のままである。 しかしながら、 現在 では、 この複雑な機構の中で抗原の切断にカテブシン Bが関与している可能性が指 摘されている (勝沼信彦、 日本免疫学会(1995 )25 :75) 。
幾つかの HLAクラス I Iタイプに関しては、 抗原ペプチドの HLA結合性アミノ酸モ チーフが決定されてきている。 HLAクラス I I分子に対する結合は特異性を有するが 、 ある特定の HLAクラス I Iタイプについても一定の法則を満たすぺプチドであれば かなりの種類の抗原ペプチドが結合できる (Rammensee, H. -G. et al . Immunogen etics. ( 1995 ) 41 : 178-228) 。 このため、 抗原ペプチドをつなげた部位に、 新た に認識されるェピトーブ部位が生ずる可能性がある。 これを避けるため、 抗原べ プチドごとに抗原提示細胞内で切断されるように多重工ビトーブぺプチドをデザ ィンするのが好ましい。 カテブシン Bが認識するぺプチド配列は Arg-Arg-疎水性配 列または Lys-Lys-疎水性配列であるため、 ェピト一ブを含むぺプチドの後半に Ar g-Argまたは Lys-Lysを付加し、 次に続くェピトープ配列は Arg-Argまたは Lys - Ly sに続いて疎水性ァミノ酸配列が位置するように配置する。 この具体例の抗原べプチドの配列の順番に関しては、 抗原べプチドの間に Arg- Argを介在させたので、 順番は問う必要がないと考えられるが、 Cry j 2のべプチ ド番号 14番 (図 2 ) に関しては、 このペプチドの後半に Argを接続すると、 73番の Tyrが第一アンカ一となり、 付加した Arg残基が DRB5*0101のべプチド結合モチーフ の 9番目のアミノ酸となって第二アンカ一となる可能性がある。 その結果、 新たな ェビト一プとして認識される可能性がある。 このため、 この配列は多重工ビトー ブぺプチドの最後に位置するのが好ましい。
このようにして得られた多重工ビトーブペプチドを、 配列番号: 1に示す。 こ の多重工ピトーブの拘束分子は、 DRB4*010K DRB5*010U DPAl'0101-固, 1、 DPAr0101-DPBl*050K DQAl*0102-DQBr0602である。 第 11回国際組織適合抗原会議 において日本人集団におけるこれらの遺伝子頻度が計算されている (Tsuji , K. et al . HLA 1991 vol , 1 ( 1992) Oxford University Press) 。 DRB4*0101は 0.29 1、 DRB5*0101は 0.056 (DRB5*0102は 0.070) 、 麵*0201は 0.208、 0ΡΒΓ0501は 0. 399、 DQB1 *0602は 0.053 (DQBr0601は 0.204) と算出されている。 この値から抗原 頻度を計算すると DRB4*0101=0.50、 DRB5*0101=0.11 (DRB5*0102=0. 14) 、 ϋΡΒΓΟ 201=0.37、 DPB"0501=0.64 (Hori et al .の観察では 0.79) 、 DQB1 *0602=0. 10 (D QBr0601=0.37) と計算される。 DRB5*0101と DQB1*0602には連鎖不平衡が存在する ため同一とみなせるため、 DRB5*0101の値が使用できる。 日本人集団で DPBr0201 と DPBr0501の両夕イブの両者または片方を所持する確率は 0.85と計算される。 ま た、 DRB4*0101と DRB5*0101の両者または片方を所持する確率は 0.56と計算される 。 この値から、 配列番号: 1の多重工ビトープペプチドに含まれる T細胞ェピトー プを一箇所以上認識できる患者はおおよそ 90%と見積もられる。 しかしながら、 これらの HLA-タイプを所持する患者においても T細胞側でこれらの拘束分子で抗原 情報が提示されてもこれらのェビトープぺプチドを認識できる T細胞レパートリー が存在するかどうかは不明である。 また、 T細胞の増殖を引き起こすためのェビト ーブ数が未知である (2箇所以上必要である可能性がある) ため、 この多重ェピト ープぺプチドの有効率は下がると考えられる。 実際には 17名の末梢血リンパ球の 増殖応答での結果つまり、 77%前後が妥当な値と予測される。
さらに、 有効対象人員を拡大させるために、 T細胞ェビトーブをより多く含む 多重工ビトープペプチドをデザインすることもできる。 例えば、 Cry j 1の p213- 225, pl08-120, Cry j 2の pl82-200, p79-98, Cry j 1の p80-95, Cry j 1の p66- 80をこの順につないだ多重工ビトーブペプチド(配列番号: 2 )、 あるいは、 Cry j 1の p213-225, pl08-120, Cry j 2の pl82-200, p79-98, Cry j 1の p67-95, Cry j 2の p238-251, p66-80をこの順につないだ多重工ビト一プペプチド(配列番号: 3 )である。 これらの多重工ビトープペプチドは、 調査したスギ花粉症患者 2 1名 全員の末梢血リンパ球を刺激し、 患者 IgE抗体と反応しないのでぺプチド免疫療法 剤として有効である。 このような考え方をさらに進展させて、 種の異なるアレル ゲン例えば、 ヒノキ花粉アレルゲンとスギ花粉アレルゲンの T細胞ェピトープを 実施例 1 3に示す方法で作製し有効性の拡大をさらにはかることもできる。
T細胞の活性を調節するために多重工ビトーブぺプチドに使用する抗原べプチ ド部分の改変を行なうことも本発明に含まれる。 改変とは 1残基以上のアミノ酸置 換、 欠失、 挿入を行なうことである。 抗原ペプチドのアミノ酸置換によって T細 胞に与える質的な変化を調べることは既に知られている方法で行うことができる 。 例えば、 本発明の多重工ビトープペプチド中の特定のアミノ酸を、 1) 類似した アミノ酸に置換する方法で、 Asp を Glu に、 Asn を Gin に、 Lys を Arg に、 P he を Tyr に、 l ie を Leu に、 Gly を Ala に、 Thr を Ser に置換したアナ口 グペプチドを合成し、 T細胞の増殖能、 あるいはリンホカインの産生能等をもと のペプチドと比較する、 2) 類似していないアミノ酸に置換する方法で、 極性アミ ノ酸と親水性アミノ酸は疎水性アミノ酸である Ala に、 疎水性アミノ酸は親水性 アミノ酸である Ser に置換し、 もとのペプチドと比較する。 このようにして得ら れたアナログペプチドで、 本発明の多重工ビトーブペプチドと免疫学的に等価 ( 重要度指数、 T細胞活性化能等) な多重工ビトーブペプチドも、 本発明に包含さ れる。
Cry j 1 あるいは Cry 2 由来の抗原ペプチドと反応する T細胞は Th2 と T hO の性質を有するものが多い (図 3、 図 4) 。 ところで、 BCGワクチンは細胞性免 疫能を賦活することによって結核菌からの感染を予防する。 細胞性免疫を賦活さ せるためには Thl 夕イブの T細胞を誘導しなければならないが、 BCG接種したヒ 卜の T細胞クローンの性質を検討すると Thl 夕イブの T細胞が多いことが報告さ れている (松下 祥、 第 45回日本アレルギー学会、 836頁、 1995年) 。 松下の報告 によれば、 HLA-DR14(DRB1*1405 ) 拘束性に結核菌 BCGa蛋白の 84- 100 アミノ酸配 列 (EEYLILSARDVLAVVSK)を認識する Thl クローンが存在する。 そこで、 日本人の 60%以上が持っている HLAハプロ夕ィプである DPA1-DPB1 *0501 拘束性の T細胞ェ ビトープを選択し (例えば図 1の Cry j 1 43番ペプチド (p21卜 225) / KSMKVTV AFNQFGPN ), このペプチドを DRBri405 拘束性の結核菌 BCGa蛋白の 84-100 T細 胞ェビトーブとつないだ多重ェビトーブぺプチド EEYULSARDVLAVVSKRRMKVTVAFNQ FGPNは、 DRB1* 05 のハプロタイプを持つスギ花粉症患者に当たる確率はかなり 高くなると考えられる。 このような多重工ピトープペプチドを用いれば、 BCGa抗 原由来ペプチドによって Thl のリンホカイン、 特に IL- 12 の産生が期待できる 。 IL- 12は IL- 4 と相反する作用を持ち、 T細胞にはたらいて Th細胞の への 分化を誘導することが多くのヒトおよびマウスの例で知られている (Manetti , R et al . : J. Exp. Med. , 177, 1199-1204, 1993; Wu, C., et al . : J. Immuno 1り 151 , 1938-1949, 1993; Hsieh, , et al .: Science, 260, 547-549, 1993 ) o 特に、 Manetti 等の実験結果ではダニアレルゲンの一つである Der p 1 抗原 特異的な T細胞クローンは通常 Th2 が誘導されるが、 IL-12 存在下では Thl 又 は ThO が誘導されるとされている。 従って、 Thl 誘導能を持つ T細胞ェビトープ とアレルゲン反応性の T細胞ェビトーブを組み合わせた多重ェビ卜一プぺプチド を用いることによって、 本来 Th2 誘導性の T細胞が Thl 又は ThO タイプの T細 胞に誘導されることが期待される。 本発明の Cry j 1及び/又は Cry j 2の T細胞ェビトープを少なくとも一つ含むぺ プチドをマウスに皮下投与するとその後のスギ花粉アレルゲンに暴露された場合 に T細胞アナジ一が生じ (図 1 3、 1 4 ) 、 I L一 2産生量も対照群に比較して有 意に低下する。 ヒトの減感作療法の際は IL-2が減少するとの報告 (J. Allergy C1 in. Immunol. 76 : 188, 1985)がある。 さらに、 本発明の多重工ビトープペプチド は、 当該べプチドを構成する各 T細胞ェビト一プぺプチドに対する T細胞クローン のそれぞれを活性化し (図 1 0 ) 、 かつ患者 IgE抗体と反応しない (図 8 ) 。 これ らの結果は、 本発明の多重工ビトープぺプチドがアレルゲンに対して免疫寛容を 誘導し、 アレルギー疾患のベプチド免疫療法剤としての有用性を示すものである 。 本発明多重ェビトーブべプチドは製薬学的に許容し得る担体または希釈剤と 共に投与することができる。 その有効量は、 スギ花粉アレルゲンに対する感受性 の程度、 年齢、 性別及び患者の体重、 並びに患者における免疫応答を引き出すぺ プチドの能力などの因子に従って変化する。
投与経路は、 注射 (皮下、 静脈内) 、 点鼻、 点眼、 経口、 吸入、 絰皮などの簡 便な方法で投与することができる。
なお、 本明細書及び配列表におけるアミノ酸の 1文字記号による表記は、 IUPA C生化学命名委員会によって制定された表記とする (生化学辞典 (第 2版) 1 4 6 8頁表 1 . 1参照) 。 図面の簡単な説明
図 1は、 スギ花粉症患者由来の細胞ラインの Cry j 1オーバ一ラップペプチドに 対する、 平均刺激係数、 出現頻度及び重要度指数 (平均刺激係数 X出現頻度) を 示す図である。
図 2は、 スギ花粉症患者由来の細胞ラインの Cry j 2オーバ一ラップペプチドに 対する、 平均刺激係数、 出現頻度及び重要度指数 (平均刺激係数 X出現頻度) を 示す図である。 図 3は、 Cry j 1の抗原ペプチドを拘束する HLAクラス IIタイプ及び当該抗原べ プチドと HLAクラス II拘束分子の複合体を認識する T細胞クローンの Thタイプを示 す図である。
図 4は、 Cry j 2の抗原ペプチドを拘束する HLAクラス IIタイプ及び当該抗原べ プチドと HLAクラス II拘束分子の複合体を認識する T細胞クローンの Thタイプを示 す図である。
図 5は、 抗原ペプチドと結合する HLAクラス I I分子の遺伝子座レベル(DR、 DQ、 DP)における同定結果を示す図である。
図 6は、 抗原べプチドと結合する HLAクラス I I分子の各遺伝子座の対立遺伝子レ ベルにおける同定結果を示す図である。
図 7は、 多重ェビトーブべプチドに用いた抗原べプチド結合配列を示す図であ る。 図中 a及び bは Cry j 1の No.43及び 22のペプチドに対応し、 cは Cry j 2の No. l 4に対応し、 d、 eは、 No.37-38 (pl81- 200) 、 No.69-71 (p346-365) に対応する。 図 8は、 多重工ビトープペプチド、 C.A.#1、 A. #2、 C.A.#3、 A. #4、 C.A.#5 、 A. #6のヒト I g Eとの反応性を示す図である。
図 9は、 T細胞クローンによる多重工ビトーブペプチド、 C.A. #4に含まれる T細 胞ェピトーブの認識結果を示す図である。
図 1 0は、 スギ花粉症患者と健常者の末梢血リンパ球に対する各種濃度の多重 ェビトープペプチド (配列番号: 1 ) 刺激によるリンパ球増殖応答能を示す図で ある。
図 1 1は、 2名の健常者と 17名のスギ花粉症患者の末梢血リンパ球に対する配列 番号: 1の多重工ビトープペプチド刺激による増殖応答能を示す図である。
図 1 2は、 CB6F1マウスに対するスギ花粉アレルゲン Cry j 1投与による免疫寛 容の誘導を示す図である。
図 1 3は、 CB6F1マウスに対する Cry j 2の No. 14ペプチド (p66-80) 投与による 免疫寛容を示す図である。 図 1 4は、 CB6F1マウスに対する Cry j 2の No.48ペプチド (p236-250) 投与によ る免疫寛容を示す図である。
図 1 5は、 Cry j 1の No.22ペプチド (pl06- 120) のコアアミノ酸配列決定を示 す図である。
図 1 6は、 スギ花粉特異的 T細胞ェビト一プペプチドとヒノキ花粉特異的 T細 胞ェビトープべプチドからなる多重工ピトーブべプチドに対するスギ花粉症患者 ¾びヒノキ花粉症患者のリンパ球の反応性を示す図である。
図 1 7は、 Cry j l#22coreペプチドのアミノ酸置換アナログペプチドに対する T細胞クローン PJ7-9の増殖応答性およびその際のサイ トカイン産生量を示す図で あ "S o
図 1 8は、 同上アナログペプチドに対する T細胞クローン PB10-18の増殖応答性 およびその後のサイ 卜力インの産生量を示す図である。 発明を実施するための最良の形態
実施例 1 T細胞ラインを用いた Cry j 1及び Cry j 2 の T細胞ェビトーブの同定
18名のスギ花粉症患者末梢血リンパ球を、 スギ花粉アレルゲンである Cry j 1ま たは Cry j 2で刺激して、 各アレルゲンを特異的に認識する T細胞ラインを患者別 に樹立した。
96-ゥエル平板培養プレート上で、 マイ トマイシン C処理した 5 X 104個の自己由 来 B細胞株、 2 zMのォ一パーラヅビングペプチド、 個の T細胞ラインを、 0. 2mlの 15%血清を含む RPMI- 1640培養液中で 2日間培養し、 0.5 Ciの [3H]チミジン を添加後さらに 18時間培養した。 細胞を細胞ハ一ベスターでガラスフィル夕一に 補集した後、 液体シンチレ一シヨンカウン夕一で [ 3H]チミジンの細胞内取り込み 量を測定した。 ぺプチドを添加した際の [3H]チミジンの細胞内取り込みの値を、 ぺプチドを添加しない対照 [ 3H]チミジンの細胞内取り込み量の値で割ることによ つて得られる値 (刺激係数/ Stimulation Index) が 2以上である場合を、 添加し たべプチドが抗原べプチドとして認識されたと定義する。
Cry j 1の場合、 各患者が認識する Cry j 1分子上の T細胞ェビトープ部位は、 平 均 9.8でありその範囲は 4 ^ェビト一プ数 ^ 15であった。 他方、 Cry j 2の場合は平 均 8.7であり、 その範囲は 2≤ェビトーブ数≤13であった。 Cry 1は、 353ァミノ 酸、 Cry j 2は 379アミノ酸で構成されるため、 100アミノ酸残基あたりおおよそ 2 .3〜2.8箇所の T細胞ェピトープ部位が存在することになる。
HLA-クラス I Iタイプは、 患者ごとに異なると考えられるため、 認識される T細胞 ェビトープは、 HLA-クラス I Iタイプごとに異なると予測される。 そのため、 各患 者が認識する抗原ペプチドを患者ごとにマップした。 その結果、 Cry 1、 Cry j 2分子上では、 各患者で認識され得るェビト一プ部位は異なっていた。 アレルゲ ン分子上では、 個人によって T細胞ェビト一プとして認識され易い部位と認識され にくい部位が存在する。 また、 T細胞ェビト一プごとに T細胞の増殖率が異なるた め、 このェビトーブマップのみでは、 多重工ビトープのデザインにどの抗原ぺブ チドを選定してよいのかの判定ができない。 そこで、 18名の患者について、 刺激 係数が 2以上でる場合の抗原べプチドについて平均の刺激係数を算出し、 この値 に当該抗原ペプチドを保持する患者の割合 (出現頻度) をかけることによって、 ェビトープごとの優位性を示す 「重要度指数」 を算出した (国際公開第 94/01560 号参照) 。
図 1と図 2にその結果を示す。 Cry j 1においては、 ペプチド番号 43番 (p211- 225) が重要度指数が 679で最高値を示し、 ペプチド番号 22番の指数は 578、 ベプチ ド番号 4番の指数は 373と続いている。 Cry j 2においては、 ペプチド番号 14番の指 数が 709で最高値を示し、 ペプチド番号 38番の指数が 680、 ペプチド番号 48の指数 が 370と続いている。 ペプチド免疫療法を考慮した場合には、 重要度指数の高い抗 原べプチドーつを選定しベプチド免疫療法として使用する方法があるが、 出現頻 度の最も高い場合でも 72%の患者でしか効果が期待できず、 実際の有効率はさら に下がるであろう。 有効率を上げるためにはいくつかの T細胞ェビト一プを組み合 わせる必要性がある。 この場合、 T細胞ェビトープの選定には、 重要度指数の高い ものが候補となるが、 いくら重要度指数の高いェビトープのみを選択しても、 こ れらのェビトープを抗原として提示する HLAクラス I I分子が同一であれば有効率を 上げることはできない。 そのため、 T細胞ェビトーブペプチドを提示する HLAクラ ス I I分子のタイプを同定する必要がある。
実施例 2 T細胞クローンの認識する T細胞ェピト一プペプチドの同定
18名のスギ花粉症患者の中で Cry j 1において高い重要度指数を示すペプチド番 号 43番と 22番を認識する患者 2 名 [患者 B (以下 PBと略す) 、 患者 J (PJ) ] と y j 2において高い重要度指数を示すぺプチド番号 14番、 38番、 48番、 69番を認識 する患者 3名 [PB、 患者 C (PC) 、 患者 R (PR) ] を選定しこれらのスギ花粉症患者 の末梢血リンパ球を Cry j 1または Cry j 2で刺激して Cry j 1または Cry j 2を認 識する T細胞クローンを樹立した。 4名の患者の HLA-クラス Iとクラス I Iタイプを以 下に示す。
ΡΒ: Α2/24 - Β39/55 - Cw7/w3 - DRB1*1501/0901 - DRB4*0101 - DRB5O10K DQ Α1*0102/0301 ― DQB 1*0602/0303 - DPA1*0101/0101 一 DPB1*0501/020
PJ: A24/-一 B61/51 ― Cw3/- - DRBri501/0802 - DRB5*010 DQA1 * 0102/0401 - DQBl *0602/0402 一 DPA1 *-/ - - DPB1 *0501/0402.
PC: A-2/2 - B54/51 - Cwl/-、 DRB1*0405/1501 - DRB4*0101 - DRB5*0101 - DQA 1*0301/0102 - DQBl*0401/0602 - DPAl*0202/0202 - 0ΡΒΓ0201/050
PR: A-11/- - B60/35 - C 7/ 3 - DRB1*0901/1501 - DRB4*0101 - DRB5*0101 - DQA1*0301/0102一 DQBl*0303/0602 ― DPAl *01/0202 - DPB1 *0201/0201 ) 。
Cry j 1を特異的に認識する T細胞クローンを、 ΡΒ由来末梢血リンパ球から計 35 種類、 PJ由来末梢血リンパ球から計 14種類樹立した。 同様に、 Cry j 2を特異的に 認識する T細胞クローンを、 PB由来末梢血リンパ球から計 31種類、 PC由来末梢血リ ンパ球から 10種類、 PR由来末梢血リンパ球から 17種類樹立した。 これらの T細胞ク ローンは全て CD3+、 CD4\ CD8—、 7CR a 3 TCRァ c^ -であるため、 拘束分子は HL A-クラス I I分子であることが判明した。 96 -ゥエルミクロ培養プレート上でマイ ト マイシン C処理した 5 X 104個の自己由来 B細胞株、 のォ一パーラッビングべプ チド及び 2 X 104個の T細胞クローンを 0.2mlの 15%血清を含む RPMI-1640培養液中 で 2日間培養し、 0.5〃Ciの [ 3H]チミジンを添加後さらに 18時間培養した。 細胞を 細胞ハ一ベスターでガラスフィルターに補集した後、 液体シンチレ一シヨンカウ ン夕一で [ 3H]チミジンの細胞内取り込みを測定した。 この操作で、 各 T細胞クロー ンの認識する T細胞ェビトープを同定した。
作製した Cry j 1を認識する T細胞クローンの中で 69% (34/49) は抗原を含むベ プチド刺激に対して増殖応答を示し、 抗原ペプチドを同定できた。 同様に、 Cry j 2を認識する T細胞クローンの中で、 69% (40/58) において抗原ペプチドを同定 できた。 Cry j 1を特異的に認識する T細胞クローンは、 ペプチド番号 4、 13、 19、 22、 30、 31、 39、 43、 51、 66番、 Cry j 2を特異適に認識する T細胞クロ一ンは、 ペプチド番号 4、 8、 14、 17、 31、 37、 38、 48、 65、 66、 68、 69、 70番を認識して いた。 結果を図 3と図 4にまとめた。
実施例 3 遺伝子座レベルにおける HLAクラス 11拘束分子の同定
実施例 2で樹立した Τ細胞クローンの増殖応答系に、 HLA-クラス I Iの DR、 DQ、 または DPに対して特異的に反応する単クローン抗体を添加して、 T細胞の増殖応答 を阻止することにより、 遺伝子座レベルでの HLAクラス I I拘束分子を同定した。
96-ゥエルミクロ培養プレート上で、 マイ トマイシン C処理した 2 X 104個の自己 由来 B細胞株、 のオーバ一ラヅビングペプチド、 3〃g/mlの抗 DR、 DQ、 または DP単クローン抗体 (べクトン/ディッキンソン社製) 、 2 X 104個の T細胞クローン を、 0, 2 mlの 15%血清を含む RPMI-1640 培養液中で 2日間培養し、 0.5 Ciの [ 3H] チミジンを添加後さらに 18時間培養した。 細胞を細胞ハーべスターでガラスフィ ルターに補集した後、 液体シンチレ一シヨンカウンタ一で [ 3H]チミジンの細胞内 取り込みを測定した。 結果を図 5に示す。 この図から、 Cry 1 P106-120, Cry j 2 p66-80、 Cry j 2 pl86- 200ベプチドの拘束分子は DR、 Cry j 2 p341-355 ぺプ チドの拘束分子は DQ、 Cry j 1 p21卜 225、 Cry j 2 pl81-195の拘束分子は DPであ ることがわかる。 他の T細胞クローンの拘束分子についても同様に解析した (図 3及び図 4参照) 。
実施例 4 HLAクラス 11分子の個々のタイプにおける拘束分子の同定
HLAクラス 11遺伝子座レベルでの拘束分子が同定できた T細胞クローンを、 DIUこ 関しては、 個々のタイプを遺伝子導入したマウスい細胞、 DQまたは DPに関しては 、 夕イブに関してハプロ夕イブの一致する B細胞株を抗原提示細胞として用いるこ とにより個々のタイプにおける拘束分子の同定が可能である。
96-ゥエルミクロ培養プレート上でマイ トマイシン C処理した 5 x l04個のマウス L-細胞、 またはハプロ夕イブの一致する B細胞株、 2 Mのオーバ一ラッピングぺブ チド、 3 g/mlの抗 DR、 DQ、 または DP単クローン抗体 (べクトン/ディヅキンソン 社製) 、 2 X 104個の T細胞クローンを 0.2 mlの 15%血清を含む RPMI-1640培養液中 で 2日間培養し、 0.5/ Ciの [ 3H]チミジンを添加後さらに 18時間培養した。 細胞を 細胞ハ一ベスターでガラスフィルタ一に補集した後、 液体シンチレ一シヨンカウ ンターで [ 3H]チミジンの細胞内取り込みを測定した。
T細胞クローンの増殖応答が観察された場合に、 拘束分子が同定できる。 Cry j 1 P106-120ペプチドを提示する拘束分子は DRB5*0101、 Cry j 1 p211-225ベプチ ドを提示する拘束分子は DPArOlOl - DPBr0501、 Cry j 2 p66-80ベプチドを提示 する拘束分子は DRB5*0101、 Cry j 2 pl81-195ペプチドを提示する拘束分子は DP ΑΓ0101 - PDBr0201、 Cry j 2 pl86-200ペプチドを提示する拘束分子は DRB4*01 01、 Cry j 2 p34卜 355ペプチドを提示する拘束分子は DQAr0102 - DQB1 *0602であ つた (図 6 ) 。 他のェビトープ部位についての解析結果は図 3及び図 4に記載さ れている。
実施例 5 T細胞クローンの Thタイプの同定
アレルギーの発症には Th2細胞の関与が想定されている。 現在の研究レベルでは 、 抗原刺激後、 T細胞の Thlまたは Th2細胞への分化が、 特定のェビトープペプチド または HLA-クラス 11遺伝子座レベルで規定されているのかはまだ、 未解決な部分 が多い。 しかし、 ペプチドで刺激後、 Th2細胞が優位に誘導される場合には、 ぺブ チド投与によりスギ花粉症が悪化する可能性が高い。 実施例 2で作製した T細胞ク ローンを T細胞が認識するェビトーブペプチドで刺激し、 IL-2、 IL-4、 IFNァの産 生量を測定することによって Thタイプを決定した。
24 -ゥエルミクロ培養プレート上でマイ トマイシン C処理した l x lO5個の自己由 来 B細胞株、 2 ζΜのェビト一ブペプチド、 5 X 105個の Τ細胞クローンを lmlの 10%ヒ ト血清を含む RPMI-1640培養液中で 24時間培養した。 遠心で細胞を沈澱させ、 培養 上清を得た。 培養上清中の IL- 2、 IL-4、 IFNァは市販の ELISAキット [IL-2( D 社 製)] 、 IL-4 (メ ドジヱニックス社製) 、 IFNァ (大塚アツセィ研究所製) で測定 した。
各 T細胞クローンの産生する IL-2、 IL-4、 IFNァ量を図 3、 図 4に示す。 Cry j 1を認識する T細胞クローンは、 Th2細胞が 12、 Thl細胞が 1、 ThO細胞が 16であり、 Th2が Thlよりも多かったが、 Cry j 2を認識する T細胞クローンは Th2細胞が 10、 T hi細胞が 8、 ThO細胞が 8であり、 Th2と Thlとは同程度であった。 個々の T細胞クロ ーンの認識する T細胞ェビトーブ、 拘束分子、 Thタイプを比較すると、 個々の T細 胞クローンによって Th2、 Thl、 ThOタイプは異なり、 同一のェビトープ、 同一の抗 原提示分子を認識する数個の T細胞クローンには、 Th2細胞と Thl細胞が見いだされ ている。 これらの結果は、 Cry j 1または Cry j 2刺激後の T細胞の Th2、 Thl、 また は ThO細胞への分化は、 特定の T細胞ェビトープ、 特定の拘束分子の組み合わせで は規定されていないことを意味している。 つまり、 T細胞ェビトープ部位を含むぺ プチドは全て、 本発明の多重ェビトーブべプチドの候補となりうることが判明し た。
実施例 6 多重ェビトープぺプチドの作製
Cry j 1及び Cry j 2分子中に存在する IgE抗体ェビトーブ部位を同定した結果、 Cry j 1にはこの一次構造を認識する IgEェビトープは存在しないこと、 Cry j 2に は IgE抗体ェビト一プが少なくとも 4ケ所存在することが明らかとなったが、 これ らの IgE抗体ェビト一プ部位は、 T細胞ェビト一プ部位とは異なる部位であった。 この知見をもとに、 Cry j 1及び Cry j 2の T細胞ェビトープ部位のうち、 図 7に示 すべプチドを選択した。
図 7のペプチド a、 bはそれぞれ図 1の Cry j 1のペプチド No. 4 3、 2 2に対 応し、 ペプチド cは図 2の Cry j 2の No. 1 4に対応し、 d、 eはそれぞれ図 2の Cry j 2の 37- 38及び 69-71のアミノ酸の一部からなるものである。
これらの 6種類のぺプチドを直列につなぎ合わせて多重ェビト一ブベプチドを作 製する場合、 2つのペプチドと aと bは a-bの順で固定し残りの 3つのペプチド (c 、 d及び e) をランダムにつなぎ合わせ且つ各べプチドの間に Arg-Argの配列を挿入 した多重工ビトープぺプチドは下記の 6種類となる。
C .A. ?f 1 . a-Arg-Arg-b-Arg-Arg-c-Arg-Arg-d-Arg-Arg-e
C.A. # 2 . a-Arg-Arg-b-Arg-Arg-c-Arg-Arg-e-Arg-Arg-d
C.A. # 3 . a - Arg-Arg - b - Arg - Arg - d - Arg- Arg - c - Arg - Arg - e
C.A. # 4 . a-Arg-Arg-b-Arg-Arg-d-Arg-Arg-e-Arg-Arg-c
C.A. # 5 . a-Arg-Arg-b-Arg-Arg-e-Arg-Arg-c-Arg-Arg-d
A. # 6 · a-Arg-Arg-b-Arg-Arg- e-Arg-Arg-d -Arg-Arg- c
実施例 7 多重工ビトーブペプチドのヒト IgE抗体に対する反応性
実施例 6で得た 6種の多重工ビトープペプチド W.A. # 1〜# 6 ) を 0.2M酢酸 緩衝液 (pH4.5) に溶解させ、 0. 1ml/ゥヱルでブラックプレート (大日本製薬社製 ) に加えて 4eCでー晚放置した。 抗原溶液を除去した後、 洗浄液で 3回洗浄し、 29 名のスギ花粉患者及び健常人血清 (4倍希釈) を加えて、 37°Cで 4時間反応させた 。 血清を除去後、 洗浄液で 3回洗浄し、 抗ヒト IgE抗体 (Pharmacia社製)を室温で一 晚反応させた。 洗浄液で 3回洗浄後、 O. lmM 4-メチルゥンペリフェリル-/?- D-ガラ クトビラノシド /0.01M リン酸緩衝液 (pH 7.0)、 0. 1M NaCK lmM MgCl 2、 0. 1 % NaN3、 0. 1 %BSAの基質溶液を加え、 37°Cで 2時間反応させた。 0. 1M グリシン/ Na 0H、 ρΗΙΟ.3溶液をこれに加えて反応を停止させ、 蛍光分光光度計 (Labsystems )で 蛍光強度を測定した。 なお、 各多重工ビトープペプチドに対する陽性コント口一 ルとしてピオチン標識ゥサギ抗 dェビトーブ IgGとペルォキシダ一ゼ標識ストレプ トァビジン(ピアス社製)を反応させた。
この結果、 29名全てのヒト血清は、 6種の多重工ピトープペプチド ( A. # l 〜# 6 ) 全てについて蛍光強度が 3〜5であった (ブランク値は 3又は 4) 。 これに 対してスギ花粉から抽出、 精製した抗原である Cry j 1には、 蛍光強度 1 , 000以上 が 6名、 100以上が 14名、 10以上が 4名、 9以下が 5名であった。 一方、 ゥサギ抗 dェ ビトープぺプチド IgGは 6種のコンセンサスアレルゲンに対して 3, 000以上を示した (ブランク値は 112、 Cry j 1アレルゲンには 230) 。 以上のことから、 多重ェビト —プぺプチドにおける各ェビトープの接続順序はヒト IgE抗体との反応性に影響を 与えないことが判明した (図 8 )
実施例 8 多重工ビトープぺプチドの T細胞ェビト一ブの認識の有無
実施例 6で得た多重ェビトーブぺプチドのうち C. A. # 4を構成する抗原べプチ ドが実際に T細胞ェビト一ブとして機能しているかどうかについて検討した。
96-ゥェルミクロ培養プレート上でマイ トマイシン C処理した 5 x lO4個の自己由 来 B細胞株、 2 X 104個の T細胞クローンを、 0.2mlの 15%血清を含む RPMI-1640培養 液中で、 抗原として 50Aig/mlの Cry j 1、 2 zg/mlの Cry j 2、 多重工ビトーブぺプ チド A. # 4を構成する個々の抗原べプチド、 または遺伝子発現で作製した 10〃 g/mlの C.A. # 4多重ェビトープぺプチドのいずれかと共に 2日間培養し、 0.5 Ci の [ 3H]チミジンを添加後さらに 16時間培養した。 細胞を細胞ハーべスターでガラ スフィルターに補集した後、 液体シンチレーシヨンカウン夕一で [3H]チミジンの 細胞内取り込みを測定した。 結果を図 9に示す。
Cry j 1 pl06- 120を認識する T細胞クローン PB8-3、 Cry j 1 p211-225を認識す る T細胞クローン PB8-34、 Cry j 2 p66-80を認識する T細胞クローン PB4- 22、 Cry j 2 P181-195を認識する T細胞クローン PB14- 5、 Cry j 2 pl86-200を認識する T細 胞クローン PB14- 34はいずれも抗原ペプチドによく反応している。 一方、 多重ェピ ト一ブぺプチドの場合も、 個々のべプチドと同様の強さで T細胞クローンが増殖応 答している。 Cry j 2 p341_355を認識する T細胞クローン PB14-19に関しては、 多 重工ビト一プぺプチド刺激に対してやや弱い増殖応答が観察された。
以上の結果は多重ェビトープぺプチドに含まれる抗原べプチドは各々ェビトー プとしてよく機能し、 Τ細胞を活性化する能力を保持していることを示している。 実施例 9 多重工ビトープべプチドによるスギ花粉症患者末梢血リンパ球の増殖 応答
多重ェビトープべプチドは Τ細胞ェビトーブ部位を含むため、 ベプチド免疫療法 を試みる場合には、 末梢血リンパ球に増殖応答を惹起させることが必要である。 多重ェビトープべプチドで末梢血リンパ球を刺激し、 増殖応答が観察されるかに ついて調査した。
スギ花粉症患者または健常人由来末梢血リンパ球を 10%ヒト血清を含む RPMI-1 640培養液に懸濁した後、 96-ゥエル丸底培養プレートの各ゥエルに 2.5 X 105個 /2 00〃1になるように播種した。 配列番号: 1の多重工ピトープペプチド、 Cry 1 または Cry j 2のいずれかを、 多重工ビトープペプチドが最終濃度 0.001〜20〃g/ ml、 Cry j 1が 50 g/nil、 Cry j 2が 2〃g/mlになるように添加し、 6日間培養した 。 0.5〃Ciの [3H]チミジンを添加してさらに 16時間培養した。 細胞を細胞ハーべス ターでガラスフィルタ一に補集した後、 液体シンチレ一シヨンカウン夕一で [ 3H] チミジンの細胞内取り込みを測定した。
患者 6名の中で 5名の末梢血リンパ球が多重ェビトーブべプチドに対して増殖応 答を示した。 患者 1名と健常者 2名の末梢血リンパ球は増殖応答を示さなかった ( 図 1 0 ) 。
末梢血リンパ球の増殖応答は O. l g/mlの多重ェビト一ブぺプチド刺激で起こり 始め、 投与量に比例して増殖応答は増大した。 この結果から、 in vitroで十分な T細胞増殖応答を誘導する多重工ピトープぺプチドの濃度は 10 g/nil以上であると 判断された。
17名のスギ花粉症患者と 2名の健常者由来末梢血リンパ球を 10〃g/mlの多重ェピ トープペプチドで刺激し、 T細胞応答を算定した。 健常人の末梢血リンパ球では T 細胞増殖応答能が観察されなかった。 17名の患者では最高で 9, 652cpniの [ 3H]チミ ジンの取り込みが観察された。 抗原刺激なしの末梢血リンパ球の [ 3H]チミジンの 取り込みを 1と計算し、 抗原存在下の末梢血リンパ球の [ 3H]チミジンの取り込み値 を刺激係数 (SI ) で表現し、 結果を図 1 1に示した。 T細胞ェビト一ブの同定の際 には SI >2以上を陽性とみなすため、 同様に SI〉2以上をべプチドに対して増殖応 答が観察されたとみなすことにすると、 17名の患者の中で 13名 (76.5% ) に増殖 応答がみられた。 この結果から、 スギ花粉症患者にペプチドを投与した場合には 76.5%の患者においてべプチド免疫療法の効果があると判定される。
スギ花粉症患者に、 本発明の多重ェビトープぺプチドでべプチド免疫療法を試 みる場合、 前もって、 患者由来末梢血リンパ球の多重工ビトープペプチドに対す る増殖応答能を調査し、 増殖応答の見られる患者を選定することができる。 この 試験によって多重ェビトーブぺプチドを用いたぺプチド免疫療法がその患者に適 用できるのかが判定できるし、 増殖応答能の高さから治療効果についてもある程 度の予測ができると考えられる。
実施例 1 0 マウスを用いたスギ花粉アレルゲン投与による免疫寛容の誘導 スギアレルゲンを投与して治療を行なう、 いわゆる減感作治療のメカニズムに ついて、 詳細はわかっていない。 そこでマウスを用いた動物実験を行なった。 ス ギ花粉アレルゲン、 Cry j 1 を 1匹当たり 300 g, CB6F1マウス (雌、 5匹) の皮下 に 5日間隔で 2回投与した。 コントロールとして同容量の PBS を皮下投与 (雌、 5 匹) した。 さらに 5日後に Cry j 1 100 g を Alum アジュバンドと共に皮下に投 与して免疫を行ない、 さらに 10日後にリンパ節細胞を単離し、 コントロール群マ ウスのリンパ節細胞、 Cry j 1 投与マウスのリンパ節細胞をそれぞれの群単位で プールした。 プールしたリンパ球に Cry j 1 を 0, 50, 150 〃g/ml 加え、 さら に 3日間培養を行ない、 培養上清を採取して含まれる IL-2 を測定した (Endogen 社製) 。 その結果を図 1 2に示す。 コントロール群である PBS 投与マウスは C ry j 1 濃度が 0, 50, 150 g/ml と増加すると共に IL-2 の産生量が増加した o 一方、 Cry j 1 投与マウスはこれらのコントロールマウスに比べ明かに IL-2 の産生量が減少し、 スギ花粉アレルゲン投与によって免疫寛容が生じた。 この結 果は現在用いられているスギ花粉ァレルゲンによる減感作療法の有効例を再現し ている。
実施例 1 1 CB6F1マウスの T細胞ェビト -プの同定
8週齢の雄 CB6F1マウスをアジュバント (Imject Alum: ピアス社製) と共に組み 換え Cry j 2 (rCry j 2) 10〃gで 2週間おきに 3回免疫した < ip)。 最終免疫から 1週 間後にマウス 3匹から脾細胞を調製し一つにまとめた。 96ゥエルプレート (フアル コン社製) 1ゥエルに対し脾細胞 (5 X 106 ) を 15残基からなる 74種類の Cry j 2の オーバーラッピングペプチド (0.115 zM) のそれぞれと共に 0.2mlの RPMI培地 (1 0% FCS、 2mMいグルタミン、 50U/ml ペニシリン、 50〃g/ml ストレプトマイシン ) で培養した。 対照として PBS、 50//g/ml Cry j 1、 0.3 /g/ml rCry j 2のそれそ れに対する反応も検討した。 各々の試験試薬に対し 3ゥエル播種し、 37°C、 5% C 02条件下で 3日間培養した。 最後の 6時間 0.5 Ci/ゥエルの [3H]_チミジンでパル スラベルを行いセルハーべスター (Inoteck、 ベルト—ルドジャパン社製) で細胞 をガラスフィルター上に補集し、 乾燥した後、 液体シンチレ一シヨンカウン夕一 (TRI-CARB 4530、 パッカ—ドジャパン社製) で [3H]-チミジンの細胞内取り込み を測定した。
rCry j 2で免疫した CB6F1マウスは抗原である rCry j 2に強い反応性を示したが 、 もう一つのスギ花粉主要アレルゲンである Cry j 1には反応せず、 この系が抗原 特異的反応であることが確認された。 そして、 rCry j 2で免疫した CB6F1マウスは 、 調べた 74種類のオーバーラッピングべプチドのうち図 2に示す No.14ベプチドと No.48ぺブチドに顕著な応答性を示した。 このことから CB6F1マゥスにおいて No.1 4と No.48のぺプチドが主要 T細胞ェビトーブとして抗原提示に関与していることが 示された。 ヒトにあっても No. 14と No.48のべプチドは主要 T細胞ェビトープぺプチ ドであることから、 CB6F1マウスはスギ花粉に対するぺプチド免疫療法に使用する ベプチドの有効性を評価するうえで有用なモデル動物になりうると判断された。 実施例 1 2 抗原べプチド No . 14のインビボにおける免疫応答
1群 8匹の雄 CB6F1 ( 8週令、 雄) マウス 1匹当り生理食塩水に溶解した 3mg No . 14ペプチドを、 5曰間隔で 2回皮下投与した。 対照群としては等容量 (100 1 ) の 生理食塩水を同様に投与した。 2回目のぺプチド投与後 5日目にインジェクトアル ム(Imject Alum)と混合した rCry j 2( 50〃g/匹)で全てのマウスを皮下免疫した。 免疫 1週間後に各々のマウスから脾細胞を調製した。 96ゥエルプレート (フアルコ ン) 1ゥエルに対し脾細胞 (5 X 106 ) を rCry j 2 (3^g/ml) と共に 0.2mlの RPMI培 地 (10% FCS、 2mM グルタミン、 50U/ml ペニシリン、 50〃g/ml ストレブトマ イシン) で培養した。 対照として rCry j 2を含まない条件下で培養した。 3H-チミ ジンによる T細胞増殖の測定は、 実施例 1に記載された方法に準じて行った。 サイ トカイン測定は、 対照を含めた 3種類のペプチド投与群(0. 3, 1.3, lO/zg/ml )に ついて、 in 71 0で0.3 ^1111の( ^ j 2で刺激したときの培養上清を用いた。
CB6F1マウスに予め 1^0. 14ぺプチドを皮下投与してぉくと続く1>(: j 2による抗 原刺激に対し、 T細胞の免疫応答性が生理食塩水投与群に比べ有意 (p<0.01 )に抑制 された (図 1 3 ) 。 IL-2産生に関しては、 3種類のペプチド投与群においてそれ ぞれ対照群より有意に減少した。 このことからマウスのモデル系において No. 14ベ プチドはスギ花粉アレルギーに対しべプチド免疫療法の予防効果を有することが 示された。
実施例 1 3 抗原べプチド No.48のインビボにおける免疫応答
6週齢の雄 CB6F1マウス 1匹当り生理食塩水に溶解した 3mg No.48ペプチドを、 5日 間隔で 2回皮下投与した。 対照群 としては等容量 (200 / 1) の生理食塩水を同様 に投与した。 ペプチド投与群及び対照群の動物数は各々 8匹とし、 2回目のベプチ ド投与から 5日目にアジュバント (Imject Alum) と混合した rCry j 2(50 g)で全 てのマウスを皮下免疫した。 免疫 1週間後に各々のマウスから脾細胞を調製した。
96ゥエルプレ—ト (ファルコン) 1ゥエルに対し脾細胞 (5 x l06 ) を rCry j 2 (3 Aig/ml ) と共に 0.2mlの RPMI培地 (10% FCS、 2mMいグルタミン、 50U/mlベニシリ ン、 50〃g/mlス トレプトマイシン) で培養した。 対照として rCry j 2を含まない 条件下で培養した。 3H-チミジンによる T細胞増殖の測定は実施例 1 0に記載され た方法に準じて行った。
CB6F1マウスに予め ^.48ぺプチドを皮下投与してぉくと続く^ j 2による抗 原刺激に対し、 T細胞の免疫応答性が生理食塩水投与群に比べ有意に抑制された( P<0.05 )o このことからマウスのモデル系において No.48ぺブチドはスギ花粉ァレ ルギ一に対しべプチド免疫療法による予防効果を有することが示された (図 1 4
) o
以上の実験結果から、 従来行われてきたヒトにおけるスギ花粉抽出エキスによ る減感作療法が T細胞ェビトーブを介した作用機作であることが明らかになった。 実施例 1 4 コァ配列の決定
Cry j 1 ペプチド番号 22番 (pl06- 120) の T細胞ラインおよび T細胞クローン 増殖応答に必要なアミノ酸配列(core)を決定するために、 図 1 5に示すようにこ のべプチドの N末端および C末端から 1残基づつのアミノ酸を削除して pl07- 120 (p22-2), pl08-120 (p22-3), pl09-120(p22-4), pll0-120(p22-5), plll-120(p2 2-6), pl06-119(p22-7), pl06-118(p22-8), pl06-117(p22-9) , pl06-116(p22-10 ), pl06-115(p22-ll )の 1 1種類のペプチドをペプチド合成機 (PSSM-8, 島津製作 所製)により合成した。 Cry j 1ペプチド番号 22番の pl06- 120 と反応する 3名のス ギ花粉症患者の T細胞ライン (PJ, PR, PB ) 、 および患者 1名の T細胞クローン (ΡΒ 8-3, ΡΒ 8-2, ΡΒ 9-39) を実施例 1及び 2の方法を用いてこれら 11種類のぺプ チドに対する反応性を検討した。 2種類の Τ細胞ライン(PJ, ΡΒ)と 2種類の Τ細胞 クローン(ΡΒ 8-2, ΡΒ 9-39)は ρ106-120 (ρ22-1 )を認識して増殖したが、 1種類の T細胞ラインと T細胞クローンは増殖応答を示さなかった (図 1 5 ) 。 この結果 、 P106-120コア配列は 「FIKRVSNVI」 の 9残基であることが判明した (この 9残基を Cry j 1 #22 core と表示する) 。
実施例 1 5 スギ花粉およびヒノキ花粉アレルゲン由来 T細胞ェビト一プを含む 多重ェビトープぺプチド
ヒノキ花粉アレルゲン Cha 0 1 の T細胞ェビトープ (特願平 8-153527号) であ るペプチド番号 8(p7卜 90 ; IFSKNLNIKLNMPLYIAGNK ) , あるいはペプチド番号 32(P3 11-330 ; SSGKNEGTNIYNNNEAFKVE)と実施例 1 4で得られた Cry j 1 # 2 2コア配列 「F IKRVSNVI」 をつないだべプチド 2種類 (Cha o 1#8-Cry j i #22 core, Cha o 1 #32-Cry j 1 #22 core )をべプチド合成機 (PSSM-8; 島津製作所製) で合成し た。 Cha 0 1#8と Cry j 1#22 core, Cha o 1#32と Cry j 1#22 coreとの間には RR 配列を挿入した。 即ち Cha 0 1 #8-Cry j 1 #22 core (配列番号: 4 ) と Cha o 1#32-Cry j 1 #22 core (配列番号: 5 ) である。
スギ花粉症患者およびヒノキ花粉症患者からそれぞれ Cry j 1特異的 T細胞ライ ンおよび Cha 0 1特異的 T細胞ラインをそれぞれ作製した。 Cry j 1 特異的 T細胞 ラインおよび Cha 0 1特異的 T細胞ラインは、 結核菌抗原 (PPD )および溶連菌細胞 壁 (SCW) 抗原とは反応せず、 また Cry j 1 特異的 T細胞ラインは Cry j 1 #22あ るいは Cry j 1#22 core とは反応するが、 Cha o 1 #8 及び #32とは反応せず、 Ch a o 1 特異的 T細胞ラインは Cha o 1 #8及び # 32とは反応するが Cry j 1 # 22あ るいは Cry j l #22coreとは反応しなかった (図 1 6 ) 。 一方これらの T細胞ライ ンはいずれも、 配列番号: 4の多重ェピトープぺプチド及び配列番号: 5の多重 ェビト一プペプチドの両方に反応した。 これらの結果から、 スギ花粉およびヒノ キ花粉アレルゲン由来の T細胞ェビトープをつないだ多重ェビト一プぺプチドは 、 スギ花粉症患者およびヒノキ花粉症患者のぺプチド免疫療法に有効であること が明らかとなった。
実施例 1 6 アナログペプチドの増殖応答およびサイ トカイン産生 Cry j 1#22 coreの T細胞ェピトープペプチドのアミノ酸を置換することによつ て T細胞の活性を調節することが可能か否かを、 2つのクローン PJ7-9及び PM0- 18を用いて検討した。 Cry j 1ペプチド番号 22番 pl06-120 に反応する T細胞クロ —ン PJ 7-9及び PB10-12は、 DRB5*0101を拘束分子とし、 Cry j l#22coreの 9残基を 認識する。 この 9残基を含む 13残基のペプチド P108-120 (VFIKRVSNVI IHG) 中の 9残 基の各アミノ酸を、 類似アミノ酸、 非類似アミノ酸の 2種類のアミノ酸によって置 換したアナログペプチドを合成した (図 1 7、 1 8 ) 。 そして、 これらのアナ口 グペプチドに対する T細胞クローン PJ7- 9及び PB10-18の反応性を [3H] チミジンの 取込み量で調べた。 反応溶液中のサイ 卜力イン濃度は、 R&D Systems 社製のサイ トカイン測定キッ トで測定した。 その結果を、 図 17及び図 18に示した。 ここで、 アミノ酸置換していない 13残基のペプチドを反応させた上清の IFN ァ、 IL- 4、 I L-2、 IL-5の産生量及び細胞の [3H] チミジンの取込み量をそれぞれ 100%とした o PJ7-9クローンの場合、 Cry j l#22core 「FIKRVSNVI」 の 3、 4、 6番目の各ァミノ 酸部分 「K」 「R」 「S」 は類似アミノ酸置換と非類似アミノ酸置換の両者、 あるい は非類似アミノ酸置換により [3H] チミジンの取り込みおよびサイ ト力インの産 生量がそれぞれ著しく抑制された (図 1 7 ) 。 従って、 これらの部分のアミノ酸 はべプチドを介した HLA分子と T細胞レセプ夕一分子の複合体形成に重要な部分 と考えられる。 1番目のアミノ酸 (F ) を類似アミノ酸である Y に置換しても [ 3 H] チミジンの取り込み量と 1レ4, IL-5 の産生量に変化は認められないが、 非類 似アミノ酸である 「S」 に置換すると [ 3H] チミジンの取り込み量に変化は認めら れないにもかかわらず、 IFN ァと IL-2の産生量は著しく増大した。 PB10-18クロ —ンの場合は、 Cry j l#22coreの 1、 2、 3、 4、 6、 7、 8番目のアミノ酸置換によつ て [3H] チミジンの取り込みが抑制され、 これらの部分のアミノ酸はペプチドを 介した HLA分子と T細胞レセプ夕一分子の複合体形成に重要な部分と考えられる 。 さらに 6、 7、 8番目のアミノ酸置換によって IL-5の産生量に比較して IL- 2 の産 生抑制が認められた (図 1 8 ) 。 これらの結果から、 Cry j l#22coreの 1番目の アミノ酸 Fを Sに置換した 「SIKRVSNVI」 が IFN-ァの産生量を増大させたことによ り、 アレルギーの治療剤として有用であることが明らかとなった。 産業上の利用の可能性
本発明の多重ェビトープぺプチドは、 異なるアレルゲン分子由来の T細胞ェビト —ブペプチドを含み、 かつ、 アレルギー患者集団の中で遺伝子頻度の高い HLAクラ ス II分子で提示されるペプチドを含み、 さらには、 HLAクラス I I遺伝子座 (DR、 D Q、 DP) 間で異なる分子で提示されるべプチドを数個含むので、 最小の多重ェビト ープペプチドの長さで、 有効対象患者数を拡大したベプチド免疫療法が期待でき る。
また、 アレルギ一患者に、 本発明の多重工ビトーブペプチドを用いてペプチド 免疫療法を試みる場合、 前もって、 患者由来の末梢血リンパ球の該ペプチドに対 する増殖応答能を調査し、 増殖応答が惹起される患者を選定することができる。 この調査によって、 多重ェビトープぺプチドによるべプチド免疫療法がその患者 に適用できるかどうかの判定が可能であり、 増殖応答能の高さから、 治療効果に ついてもある程度予測が可能である。
配列表 配列番号: 1
配列の長さ : 80
配列の型:アミノ酸
トポロジー:直鎖状
配列の種類:ペプチド
配列
MKVTVAFNQF GPN RVFIKR VSNVIIHG R IDIFASKNFH 40 LQKNTIGTGR RISLKLTSGK IASRRVDGII AAYQNPASWK 80 配列番号: 2
配列の長さ : 105
配列の型:アミノ酸
トポロジー:直鎖状
配列の種類:ペプチド
配列
MKVTVAFNQF GPNRRVFIKR VSNVIIHGRR IDIFASKNFH 40 LQKNTIGTGR RW NNRIWLQ FAKLTGFTL GRRL MPMYI 80 AGYKTFDGRR VDGIIAAYQN PASWK 105 配列番号: 3
配列の長さ : 134
配列の型:アミノ酸
トポロジー:直鎖状
配列の種類:ペプチド 配列
MKVTVAFNQF GPNRRVFIKR VSNVI IHGRR IDIFASKNFH 40
LQKNTIGTGR RWKNNRI LQ FAKLTGFTLM GRRPLWI IFS 80 GNMNIKLKMP MYIAGYKTFD GRRAEVSYVH VNGAKFIRRV 120
DGI IAAYQNP ASWK 134 配列番号: 4
配列の長さ : 3 1
配列の型:アミノ酸
トポロジー:直鎖状
配列の種類:ペプチド
配列
IFSKNLNIKL NMPLYIAGNK RRF IKRVSNV I 31 配列番号: 5
配列の長さ : 3 1
配列の型:アミノ酸
トポロジー:直鎖状
配列の種類:ペプチド
配列
SSGKNEGTNI YNNNEAFKVE RRF IKRVSNV I 31

Claims

請求の範囲
1 . 異なる T細胞ェピトープ領域を連結した 1分子の直鎖状ポリべプチドであつ て、
( 1 ) 前記 Τ細胞ェビト一プ領域の各々が前記アレルゲンに感受性の患者集団に おいて測定した重要度指数が約 1 0 0以上を示し、
( 2 ) 前記アレルゲンに対し感受性の患者集団の少なくとも 7 0 %以上の患者の 末梢血リンパ球と反応し、
( 3 ) 前記アレルゲンに対する感受性の患者集団の IgE抗体と実質的に反応しない 、 多重工ビトープペプチドの有効量を含有することを特徴とする、 ペプチド免疫 療法剤。
2 . 異なる T細胞ェビト一プ領域が 2種以上の異なるアレルゲン分子に由来する ものである、 請求項 1記載のペプチド免疫療法剤。
3 . 異なるアレルゲン分子がスギ花粉アレルゲン Cry j 1および Cry j 2である、 請求項 2記載のペプチド免疫療法剤。
4 . 各々の T細胞ェビト一ブ領域の間に抗原提示細胞内でプロセッシングを受け る部位を介在させた、 請求項 1記載のペプチド免疫療法剤。
5 . 抗原提示細胞内プロセッシングを受ける部位がアルギニンダイマ一またはリ シンダイマーである、 請求項 4記載のペプチド免疫療法剤。
6 . 配列番号: 1、 配列番号: 2または配列番号: 3のいずれかに記載のァミノ 酸配列を含むぺプチドである、 請求項 3記載のベプチド免疫療法剤。
7 . HLAクラス I I分子 DRB5*0101、 DRB4*010K DQA1*0102-DQB1*0602, ϋΡΑΓΟΙΟΙ- DPB 0501または DPA 0101-DPB 0201の少なくとも 1つを拘束分子とするェビト ープを含む、 請求項 3記載のペプチド免疫療法剤。
8 . 異なるアレルゲン分子がスギ花粉アレルゲン Cry j 1およびヒノキ花粉アレル ゲン Cha 0 1である請求項 2記載のベプチド免疫療法剤。
9 . 配列番号: 4、 または配列番号: 5に記載のアミノ酸配列を含むペプチドで ある、 請求項 8記載のペプチド免疫療法剤。
PCT/JP1997/000740 1996-03-10 1997-03-10 Agent immunotherapeutique a base peptidique pour le traitement des allergies WO1997032600A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE69738962T DE69738962D1 (de) 1996-03-10 1997-03-10 Auf peptiden basierendes immunotherapeutisches mittel gegen allergien
JP53167497A JP3732231B2 (ja) 1996-03-10 1997-03-10 アレルギー疾患に対するペプチド免疫療法剤
EP97906863A EP0923940B1 (en) 1996-03-10 1997-03-10 Peptide-based immunotherapeutic agent for allergic diseases
US09/142,524 US6719976B1 (en) 1996-03-10 1997-03-10 Peptide-based immunotherapeutic agent for treating allergic diseases
CA2248937A CA2248937C (en) 1996-03-10 1997-03-10 Peptide-based immunotherapeutic agent for treating allergic diseases

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP8/80702 1996-03-10
JP8070296 1996-03-10

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US09/142,524 A-371-Of-International US6719976B1 (en) 1996-03-10 1997-03-10 Peptide-based immunotherapeutic agent for treating allergic diseases
US10/354,240 Division US20030185847A1 (en) 1998-09-09 2003-01-29 Peptide-based immunotherapeutic agent for treating allergic diseases

Publications (1)

Publication Number Publication Date
WO1997032600A1 true WO1997032600A1 (fr) 1997-09-12

Family

ID=13725672

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/000740 WO1997032600A1 (fr) 1996-03-10 1997-03-10 Agent immunotherapeutique a base peptidique pour le traitement des allergies

Country Status (9)

Country Link
US (1) US6719976B1 (ja)
EP (1) EP0923940B1 (ja)
JP (1) JP3732231B2 (ja)
KR (1) KR100487456B1 (ja)
CN (1) CN1330377C (ja)
AT (1) ATE406913T1 (ja)
CA (1) CA2248937C (ja)
DE (1) DE69738962D1 (ja)
WO (1) WO1997032600A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998020902A1 (fr) * 1996-11-13 1998-05-22 Meiji Milk Products Co., Ltd. Agent immunotherapeutique peptidique
JPH1192497A (ja) * 1997-09-17 1999-04-06 Sankyo Co Ltd ペプチド及びその用途
GB2348808B (en) * 1998-01-09 2003-03-19 Circassia Ltd Methods and compositions for desensitisation
JP3734040B2 (ja) * 1996-06-14 2006-01-11 明治乳業株式会社 T細胞エピトープペプチド
JP2007056036A (ja) * 2006-10-23 2007-03-08 Sankyo Co Ltd ペプチド及びその用途
JP2007091745A (ja) * 2006-10-23 2007-04-12 Sankyo Co Ltd ペプチド及びその用途
WO2014017599A1 (ja) * 2012-07-26 2014-01-30 大鵬薬品工業株式会社 新規ヒノキ花粉アレルゲンのt細胞エピトープペプチド
WO2014136814A1 (ja) * 2013-03-08 2014-09-12 大鵬薬品工業株式会社 新規ctlエピトープ5連結ペプチド
US10137183B2 (en) 2013-10-21 2018-11-27 Taiho Pharmaceutical Co., Ltd. Peptide compositions having 4 linked CTL epitopes and uses thereof
US12251447B2 (en) 2018-06-29 2025-03-18 Taiho Pharmaceutical Co., Ltd. Combined formulation comprising four linked cytotoxic T lymphocyte (CTL) epitopes and a PD-1 pathway inhibitor and methods of use thereof to treat cancer

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997035193A1 (en) 1996-03-21 1997-09-25 Imperial College Of Science, Technology And Medicine Cryptic peptides and method for their identification
WO2001040264A2 (en) * 1999-12-06 2001-06-07 Panacea Pharmaceuticals, Llc. Peptide antigens
PT1850873T (pt) 2005-02-08 2019-02-19 Genzyme Corp Anticorpos contra tgfbeta
CA2621439A1 (en) * 2005-09-09 2007-03-15 The University Of Chicago Methods and compositions for diagnosis and immunotherapy of pollen allergy
CN100374152C (zh) * 2005-12-23 2008-03-12 中国农业大学 一种过敏性反应抑制剂
US9550811B2 (en) 2010-12-02 2017-01-24 Bionor Immuno As Peptide scaffold design
AU2013216983A1 (en) 2012-02-07 2014-09-18 La Jolla Institute For Allergy And Immunology Epitopes from allergen proteins and methods and uses for immune response modulation

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994001560A1 (en) * 1991-07-12 1994-01-20 Immulogic Pharmaceutical Corporation Allergenic proteins and peptides from japanese cedar pollen

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU682658B2 (en) 1991-10-16 1997-10-16 Merck Patent Gmbh Recombitope peptides
WO1994011512A2 (en) * 1992-11-12 1994-05-26 Immulogic Pharmaceutical Corporation Allergenic proteins and peptides from japanese cedar pollen
JP3649460B2 (ja) * 1993-11-05 2005-05-18 明治乳業株式会社 スギ花粉アレルゲンCry j IIエピトープ

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994001560A1 (en) * 1991-07-12 1994-01-20 Immulogic Pharmaceutical Corporation Allergenic proteins and peptides from japanese cedar pollen

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1994, Vol. 201, No. 2, KOMIYAMA NAOKI et al., "cDNA Cloning and Expression of Cry j II, the Second Major Allergen of Japanese Ceder Pollen", pages 1021-1028. *
FEBS LETTERS, 1993, Vol. 324, No. 3, MATSUNAGA YOUICHI et al., "Participation of Cathepsin B in Processing of Antigen Presentation to MHC Class II", pages 325-330. *
J. ALLERGY CLIN. IMMUNOL., 1994, Vol. 93, No. 5, HIGINS JULIE A. et al., "Overlapping T-cell Epitopes in the Group I Allergen of Dermatophagoides Species Restricted by HLA-DP and HLA-DR Class II Molecules", pages 891-899. *
MOLECULAR IMMUNOLOGY, 1994, Vol. 31, No. 13, ROGERS BRUCE L. et al., "Potential Therapeutic Recombinant Proteins Comprised of Peptides Containing Recombined T Cell Epitope", pages 955-966. *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7112329B1 (en) 1996-06-14 2006-09-26 Meiji Milk Products Co. Ltd. T cell epitope peptide
US7547440B2 (en) 1996-06-14 2009-06-16 Meiji Dairies Corporation T-cell epitope peptides
US7407657B2 (en) 1996-06-14 2008-08-05 Meiji Dairies Corporation T-cell epitope peptides
JP3734040B2 (ja) * 1996-06-14 2006-01-11 明治乳業株式会社 T細胞エピトープペプチド
US7025964B1 (en) 1996-11-13 2006-04-11 Meiji Dairies Corporation Peptide-based immunotherapeutic agent
WO1998020902A1 (fr) * 1996-11-13 1998-05-22 Meiji Milk Products Co., Ltd. Agent immunotherapeutique peptidique
JPH1192497A (ja) * 1997-09-17 1999-04-06 Sankyo Co Ltd ペプチド及びその用途
GB2348808B (en) * 1998-01-09 2003-03-19 Circassia Ltd Methods and compositions for desensitisation
JP2007056036A (ja) * 2006-10-23 2007-03-08 Sankyo Co Ltd ペプチド及びその用途
JP2007091745A (ja) * 2006-10-23 2007-04-12 Sankyo Co Ltd ペプチド及びその用途
JPWO2014017599A1 (ja) * 2012-07-26 2016-07-11 大鵬薬品工業株式会社 新規ヒノキ花粉アレルゲンのt細胞エピトープペプチド
WO2014017599A1 (ja) * 2012-07-26 2014-01-30 大鵬薬品工業株式会社 新規ヒノキ花粉アレルゲンのt細胞エピトープペプチド
WO2014136814A1 (ja) * 2013-03-08 2014-09-12 大鵬薬品工業株式会社 新規ctlエピトープ5連結ペプチド
AU2014227019B2 (en) * 2013-03-08 2016-10-27 Taiho Pharmaceutical Co., Ltd. Novel peptide having 5 linked CTL epitopes
JP6077641B2 (ja) * 2013-03-08 2017-02-08 大鵬薬品工業株式会社 新規ctlエピトープ5連結ペプチド
US9701729B2 (en) 2013-03-08 2017-07-11 Taiho Pharmaceutical Co., Ltd. Peptide having 5 linked CTL epitopes
US10137183B2 (en) 2013-10-21 2018-11-27 Taiho Pharmaceutical Co., Ltd. Peptide compositions having 4 linked CTL epitopes and uses thereof
US12251447B2 (en) 2018-06-29 2025-03-18 Taiho Pharmaceutical Co., Ltd. Combined formulation comprising four linked cytotoxic T lymphocyte (CTL) epitopes and a PD-1 pathway inhibitor and methods of use thereof to treat cancer

Also Published As

Publication number Publication date
KR100487456B1 (ko) 2005-11-25
EP0923940A1 (en) 1999-06-23
CA2248937C (en) 2011-10-11
CN1218412A (zh) 1999-06-02
KR19990087650A (ko) 1999-12-27
JP3732231B2 (ja) 2006-01-05
CA2248937A1 (en) 1997-09-12
DE69738962D1 (de) 2008-10-16
US6719976B1 (en) 2004-04-13
ATE406913T1 (de) 2008-09-15
EP0923940A4 (en) 2003-03-05
CN1330377C (zh) 2007-08-08
EP0923940B1 (en) 2008-09-03

Similar Documents

Publication Publication Date Title
WO1997032600A1 (fr) Agent immunotherapeutique a base peptidique pour le traitement des allergies
US7547440B2 (en) T-cell epitope peptides
EP1267921B1 (en) Composition and method for the prevention and/or the treatment of der pii allergy
Norman Modern concepts of immunotherapy
AU736977B2 (en) Peptide-based immunotherapeutic agent
EP0463059A1 (en) Allergenic proteins from ragweed and uses therefor
JP3649460B2 (ja) スギ花粉アレルゲンCry j IIエピトープ
US5698204A (en) Recombinant allergenic proteins from ragweed pollen
JP4085105B2 (ja) アレルギー疾患に対するペプチド免疫療法剤
JP3474898B2 (ja) スギ花粉アレルゲンのt細胞エピトープペプチド及びそのアナログペプチド
JP4085092B2 (ja) アレルギー疾患に対するペプチド免疫療法剤
WO2021105371A1 (en) Methods for stratifying diabetes patients
JP2007176953A (ja) アレルギー疾患に対するペプチド免疫療法剤
JPH10506877A (ja) ライグラス花粉アレルゲンのt細胞エピトープ
US20030185847A1 (en) Peptide-based immunotherapeutic agent for treating allergic diseases
JP4176820B2 (ja) スギ花粉アレルゲンCryjIIエピトープ
de Weck Conventional and new approaches to hyposensitization

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 97194541.1

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2248937

Country of ref document: CA

Ref document number: 2248937

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 09142524

Country of ref document: US

Ref document number: 1019980707107

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1997906863

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1997906863

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019980707107

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1019980707107

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1997906863

Country of ref document: EP