[go: up one dir, main page]

WO1998015627A1 - Production d'un peptide recombinant par un poisson transgenique - Google Patents

Production d'un peptide recombinant par un poisson transgenique Download PDF

Info

Publication number
WO1998015627A1
WO1998015627A1 PCT/GB1997/002806 GB9702806W WO9815627A1 WO 1998015627 A1 WO1998015627 A1 WO 1998015627A1 GB 9702806 W GB9702806 W GB 9702806W WO 9815627 A1 WO9815627 A1 WO 9815627A1
Authority
WO
WIPO (PCT)
Prior art keywords
fish
cell
construct
polypeptide
egg
Prior art date
Application number
PCT/GB1997/002806
Other languages
English (en)
Inventor
Norman Maclean
Darren William Williams
Geoffrey Goldspink
Ferenc MÜLLER
Original Assignee
University Of Southampton
University College London
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University Of Southampton, University College London filed Critical University Of Southampton
Priority to EP97909415A priority Critical patent/EP0931143A1/fr
Priority to JP10517326A priority patent/JP2001501482A/ja
Publication of WO1998015627A1 publication Critical patent/WO1998015627A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/027New or modified breeds of vertebrates
    • A01K67/0275Genetically modified vertebrates, e.g. transgenic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/745Blood coagulation or fibrinolysis factors
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/05Animals comprising random inserted nucleic acids (transgenic)

Definitions

  • This invention relates to the expression of nucleic acid sequences, typically heterologous sequences, encoding pharmaceutically or biologically active proteins, in fish. This generates recombinant polypeptides which can then be harvested from the fish or their eggs.
  • microbial systems such as yeast and E. coli
  • animal systems of two types, tissue culture and whole animal systems include microbial systems, such as yeast and E. coli, and animal systems of two types, tissue culture and whole animal systems.
  • Microbial systems suffer from the drawback that they often fail to glycosylate or fold the heterologous protein correctly. In many cases, this means that the protein is biologically inactive, especially when an eukaryotic protein is produced in a prokaryotic system like E. coli where no glycosylation occurs.
  • Cell cultures typically mammalian cell cultures, are an alternative as they are capable of effecting folding and glycosylation.
  • cell culture involves relatively simple experimental procedures and produces rapid reproducible results, it is extremely expensive; using recombinant Factor VIII prepared Chinese Hamster
  • Ovary (CHO) cells it costs around £80,000 per year to treat a haemophilia patient.
  • a further alternative is the introduction of cloned sequences into whole animal systems in vivo, which should maximise the possibility of correct expression of the gene construct since the introduced sequences are exposed to a complete spectrum of cell-specific signals.
  • a less expensive way to produce heterologous proteins than using cell cultures is to produce the protein in the milk of transgenic cows or sheep. Serious problems remain, however.
  • the lytic enzymes contained in the milk hydrolyse the heterologous proteins unless they are highly resistant to degradation.
  • large mammals such as cows and sheep require extensive care. Also, as some diseases are common to non-human mammals and humans, there may be a danger that recombinant products produced in mammals will transmit pathogenic viruses and/or prions to human patients.
  • transgenic fish lines which express a transgene in the Fl generation: these include lines expressing genes which encode, amongst others, growth hormone and antifreeze protein, as well as bacterial reporter genes such as CAT and LacZ.
  • the present inventors have found that, using a construct comprising DNA encoding the human Factor VII protein under the control of the CMV promoter, it is possible to express Factor VII transiently in transgenic zebrafish embryos. Furthermore, the recombinant Factor VII protein produced in these embryos is biologically active. Thus, it has been demonstrated that transgenic fish can be used to produce biologically active pharmaceutical polypeptides, especially in their embryonic tissues.
  • the inventors have also characterised the 5' region of the gene for a new member of the carp myosin heavy chain (MyoHC) gene family, the FG2 myosin heavy chain gene (Gauvry et al. (1996) Eur. J. Biochem, Vol 236; 887-894, incorporated herein by reference). Sequencing of the 5' region has revealed the presence of TATA and CCAAAT boxes typical of a promoter region. These motifs are located 30 bp and 74 bp, respectively, upstream of the transcription start site. The sequence also revealed several E box (CANNTG) motifs between positions -896 and
  • a putative MEF2 binding site (GCTATATTTA) is located at position -860.
  • GTATATTTA putative MEF2 binding site
  • the present invention provides an expression construct for expressing a polypeptide in fish, which construct comprises a nucleic acid coding sequence encoding the polypeptide operably linked to a regulatory sequence capable of directing the expression of the coding sequence in a cell of the fish
  • the regulatory sequence is capable of directing expression of the coding sequence in, for example, a cell of a fish egg, a cell of an embryonic tissue, a cell of an extra-embryonic tissue, for example, in a cell of the yolk syncytial layer
  • the regulatory sequence is capable of directing expression of the coding sequence in a cell of the skeletal muscle
  • the polypeptides are pharmaceutical products with biological activity These may be human factor VII, human factor VIII, human factor IX, calcitonm, an mterleukm, an interferon, erythropoietin, tumour necrosis factor, ⁇ - galactosidase, adenosine deammase, or any functionally active part of such a protein
  • the present invention also provides a nucleic acid vector which comprises an expression construct of the invention
  • the invention further provides a method for producing a transgenic fish, zygote, egg or embryo which method composes introducing episomally an expression construct of the invention into a cell of the fish, zygote, egg or embryo
  • the method of the invention compnses chromosomally incorporating a construct of the invention into the genome of the fish, zygote, egg or embryo
  • the fish species involved will be of taxa Cyprimdae, Cichhdae, Salmonidae,
  • Clandae S umidae or Ictaluridae, and will include zebrafish, ⁇ Danw rerio), African catfish ⁇ Clarias ganepinus), rainbow trout ⁇ Orcorhynchus my ss), carp ⁇ Cyprinus carpi ), or tilapia ⁇ Oreochromis n ⁇ oticus)
  • the invention also provides a method for of producing a recombinant polypeptide, which method composes expressing the polypeptide encoded by the coding sequence of the construct of the invention in a fish, fish egg or embryo and recove ⁇ ng the polypeptide
  • the expression construct is introduced by microinjection Alternatively it may be introduced by electroporation or hpofection
  • the regulatory sequences compnse promoters giving ubiquitous or tissue specific expression, and include such regulatory sequences, mtrons, enhancers, polyA elements and other nucleic acid sequences as are necessary to maximise expression in some or all tissues of fish eggs, embryos or adults.
  • the regulatory sequences, in particular promoter sequences, used in the expression constructs are of viral or animal origin, are capable of driving expression in fish cells.
  • the expression of the coding sequences will be either transient, in which case the recovery will be from eggs or embryos, or stable, in which case the recovery will be from embryos or young fish, or mature fish.
  • Expression of polypeptides may be achieved by introducing the expression construct of the invention directly into somatic tissues of the adult fish preferably muscle tissue/cells.
  • the gene constructs may also be introduced into germ line tissue/cells including gametes to achieve transmission to progeny fish.
  • Fish which have been made transgenic and which express the transgene copy or copies in a stable and chromosomally integrated manner may also be used for breeding so that eggs, embryos and other generations of expressing cells and fish can be produced.
  • nucleic acid constructs incorporating the regulatory sequence and a coding sequence for a polypeptide of interest can be introduced into fish at a suitable stage in their development. The protein is then recovered from the muscle, and/or from other tissues, by harvesting the fish.
  • muscle-specific promoters especially the myosin heavy chain (MyoHC) promoter, are preferred.
  • Polypeptides of interest can be expressed in and recovered from fish eggs, which eggs may be fertilised or unfertilised; or from developing zygotes or embryos.
  • a transgenic sexually mature fish can be produced which expresses the polypeptide of interest, under the control of a suitable the regulatory sequence, in her eggs. These eggs can then be removed and the protein extracted.
  • This system has the advantage that no mature transgenic fish need be sacrificed to obtain the recombinant polypeptide.
  • a regulatory sequence capable of directing expression in a fish egg or developing zygote or embryo is required.
  • polypeptides of the invention are produced by expressing DNA encoding them using an expression construct of the invention which comprises a nucleic acid coding sequence encoding the polypeptide operably linked to a regulatory sequence capable of directing the expression of the coding sequence in a cell of the fish.
  • the nucleic acid coding sequence may be DNA or RNA, preferably DNA, typically genomic DNA or cDNA. It may encode a polypeptide of any suitable length.
  • Any suitable polypeptide can be produced according to the invention, by expressing a nucleic acid, i.e. DNA or RNA, encoding it.
  • a polypeptide will be heterologous with respect to the fish system, i.e. it will be a polypeptide not naturally produced by the fish. However, it may be a homologous polypeptide.
  • the polypeptides produced in this way will have pharmaceutical and/or biological properties.
  • the polypeptides of the invention are suitable for pharmaceutical use in mammals, more preferably humans.
  • they may be useful in treating, preventing or ameliorating a disease or other pathological condition of a human or animal subject.
  • Preferred polypeptides that may be produced in this way include blood clotting factors such as factors VII, VIII and IX; calcitonin; interleukins; interferons such as ⁇ -, ⁇ - and ⁇ - interferon; ⁇ -galactosidase; tumour necrosis factor (TNF); and adenosine deaminase.
  • blood clotting factors such as factors VII, VIII and IX
  • calcitonin such as factors VII, VIII and IX
  • interleukins interferons such as ⁇ -, ⁇ - and ⁇ - interferon
  • ⁇ -galactosidase such as ⁇ -galactosidase
  • tumour necrosis factor (TNF) tumour necrosis factor
  • adenosine deaminase adenosine deaminase.
  • such polypeptides will be produced in their complete (native) form, although the nucleic acid sequences of the invention may also encode functional
  • the nucleic acid sequences of the invention may encode derivatives, for example mutated versions of the native polypeptides.
  • they may encode versions of the polypeptide that differ at one or more amino acids from the native version.
  • the nucleic acid sequences may differ from the native sequence but encode the same amino acid sequence.
  • the nucleic acid sequences may be degenerate of the native sequences.
  • the DNA sequences may be altered in such a way as to include codons that are preferred for expressing particular amino acids in fish cells; i.e. codons that are less efficiently expressed in fish may be replaced by more efficiently expressed ones.
  • the regulatory sequence of the invention is operably linked to a regulatory sequence capable of directing its expression in a cell of a fish.
  • "Operably linked” refers to a juxtaposition wherein the regulatory sequence and the nucleic acid sequence encoding the polypeptide of the invention activity are in a relationship permitting the coding sequence to be expressed under the control of the promoter.
  • there may be elements such as 5' non-coding sequence between the regulatory sequence and coding sequence, as long as they enhance, or do not impair, the correct control of the expression of the coding sequence by the regulatory sequence.
  • a regulatory sequence comprises at least a promoter sequence.
  • a regulatory sequence may comprise other elements such as some or all of the following: a regulator of the promoter; an enhancer for the promoter; and/or a translational start site.
  • the expression construct may also comprise a transcriptional terminator 3' to the sequence encoding the polypeptide of the invention.
  • the expression construct may also comprise one or more introns or other non-coding sequences, for example, 3' or 5' to the sequence encoding the polypeptide of the invention. Such sequences can be included in the construct if they enhance or do not impair the correct control of the coding sequence by the promoter.
  • the construct may also comprise a polyadenylation (poly A) signal operably linked 3' to the nucleic acid coding sequence, for example the SV40 polyA signal or the Chinook Salmon polyA signal.
  • poly A polyadenylation
  • the constructs of the invention may also optionally comprise one or more Locus Control Regions (LCRs). These act as enhancers for certain fish genes and can lmprove transgene expression (Aronrow et al (1995) Mol Cell Biol Vol 15, 1123- 1135)
  • the constructs of the invention may be included within a vector, suitably a rephcable vector, for instance a rephcable expression vector
  • a vector of the invention typically composes an oogin of replication so that the vector can be replicated in a host cell such as a bacteoal host cell or a yeast host cell
  • a vector may also comprise additional elements involved in the control of expression of the coding sequence as discussed above
  • the vector may also contain one or more selectable marker genes, typically an antibiotic resistance gene, for example an ampicilhn resistance gene for the identification of bacterial transformants, or a marker gene that allows selection of yeast transformants
  • the vector may also compose an enhancer for the promoter
  • the expression vector may be of any type
  • the vector may be in linear or circular form
  • the construct may be incorporated into a plasmid vector or a viral vector Those of skill in the art will be able to prepare suitable vectors and constructs of the invention starting with widely available vectors which will be modified by genetic engmee
  • Any suitable regulatory sequence may be used in the constructs of the invention, as long as the regulatory sequence is capable of directing expression in a cell of a fish
  • Regulatory sequences in the expression construct of the invention may be capable of directing expression in cells of some or all of the tissues of a fish For example, they may direct expression wholly or mainly in certain tissues Thus, they may be tissue-specific. For example, they may direct expression wholly or mainly m one or more particular fish tissues Regulatory sequences that are specific for tissues of the fish egg or skeletal muscle are preferred It is preferred that the regulatory sequence directs expression in a cell of a fish egg such as a cell of an embryonic or extra-embryonic tissue of a fish egg For example, the promoter may direct expression in a cell of an extra-embryonic tissue such as a cell of the yolk syncytial layer (YSL) or enveloping layer (EVL) of the egg.
  • YSL yolk syncytial layer
  • ETL enveloping layer
  • promoters capable of directing expression of the coding sequence in a cell of the muscle, typically the skeletal muscle, of a fish.
  • Regulatory sequences in the construct of the invention may be constitutive or inducible.
  • one class of preferred regulatory sequences are the myosin heavy chain gene promoters.
  • the ca ⁇ FG2 myosin heavy chain promoter described by Gauvry et al. (1996), ibid, is preferred.
  • This is a muscle-specific promoter, in the sense that it directs expression in cells of the skeletal muscle. Unexpectedly, it also directs expression in the YSL and EVL.
  • a particularly preferred region of the FG2 MyoHC promoter is from the transcription start site to
  • tissue-specific regulatory sequence is particularly preferred when the expression construct is to be stably introduced into the fish genome long-term, especially into the genome of germline cells. More generally, fish-derived tissue-specific regulatory sequences are preferred where long-term expression and/or stable integration of the expression construct into the fish cell genome, rather than transient expression is required. It is also preferred to use promoters which are inducible such that expression of the polypeptide can be induced by a suitable stimulus at the desired time. This may avoid any side-effects associated with the continuous expression of a heterologous polypeptide.
  • CMV cytomegalovirus
  • CMV cytomegalovirus
  • MMV cytomegalovirus
  • TK thymidine kinase
  • RSV Rous Sarcoma Virus
  • rnMTHI Rous Sarcoma Virus
  • Xenopus elongation factor l ⁇ (efl ⁇ ) promoter optionally in combination with the efl ⁇ enhancer
  • ca ⁇ ⁇ -actin promoter the mouse Hox 1.3 promoter
  • the rat GAP 43 gene promoter the SV40 early promoter
  • human MxA promoter particularly preferred for transient expression are ubiquitous and/or constitutive regulatory sequences allowing high level expression in all cell types.
  • Viral regulatory sequences for example CMV and RSV sequences are especially preferred.
  • an enhancer may also be used in addition to the promoter.
  • the enhancer will be chosen to be compatible with the promoter.
  • Some suitable enhancers include the rat foetal light chain enhancer, the efl ⁇ enhancer and the RSV enhancer.
  • Any suitable type of fish may be used, according to the invention, for the production of polypeptides of interest. Teleost fish are preferred. Amongst teleost fish, preferred taxa include Cyprinidae, Cichlidae, Salmonidae, Claridae, Siluridae and Ictaluridae. Some particularly preferred types of fish are ca ⁇ (e.g.
  • the present invention also provides cells harbouring the vectors or constructs of the invention. These cells may be of any type. For example, they may be microorganism cells. Thus, they may for example be bacterial, e.g. E. coli, or yeast cells.
  • Preferred cells of the invention are fish cells.
  • Cells of any type of fish are within the scope of the invention, and cells of the fish taxa mentioned herein are preferred.
  • the cells may be cells of any type of fish tissue, although tissues mentioned herein are preferred.
  • Cells of the fish egg for example cells of embryonic tissues, or of extra-embryonic tissues such as the YSL and EVL, are particularly preferred.
  • Muscle cells typically skeletal muscle cells are also preferred.
  • Fish cells of the invention may be in any form. They may be isolated, e.g. in culture, or in a fish, e.g. a mature fish; or in a fish zygote, embryo or egg.
  • the invention provides transgenic fish comprising cells of the invention. These may be at any stage of development.
  • the invention provides mature and immature transgenic fish, as well as transgenic fish zygotes, embryos and eggs.
  • some or all of the cells harbour constructs or vectors of the invention.
  • the fish may be uniformly transgenic or transgenic "mosaics" in which only some cells are transgenic.
  • Cells of the invention may be localised in particular tissue types, for example in one or more tissues such as the skeletal muscle, germline cells or eggs.
  • the transgenic fish of the invention may be of either sex; i.e. they may be male or female.
  • constructs and vectors of the invention may be introduced into cells, to make cells of the invention, by any suitable means (for example, as set out in
  • the cells may be transformed or transfected by any means known in the art.
  • constructs and vectors of the invention may be packaged into infectious viral particles, for example retroviral, particles or lambda virus particles which are then used to transfer the constructs or vectors to the cells.
  • they may be introduced by micro injection, electroporation, calcium phosphate precipitation, biolistic methods, (e.g. tungsten bombardment) or by contacting naked nucleic acid vectors or constructs with the cells in solution.
  • agents that facilitate DNA transfer into cells may be used. These include liposomes.
  • a preferred means of delivery is microinjection, using techniques known to a person of skill in the art.
  • Microinjection can be performed at any suitable stage in the development of the egg, for example prior to fertilisation; or at the one-cell, two-cell, four-cell or eight-cell stage.
  • Another preferred technique for delivering nucleic acids to fish eggs, as well as to fish sperm, is electroporation which is reviewed extensively in Transgenic Animals - Generation and Use (1997) pp 129-132, ed. L. M. Houdebin, Harwood Acedemic
  • the vectors or constructs introduced into cells may be of any suitable type. For example, they may be able to integrate constructs of the invention into the cell genome or they may be episomal, and remain free in the cell.
  • the invention also provides methods of making transgenic fish of the invention. Any suitable method may be used. In principle, the methods of the invention involve introducing a construct or vector of the invention into a cell, generating a cell of the invention as described above. If the cell is in vivo, for example in a fish, or fish zygote embryo or egg, this leads to a transgenic fish, zygote, embryo or egg of the invention. If appropriate, the fish can be reproduced to produce transgenic progeny fish of the invention.
  • Fish eggs of the invention can be fertilised as appropriate and then grown up to yield fish of the invention, which may then be reproduced to yield further progeny fish of the invention. Fertilised fish eggs, zygotes and embryos of the invention may be grown up to yield fish of the invention which may then be reproduced to yield further progeny fish of the invention. Progeny fish of the invention may also be reproduced to generate further fish of the invention. Also, fish sperm can be transformed with constructs of the invention and this transgenic sperm can be used to generate transgenic fish of the invention by fertilising fish eggs, optionally transgenic eggs of the invention.
  • cells or fish including eggs, zygotes and embryos
  • suitable selection procedures to separate transformed cells or fish from non- transformed ones.
  • the construct of the invention is chromosomally inco ⁇ orated into the fish cell genome, for example using an integrative vector.
  • a part of the construct is integrated, it is preferably a part comprising the coding sequence, more preferably a part comprising the coding sequence and flanking sequences (e.g. the promoter) capable of directing its expression in the fish cell.
  • flanking sequences e.g. the promoter
  • the vector or construct of the invention may be introduced into the fish cell at any suitable stage in the fish life cycle. For example, it may be introduced into an unfertilised egg, or a fertilised zygote, or a developing embryo, or into an immature fish or a mature fish. Thus obtained unfertilised eggs may be fertilised to yield zygotes of the invention, which may then be grown up to yield embryos and then fish of the invention.
  • Female fish of the invention may produce transgenic eggs of the invention which can be fertilised, optionally by transgenic male fish of the invention, or sperm derived from such fish.
  • the invention also provides methods for producing recombinant polypeptides of the invention by expressing the polypeptide encoded by the coding sequences of the invention in a cell of the invention, and recovering the polypeptide thus produced by any means known in the art.
  • Polypeptides of the invention may be produced and recovered from cells of the invention cultured in vitro. However, it is preferred to produce polypeptides of the invention in vivo in the cells of living fish of the invention, for example cells of mature or immature fish, or their zygotes, eggs or embryos of the invention.
  • the polypeptide may be obtained by harvesting mature fish, or fish eggs, embryos and zygotes and recovering the polypeptide by any suitable means.
  • the polypeptide may be isolated, or substantially isolated, e.g. by one or more isolation steps.
  • the polypeptide may be purified, completely or partially, e.g. by one or more purification steps.
  • mature female transgenic fish of the invention are produced and allowed to produce eggs which eggs may optionally be fertilised.
  • the eggs are harvested and the polypeptide of the invention is then recovered from the eggs.
  • the female fish may be superovulated to enhance the number of eggs produced, and thus the amount of polypeptide recovered.
  • expression is specifically obtained in the eggs by means of a suitable promoter.
  • mature transgenic fish of the invention are generated, and polypeptides are expressed in their tissues.
  • expression takes place selectively, in the skeletal muscle, e.g. under the control of a muscle-specific promoter such as the ca ⁇ FG2 MyoHC promoter described in Gauvry et al (1996), ibid.
  • RNA or RNA sequence encoding a polypeptide of the invention can be used to achieve transient expression of the polypeptide in a developing fish egg, zygote or embryo.
  • RNA encoding the polypeptide is introduced into a fish egg, optionally a fertilised egg.
  • the egg is, if appropriate, fertilised and grown up to a suitable stage in development, which allows the polypeptide to be expressed.
  • the polypeptide expressed is recovered by any means known in the art.
  • the polypeptide may be recovered from the eggs at any stage in their development.
  • Figure 1 is the InvitrogenTM expression vector into which the FVII cDNA is inserted.
  • Figure 2 is the construct from which the FVII cDNA was isolated.
  • Figure 3 is the constnict formed by inserting the FVII cDNA into the expression vector in Figure 1.
  • Figure 4 is a graph showing catfish embryos expressing recombinant human factor VII.
  • the DNA encoding human factor VII has been cloned and sequenced (O'Hara et al. (1987) PNAS, Vol 84; 5158-5162 - Genbank Accession No. J02933).
  • the particular human factor VII coding gene cDNA used in these experiments was isolated by Hindlll/BamHI double digestion from the plasmid containing the FVII sequence flanked by a 0.9 kb rat myosin heavy chain gene-derived muscle specific regulatory element (pMyHC/FVII). (Examples of rat myosin heavy chain promoter sequences are published as Genbank Accession Nos. U83321 and U55179).
  • the 2.62 kb FVII cDNA fragment containing the 2.46 kb FVII cDNA and the 0.12 kb SV40 polyA signal sequences was ligated into the pcDNAI expression vector
  • plasmid pCMV/FVII (Fig 2) was checked for the appropriate insertion and orientation by restriction mapping. It contains the CMV virus El early promoter and enhancer 5' to the FVII sequences.
  • the plasmid was prepared using conventional molecular techniques (Sambrook et al, (1989), ibid) and used for microinjection into fertilised fish eggs. Microinjection and embryo culture
  • Embryos of African catfish were produced by artificial propagation of African catfish broodstock The females were injected with 3 mg/kg body weight ca ⁇ pituitary dissolved in PBS solution 8 hours prior to planned ovulation. The eggs were stripped of the females and fertilised by addition of sperm derived from testis surgically removed from males. Single cell embryos (zygotes) were used for microinjection.
  • Zebrafish embryos were gained from natural spawnings of broodstock kept at 14 hours light 10 hours dark cycle at 28°C. Eggs were late into spawning boxes (Westfield, M (1993) The zebrafish book: A guide for the laboratory use of zebrafish
  • the pCMV/FVII and the pMyHC/FVII plasmids were both microinjected in circular form into African catfish or zebrafish embryos at the zygote stage in approximately 10 6 to 10 7 copies using a pressure driven picoinjector.
  • the embryos of catfish were placed on Petri dishes where the naturally sticky eggs remained attached.
  • the injection was done by hand using glass microcapillary filled with the appropriate DNA solution containing blue food dye for localisation of injection drop.
  • the zebrafish embryos were placed into an agar gel injection mould designed to hold eggs in row for injection (Westerfield et al, 1993). The injection in case of both species was targeted into the cytoplasmic region or the boundary between the cytoplasmic and yolk regions of the egg.
  • microinjected embryos were cultured for one day at 28°C in thermostat in Holtfreter's solution until reaching the prim 5 stage (prior to hatching).
  • the microinjected and control (non injected) embryos were collected into microcentrifuge tubes homogenised by plastic homogeniser.
  • the tubes containing up to 1 to 100 homogenised embryos (approx 20 ⁇ l) were snap frozen in liquid nitrogen and stored at -70°C until analysis.
  • ELISA assay was carried out in 96 well plates coated with monoclonal antibody raised against human FVII (murine monoclonal antibody Clone HVII-1, Sigma), Fish embryo homogenates, dilutions of normal blood plasma containing FVII protein and appropriate negative control samples were loaded into the wells. Biotinylated anti-FVII TAG Antibody conjugated with horse radish perodiase was then added. After addition and incubation with the colour reaction buffer, the samples were read in a conventional ELISA reader. Results of zebrafish and catfish embryos are shown in table I and Fig 4 respectively.
  • Enzymatic activity of the recombinant factor VII produced in the fish embryos was measured by a chromogenic assay Coaset FVII (Chromogenix, Sweden).
  • the assay is based on a two stage principle.
  • human factor X is activated (FXa) by thromboplastin in the presence of Ca 2+ and FVII in the extrinsic pathway.
  • FVII is completely converted to FVIIa during this process so there is no pre-activated FVII Interference in the assay.
  • stage 2 the generated FXa hydrolyses the chromogenic substrate S-2765, liberating the chromophoric group pNA.
  • the colour is read photometrically at 405 nm.
  • the generated FXa thus increases the intensity of the colour which is therefore proportional to FVII activity in the sample.
  • the assay was carried out in a microtitre plate which had been pre-coated with a 1% solution of BSA in PBS to prevent non-specific proteins binding during the assay.
  • a standard curve was made from normal blood plasma (pooled from 20 individuals with no thrombotic or bleeding history) and used to prepare a standard curve in the range 200 U/dl to 12.5U/dl by doubling dilutions from 1 :5000. Plasma samples were diluted 1 :1000.
  • Results were multiplied by 1.28 to match the normal plasma dilution of 1 :1000, and expressed in ng/ml on the basis that 100 U/dl is equivalent to the accepted normal plasma concentration of 2000 ng/ml. Results of activity assay in zebrafish embryos are shown in table II.
  • Factor VII deficient plasma was used for blood clotting assays (Chanarian, I. in Laboratory Haematology, Churchhill Livingston, London 1989 pages 286-287) derived from immuno depleted plasma (Diagnostic Reagents Ltd). Thromboplasfin and the appropriate samples were added followed by the addition of CaCl 2 . The time lapse of the clotting reaction was measured in a Coagulometer KC10. The time lapse results were compared to dilutions of normal plasma samples using a logarithmic scale and were expressed as the percentage activity of normal plasma, where normal plasma means 100 U/dl FVII protein. The results of the blood clotting assay are shown in table III.
  • FVII dilution series FVII from FVII concentration serum measured (ng/ml) applied
  • Blood clotting activity is measured in the % of the activity of normal human blood plasma containing normal levels of FVII (100 u/dl).

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Environmental Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Toxicology (AREA)
  • Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Hematology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

L'invention concerne une construction d'expression permettant d'exprimer un polypeptide chez un poisson. La construction comprend une séquence codante d'acides nucléiques codant pour le polypeptide, fonctionnellement reliée à une séquence régulatrice capable de diriger l'expression de la séquence codante dans une cellule du poisson. Elle concerne également l'utilisation desdites constructions pour produire des polypeptides recombinants chez un poisson transgénique.
PCT/GB1997/002806 1996-10-10 1997-10-10 Production d'un peptide recombinant par un poisson transgenique WO1998015627A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP97909415A EP0931143A1 (fr) 1996-10-10 1997-10-10 Production d'un peptide recombinant par un poisson transgenique
JP10517326A JP2001501482A (ja) 1996-10-10 1997-10-10 トランスジェニック魚による組換えペプチドの製造

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB9621113.1 1996-10-10
GBGB9621113.1A GB9621113D0 (en) 1996-10-10 1996-10-10 Transgenic fish

Publications (1)

Publication Number Publication Date
WO1998015627A1 true WO1998015627A1 (fr) 1998-04-16

Family

ID=10801199

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/GB1997/002806 WO1998015627A1 (fr) 1996-10-10 1997-10-10 Production d'un peptide recombinant par un poisson transgenique

Country Status (4)

Country Link
EP (1) EP0931143A1 (fr)
JP (1) JP2001501482A (fr)
GB (1) GB9621113D0 (fr)
WO (1) WO1998015627A1 (fr)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000049150A1 (fr) * 1999-02-18 2000-08-24 National University Of Singapore Constructions geniques permettant de produire un poisson d'agrement transgenique fluorescent
US6337391B1 (en) 1996-03-27 2002-01-08 Brighams & Women's Hospital Polycation-sensing receptor in aquatic species and methods of use
US6463882B1 (en) 2000-10-12 2002-10-15 Marical, Llc Growing marine fish in freshwater
US6463883B1 (en) 2000-10-12 2002-10-15 Marical, Llc Methods for raising pre-adult anadromous fish
US6475792B1 (en) 2000-10-12 2002-11-05 Marical, Llc Methods for raising pre-adult anadromous fish
WO2002088368A1 (fr) * 2001-05-02 2002-11-07 Institute Of Molecular Agrobiology Regulation spatiale et temporelle au moyen d'un baculovirus de l'expression de genes chez le poisson zebre
US6481379B1 (en) 2000-10-12 2002-11-19 Marical, Llc Methods for raising pre-adult anadromous fish
US6564747B2 (en) 2000-10-12 2003-05-20 Marical, Llc Methods for raising pre-adult anadromous fish
US7262028B2 (en) 2002-07-18 2007-08-28 Crucell Holland B.V. Recombinant production of mixtures of antibodies
US7919257B2 (en) 2003-05-30 2011-04-05 Merus Biopharmaceuticals, B.V.I.O. Method for selecting a single cell expressing a heterogeneous combination of antibodies
WO2012122512A1 (fr) 2011-03-10 2012-09-13 Hco Antibody, Inc. Production recombinante de mélanges d'anticorps monocaténaires
US8268756B2 (en) 2004-01-20 2012-09-18 Merus B.V. Mixture of binding proteins
US8327803B2 (en) 2010-10-20 2012-12-11 Hashimoto Electronic Industry Co., Ltd. Method for processing a large number of fish eggs
US8430061B2 (en) 2010-10-20 2013-04-30 Hashimoto Electronic Industry Co., Ltd. Method and apparatus for processing a large number of fish eggs
US8727554B2 (en) 2007-06-25 2014-05-20 Yorktown Technologies, L.P. Aquarium with adjustable lighting
US9758805B2 (en) 2012-04-20 2017-09-12 Merus N.V. Methods and means for the production of Ig-like molecules
CN108588121A (zh) * 2018-03-13 2018-09-28 西安交通大学医学院第附属医院 诱导Epoa基因敲除斑马鱼胚胎纯合子血红蛋白表型的方法
USRE47770E1 (en) 2002-07-18 2019-12-17 Merus N.V. Recombinant production of mixtures of antibodies
US11237165B2 (en) 2008-06-27 2022-02-01 Merus N.V. Antibody producing non-human animals

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7445250B2 (ja) * 2019-09-09 2024-03-07 シンフォニアテクノロジー株式会社 発現ベクター及び目的タンパク質の製造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992016618A1 (fr) * 1991-03-15 1992-10-01 Hsc Research And Development Limited Partnership Construction genique destinee a la production de poissons transgeniques
WO1996032087A2 (fr) * 1995-04-06 1996-10-17 Dalhousie University Poisson transgenique pour le traitement du diabete

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992016618A1 (fr) * 1991-03-15 1992-10-01 Hsc Research And Development Limited Partnership Construction genique destinee a la production de poissons transgeniques
WO1996032087A2 (fr) * 1995-04-06 1996-10-17 Dalhousie University Poisson transgenique pour le traitement du diabete

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
GAUVRY, L. ET AL.: "The characterisation of the 5' regulatory region of a temperature-induced myosin heavy-chain gene associated with myotomal muscle growth in the carp", EUROPEAN JOURNAL OF BIOCHEMISTRY, vol. 236, no. 3, 2 March 1996 (1996-03-02), pages 887 - 894, XP002056600 *
GONG Z ET AL: "FUNCTIONAL ANALYSIS AND TEMPORAL EXPRESSION OF PROMOTeR REGIONS FROM FISH ANTIFREEZE PROTEIN GENES IN TRANSGENIC JAPANESE MEDAKA EMBRYOS", MOLECULAR MARINE BIOLOGY AND BIOTECHNOLOGY, vol. 1, no. 1, 1 September 1991 (1991-09-01), pages 64 - 72, XP000283150 *
LIN, S. ET AL.: "Production of germ-line chimeras in zebrafish by cell transplants from genetically pigmented to albino embryos", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA., vol. 89, May 1992 (1992-05-01), WASHINGTON US, pages 4519 - 4523, XP002056601 *
MUELLER, F. ET AL.: "The use of transient LacZ expression in fish embryos for comparative analysis of cloned regulatory elements", SOCIETY FOR EXPERIMENTAL BIOLOGY SEMINAR SERIES : GENE EXPRESSION AND MANIPULATION IN AQUATIC ORGANISMS, vol. 00, no. 58, June 1996 (1996-06-01), CAMBRIDGE, UK, pages 175 - 199, XP002056598 *
MÜLLER, F. ET AL.: "Activator effect of coinjected enhancers on the muscle-specific expression of promoters in zebrafish embryos", MOLECULAR REPRODUCTION AND DEVELOPMENT, vol. 47, no. 4, August 1997 (1997-08-01), pages 404 - 412, XP002056603 *
MÜLLER, F. ET AL.: "Efficient transient expression system based on square pulse electroporation anmd in vivo luciferase assay of fertilized fish eggs", FEBS LETTERS, vol. 324, no. 1, June 1993 (1993-06-01), AMSTERDAM NL, pages 27 - 32, XP002056599 *
WILLIAMS, D.W. ET AL.: "High transgene activity in the yolk syncytial layer affects quentitative transient expression assays in zebrafish (Danio rerio) embryos", TRANSGENIC RESEARCH, vol. 5, no. 6, November 1996 (1996-11-01), pages 433 - 442, XP002056602 *
ZHANJIANG LIU ET AL: "DEVELOPMENT OF EXPRESSION VECTORS FOR TRANSGENIC FISH", BIO/TECHNOLOGY, vol. 8, no. 12, 1 December 1990 (1990-12-01), pages 1268 - 1272, XP000293044 *
ZHU Z ET AL: "NOVEL GENE TRANSFER INTO THE FERTILIZED EGGS OF GOLD FISH (CARASSIUS AURATUS L. 1758)", JOURNAL OF APPLIED ICHTHYOLOGY - ZEITSCHRIFT FUER ANGEWANDTE ICHTHYOLOGIE, no. 1, 1985, pages 31 - 34, XP000675982 *

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7038014B2 (en) 1996-03-27 2006-05-02 Brigham And Women's Hospital Polycation-sensing receptor in aquatic species and methods of use thereof
US6337391B1 (en) 1996-03-27 2002-01-08 Brighams & Women's Hospital Polycation-sensing receptor in aquatic species and methods of use
US9763430B2 (en) 1999-02-18 2017-09-19 National University Of Singapore Chimeric gene constructs for generation of fluorescent transgenic ornamental fish
US8378169B2 (en) 1999-02-18 2013-02-19 National University Of Singapore Chimeric gene constructs for generation of fluorescent transgenic ornamental fish
WO2000049150A1 (fr) * 1999-02-18 2000-08-24 National University Of Singapore Constructions geniques permettant de produire un poisson d'agrement transgenique fluorescent
US11259509B2 (en) 1999-02-18 2022-03-01 National University Of Singapore Chimeric gene constructs for generation of fluorescent transgenic ornamental fish
US8153858B2 (en) 1999-02-18 2012-04-10 National University Of Singapore Sale of fluorescent transgenic ornamental fish
US7834239B2 (en) 1999-02-18 2010-11-16 The National University Of Singapore Sale of transgenic fish that express gene encoding fluorescent protein
US7135613B1 (en) 1999-02-18 2006-11-14 The National University Of Singapore Chimeric gene constructs for generation of fluorescent transgenic ornamental fish
US6637371B2 (en) 2000-10-12 2003-10-28 Marical, Inc. Methods for raising pre-adult anadromous fish
US6481379B1 (en) 2000-10-12 2002-11-19 Marical, Llc Methods for raising pre-adult anadromous fish
US6655318B2 (en) 2000-10-12 2003-12-02 Marical, Inc. Methods for raising pre-adult anadromous fish
US7069876B2 (en) 2000-10-12 2006-07-04 Marical, Inc. Methods for raising pre-adult anadromous fish
US7121227B2 (en) 2000-10-12 2006-10-17 Marical, Inc. Methods for raising pre-adult anadromous fish
US6463882B1 (en) 2000-10-12 2002-10-15 Marical, Llc Growing marine fish in freshwater
US6854422B2 (en) * 2000-10-12 2005-02-15 Marical, Inc. Growing marine fish in fresh water
US7421975B2 (en) 2000-10-12 2008-09-09 Marical, Inc. Growing marine fish in fresh water
US7584718B2 (en) 2000-10-12 2009-09-08 Marical, Inc. Growing marine fish in fresh water
US6564747B2 (en) 2000-10-12 2003-05-20 Marical, Llc Methods for raising pre-adult anadromous fish
US6463883B1 (en) 2000-10-12 2002-10-15 Marical, Llc Methods for raising pre-adult anadromous fish
US6475792B1 (en) 2000-10-12 2002-11-05 Marical, Llc Methods for raising pre-adult anadromous fish
WO2002088368A1 (fr) * 2001-05-02 2002-11-07 Institute Of Molecular Agrobiology Regulation spatiale et temporelle au moyen d'un baculovirus de l'expression de genes chez le poisson zebre
US7262028B2 (en) 2002-07-18 2007-08-28 Crucell Holland B.V. Recombinant production of mixtures of antibodies
EP2314629A1 (fr) 2002-07-18 2011-04-27 Merus B.V. Production recombinante de mélanges d'anticorps
US7932360B2 (en) 2002-07-18 2011-04-26 Merus B.V. Recombinant production of mixtures of antibodies
US7927834B2 (en) 2002-07-18 2011-04-19 Merus B.V. Recombinant production of mixtures of antibodies
US10934571B2 (en) 2002-07-18 2021-03-02 Merus N.V. Recombinant production of mixtures of antibodies
USRE47770E1 (en) 2002-07-18 2019-12-17 Merus N.V. Recombinant production of mixtures of antibodies
US9303081B2 (en) 2002-07-18 2016-04-05 Merus B.V. Recombinant production of mixtures of antibodies
US7919257B2 (en) 2003-05-30 2011-04-05 Merus Biopharmaceuticals, B.V.I.O. Method for selecting a single cell expressing a heterogeneous combination of antibodies
US10670599B2 (en) 2003-05-30 2020-06-02 Merus N.V. Method for selecting a single cell expressing a heterogeneous combination of antibodies
US10605808B2 (en) 2003-05-30 2020-03-31 Merus N.V. Antibody producing non-human animals
US9738701B2 (en) 2003-05-30 2017-08-22 Merus N.V. Method for selecting a single cell expressing a heterogeneous combination of antibodies
US8268756B2 (en) 2004-01-20 2012-09-18 Merus B.V. Mixture of binding proteins
US9012371B2 (en) 2004-01-20 2015-04-21 Merus B.V. Mixtures of binding proteins
US8727554B2 (en) 2007-06-25 2014-05-20 Yorktown Technologies, L.P. Aquarium with adjustable lighting
USRE49345E1 (en) 2007-06-25 2022-12-27 GloFish, LLC Aquarium with adjustable lighting
US9295236B2 (en) 2007-06-25 2016-03-29 Yorktown Technologies, L.P. Aquarium with adjustable lighting
US9374987B1 (en) 2007-06-25 2016-06-28 Yorktown Technologies, L.P. Aquarium with adjustable lighting
USRE48169E1 (en) 2007-06-25 2020-08-25 Glofish Llc Aquarium with adjustable lighting
US11237165B2 (en) 2008-06-27 2022-02-01 Merus N.V. Antibody producing non-human animals
US8327803B2 (en) 2010-10-20 2012-12-11 Hashimoto Electronic Industry Co., Ltd. Method for processing a large number of fish eggs
US8430061B2 (en) 2010-10-20 2013-04-30 Hashimoto Electronic Industry Co., Ltd. Method and apparatus for processing a large number of fish eggs
WO2012122512A1 (fr) 2011-03-10 2012-09-13 Hco Antibody, Inc. Production recombinante de mélanges d'anticorps monocaténaires
US10752929B2 (en) 2012-04-20 2020-08-25 Merus N.V. Methods and means for the production of ig-like molecules
US10337045B2 (en) 2012-04-20 2019-07-02 Merus N.V. Methods and means for the production of Ig-like molecules
US10329596B2 (en) 2012-04-20 2019-06-25 Merus N.V. Methods and means for the production of Ig-like molecules
US9758805B2 (en) 2012-04-20 2017-09-12 Merus N.V. Methods and means for the production of Ig-like molecules
US11926859B2 (en) 2012-04-20 2024-03-12 Merus N.V. Methods and means for the production of Ig-like molecules
US12123043B2 (en) 2012-04-20 2024-10-22 Merus N.V. Methods and means for the production of Ig-like molecules
CN108588121B (zh) * 2018-03-13 2020-06-23 西安交通大学医学院第一附属医院 诱导Epoa基因敲除斑马鱼胚胎纯合子血红蛋白表型的方法
CN108588121A (zh) * 2018-03-13 2018-09-28 西安交通大学医学院第附属医院 诱导Epoa基因敲除斑马鱼胚胎纯合子血红蛋白表型的方法

Also Published As

Publication number Publication date
EP0931143A1 (fr) 1999-07-28
GB9621113D0 (en) 1996-11-27
JP2001501482A (ja) 2001-02-06

Similar Documents

Publication Publication Date Title
WO1998015627A1 (fr) Production d'un peptide recombinant par un poisson transgenique
Zhang et al. Gene transfer, expression and inheritance of pRSV‐rainbow trout‐GH cDNA in the common carp, Cyprinus carpio (Linnaeus)
RU2249617C2 (ru) ТРАНСКРИПЦИОННАЯ РЕГУЛЯТОРНАЯ ДНК ГЕНА ХОМЯКА EF-1α
US7550263B2 (en) Method for the production of fusion proteins in transgenic mammal milk
Kurihara et al. Production of an active feline interferon in the cocoon of transgenic silkworms using the fibroin H-chain expression system
CN113930447B (zh) 对非人动物进行基因改造和构建免疫缺陷动物模型的方法
JPS63309192A (ja) 効率的な分泌のための乳腺に出される蛋白におけるdna配列
US20070011752A1 (en) Production of human proteins in transgenic animal saliva
JPH06505870A (ja) 形質転換された魚類の製造用の遺伝子構築体
US7619080B2 (en) Oligonucleotides of a chicken leukemia inhibitory factor (LIF) gene
CN100384995C (zh) 生产人胶原的转化蚕
EP2581446B1 (fr) Procédé de production d'une protéine c réactive à structure pentamère, ver à soie transgénique produisant une protéine c réactive à structure pentamère et procédé de construction associé, adn codant pour une protéine c réactive à structure monomère canine et vecteur d'expression contenant l'adn
Hwang et al. Fish as bioreactors: transgene expression of human coagulation factor VII in fish embryos
Szelei et al. Liposome-mediated gene transfer in fish embryos
JP2004016144A (ja) ヒト・コラーゲンを産生する形質転換カイコ
EP1148779B1 (fr) Expression d'alpha-foetoproteines humaines secretees chez des animaux transgeniques
US20030191301A1 (en) Cloning of a high growth gene
JP2006262875A (ja) 鳥類の卵管内でタンパク質を発現させるための遺伝子構築物、およびこれを用いたタンパク質の生産方法
DE60314017T2 (de) Chimaeres protein enthaltend die cystein protease aus dem grossen leberegel fusioniert an das hepatitis b core protein oder ubiquitin; pflanzen, welches dieses protein exprimieren, sowie deren verwendung als vakzine
WO2000044768A2 (fr) Procedes d'isolation d'hormone sexuelle androgene a partir de crustaces de type crevettes roses et crevettes grises marines et ses procedes d'utilisation
KR102627008B1 (ko) 아디포넥틴 및 목적 단백질을 생산하는 조류의 제조방법
RU2807599C2 (ru) Генетически модифицированные стерильные птицы и способ их воспроизводства
JP4273230B2 (ja) 鳥類を標的とする遺伝子置換ベクター、およびその利用
Greenberg et al. Casein gene expression: from transfection to transgenics
EBERT Gene transfer through embryo microinjection

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref country code: JP

Ref document number: 1998 517326

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1997909415

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09284193

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1997909415

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1997909415

Country of ref document: EP