[go: up one dir, main page]

WO1998000746A1 - Procede et systeme permettant la representation graphique sur une surface de projection a grand ecran a l'aide d'un projecteur a micromiroir numerique comportant une puce a micromiroir numerique - Google Patents

Procede et systeme permettant la representation graphique sur une surface de projection a grand ecran a l'aide d'un projecteur a micromiroir numerique comportant une puce a micromiroir numerique Download PDF

Info

Publication number
WO1998000746A1
WO1998000746A1 PCT/DE1997/001277 DE9701277W WO9800746A1 WO 1998000746 A1 WO1998000746 A1 WO 1998000746A1 DE 9701277 W DE9701277 W DE 9701277W WO 9800746 A1 WO9800746 A1 WO 9800746A1
Authority
WO
WIPO (PCT)
Prior art keywords
color
turntable
light
polarization
dmd
Prior art date
Application number
PCT/DE1997/001277
Other languages
German (de)
English (en)
Inventor
Christoph Mayer
Klaus Lockmann
Original Assignee
Siemens Nixdorf Informationssysteme Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Nixdorf Informationssysteme Ag filed Critical Siemens Nixdorf Informationssysteme Ag
Publication of WO1998000746A1 publication Critical patent/WO1998000746A1/fr

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3167Modulator illumination systems for polarizing the light beam
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/007Optical devices or arrangements for the control of light using movable or deformable optical elements the movable or deformable optical element controlling the colour, i.e. a spectral characteristic, of the light
    • G02B26/008Optical devices or arrangements for the control of light using movable or deformable optical elements the movable or deformable optical element controlling the colour, i.e. a spectral characteristic, of the light in the form of devices for effecting sequential colour changes, e.g. colour wheels
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/22Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type
    • G02B30/25Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type using polarisation techniques
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F19/00Advertising or display means not otherwise provided for
    • G09F19/12Advertising or display means not otherwise provided for using special optical effects
    • G09F19/18Advertising or display means not otherwise provided for using special optical effects involving the use of optical projection means, e.g. projection of images on clouds
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/37Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being movable elements
    • G09F9/372Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being movable elements the positions of the elements being controlled by the application of an electric field
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/324Colour aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/332Displays for viewing with the aid of special glasses or head-mounted displays [HMD]
    • H04N13/341Displays for viewing with the aid of special glasses or head-mounted displays [HMD] using temporal multiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/363Image reproducers using image projection screens
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/365Image reproducers using digital micromirror devices [DMD]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3102Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators
    • H04N9/3111Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators for displaying the colours sequentially, e.g. by using sequentially activated light sources
    • H04N9/3114Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators for displaying the colours sequentially, e.g. by using sequentially activated light sources by using a sequential colour filter producing one colour at a time

Definitions

  • the principle of operation of the DMD projector is based on the fact that the light rays of a light source shine through the color turntable and are directed onto the micromirrors of the DMD chip.
  • Each micromirror throws the incoming light onto a pixel on the large-screen projection surface.
  • Appropriate control of the respective micromirror ensures that a color mixture is produced which is required for the representation of the individual image point.
  • This color mixing is accomplished in that the respective micromirror always throws a light beam onto the large-screen projection surface for a correspondingly long period of time when a corresponding color beam is offered to it by the color filter. From the colors red, green and blue, all the colors in between can also be generated on the large-screen projection surface from white to black.
  • the color turntable if there is, for example, only one color filter with the three individual color sectors for the colors red, green and blue, has to rotate at least three times as fast as a line deflection frequency is set to at least once from all three colors per pixel to be able to choose. If several color filters are provided on the color turntable or if the color turntable rotates even faster by a corresponding factor, a micromirror can select accordingly more often within one image buildup pass.
  • Lenses in front of and behind the color turntable and projection optics at the exit of the DMD projector are not so crucial for describing the functional principle, but they should nevertheless be mentioned.
  • the lens in front of the color turntable focuses the light source light rays.
  • the lens after the color turntable distributes the colored light evenly over the surface of the DMD chip.
  • the projection optics direct the light for each pixel to the corresponding point on the large-screen projection surface.
  • a DMD projector is suitable for two-dimensional displays. Three-dimensional representations are not possible.
  • the object of the present invention is therefore to specify at least one method and an arrangement for three-dimensional image display on a large image projection surface by means of a DMD projector having a DMD chip.
  • the methods are based on the fact that the light rays from the light source of the DMD projector are not only passed through the color turntable but also through a light polarization turntable.
  • the light polarization turntable has two partial surfaces polarizing in different polarization directions and rotates at least twice as fast as the color turntable.
  • image points can be generated in this way that were generated with light in one polarization direction and with light in the other polarization direction. All in all images in one direction and images in the other polarization direction.
  • the light polarization turntable is unidirectionally polarized and the individual micromirrors are controlled in such a way that a first rotational position of the light polarization turntable in which the current polarization direction is the determining factor for the generation of a pixel in a first polarization direction unidirectional light polarization turntable is decisive, and for the generation of a pixel in a second polarization direction the rotational position of the light polarization turntable is decisive, which is rotated by 90 degrees with respect to the aforementioned first rotational position.
  • the image point is generated with a horizontal and in the second case with a vertical polarization direction.
  • the assignment of a light polarization turntable is sufficient, which has a total area polarizing in a unidirectional direction.
  • the effective surfaces can be only those areas are used which are assigned to sectors of the circle which are arranged in pairs opposite one another and under two pairs the pairs are arranged at right angles to one another and thus crossed overall.
  • the two different polarization directions required are then selected such that their courses are aligned perpendicular to one another. In this case there is a maximum difference in the directions of polarization. Crosstalk between the two images having different polarization directions is avoided as best as possible.
  • the two differently polarized images can be superimposed either by line-by-line or by a full-area change in the polarization directions.
  • a particularly advantageous effect results if the different polarization directions within the respective sectors are selected in such a way that in one case the polarization direction has a circular structure and in the other case a radiation-like structure.
  • a slight change in polarization direction is caused by the rotary movement of the light polarization rotary Disc prevented during the scanning of light rays through the micromirrors.
  • Such a change can be disregarded in the case of horizontally and vertically arranged polarization directions if the scanning of the light beams takes place in a very narrow range, for example +/- 5% of a respective central position of the respective circular sectors.
  • FIG. 1 shows a schematic representation of a DMD projector according to the invention
  • FIGS. 2a to 2f each show an exemplary embodiment for a light polarization turntable of the DMD projector according to FIG. 1.
  • the essential components of a DMD projector are shown in FIG. These are a light source LQ, a first lens L1, a color turntable FDS, a second lens L2, a DMD chip CH, a projection optics PO and a large image projection surface GBPF.
  • the surface of the DMD chip CH has a large number of small, individually controllable micromirrors MS.
  • the light source LQ emits light source light rays. These go through the first lens L1 and are bundled. The bundled light penetrates the FDS color hub. After the color turntable FDS, the light source light beams are directed through the second lens L2. After the second lens L2, the light source light beams hit the micromirrors MS of the DMD chip CH. The light source beams are reflected as light beams by the micromirrors MS and are projected onto all large-screen projection surfaces GBPF by the projection optics PO.
  • the color turntable FDS has a circular sector-shaped color filter that has individual circular sectors for the colors red, green and blue. The color of the respective single circle sector is identified by one of the letters R, G and B. R stands for the color red, G stands for the color green and B stands for the color blue.
  • the color turntable FDS has only one color filter. In other exemplary embodiments, however, several color filters could also be provided. According to FIG. 1, the only color filter is arranged evenly distributed over the entire available area.
  • a motor M is responsible for the rotary movement of the color filter.
  • the light polarization turntable LPDS has two partial areas which polarize the light passing through in two different polarization directions.
  • the directions of polarization are perpendicular to each other.
  • the partial areas each take up half of the total area.
  • the light polarization turntable LPDS has a unidirectional direction of polarization. This can be recognized by the lines over the entire surface of the light polarization turntable LPDS.
  • Several circle sectors are drawn within the total area, two of which are designated by the reference symbol WB.
  • the reference symbol WB stands for the fact that these circular sectors represent an effective area of the total area.
  • the circle segments representing an effective area are each arranged in two opposite directions.
  • the circle segments, each arranged in two, are arranged in a crossed manner. Because of this arrangement, the one two opposite circular sectors essentially have a transverse polarization direction, while the other two opposite circular sectors have a longitudinal polarization direction.
  • the micromirrors MS of the DMD chip CH in turn thereby have the possibility of generating pixels with two different polarization directions.
  • the advantage here is that the -
  • Time intervals within which the corresponding light-polarized light beams are selected are relatively short because, due to the rotation of the light polarization turntable LPDS and the unidirectionally directed light polarization of the light polarization turntable LPDS, the polarization direction rotates with time. A stretching However, the error of +/- 5% based on an average that is optimal keeps the error within acceptable limits.
  • the polarization directions can be selected in such a way that one polarization direction has a circular structure and the other polarization direction has a radiation-like structure. Starting from a light polarization turntable LPDS, this is illustrated in FIG. 2a in FIG. 2c. Due to such structured polarization directions, an error as described above can no longer occur because it remains constant over a predetermined period of time.
  • the light polarization turntables LPDS according to Figures 2a to 2d are independent disks.
  • the light polarization turntables LPDS according to FIGS. 2e and 2f are combined with the color turntable FDS to form a single component.
  • the light polarization turntable according to FIG. 2e is based on a unidirectional polarization direction and the light polarization turntable according to FIG. 2f is based on a circular or radiation-shaped polarization direction.
  • FIGS. 2e and 2f only the effective areas WB are drawn in a structured manner. Further structuring is conceivable, as in the other cases.
  • the color filters with the individual circle sectors for the colors red R, green G and blue B are implemented within the effective areas WB.
  • further color filters can also be provided.
  • the methods for generating the images superimposed on the large-screen projection surface GBPF are also different.
  • the light polarization turntables LPDS according to FIGS. 2a to 2d it is necessary for the light polarization turntable LPDS to rotate at a correspondingly higher speed than the color turntable FDS in order to enable a selection of light beams with two different light polarizations for each color sector of the color filter.
  • this is not necessary because here the color filter is often provided with each of the respective light polarization structures.
  • color can also be generated by DMD chips for one of the colors red, green and blue.
  • a color rotation Disc In projectors with DMD chips, color can also be generated by DMD chips for one of the colors red, green and blue.
  • a color rotation Disc In this case, a color rotation Disc.
  • the principle according to the invention also works because the idea of the invention lies in the use of the light polarization turntable, which can still be used in the same way as described above.
  • the invention is not limited to large-screen projection surfaces. Small areas can also be used for image display.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Theoretical Computer Science (AREA)
  • Astronomy & Astrophysics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Business, Economics & Management (AREA)
  • Accounting & Taxation (AREA)
  • Marketing (AREA)
  • Projection Apparatus (AREA)

Abstract

Un projecteur à micromiroir numérique comportant une puce à micromiroir numérique (digital micromirror device-chip) est complété pour former un disque rotatif de polarisation de la lumière, qui permet par point-image et par conséquent par image, la représentation simultanée d'images dans deux différentes directions de polarisation de la lumière. Si des images sont représentées pour un oeil dans une direction de polarisation et pour l'autre oeil, dans l'autre direction de polarisation, un observateur muni de lunettes comportant deux verres polarisant la lumière de manière appropriée peut voir les images en trois dimensions sur une surface de projection à grand écran.
PCT/DE1997/001277 1996-06-28 1997-06-19 Procede et systeme permettant la representation graphique sur une surface de projection a grand ecran a l'aide d'un projecteur a micromiroir numerique comportant une puce a micromiroir numerique WO1998000746A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19626097.3 1996-06-28
DE19626097A DE19626097C1 (de) 1996-06-28 1996-06-28 Verfahren und Anordnung zur Bilddarstellung auf einer Großbildprojektionsfläche mittels eines einen DMD-Chip aufweisenden DMD-Projektors

Publications (1)

Publication Number Publication Date
WO1998000746A1 true WO1998000746A1 (fr) 1998-01-08

Family

ID=7798373

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1997/001277 WO1998000746A1 (fr) 1996-06-28 1997-06-19 Procede et systeme permettant la representation graphique sur une surface de projection a grand ecran a l'aide d'un projecteur a micromiroir numerique comportant une puce a micromiroir numerique

Country Status (2)

Country Link
DE (1) DE19626097C1 (fr)
WO (1) WO1998000746A1 (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001006796A1 (fr) * 1999-07-19 2001-01-25 Imax Corporation Systeme de projection d'images
US8186831B2 (en) 2006-12-18 2012-05-29 Thomson Licensing Wide color gamut projector
US8272749B2 (en) 2007-04-25 2012-09-25 Thomson Licensing High resolution segmented 3D projection system
US8334935B2 (en) 2006-12-19 2012-12-18 Thomson Licensing High resolution DMD projection system
US8696135B2 (en) 2007-06-25 2014-04-15 Thomson Licensing Video recording prevention system
US9360609B2 (en) 2006-12-18 2016-06-07 Thomson Licensing 2D/3D projector with rotating translucent cylinder for alternating light polarisation
CN110587379A (zh) * 2019-09-26 2019-12-20 安徽巨一自动化装备有限公司 一种流钻拧紧设备探孔方法

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29705870U1 (de) * 1997-04-07 1998-08-20 Fehlert, Gerd-P., Dr.-Ing., 42115 Wuppertal Flachbildschirm
DE19824709A1 (de) * 1998-06-03 1999-12-09 Bundesdruckerei Gmbh Erzeugung von Leuchtdichte-Arrays mit digitalem Array-Strahlungsprozessoren
DE19832317C1 (de) * 1998-07-17 2000-05-11 Zeiss Carl Jena Gmbh Anordnung, bei der von einer Lichtquelle aus Licht auf eine Fläche gerichtet wird
AU1320502A (en) * 2000-10-12 2002-04-22 Reveo Inc Digital light processing based 3d projection system and method
DE10065050A1 (de) * 2000-12-23 2002-07-04 Zeiss Carl Stereoskopisches Darstellungssystem mit einem einzigen Display
TW580826B (en) * 2001-01-12 2004-03-21 Vrex Inc Method and apparatus for stereoscopic display using digital light processing
KR100389865B1 (ko) * 2001-03-02 2003-07-04 삼성전자주식회사 마이크로미러 디바이스 및 이를 채용한 프로젝터
US6547396B1 (en) * 2001-12-27 2003-04-15 Infocus Corporation Stereographic projection system
KR100580218B1 (ko) * 2004-12-30 2006-05-16 삼성전자주식회사 하나의 프로젝터를 사용한 투사형 3차원 영상 디스플레이장치
US8189038B2 (en) * 2005-12-21 2012-05-29 International Business Machines Corporation Stereographic projection apparatus with passive eyewear utilizing a continuously variable polarizing element
US7871165B2 (en) * 2007-11-30 2011-01-18 Eastman Kodak Company Stereo projection apparatus using polarized solid state light sources
WO2010028185A2 (fr) * 2008-09-04 2010-03-11 David Coppeta Système optique et procédé d'assemblage
DE102010020244A1 (de) * 2010-05-11 2011-11-17 Jos. Schneider Optische Werke Gmbh System zur stereoskopischen Kino-Projektion
DE102010020405A1 (de) * 2010-05-12 2011-11-17 Jos. Schneider Optische Werke Gmbh System zur stereoskopischen Kino-Projektion
CN102854731B (zh) * 2012-07-24 2015-11-25 深圳市绎立锐光科技开发有限公司 发光装置及相关投影系统
CN110807987A (zh) * 2019-12-06 2020-02-18 张丽云 一种旅游用地理位置显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4680579A (en) * 1983-09-08 1987-07-14 Texas Instruments Incorporated Optical system for projection display using spatial light modulator device
EP0541374A1 (fr) * 1991-11-05 1993-05-12 Sharp Kabushiki Kaisha Système display à trois dimensions
EP0662773A1 (fr) * 1994-01-07 1995-07-12 Texas Instruments Incorporated Procédé et appareil de mise en image couleur séquentielle
EP0704737A2 (fr) * 1994-09-30 1996-04-03 Texas Instruments Incorporated Système optique pour appareils imprimants et systèmes d'affichage
AU8042394A (en) * 1994-12-15 1996-06-20 Jack Newman Stereoscopic micromirror display

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4680579A (en) * 1983-09-08 1987-07-14 Texas Instruments Incorporated Optical system for projection display using spatial light modulator device
EP0541374A1 (fr) * 1991-11-05 1993-05-12 Sharp Kabushiki Kaisha Système display à trois dimensions
EP0662773A1 (fr) * 1994-01-07 1995-07-12 Texas Instruments Incorporated Procédé et appareil de mise en image couleur séquentielle
EP0704737A2 (fr) * 1994-09-30 1996-04-03 Texas Instruments Incorporated Système optique pour appareils imprimants et systèmes d'affichage
AU8042394A (en) * 1994-12-15 1996-06-20 Jack Newman Stereoscopic micromirror display

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Mikrospiegel in der Grossbild-Projektion", FUNKSCHAU, vol. 67, no. 19, 1 September 1995 (1995-09-01), pages 34 - 35, XP000530294 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001006796A1 (fr) * 1999-07-19 2001-01-25 Imax Corporation Systeme de projection d'images
US8186831B2 (en) 2006-12-18 2012-05-29 Thomson Licensing Wide color gamut projector
US9360609B2 (en) 2006-12-18 2016-06-07 Thomson Licensing 2D/3D projector with rotating translucent cylinder for alternating light polarisation
US8334935B2 (en) 2006-12-19 2012-12-18 Thomson Licensing High resolution DMD projection system
US8272749B2 (en) 2007-04-25 2012-09-25 Thomson Licensing High resolution segmented 3D projection system
US8696135B2 (en) 2007-06-25 2014-04-15 Thomson Licensing Video recording prevention system
CN110587379A (zh) * 2019-09-26 2019-12-20 安徽巨一自动化装备有限公司 一种流钻拧紧设备探孔方法
CN110587379B (zh) * 2019-09-26 2021-04-06 安徽巨一科技股份有限公司 一种流钻拧紧设备探孔方法

Also Published As

Publication number Publication date
DE19626097C1 (de) 1997-10-30

Similar Documents

Publication Publication Date Title
DE19626097C1 (de) Verfahren und Anordnung zur Bilddarstellung auf einer Großbildprojektionsfläche mittels eines einen DMD-Chip aufweisenden DMD-Projektors
DE60103540T2 (de) Strukturierte lichtquelle
DE69725582T2 (de) Zeilensprung-farbbildprojektor
DE19626096C1 (de) Verfahren zur dreidimensionalen Bilddarstellung auf einer Großbildprojektionsfläche mittels eines Laser-Projektors
DE2410485B2 (de) Prismensystem zur farbtrennung in drei farbkomponenten
DE2645194A1 (de) Wiedergabeanordnung fuer dreidimensionales fernsehen
EP0956706B1 (fr) Procede et dispositif pour eliminer le chatoiement d'image lors de projection d'image laser a balayage
DE1497922A1 (de) Verfahren,Vorrichtung und Traeger zur Aufzeichnung und Wiedergabe bewegter Bilder
DE2750261A1 (de) Anordnung zur erzeugung eines optischen musters
DE1462404C3 (de) Vorrichtung zur Wiedergabe eines mehrfarbigen Fernsehbildes
DE582730C (de) Einrichtung zum Abtasten bzw. Aufbauen von Fernsehbildern mit paralleler Zeilenrasterung
DE69622119T2 (de) Farbprojektor
DE102005058586A1 (de) Wiedergabevorrichtung zur autostereoskopen Wiedergabe von dreidimensionalen Darstellungen
DE4042388C2 (fr)
EP1029730B1 (fr) Dispositif d'affichage pour véhicules avec panneau d'affichage disposé dans la direction du regard du conducteur
DE10332275B4 (de) Panorama-Bildprojektor
DE10192272B4 (de) Vorsatz für Videoprojektoren zur 3-D-Projektion von Stereobildern
DE102005037435A1 (de) Vorrichtung zur umschaltbaren Bildprojektion mit diffraktiven optischen Elementen
DE10123933C1 (de) Verfahren und Vorrichtung zur Herstellung stereoskopischer Darstellungen
DE1143388B (de) Selbsttaetiges Tonfilmprojektionsgeraet mit Filmwaehler
DE555419C (de) Abtastvorrichtung fuer Fernsehzwecke
DE10245104B4 (de) Projektionsanordnung und Projektionsverfahren
EP4328664A1 (fr) Procédé et appareil pour la reproduction optionnelle d'une image miroir ou d'une représentation graphique
AT85301B (de) Farbenkinematographie.
WO2002025353A1 (fr) Procede de production de groupes de points d'image au moyen de rayons laser dans l'espace ou dans le plan

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: JP

Ref document number: 98503728

Format of ref document f/p: F

122 Ep: pct application non-entry in european phase