[go: up one dir, main page]

WO1998016495A1 - Processus de preparation de monoesters d'acide dicarboxylique - Google Patents

Processus de preparation de monoesters d'acide dicarboxylique Download PDF

Info

Publication number
WO1998016495A1
WO1998016495A1 PCT/JP1997/003682 JP9703682W WO9816495A1 WO 1998016495 A1 WO1998016495 A1 WO 1998016495A1 JP 9703682 W JP9703682 W JP 9703682W WO 9816495 A1 WO9816495 A1 WO 9816495A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
general formula
dicarboxylic acid
tert
acid
Prior art date
Application number
PCT/JP1997/003682
Other languages
English (en)
French (fr)
Inventor
Kunihiko Sakano
Junji Fujii
Tetsuya Ikemoto
Original Assignee
Mitsubishi Rayon Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co., Ltd. filed Critical Mitsubishi Rayon Co., Ltd.
Priority to DE69709898T priority Critical patent/DE69709898T2/de
Priority to JP51818798A priority patent/JP3357076B2/ja
Priority to EP97944111A priority patent/EP0943600B1/en
Priority to US09/269,765 priority patent/US6355830B1/en
Publication of WO1998016495A1 publication Critical patent/WO1998016495A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/03Preparation of carboxylic acid esters by reacting an ester group with a hydroxy group

Definitions

  • the present invention is useful as an intermediate for pharmaceuticals and agricultural chemicals, as a main raw material such as polyester polyol, nylon, fiber, lubricating oil, plasticizer or as an additive thereto or a precursor thereof.
  • the present invention relates to a method for producing a dicarboxylic acid monoester useful as a starting material for synthesizing a diester by a transesterification reaction of the dicarboxylic acid monoester.
  • a diester is formed as a by-product by esterification of both carboxyl groups
  • a dicarboxylic acid is formed by hydrolysis of both ester groups.
  • a special pressure-resistant reactor such as an autoclave is required to carry out the reaction under high pressure, so that the production cost is increased.
  • two types of monoesters are simultaneously formed, and it is difficult to selectively obtain a monoester in which a carboxyl group at a desired position is monoesterified.
  • transesterification of an ester with a metal alkoxide is known.
  • a dicarboxylic acid monoester is used as a raw material for esterification and is subjected to transesterification with a metal alkoxide in an organic solvent
  • the formation of a metal salt of dicarbonic acid monoester takes precedence over transesterification. It is thought that the desired transesterification reaction hardly progresses because the formed metal salt is hardly soluble in the organic solvent, and no examples of such a reaction have been reported.
  • the present inventors have found that even if the metal salt of dicarboxylate monoester represented by the general formula (1) is formed in the reaction system, the transesterification reaction can be performed by selecting the reaction conditions. Has been found to progress satisfactorily.
  • the present invention can obtain a wide variety of dicarboxylic acid monoesters in which an alkoxy group in the ester portion of a dicarboxylic acid monoester that can be synthesized by a known method is substituted with a desired alkoxy group at a high selectivity, and furthermore, can obtain an optically active compound.
  • the objective is to provide a method for producing optically active dicarboxylic monoesters with low optical purity from raw materials.
  • the present inventors have conducted intensive studies based on the above findings in order to achieve the above object.As a result, the present inventors have found that an alcohol and a dicarboxylic acid monoester or an alkali salt of a dicarboxylic acid monoester are subjected to transesterification in the presence of a metal alkoxide.
  • a metal alkoxide By subjecting a metal alkoxide to a transesterification of a metal alkoxide with a dicarboxylic acid monoester or a dicarboxylic acid monoester metal salt in the presence of an organic solvent, a wide variety of dicarboxylic acid monoesters can be highly and selectively selected.
  • the present invention was found to be achieved at a high rate, and the present invention was completed.
  • the present invention relates to a method for preparing a dicarboxylic acid monoester or an alkali metal salt of a dicarboxylic acid monoester as a raw material represented by the general formula (1) and a metal alkoxide represented by the general formula (2) in the presence of an organic solvent.
  • This is a method for producing a dicarboxylic acid monoester represented by the general formula (3), which is subjected to a transesterification reaction.
  • R 1 OOC-(CH 2 ) m -X- (CH 2 ) deliberatelyCOOM '(1)
  • R 1 is a linear or branched alkyl group having 1 to 18 carbon atoms, an alkyne alkyl group or An alkylthioalkyl group in which one or more of its hydrogen atoms may be substituted with a phenyl group, a naphthyl group, a tolyl group, or a fluorine atom, and m and n are each an integer of 0 or more and 12 or less (however, m + n ⁇ l 8), and X represents any group represented by any of the general formulas (XI) to (X5), and M 'represents a hydrogen atom or an alkali metal.
  • Z ′ and Z 2 each represent a hydrogen atom, a fluorine atom, a phenyl group, a naphthyl group, or a straight or branched alkyl or alkenyl group having 12 carbon atoms. .
  • Z 3, Z 4, Z ⁇ 6 are each a hydrogen atom, a fluorine atom, was a chlorine atom or shows a bromine atom.
  • ⁇ 1 and ⁇ 2 have the same definition as general formula (XI)
  • Z ′ and Z 2 have the same definition as in general formula (XI)
  • Z 1 and Z 2 have the same definition as in general formula (XI).
  • R 2 represents a linear or branched alkyl group, an alkoxyalkyl group or an alkylthioalkyl group having 1 to 18 carbon atoms, wherein at least one hydrogen atom is a phenyl group, a naphthyl group, a tolyl group. Alternatively, it may be substituted by a fluorine atom.
  • M 2 represents an alkali metal.
  • R 2 OOC- (CH 2 ) ra —X— (CH 2 ) n -COOM 1 (3)
  • R 2 has the same definition as in the general formula (2).
  • m, n, X and M 1 have the same definition as general formula (1)
  • the present invention relates to a dicarboxylic acid monoester or an alkali metal salt of a dicarboxylic acid monoester as a raw material represented by the general formula (1) in the presence of the metal alkoxide represented by the general formula (2), and
  • This is a method for producing a dicarboxylic acid monoester represented by the general formula (5), which comprises subjecting the alcohol represented by 4) to an ester exchange reaction.
  • R 3 represents a linear or branched alkyl group, alkoxyalkyl group, or alkylthioalkyl group having 1 to 18 carbon atoms, and one or more of the hydrogen atoms is a phenyl group, a naphthyl group, or a toluene group. It may be substituted with a group or a fluorine atom.
  • R 3 OOC- (CH 2 ) m —X— (CH 2 ) strange-COOM 1 (5) wherein R 3 has the same definition as in general formula (4), and m, n, X and M 1 Has the same definition as general formula (1).
  • the alkali metal salt of dicarboxylic acid monoester or dicarboxylic acid monoester used as a raw material is not particularly limited as long as it is represented by the general formula (1), and may be a commercially available product or a known method. Synthetic ones can be used You.
  • Examples of such alkali metal salts of dicarboxylic acid monoesters or dicarboxylic acid monoesters include, for example, adipic acid, terephthalic acid, malonic acid, methylsuccinic acid, succinic acid, itaconic acid, and citraconic acid. And monoesters such as glutaric acid and metal salts of these monoesters.
  • the kind of the metal forming the metal salt is not particularly limited as long as it is an alkali metal, but potassium and sodium are preferable, and potassium is particularly preferable because the formed salt is excellent in solubility.
  • the raw material monoesters may be an optically active substance.
  • the metal alkoxide is not particularly limited as long as it is represented by the general formula (2), but a metal alkoxide having excellent solubility is particularly preferred. preferable.
  • the type of the alkoxy group of the metal alkoxide depends on the desired dicarboxylic acid monoester, and is not particularly limited, but is preferably a methoxy group, an ethoxy group, an n-propoxy group, an n-butoxy group, and a tert-butoxy group. .
  • the amount of the metal alkoxide used may be at least 1.01 mol per mol of the raw material dicarboxylic acid monoester (hereinafter also referred to as the raw material monoester). Considering the cost, the amount is preferably from 0.1 to 3 mol per mol of the raw material monoester.
  • the acid-base reaction takes precedence, which is not preferable.
  • the metal alkoxide to coexist in the reaction system is not particularly limited as long as it is represented by the general formula (2), Lium alkoxide is particularly preferred.
  • the alkoxy group of the metal alkoxide is not particularly limited, but is preferably a methoxy group, an ethoxyquin group, an n-propoxy group, an n-butoxy group and a tert-butoxy group. However, if the alkoxy group of the starting alcohol is different from that of the metal alkoxide, a part of the ester different from the intended one will be formed. Is preferred.
  • the amount of the metal alkoxide used depends on whether the raw material monoester is a dicarboxylic acid monoester. In this case, the amount may be 1.01 mol or more with respect to 1 mol of the raw material monoester, but is preferably 1.01 to 3 mol in consideration of cost. In addition, when the raw material monoester is an alkali metal salt, it may be used in an amount of 0.1 mol or more per 1 mol of the raw material monoester, but preferably 0.01 to 2 mol in consideration of cost.
  • the alcohol used as a raw material is not particularly limited as long as it is represented by the general formula (4).
  • examples of such alcohol include methanol, ethanol, and n-propyl.
  • Alcohol linear aliphatic alcohols such as n-butyl alcohol, branched aliphatic alcohols such as isopropyl alcohol, isobutyl alcohol, tert-butyl alcohol, unsaturated aliphatics such as aryl alcohol and methallyl alcohol Alcohols, alcohols containing aromatic groups such as benzyl alcohol, 4-nitrobenzyl alcohol, 3,5-dinitrobenzyl alcohol and phenethyl alcohol, and cellsols such as ethylene glycol monomethyl ether and diethylene glycol monomethyl ether System Alcohol, and the like.
  • the amount of the starting alcohol to be used is preferably 1 to 200 mol, particularly preferably 5 to 50 mol, per 1 mol of the starting monoester.
  • the raw material monoester is used for the purpose of improving the solubility of the metal salt of the raw material monoester, shortening the reaction time, and improving the conversion of the transesterification reaction. It is preferred to use a large excess of the starting alcohol relative to the metal salt of the ester. If the raw material alcohol has a high boiling point due to its high boiling point and it is difficult to remove it by distillation after the reaction is completed, or if the price is high and it is desired to reduce the amount used, one mole of the raw material monoester is used. On the other hand, a small excess of the raw material alcohol can sufficiently achieve the purpose.
  • the mixing order of each raw material before the reaction is not particularly limited.
  • a raw material monoester is mixed with another raw material, alcohol.
  • a method of adding a metal alkoxide after the addition (method A), a method of mixing a material alcohol and a metal alkoxide and then adding a material monoester (method B), a method of mixing a material monoester and a metal alkoxide.
  • Method C raw material alcohol
  • Method D raw material monoester
  • Method D a method of adding a metal alkoxide after mixing an organic solvent and an additive with a metal alkoxide
  • Method E a method of adding a raw material monoester after mixing an organic solvent and an additive with a metal alkoxide
  • the mixing order of the methods A, B, D and E is preferred from the viewpoint of operability.
  • the ⁇ -hydrogen of the ester may be extracted by the metal alkoxide, so that it is necessary to maintain a high optical purity of the product.
  • a solvent and an additive are not necessarily required, but may be used for accelerating the reaction.
  • a solvent is always used, and additives may be added as appropriate.
  • Solvents that can be used include organic solvents such as benzene, nitrobenzene, aromatic hydrocarbon solvents such as toluene and xylene, tetrahydrofuran, 1,2-dimethoxetane, 1,3-dioxolan, and 1,4-dioxane.
  • Ether solvents carbon disulfide, nitromethane, N, N-dimethylformamide, dimethylsulfoxide and the like.
  • additives those that activate the carbonyl group of the metal alkoxide or ester, those that have the effect of increasing the solubility of the metal alkoxide or the raw material monoesters, those that have the effect of a phase transfer catalyst, and the like are preferable.
  • examples of such additives include amines such as triethylamine and tetramethylenediamine, nitrogen-containing aromatic compounds such as pyridine, and quaternary compounds such as benzyltriethylammonium chloride and tetra-n-butylammonium bromide.
  • crown ethers such as 18-crown-16, etc.
  • those having an inclusion effect similar to crown ethers such as tetrahydrofuran, 1,2-dimethoxyethane, 1,3-dioxolan and 1,4-dioxane, etc.
  • crown ethers such as tetrahydrofuran, 1,2-dimethoxyethane, 1,3-dioxolan and 1,4-dioxane, etc.
  • the transesterification reaction temperature can be arbitrarily set in the range of usually from 100 to 250 ° C. Force ⁇ preferably from 180 to 200 ° C., more preferably from 120 to 150 ° C. C. Since the reaction of the present invention is an equilibrium reaction, alcohol (R′OH) generated by transesterification from the raw material monoesters is used to improve the reaction rate and conversion. It is preferable to carry out the reaction while removing it out of the reaction system by distillation or the like. Therefore, the reaction temperature is preferably a temperature higher than the boiling point or azeotropic point of the alcohol (R'OH) formed by the transesterification reaction.
  • the alcohol or a solution containing the alcohol may be added to the reaction system.
  • the pressure during the transesterification reaction can be arbitrarily set usually at 1 kPa to 5 MPa (absolute pressure). Practically, it is preferably 10 kPa to 1 MPa (same as above), and more preferably 80 to 12 O kPa (same as above).
  • the transesterification reaction time can be arbitrarily set in the range of usually 0.01 to 100 hours, but is preferably 0.1 to 50 hours in consideration of the efficiency of the reactor.
  • GC gas chromatography
  • HP LC high performance liquid chromatography
  • NMR NMR
  • the purity of the final product was calculated from the peak area of 0 or 11 to 1 ⁇ ⁇ ⁇ ⁇ chart by the following formula.
  • A represents the peak area of the target product dicarboxylic acid monoester
  • B represents the sum of the peak areas of the target product and all impurities.
  • C is the number of moles of the target product dicarboxylic acid monoester (calculated by dividing the weight of the final product containing impurities multiplied by the purity by the molecular weight of the target product dicarboxylate monoester).
  • D represent the number of moles of the raw material monoesters.
  • the ethyl alcohol produced by the transesterification reaction was distilled off together with the tert-butyl alcohol, and the same amount of tert-butyl alcohol as the tert-butyl alcohol flowed out was continuously added from the dropping funnel.
  • tert-butyl alcohol was distilled off at normal pressure, the residue was allowed to cool, 80 ml of ice water was added thereto, and the mixture was washed twice with 100 ml of n-hexane twice.
  • 3.96 g (0.039 mol, 1.4 equivalents) of sulfuric acid diluted in 20 ml of cold water was added to the obtained aqueous phase to carry out acid precipitation.
  • the peak area ratio of the starting material monoethyl adipate to the product mono-tert-butyl adipate was 20:80.
  • the aqueous phase was extracted twice with 100 ml of n-hexane, followed by washing the extracted n-hexane phase twice with 10 ml of pure water three times, and then concentrated under reduced pressure. Went.
  • the actual yield at this time is 5
  • methyl alcohol generated by the transesterification was distilled off together with tert-butyl alcohol, and the same amount of tert-butyl alcohol as the effluent tert-butyl alcohol was continuously added from the dropping funnel.
  • tert-butyl alcohol was distilled off at normal pressure, the residue was allowed to cool, and 80 ml of ice water was added thereto. Separation washing was performed twice with hexane 10 Oml. To the resulting aqueous phase, 3.85 g (0.036 mol, 1.4 equivalents) of sulfuric acid diluted in 20 ml of cold water was added for acid precipitation.
  • the peak area ratio of the raw material monomethyl terephthalate to the product terephthalic acid mono-tert-butyl ester was 66:34.
  • the aqueous phase was extracted twice with 100 ml of n-hexane, and the n-hexane phase of the two extractions was washed three times with 10 ml of pure water, and then concentrated under reduced pressure. A compression operation was performed. As a result, no terephthalic acid monomethyl ester was present at all, and 2.99 terephthalic acid mono-tert-butyl ester having a purity of 94% was obtained. The actual yield at this time was 23%. Further, the spectrum of the product by 'H-NMR was as follows.
  • Example 2 In the same manner as in Example 1, 5 g (0.029 mol) of potassium monoethyl malonate and 100 ml (1.305 mol) of isopropyl alcohol were charged, and potassium medium was added thereto at room temperature. When a small amount of 0.41 g (0.0059 mol, 0.2 equivalent) of toxide was poured, the reaction solution generated heat, the temperature of the solution rose to 35 ° C, and white crystals were formed in the solution. Deposited. Thereafter, the temperature was raised to 82 ° C., and the reaction was performed for 6 hours.
  • the ethyl alcohol produced by the transesterification reaction was distilled off together with the isopropyl alcohol, and the same amount of isopropyl alcohol as the effluent isopropyl alcohol was continuously added from the dropping funnel.
  • the isopropyl alcohol was distilled off at normal pressure, and the residue was left to cool. 100 ml of ice water was added thereto, and the mixture was washed once with 100 ml of ethyl acetate. 1 N hydrochloric acid was added to the obtained aqueous phase to adjust the pH to 2.
  • the aqueous phase was extracted twice with 100 ml of ethyl acetate, and the ethyl acetate phase extracted twice was washed twice with 100 ml of pure water, and then concentrated under reduced pressure. As a result, there was no monoethyl malonate, and 4.03 malonic acid monoisopropyl ester having a purity of 95% was obtained. The actual yield at this time was 90%.
  • the 1 H-NMR spectrum data of the product was as follows. 'H-NMR (CDC1 3)
  • the aqueous phase was extracted twice with 100 ml of ethyl acetate, and the ethyl acetate acetate phase of the two extractions was washed twice with 100 ml of pure water, and then concentrated under reduced pressure.
  • 100.83 g of malonic acid monobenzyl ester having a purity of 100! 3 ⁇ 4 was obtained.
  • the actual yield at this time was 95%.
  • the spectrum of the product by '-NMR was as follows.
  • Example 5 Synthesis of itaconic acid-4 tert-butyl ester
  • potassium-tert-butoxide (1.44 g, 0.013 mol, 1.2 equivalents) and tert-butyl alcohol (15 ml, 0.156 mol) were charged.
  • a small amount of 1.5 g (0.010 mol) of itaconic acid-4-methyl ester was poured into the mixture, and the reaction solution generated heat, the liquid temperature rose to 35 ° C, and white crystals formed in the liquid. Deposited. Thereafter, the temperature was raised to 83 ° C, and the reaction was carried out for 7 hours.
  • methyl alcohol produced by the transesterification was distilled off together with tert-butyl alcohol, and the same amount of tert-butyl alcohol as the effluent tert-butyl alcohol was continuously added from the dropping funnel.
  • the tert-butyl alcohol was distilled off at normal pressure, the residue was allowed to cool, 26 ml of ice water was added, and the mixture was washed once with 30 ml of n-hexane. 0.74 g (0.07 mol, 1.4 equivalents) of sulfuric acid diluted in 4 ml of cold water was added to the obtained aqueous phase to carry out acid precipitation.
  • the peak area ratio between the raw material itaconic acid-4-methyl ester and the product itaconic acid-4-tert-butyl ester was 61:39. .
  • the aqueous phase was extracted twice with 30 ml of n-hexane, and the n-hexane phase extracted twice was washed once with 3 ml of pure water, and then concentrated under reduced pressure.
  • itaconic acid-4-methyl ester was completely absent, and 0.54 g of itaconic acid-4-tert-butyl ester having a purity of 88% was obtained.
  • the actual yield at this time was 24%.
  • the 1 H-NMR spectrum data of the product was as follows.
  • the optical purity was determined by HPLC analysis after converting the starting material (R) -methylsuccinic acid-4-benzyl ester into (R) -methylsuccinic acid with 2 equivalents of aqueous sodium hydroxide.
  • the analysis conditions of HP LC are shown below.
  • the raw material (R) -methylsuccinic acid-4-methyl ester was synthesized according to the method described in JP-A-8-285.
  • methyl alcohol produced by the transesterification reaction was distilled off together with tert-butyl alcohol, and the same amount of tert-butyl alcohol as the effluent tert-butyl alcohol was continuously added from a dropping port.
  • tert-butyl alcohol was distilled off at normal pressure, and the residue was allowed to cool.
  • ice water 110 ml was added, and the mixture was washed with 100 ml of n-hexane (100 ml). I went there.
  • 75.6 g (0.74 mol, 1.4 equivalents) of sulfuric acid diluted in 400 ml of cold water was added for acid precipitation.
  • the molar ratio of the raw material (R) -methylsuccinic acid-4-methyl ester to the product (R) -methylsuccinic acid-4-tert-butyl ester was 25:75 (75% conversion).
  • the aqueous phase was extracted twice with 150 ml of n-hexane, and then the n-hexane phase of the two extractions was washed three times with 300 ml of pure water. A concentration operation was performed.
  • the optical purity is determined by using 2 equivalents of aqueous sodium hydroxide in the case of the raw material (R) -methylsuccinic acid-4-methyl ester and the product (R) -methylsuccinic acid-4-tert-butyl ester. All were converted to (R) -methylsuccinic acid with a large excess of trifluoroacetic acid and determined by HPLC analysis.
  • the measurement conditions for HP LC are the same as in Example 6.
  • the components in the aqueous phase were analyzed by GC, and the molar ratio of the raw material (R) -methylsuccinic acid-4-methyl ester to the product (R) -methylsuccinic acid-4-tert-butyl ester was 65: It was 35 (35% in conversion).
  • the aqueous phase was extracted twice with 100 ml of n-hexane, and the extracted n-hexane phase was washed with 20 ml of pure water six times. A vacuum concentration operation was performed.
  • methyl alcohol produced in the transesterification reaction was distilled off together with tert-butyl alcohol, and the same amount of tert-butyl alcohol as the effluent tert-butyl alcohol was continuously added from the dropping funnel.
  • the generated methyl alcohol and tert-butyl alcohol were distilled off under reduced pressure, and the residue was allowed to cool.
  • To the mixture was added ice-water (1095 ml), and n-hexane (100 ml) was added. Liquid washing was performed once. 71.0 g (0.695 mol, 1.4 equivalents) of sulfuric acid diluted in 3.55 ml of cold water was added to the obtained aqueous phase to carry out acid precipitation.
  • Example 1 Synthesis of 1- (R) -methylsuccinic acid-4-tert-butyl ester A metal-tert-butoxide, an additive, and a solvent were charged, and (R) -methyl-4-succinic acid 4-methyl was added at 0 ° C. or room temperature. When the ester was added dropwise over 5 minutes, white crystals precipitated in the solution. After the transesterification, 30% cold sulfuric acid (1.4 equivalents) was added for acid precipitation. The aqueous phase was subjected to extraction with n-hexane twice, followed by washing the extracted n-hexane phase with pure water five times, followed by concentration under reduced pressure.
  • tert-butyl alcohol was distilled off under reduced pressure, and the residue was allowed to cool. Then, 200 ml of ice water was added thereto, and the mixture was washed once with 20 ml of ethyl acetate. 2.93 g (0.290 mol, 1.1 equivalents) of concentrated hydrochloric acid was added to the obtained aqueous phase to carry out acid precipitation. The aqueous phase was extracted three times with 20-mL of n-hexane, and the n-hexane phase of the three extractions was washed once with 6 mL of pure water, and then concentrated under reduced pressure. Was done. as a result,
  • a wide variety of dicarboxylic acid monoesters can be obtained at a high selectivity, and particularly, an optically active ester of the general formula (1) having an asymmetric center at the ⁇ -position of a carboxylic acid is used as a raw material.
  • an optically active ester of the general formula (1) having an asymmetric center at the ⁇ -position of a carboxylic acid is used as a raw material.
  • a main raw material or additive such as polyester polyol, nylon, fiber, lubricating oil, plasticizer, etc., or a precursor thereof.
  • a dicarboxylic acid monoester useful as a raw material in the synthesis of an asymmetrical ester is obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

明 細 書 ジ力ルポン酸モノエステルの製造方法 技術分野
本発明は、 医薬や農薬の中間体、 ポリエステルポリオール、 ナイロン、 繊維、 潤滑油、 可塑剤などの主原料もしくはそれらへの添加剤またはそれらの前駆体と して有用であり、 特にジカルボン酸の非対称ジエステルを合成する際の原料とし て有用なジカルボン酸モノエステルをジカルボン酸モノエステルのエステル交換 反応により製造方法に関する。
背景技術
スズゃチタン等を含む触媒を使用したエステル交換反応はよく知られているが、 これらの触媒は反応系に酸が存在すると失活する。 このため、 これらの触媒はジ カルボン酸モノエステルのように構造中にカルボン酸を有する基質に対して使用 することができない。
このような状況下で、 多くのジカルボン酸モノエステルの製法が提案されてい るが、 これらは以下のように大きく 5種類に分類される。
(a) ジカルボン酸のモノエステル化
Fiziol. Akt. Veshchestva, 7, 129-31(1975)
J. Chem. Res. Synopses, (5), 119(1977)
JP - A- 4-112854
(b) ジカルボン酸ジエステルの分解
Tetrahedron Lett., 32(34), 4239 - 42(1991)
Chem. Lett., (7), 539-40(1995)
(c) 環状ジカルボン酸無水物のアルコールや金属アルコキシドでの開環
Synlet, 6, 650-2(1995)
(d) 縮合反応
J. Org. Chem., 33(2), 838 40(1968)
Tetrahedron Lett., (32), 2721-3(1974) J. Or anomet. Chem., 364(3), C29- 32(1989)
( e ) メルドラム酸からのマロン酸モノエステルの合成
Tetrahedron Let t., 30(23), 3073-6(1989)
しかしながら、 上記 (a )〜(e ) の方法は何れも次のような問題を有してい る。
上記 ( a ) の方法では、 二つのカルボキシル基が両方ともエステル化されるこ とによりジエステルが副生し、 上記 ( b ) の方法では、 両方のエステル基が加水 分解されることによりジカルボン酸が副生する。 このため、 両方法ともモノエス テルを高選択的に得ることが困難であり、 所望のモノエステルを工業的に効率よ く製造するのは困難であった。 上記 (c ) の方法では、 高圧下で反応を行うため にォ一トクレーブ等の特殊な耐圧反応器が必要になるため、 製造コス卜が上昇す る。 また、 この方法では 2種類のモノエステルが同時に生成するため、 所望の位 置のカルボキシル基がモノエステル化されたモノエステルを選択的に得ることは 困難である。 さらに、 この方法では、 光学活性な環状ジカルボン酸無水物を原料 として使用して光学活性なモノエステルを得ようとする場合に、 モノエステルの 光学純度が大幅に低下する可能性がある。 上記 (d ) および (e ) の方法は、 合 成できるジカルボン酸モノエステルの種類が限定されており、 広範な種類のジ力 ルボン酸モノエステルの製造に適用することが困難である。
このような理由から、 広範な種類のジカルボン酸モノエステルを高い選択率で 工業的に製造する方法が望まれていた。 さらに、 光学活性な原料を用いてジカル ボン酸モノエステルを光学純度を大きく低下させることなく製造する方法も望ま れていた。
一般に、 エステルと金属アルコキシドとのエステル交換は知られている。 しか し、 エステノレ原料としてジカルボン酸モノエステルを用い、 これと金属アルコキ シドとを有機溶媒中でエステル交換に付す場合には、 エステル交換よりもジカル ボン酸モノエステルの金属塩の形成が優先して起こり、 形成された金属塩が有機 溶媒に難溶であるために、 目的とするエステル交換反応はほとんど進行しないと 考えられ、 実際にこのような反応を行つた例は報告されていない。
発明の開示 本発明者らは、 かかる従来技術の常識に反し、 、 一般式 (1) で示されるジカ ルボン酸モノエステルの金属塩が反応系中で生成しても、 反応条件を選択すれば エステル交換反応が良好に進行するという知見を得た。
本発明は、 公知の方法で合成できるジカルボン酸モノエステルのエステル部分 のアルコキシ基を所望のアルコキシ基に置換した広範な種類のジカルボン酸モノ エステルを高い選択率で得ることができ、 さらに光学活性な原料から少ない光学 純度の低下で光学活性なジカルボン酸モノエステルを製造する方法の提供を目的 としている。
本発明者らは、 かかる目的を達成すベく上記知見に基づき鋭意検討した結果、 金属アルコキシドの存在下でアルコールとジカルボン酸モノエステルもしくはジ カルボン酸モノエステルのアルカリ塩とをエステル交換に付すこと、 または、 有 機溶媒の存在下で金属アルコキシドとジカルボン酸モノエステルもしくはジカル ボン酸モノエステルのアル力リ金属塩とをエステル交換に付すことにより、 広範 な種類のジカルボン酸モノエステルが高 、選択率で得られることを見いだし本発 明を完成するに至った。
すなわち、 本発明は、 有機溶媒の存在下で一般式 (1) で示される原料として のジカルボン酸モノエステルまたはジカルボン酸モノエステルのアルカリ金属塩 と、 一般式 (2) で示される金属アルコキシドとをエステル交換反応に付すこと からなる一般式 (3) で示されるジカルボン酸モノエステルを製造する方法であ る。
R1 OOC - (CH2 ) m -X- (CH2 ) „ COOM' (1) 式中、 R1 は、 炭素数 1から 18の直鎖状または分岐状のアルキル基、 アルコ キンアルキル基またはアルキルチオアルキル基を示し、 その水素原子の 1つ以上 がフヱニル基、 ナフチル基、 トルィル基またはフッ素原子で置換されていてもよ い。 m、 nはそれぞれ 0以上 12以下の整数 (ただし、 m+n≤l 8) を示し、 Xは一般式 (XI) から一般式 (X5) のいずれかで表されるいずれかの基を示 す。 M' は水素原子またはアルカリ金属を示す。 -C-
(X I) 式中、 Z' , Z2 はそれぞれ水素原子、 フッ素原子、 フエ二ル基、 ナフチル基 または炭素数が 1力、ら 1 2の直鎖または分岐状のアルキル基もしくはアルケニル 基を示す。
Figure imgf000006_0001
式中、 Z3 、 Z4 、 Z Ζ6 はそれぞれ水素原子、 フッ素原子、 塩素原子ま たは臭素原子を示す。
Figure imgf000006_0002
式中 Ζ1 および Ζ2 は一般式 (X I) と同一の定義を有する (
Figure imgf000006_0003
式中 Z' および Z2 は一般式 (X I) と同一の定義を有する (
Figure imgf000006_0004
式中、 Z1 および Z2 は一般式 (X I) と同一の定義を有する。 R2 0MZ (2)
式中、 R2 は、 炭素数 1から 1 8の直鎖状または分岐状のアルキル基、 アルコ キシアルキル基またはアルキルチオアルキル基を示し、 水素原子の 1つ以上がフ ヱニル基、 ナフチル基、 トルィル基またはフッ素原子で置換されていてもよい。 M2 はアルカリ金属を示す。
R2 OOC- (CH2 ) ra —X— (CH2 ) n -COOM1 (3) 式中、 R2 は一般式 (2) と同一の定義を有する。 m, n, Xおよび M1 は一 般式 (1) と同一の定義を有する
また、 本発明は、 上記一般式 (2) で示される金属アルコキシドの存在下で一 般式 (1) で示される原料としてのジカルボン酸モノエステルまたはジカルボン 酸モノエステルのアルカリ金属塩と一般式 (4) で示されるアルコールとをエス テル交換反応に付すことからなる一般式 (5) で示されるジカルボン酸モノエス テルを製造する方法である。
R3 OH (4)
式中、 R3 は、 炭素数 1から 1 8の直鎖状または分岐状のアルキル基、 アルコ キシアルキル基、 アルキルチオアルキル基を示し、 水素原子の 1つ以上がフエ二 ル基、 ナフチル基、 トルィル基またはフッ素原子で置換されていてもよい。
R3 OOC- (CH2 ) m —X— (CH2 ) „ -COOM1 (5) 式中、 R3 は一般式 (4) と同一の定義を有し、 m, n, Xおよび M1 は一般 式 (1) と同一の定義を有する。
発明を実施するための最良の形態
本発明において、 原料として使用されるジカルボン酸モノエステルまたはジカ ルボン酸モノエステルのアルカリ金属塩としては、 一般式 (1) で示されるもの であれば特に制限はなく、 市販品や公知の方法により合成されたものが使用でき る。 このようなジカルボン酸モノエステルまたはジカルボン酸モノエステルのァ ルカリ金属塩 (以下、 原料モノエステル類という) としては、 例えばアジピン酸、 テレフタル酸、 マロン酸、 メチルコハク酸、 コハク酸、 ィタコン酸、 シトラコン 酸、 グルタル酸等のモノエステルまたはこれらのモノエステルの金属塩が挙げら れる。 ここで金属塩を形成する金属の種類は、 アルカリ金属であれば特に制限さ れないが、 力リウムおよびナトリゥムが好ましく、 カリゥムは形成された塩が溶 解性に優れているので特に好ましい。 また、 原料モノエステル類は光学活性体で あってもよい。
エステル交換反応の原料としてアルコールでなく金属アルコキシドを使用する 場合の金属アルコキシドとしては、 一般式 (2 ) で示されるものであれば特に制 限されないが、 溶解性に優れている力リウムアルコキシドが特に好ましい。 金属 アルコキシドのアルコキシ基の種類は目的とするジカルボン酸モノエステルに依 存し、 特に制限されないが、 好ましくはメ トキシ基、 エトキシ基、 n-プロポキシ 基、 n-ブトキシ基および tert- ブトキシ基である。 このように金属アルコキシド をエステル交換反応の原料として用いる場合、 金属アルコキシドの使用量は原料 ジカルボン酸モノエステル (以下原料モノエステルともいう) 1モルに対して 1 . 0 1モル以上であればよいが、 コストを考慮すると原料モノエステル類 1モルに 対してし 0 1〜3モルが好ましい。 金属アルコキシドが原料モノエステル類 1 モルに対して 1モル以下の場合には酸塩基反応が優先するので好ましくない。 エステル交換反応の原料として金属アルコキシドでなくアルコールを使用する 場合に反応系に共存させる金属アルコキシドとしては、 一般式 (2 ) で示される ものであれば特に制限されないが、 溶解性に優れている力リウムアルコキシドが 特に好ましい。 金属アルコキシドのアルコキシ基は特に制限されないが、 好まし くはメ トキシ基、 エトキン基、 n-プロポキシ基、 n-ブトキシ基および tert- ブト キシ基である。 しかし、 原料アルコールと金属アルコキシドのアルコキシ基が異 なると目的とは異なるエステルが一部生成するので、 反応に使用される一般式 ( 4 ) のアルコールと同一のアルコキシ基を有する金属アルコキシドを用いるこ とが好ましい。 このように金属アルコキシドをエステル交換反応の触媒として用 いる場合のその使用量は、 原料モノエステル類がジカルボン酸モノエステルの場 合、 原料モノエステル 1モルに対して 1 . 0 1モル以上であればよいが、 コスト を考慮すると好ましくは 1 . 0 1〜3モルである。 また、 原料モノエステル類が アル力リ金属塩の場合、 原料モノエステル 1モルに対して 0 1モル以上であ ればよいが、 コストを考慮すると好ましくは 0 . 0 1 ~ 2モルである。
本発明において、 原料として使用するアルコールは、 一般式 (4 ) で示される ものであれば特に制限されないが、 このようなアルコール (以下原料アルコール という) としては、 例えば、 メタノール、 エタノール、 n-プロピルアルコール、 n -ブチルアルコール等の直鎖状の脂肪族アルコール、 ィソプロピルアルコール、 イソブチルアルコール、 tert- ブチルアルコール等の分岐状の脂肪族アルコール、 ァリルアルコール、 メタリルアルコール等の不飽和脂肪族アルコール、 ベンジル アルコール、 4-ニトロべンジルアルコール、 3, 5-ジニトロべンジルアルコール、 フエネチルアルコール等の芳香族基を含むアルコール、 およびエチレングリコ一 ルモノメチルェ一テル、 ジエチレングリコールモノメチルエーテル等のセルソル ブ系アルコール等が挙げられる。
原料アルコールの使用量は、 原料モノエステル類 1モルに対して 1〜2 0 0モ ルであることが好ましく、 特に好ましくは 5〜5 0モルである。 原料モノエステ ル類がアル力リ金属塩の場合は、 原料モノエステルのアル力リ金属塩の溶解性の 向上、 反応時間の短縮、 エステル交換反応の転化率の向上等の目的で、 原料モノ エステルのアル力リ金属塩に対して大過剰の原料アルコールを用いることが好ま しい。 し力、しな力 ら、 原料アルコールの沸点が高く、 反応終了後において蒸留に よる除去が困難な場合や、 価格が高いために使用量を少なく したい場合には、 原 料モノエステル類 1モルに対して、 小過剰の原料アルコールでも目的は十分達成 できる。
アルコールを原料として使用し、 金属アルコキシドを触媒として使用する場合、 反応前の各原料の混合順序は特に制限されないが、 例えば、 原料モノエステル類 ともう一つの原料であるアルコ一ルとを混合してから金属アルコキシドを添加す る方法 (方法 A) 、 原料アルコールと金属アルコキシドとを混合してから原料モ ノエステル類を添加する方法 (方法 B ) 、 原料モノエステル類と金属アルコキシ ドとを混合してから原料アルコールを添加する方法 (方法 C ) 、 原料モノエステ ル類と有機溶媒および添加剤とを混合してから金属アルコキシドを添加する方法 (方法 D) 、 有機溶媒および添加剤と金属アルコキシドとを混合してから原料モ ノエステル類を添加する方法 (方法 E ) 等が挙げられる。 操作性の点から方法 A、 B、 D、 および Eの混合順序が好ましい。
原料モノエステル類が α位に不斉中心を有する光学活性体の場合、 金属アルコ キシドによりエステルの α - 水素が引き抜かれる可能性があるため、 生成物の光 学純度を高く維持するためには、 方法 Αまたは Dのように金属アルコキシドを最 後に投入する混合順序が好ましい。
本発明において、 原料アルコールを使用する場合には、 溶媒や添加剤は必ずし も必要ないが、 反応を促進させるために使用してもよい。 また原料アルコールを 使用しない場合には、 溶媒は必ず使用し、 添加剤は適宜添加すればよい。
使用できる溶媒としては、 有機溶媒、 例えば、 ベンゼン、 ニトロベンゼン、 ト ルェンおよびキシレン等の芳香族炭化水素系溶媒、 テトラヒドロフラン、 1,2 -ジ メ トキシェタン、 1, 3-ジォキソランおよび 1, 4-ジォキサン等のエーテル系溶媒、 二硫化炭素、 ニトロメタン、 N,N-ジメチルホルムアミ ドおよびジメチルスルホキ シド等を挙げることができる。
また、 添加剤としては、 金属アルコキシドまたはエステルのカルボニル基を活 性化するものや、 金属アルコキシドまたは原料モノエステル類の溶解度を上げる 効果を有するもの、 相間移動触媒としての効果を有するもの等が好ましい。 この ような添加剤としては、 例えばトリェチルァミン、 テトラメチレンジアミン等の ァミン、 ピリジン等の含窒素芳香族化合物、 ベンジルトリェチルアンモニゥムク ロリ ド、 テトラ— n—ブチルアンモニゥムブロミ ド等の 4級アンモニゥム塩、 1 8 一クラウン一 6等のクラウンエーテル、 テトラヒドロフラン、 1,2-ジメ トキシ ェタン、 1, 3-ジォキソランおよび 1, 4-ジォキサン等のクラウンエーテルに類似す る包接効果のあるもの等を挙げることができる。
エステル交換の反応温度は通常一 1 0 0〜2 5 0 °Cの範囲で任意に設定できる 力 \ 好ましくは一 8 0〜2 0 0 °Cで、 さらに好ましくは一 2 0〜1 5 0 °Cである。 本発明の反応は平衡反応であるため、 反応速度および転化率を向上させるために 原料モノエステル類からエステル交換により生成したアルコール (R ' O H ) を 蒸留等により反応系外へ除去しながら反応を行うことが好ましい。 したがつて反 応温度はエステル交換反応により生成したアルコール (R' OH) の沸点または 共沸点以上の温度が好ましい。 蒸留等により原料として用いられる金属アルコキ シド由来のアルコールや原料アルコールも同時に留去される場合には、 このアル コールまたはこのアルコ一ルを含む溶液を反応系に添加しても差し支えない。 エステル交換反応時の圧力は通常 1 kPa〜 5 MP a (絶対圧) で任意に設定 できる。 実用的には 1 0 kP a〜lMPa (同) が好ましく、 さらに好ましくは 80〜1 2 O kPa (同) である。 また、 エステル交換の反応時間は通常 0. 0 1〜 1 00時間で任意に設定できるが、 反応器の効率を考えると通常は 0. 1〜 50時間が好ましい。
以下、 実施例および比較例により本発明をさらに具体的に説明するが、 本発明 はこの実施例によって限定されるものではない。
実施例および比較例における分析はガスクロマトグラフィ一 (以下 G Cとい う) 、 高速液体クロマトグラフィー (以下 HP LCという) および NMRにより 行った。
最終的な生成物の純度は、 0じまたは11?1^〇チャー卜のピーク面積から次式 により算出した。
純度( %) =A/B X 1 00
ここで、 Aは目的生成物であるジカルボン酸モノエステルのピーク面積、 Bは目 的生成物および全ての不純物のピーク面積の合計を表す。
また、 実得収率は次式により算出した。
実得収率( %) =C/DX 1 00
ここで、 Cは目的生成物であるジカルボン酸モノエステルのモル数 (不純物を含 む最終生成物の重量に純度を乗じたものを目的生成物であるジカルポン酸モノェ ステルの分子量で除して算出) 、 Dは原料モノエステル類のモル数を表す。
実施例 1 アジピン酸モノ- tert-ブチルエステルの合成
撹拌機、 滴下ロート、 温度計、 オールダ一ショウ、 ジムロート冷却管を備えた ガラスフラスコにアジピン酸モノェチルエステル 1 0g ( 0. 057モル) およ び tert- ブチルアルコール 2 00ml (2. 08 1モル) を仕込み、 室温にてこれ にカリウム- tert -ブトキシド 7. 7 3g ( 0. 0 6 9モル、 1. 2当量) を少量 づっ流し込んだところ、 反応液は発熱し、 液温が 3 5 °Cまで上昇し、 液中には白 色結晶が析出した。 その後、 8 3°Cに昇温して 1 6. 5時間反応を行った。 この 間、 エステル交換反応により生成したエチルアルコールを tert- ブチルアルコー ルと共に留去し、 流出した tert- ブチルアルコールと同量の tert- ブチルアルコ ールを滴下ロートから加え続けた。 エステル交換反応終了後、 tert- ブチルアル コールを常圧で留去し、 残留物を放冷した後、 これに氷水 8 0mlを加え、 n-へキ サン 1 0 0mlで分液洗浄を 2回行った。 得られた水相に、 冷水 2 0mlに薄めた硫 酸 3. 9 6g ( 0. 0 3 9モル、 1. 4当量) を添加して酸析を行った。 この時、 水相中の成分を GCで分析したところ、 原料のアジピン酸モノェチルエステルと 生成物のアジピン酸モノ- tert-ブチルエステルのピーク面積比は 2 0 : 8 0であ つた。 この水相から n-へキサン 1 0 0mlで抽出操作を 2回行い、 続いてこの 2回 抽出分の n-へキサン相を純水 1 0 mlで洗浄を 3回行った後、 減圧濃縮操作を行つ た。 その結果、 アジピン酸モノェチルエステルは全くなく、 純度 9 2% のアジピ ン酸モノ- tert-ブチルエステルが 7. 2 0 g得られた。 このときの実得収率は 5
7¾であった。 また、 生成物の 'Η- NMRのスぺク トルデータは以下のとおり めつナ乙。
'H- MRCCDC )
1.48 (9H, s), 1.64-1.68 (4H, m), 2.22-2.27 (2H, m), 2.33-2.40 (2H, m), 9.64(1H, br). 実施例 2 テレフタル酸モノ- tert-ブチルエステルの合成
実施例 1と同様に、 テレフタル酸モノメチルエステル 1 0g ( 0. 0 5 6モ ノレ) および tert- ブチルアルコール 2 0 0ml (2. 0 8 1モル) を仕込み、 室温 にてこれにカリウム- tert-ブトキシド 8. 1 0g ( 0. 0 7 0モル、 1. 3当 量) を少量づっ流し込んだところ、 反応液は発熱し、 液温が 3 5 °Cまで上昇し、 液中には白色結晶が析出した。 その後、 8 3 °Cに昇温して 1 7時間反応を行った。 この間、 エステル交換反応により生成したメチルアルコールを tert- ブチルアル コールと共に留去し、 流出した tert- ブチルアルコールと同量の tert- ブチルァ ルコールを滴下ロートから加え続けた。 エステル交換反応終了後、 tert- ブチル アルコールを常圧で留去し、 残留物を放冷した後、 これに氷水 8 0mlを加え、 n - へキサン 1 0 Omlで分液洗浄を 2回行った。 得られた水相に、 冷水 2 0 mlに薄め た硫酸 3. 8 5g ( 0. 0 3 6モル、 1. 4当量) を添加して酸析を行った。 こ の時、 水相中の成分を GCで分析したところ、 原料のテレフタル酸モノメチルェ ステルと生成物のテレフタル酸モノ- tert-ブチルエステルのピーク面積比は 6 6 : 3 4であった。 この水相から n-へキサン 1 0 0 mlで抽出操作を 2回行い、 続 いてこの 2回抽出分の n-へキサン相を純水 1 0 mlで洗浄を 3回行った後、 減圧濃 縮操作を行った。 その結果、 テレフタル酸モノメチルエステルは全くなく、 純度 9 4¾ のテレフタル酸モノ- tert-ブチルエステルが 2. 9 9 得られた。 このと きの実得収率は 2 3%であった。 また、 生成物の 'H- NMRのスぺクトルデ一 夕は以下のとおりであった。
'H- MR(CDC13) 1.62(9H, s), 8.08 (2H, d, J=8.1Hz), 8.16(2H, d, J二 8.1Hz).
実施例 3 マロン酸モノイソプロピルエステルの合成
実施例 1と同様に、 マロン酸モノェチルエステルカリウム塩 5 g (0. 0 2 9 モル) およびイソプロピルアルコール 1 0 0 ml (1. 3 0 5モル) を仕込み、 室 温にてこれにカリウムメ トキシド 0. 4 1g ( 0. 0 0 5 9モル、 0. 2当量) を少量づっ流し込んだところ、 反応液は発熱し、 液温が 3 5 °Cまで上昇し、 液中 には白色結晶が析出した。 その後、 8 2 °Cに昇温して 6時間反応を行った。 この 間、 エステル交換反応により生成したエチルアルコールをィソプロピルアルコ一 ルと共に留去し、 流出したイソプロピルアルコールと同量のイソプロピルァルコ —ルを滴下ロートから加え続けた。 エステル交換反応終了後、 イソプロピルアル コールを常圧で留去し、 残留物を放冷した後、 これに氷水 1 0 0mlを加え、 酢酸 ェチル 1 0 0mlで分液洗浄を 1回行った。 得られた水相に 1 Nの塩酸を加えて p H= 2とした。 この時、 水相中の成分を HPLCで分析したところ、 原料のマロ ン酸モノェチルエステル力リウム塩由来のマロン酸モノェチルエステルと生成物 のマロン酸モノイソプロピルエステルのピーク面積比は 4 : 9 6であった。 HP LCの分析条件を次に示す。
高速液体クロマトグラフィ一分析条件
カラム ODS— 1 2 0 A
移動相 水/ァセトニトリル/リン酸 = 20:80:0. l(vol) 流速 0. 7 ml/min
検出 2 2 0 nm
この水相から酢酸ェチル 1 0 Omlで抽出操作を 2回行い、 続いてこの 2回抽出分 の酢酸ェチル相を純水 1 0 0mlで洗浄を 2回行った後、 減圧濃縮操作を行った。 その結果、 マロン酸モノェチルエステルは全くなく、 純度 9 5¾ のマロン酸モノ イソプロピルエステルが 4. 0 3 得られた。 このときの実得収率は 9 0%であ つた。 また、 生成物の 1 H- NMRのスぺク トルデータは以下のとおりであった。 'H-NMR(CDC13)
1.27 (6H, d, J=6.21Hz), 3.40 (2H, s), 5.08(1H, se, J二 6.21Hz), 9, 53(1H, br).
実施例 4 マロン酸モノべンジルエステルの合成
実施例 1 と同様に、 マロン酸モノェチルエステルカリウム塩 1 0g (0. 0 5 9モル) およびべンジルアルコール 2 0 0 ml ( 1. 9 2 9モル) を仕込み、 室温 にてこれにカリウムメ トキシド 0. lg ( 0. 0 0 0 1モル、 0. 0 2当量) を 少量づっ流し込んだところ、 反応液は発熱し、 液温が 3 5 °Cまで上昇し、 液中に 白色結晶が析出した。 その後、 9 0°Cに昇温して 6時間反応を行った。 この間、 エステル交換反応により生成したエチルアルコール (カリウムメ トキシド由来の 微量のメチルアルコールを含む) を連続的に留去した。 反応終了後の反応液は放 冷し、 これに氷水 1 0 0mlを加えた後、 酢酸ェチル 1 0 0mlで分液洗浄を 1回行 つた。 得られた水相に 1 Nの塩酸を加えて pH= 2とした。 この時、 水相中の成 分を H PLCで分析したところ、 原料のマロン酸モノェチルエステルカリウム塩 由来のマロン酸モノェチルエステルは検知されず、 生成物のマロン酸モノべンジ ルエステルのみであった。 HP LCの分析条件は実施例 3と同様である。 この 水相から酢酸ェチル 1 0 0 mlで抽出操作を 2回行い、 続いてこの 2回抽出分の酢 酸ェチル相を純水 1 0 0mlで洗浄を 2回行った後、 減圧濃縮操作を行った。 その 結果、 純度 1 0 0!¾ のマロン酸モノべンジルエステルが 1 0. 8 3g得られた。 このときの実得収率は 9 5¾ であった。 また、 生成物の 'Η- NMRのスぺク ト ルデー夕は以下のとおりであつた。
'H-NMR(CDC13) 3.41 (2H, s), 5.22(2H, s), 7.37 (5H, s).
実施例 5 イタコン酸- 4 tert ブチルエステルの合成 実施例 1 と同様に、 カリウム- tert-ブトキシド 1. 4 4g (0. 0 1 3モル、 1. 2当量) および tert- ブチルアルコール 1 5ml (0. 1 5 6モル) を仕込み、 室温にてこれにィタコン酸- 4- メチルエステル 1. 5g (0. 0 1 0モル) を 少量づっ流し込んだところ、 反応液は発熱し、 液温が 3 5°Cまで上昇し、 液中に 白色結晶が析出した。 その後、 8 3 °Cまで昇温して 7時間反応を行った。 この間、 エステル交換反応により生成したメチルアルコールを ter t - ブチルアルコールと 共に留去し、 流出した tert- ブチルアルコールと同量の tert- ブチルアルコール を滴下ロートから加え続けた。 エステル交換反応終了後、 tert- ブチルアルコ一 ルを常圧で留去し、 残留物を放冷した後、 氷水 2 6 mlを加え n-へキサン 3 0 mlで 分液洗浄を 1回行った。 得られた水相に冷水 4 mlに薄めた硫酸 0. 7 4 g (0. 0 7モル、 1. 4当量) を添加して酸析を行った。 この時、 水相中の成分を GC で分析したところ、 原料のィタコン酸- 4- メチルエステルと生成物のィタコン酸 -4- tert-ブチルエステルのピーク面積比は 6 1 : 3 9であった。 この水相から n - へキサン 3 0mlで抽出操作を 2回行い、 続いてこの 2回抽出分の n-へキサン相を 純水 3 mlで洗浄を 1回行った後、 減圧濃縮操作を行った。 その結果、 ィタコン酸 - 4 - メチルエステルは全くなく、 純度 8 8¾ のィタコン酸- 4- tert-ブチルエステ ルが 0. 5 4g得られた。 このときの実得収率は 2 4% であった。 また、 生成物 の 1 H- NMRのスぺク トルデータは以下のとおりであった。
1H - NMRCCDC13) 1.45(9H, s), 3.26(2H, s), 5.78(1H, s), 6.42(1H, s), 8.05(1H, br).
実施例 6_ (R)-メチルコハク酸- 4- ベンジルエステルの合成
実施例 1と同様に、 カリウムメ トキシド 4. 6 7g ( 0. 0 8 2モル、 1. 2 当量) およびべンジルアルコール 1 5 0ml ( 1. 4 4 7モル) を仕込み、 室温 にてこれに 8 8重量% の(1 -メチルコハク酸- 4- メチルエステル 1 0g (0. 0 6 0モル、 光学純度 9 4 %e. e. ) を 5分かけて滴下したところ、 反応液は発熱し、 液温が 3 5 °Cまで上昇し、 液中に白色結晶が析出した。 その後、 1 0 0°Cまで昇 温して 5時間反応を行った。 この間、 エステル交換反応により生成したメチルァ ルコールとカリウムメ トキシド由来の微量のメチルアルコールを連続的に留去し た。 反応終了後の反応液は放冷し、 これに氷水 1 0 0mlを加えた後、 酢酸ェチル 1 0 0mlで分液洗浄を 1回行った。 得られた水相に冷水 2 5 mlに薄めた硫酸 4. 9 4g ( 0. 0 4 8モル、 1. 4当量) を添加して酸析を行った。 この時、 水相 中の成分を GCで分析したところ、 原料の(R)-メチルコハク酸- 4- メチルエステ ルと生成物の 00-メチルコハク酸- 4- ベンジルエステルのピーク面積比は 1 7 :
8 3であった。 この水相から酢酸ェチル 1 0 Omlで抽出操作を 2回行い、 続いて この 2回抽出分の酢酸ェチル相を純水 2 0 mlで洗浄を 1回行った後、 減圧濃縮操 作を行った。 その結果、 純度 8 7¾ の(R)-メチルコハク酸- 4- ベンジルエステル が 7. 8 7 g得られた。 このときの実得収率は 5 1 %であった。 (R)-メチルコハ ク酸- 4- ベンジルエステルの光学純度は 9 4e. e.であり、 原料のメチルエステル に対して光学純度の低下は全く観測されなかった。 また、 生成物の 'Η- NMR のスぺク トルデータは以下のとおりであった。
'H-NMR(CDC13)
1.25 (3H, d, J:6.8Hz), 2.42 (2H, dd, J=12.7, 5.9Hz), 2.74(2H, dd, J二 12· 7, 8.4Hz), 2.96(1H, dtd, J=8.4, 6.8, 5.9Hz), 5.13(2H, S), 7.35(5H, s), 10.74(1H, br).
光学純度は、 原料の(R)-メチルコハク酸- 4- ベンジルエステルを 2当量の水酸化 ナトリウム水溶液により(R)-メチルコハク酸に変換して H PLC分析により求め た。 HP LCの分析条件を次に示す。
高速液体クロマトグラフィ一分析条件
カラム CH I RALCEL OD
移動相 n-へキサン/イソプロビルアルコ-ル /トリフルォロ酢酸 =90:10:0. l(vol)
流速 0. 5 ml/mi n
検出 2 2 Onm
なお、 原料の(R)-メチルコハク酸- 4- メチルエステルは J P— A— 8— 2 8 5 に記載されている方法に従って合成したものである。
実施例 7 00 メチルコハク酸- 4- tert-ブチルエステルの合成
撹拌機、 滴下ロート、 温度計、 オールダ一ショウ、 ジムロート冷却管を備えた ガラスフラスコにカリウム- tert-ブトキシド 1 4 2. 5 g (1. 2 3 1モル、 1. 2当量) および tert- ブチルアルコール 1 5 0 0 ml (5. 2 0 2モル) を仕込み、 室温にてこれに 8 8重量% の(R)-メチルコハク酸- 4_ メチルエステル 1 5 0g (0. 9 0 4モル、 光学純度 9 4 ¾e. e. ) を 5分かけて滴下したところ、 反応液 は発熱し、 液温が 3 5°Cまで上昇し、 液中に白色結晶が析出した。 その後、 8 3 °Cまで昇温して 2 6時間反応を行った。 この間、 エステル交換反応により生成し たメチルアルコールを tert- ブチルアルコールと共に留去し、 流出した tert- ブ チルアルコールと同量の tert- ブチルアルコールを滴下口一卜から加え続けた。 エステル交換反応終了後、 tert- ブチルアルコールを常圧で留去し、 残留物を放 冷した後、 これに氷水 1 1 0 Omlを加え n-へキサン 1 0 0 0 mlで分液洗浄を 1回 行った。 得られた水相に冷水 4 0 0 mlに薄めた硫酸 7 5. 6g (0. 7 4モル、 1. 4当量) を添加して酸析を行った。 この時、 水相中の成分を GCで分析した ところ、 原料の(R)-メチルコハク酸- 4- メチルエステルと生成物の(R)-メチルコ ハク酸- 4- tert-ブチルエステルのモル比は 2 5 : 7 5 (転化率で 7 5% ) であつ た。 この水相から n-へキサン 1 5 0 0mlで抽出操作を 2回行い、 続いてこの 2回 抽出分の n-へキサン相を純水 3 0 0 mlで洗浄を 3回行った後、 減圧濃縮操作を行 つた。 その結果、 (R)-メチルコハク酸- 4- メチルエステルは全くなく、 純度 9 2. 0 % の(R)-メチルコハク酸- 4-tert-ブチルエステルが 1 0 0. 9g得られた。 こ のときの実得収率は 5 8% であった。 (R)-メチルコハク酸- 4- tert-ブチルエステ ルの光学純度は 9 2 ¾!e. e. であり、 原料のメチルエステルに対して光学純度の低 下は僅かであった。 また、 生成物の 'H NMRのスぺク トルデータは以下のと おりであった。
'H-NMRCCDC )
1.24(3H, d, J=6.8Hz), 1.44 (9H, s), 2.36 (2H, dd, J=16.3, 6. lHz), 2.64(2H, dd, J=16.3, 8. lHz), 2.90(1H, dtd, J=8.1, 6.8, 6.1Hz), 9.73(1H, br).
光学純度は、 原料の(R)-メチルコハク酸- 4- メチルエステルの場合には 2当量の 水酸化ナトリウム水溶液により、 また生成物の(R)-メチルコハク酸- 4-tert-プチ ルエステルの場合には大過剰のトリフルォロ酢酸により、 いずれも(R)-メチルコ ハク酸に変換して HPLC分析により求めた。 HP LCの測定条件は実施例 6と 同様である。
実施例 8 (R)-メチルコハク酸- 4 tert-ブチルエステルの合成
実施例 7と同様に、 9 7重量% の(R) メチルコハク酸- 4- メチルエステル 1 0 g ( 0. 0 6 6モル、 光学純度 9 9 ¾e. e. ) および tert- ブチルアルコール 1 0 Oml (1. 0 4 0モル) を仕込み、 室温にてこれにカリウム- tert-ブトキシド 9. 5g ( 0. 0 8 2モル、 し 2当量) を 5分かけて滴下したところ、 反応液は発 熱し、 液温が 3 5 °Cまで上昇し、 液中に白色結晶が析出した。 その後、 8 3 ま で昇温して 1 5. 5時間反応を行った。 この間、 エステル交換反応により生成し たメチルアルコールは留去しなかった。 エステル交換反応終了後、 生成したメチ ルアルコールと tert- ブチルアルコールを減圧で留去し、 残留物を放冷した後、 これに氷水 7 5mlを加え n-へキサン 1 0 0 mlで分液洗浄を 1回行った。 得られた 水相に冷水 2 5 mlに薄めた硫酸 4. 7 5g ( 0. 0 4 6モル、 1. 4当量) を添 加して酸析を行った。 この時、 水相中の成分を GCで分析したところ、 原料の (R) メチルコハク酸- 4- メチルエステルと生成物の(R)-メチルコハク酸- 4- tert ブチルエステルのモル比は 6 5 : 3 5 (転化率で 3 5% ) であった。 この水相か ら n-へキサン 1 0 0 mlで抽出操作を 2回行い、 続いてこの 2回抽出分の n-へキサ ン相を純水 2 0 mlで洗浄を 6回行った後、 減圧濃縮操作を行った。 その結果、 (R)-メチルコハク酸- 4- メチルエステルは全くなく、 純度 9 9% の(R) -メチルコ ハク酸- 4-tert-ブチルエステルが 3. 7 6 g得られた。 このときの実得収率は 3 0 %であった。 (R)-メチルコハク酸- 4 - tert ブチルエステルの光学純度は 9 9 %e. e.であり、 原料のメチルエステルに対して光学純度の低下は全く観測されなかつ た。 また、 生成物の 'Η- NMRのスぺク トルデータは実施例 7と同様であり、 光学純度の測定は実施例 7と同様にして行った。
実施例 9 (R)-メチルコハク酸- 4- tert-ブチルエステルの合成
実施例 7と同様に、 力リウム- tert-ブトキシド 1 5 8. 3g ( 1. 3 6 9モル、 2. 0当量) および tert- ブチルアルコール 1 0 0 0 ml (1 0. 4 0 4モル) を 仕込み、 室温にてこれに 9 7重量% の(R)-メチルコハク酸- 4- メチルエステル 1 0 0g ( 0. 6 6 4モル、 光学純度 9 9!¾e.e. ) を 5分かけて滴下したところ、 反応液は発熱し、 液温が 3 5 °Cまで上昇し、 液中に白色結晶が析出した。 その後、 8 3°Cまで昇温して 3 0分間反応を行った。 この間、 エステル交換反応により生 成したメチルアルコールは留去しなかった。 エステル交換反応終了後、 生成した メチルアルコールと tert- ブチルアルコールを減圧で留去し、 残留物を放冷した 後、 これに氷水 1 0 0 0 mlを加え n-へキサン 1 0 0 0 mlで分液洗浄を 1回行った。 得られた水相に濃塩酸 1 7 1. 3g (1. 6 4 3モル、 1. 4当量) を添加して 酸析を行った。 この時、 水相中の成分を GCで分析したところ、 原料の 00-メチ ルコハク酸- 4- メチルエステルと生成物の(R)-メチルコハク酸- 4- tert-ブチルェ ステルのモル比は 2 0 : 8 0 (転化率で 8 0¾ ) であった。 この水相から n-へキ サン 1 0 0 Omlで抽出操作を 2回行い、 続いてこの 2回抽出分の n-へキサン相を 純水 1 0 0mlで洗浄を 3回行った後、 減圧濃縮操作を行った。 その結果、 (R)-メ チルコハク酸- 4- メチルエステルは全くなく、 純度 9 9¾ の(R) -メチルコハク酸 - 4-tert-ブチルエステルが 8 9. 5 4 得られた。 このときの実得収率は 7 1 ¾ であった。 (R)-メチルコハク酸 -4- tert-ブチルエステルの光学純度は 9 4 ¾e. e. であり、 原料のメチルエステルに対して光学純度の低下は僅かであった。 また、 生成物の 'Η- NMRのスぺク トルデータは実施例 7と同様であり、 光学純度の 測定は実施例 7と同様にして行った。
実施例 GO-メチルコハク酸- 4- tert-ブチルエステルの合成 実施例 7と同様に、 ナトリウム- tert-ブトキシド 1 0 3. 0g (1. 0 5 0モ ル、 1. 2当量) および tert- ブチルアルコール 1 4 5 0ml (1 5. 0 8 5モ ル) を仕込み、 室温にてこれに 8 8重量!!! の(R)-メチルコハク酸- 4- メチルエス テル 1 4 5. 2g ( 0. 8 7 5モル、 光学純度 9 4 %e. e. ) を 5分かけて滴下し たところ、 反応液は発熱し、 液温が 3 5°Cまで上昇し、 液中に白色結晶が析出し た。 その後、 8 3 °Cまで昇温して 3時間反応を行った。 この間、 エステル交換反 応において生成したメチルアルコールを tert- ブチルアルコールと共に留去し、 流出した tert- ブチルアルコールと同量の tert- ブチルアルコールを滴下ロート から加え続けた。 エステル交換反応終了後、 生成したメチルアルコールと tert- ブチルアルコールを減圧で留去し、 残留物を放冷した後、 これに氷水 1 0 9 5mlを加え n-へキサン 1 0 0 0 mlで分液洗浄を 1回行った。 得られた水相に冷 水 3 5 5 mlに薄めた硫酸 7 1. 0g ( 0. 6 9 5モル、 1. 4当量) を添加して 酸析を行った。 この時、 水相中の成分を GCで分析したところ、 原料の(R)-メチ ルコハク酸- 4- メチルエステルと生成物の(R)-メチルコハク酸- 4-tert-ブチルェ ステルのモル比は 7 0 : 3 0 (転化率で 3 0 % ) であった。 この水相から n へキ サン 1 4 5 0 mlで抽出操作を 2回行い、 続いてこの 2回抽出分の n-へキサン相を 丄 8
純水 2 9 O mlで洗浄を 6回行った後、 減圧濃縮操作を行った。 その結果、 (R) -メ チルコハク酸- 4- メチルエステルは全くなく、 純度 9 9 % の(R)-メチルコハク酸 -4-tert-ブチルエステルが 3 0 . 8 得られた。 このときの実得収率は 1 9 !¾ で あった。 (10-メチルコハク酸- 4-tert-ブチルエステルの光学純度は 9 4 !¾e. e. で あり、 原料のメチルエステルに対して光学純度の低下は全く観測されなかった。 また、 生成物の ' Η- NMRのスぺクトルデータは実施例 7と同様であり、 光学 純度の測定は実施例 7と同様にして行った。
実施例 1 1— (R)-メチルコハク酸- 4- tert-ブチルエステルの合成 金属- tert-ブトキシド、 添加剤、 および溶媒を仕込み、 0 °Cまたは室温で (R)- メチルコハク酸- 4- メチルエステルを 5分かけて滴下したところ、 液中に白色結 晶が析出した。 エステル交換反応終了後、 3 0 %冷硫酸 (1 . 4当量) を添加し て酸析を行った。 この水相から n-へキサンで抽出操作を 2回行い、 続いてこの 2 回抽出分の n-へキサン相を純水洗浄を 5回行った後、 減圧濃縮操作を行った。 そ の結果、 (R)-メチルコハク酸- 4- メチルエステルは全くなく、 純度 9 0 ¾以上の (R)-メチルコハク酸- 4- tert-ブチルエステルが得られた。 このときの実得収率は 下表 1に示す通りであった。 また、 生成物の ' Η - NMRのスぺク トルデータは 実施例 7と同様であり、 光学純度の測定は実施例 7と同様にして行った。
表 1
Figure imgf000021_0001
(注) rt: 室温 比較例 1 (R)-メチルコハク酸- 4- tert-ブチルエステルの合成
実施例 9と同様に、 ナトリウム tert-ブトキシド 2. 8 4g ( 0. 2 9 0モル、 1. 1当量) および tert ブチルアルコール 3 Oml (0. 3 1 2モル) を仕込 み、 室温にてこれに、 tert- ブチルアルコール 3 Oml (0. 3 1 2モル) に懸濁 させた 9 9重量% の(R)-メチルコハク酸無水物 3. 0 g ( 0. 2 6 0モル、 光学 純度 9 6 %e. e. 以上) を 5分かけて滴下したところ、 反応液は発熱し、 液温が 5 4°Cまで上昇し、 そのまま 3 0分間反応を行った。 エステル交換反応終了後、 te rt- ブチルアルコールを減圧で留去し、 残留物を放冷した後、 これに氷水 2 0 0 mlを加え酢酸ェチル 2 0 Omlで分液洗浄を 1回行った。 得られた水相に濃塩酸 2. 9 3g ( 0. 2 9 0モル、 1. 1当量) を添加して酸析を行った。 この水相に対 して n-へキサン 2 0 Omlで抽出操作を 3回行い、 この 3回抽出分の n-へキサン相 を純水 6 Omlで洗浄を 1回行った後、 減圧濃縮操作を行った。 その結果、
(R)-メチルコハク酸- 4- メチルエステルは全くなく、 (R) メチルコハク酸 4-ter t-ブチルェステルぉよび(R) メチルコハク酸- 1 - ter卜ブチルェステルの混合物 2 · Ogが得られた。 この混合物を GCで分析した結果、 位置異性体のモル比は、 4 - エステル: 1- エステル = 7 0 : 3 0であり、 これら 2成分を併せると純度は 9 9 % であり、 このときの実得収率は 4 0 % であった。 また、 (R)-メチルコハク酸 - 4 - tert-ブチルエステルの光学純度は 8 4 !¾e. e. であり、 原料のメチルコハク酸無 水物に対して大幅な光学純度の低下が観測された。 光学純度の測定は 4-エステル および 1-エステルを共に(R)-メチルコハク酸として実施例 7と同様にして行った。 産業上の利用の可能性
本発明によれば、 広範な種類のジカルボン酸モノエステルを高い選択率で得る ことができ、 特にカルボン酸の α位に不斉中心を有する光学活性な一般式 (1 ) のエステル類を原料として用いた場合には、 反応前後で光学純度の低下がほとん ど観測されない。 したがって、 本発明によれば、 医薬や農薬の中間体、 ポリエス テルポリオール、 ナイロン、 繊維、 潤滑油、 可塑剤などの主原料または添加剤、 あるいはそれらの前駆体として有用であり、 特にジカルボン酸の非対称ジエステ ルを合成する際の原料として有用なジカルボン酸モノエステルが得られる。

Claims

1. 有機溶媒の存在下で、 一般式 (1) で示される原料としてのジカルボン酸 モノエステルまたはジカルボン酸モノエステルのアルカリ金属塩と、 一般式 (2) で示される金属アルコキシドとをエステル交換反応に付すことからなる一般式 (3) で示されるジカルボン酸モノエステルを製造する方法: 口
R1 00C- (CH2 ) X— (CH2 ) n 一 COOM' (1) の
(式中、 R1 は、 炭素数 1から 1 8の直鎖状または分岐状のアルキル基、 アル コキシアルキル基、 アルキルチオアルキル基を示し、 その水素原子の 1つ以上が フエニル基、 ナフチル基、 トルィル基またはフッ素原子で置換されていてもよく、 m、 nはそれぞれ 0以上 1 2以下の整数 (ただし、 m+n≤ l 8) を示し、 Xは 一般式 (X I) から一般式 (X5) のいずれかで表される基を示し、 M1 は水素 原子またはアルカリ金属を示す:
Figure imgf000023_0001
(式中、 Z1 , Z2 はそれぞれ水素原子、 フッ素原子、 フヱニル基、 ナフチル 基または炭素数が 1から 1 2の直鎖または分岐状のアルキル基もしくはァルケ二 ル基を示す)
Figure imgf000023_0002
(式中、 、 Z4 、 Z5 、 ZG はそれぞれ水素原子、 フッ素原子、 塩素原子 または臭素原子を示す)
Figure imgf000024_0001
(式中、 Z' および Z2 は一般式 (XI) と同一の定義を有する)
Figure imgf000024_0002
(式中、 Z1 および Z2 は一般式 (XI) と同一の定義を有する)
Figure imgf000024_0003
(式中、 Z1 および Z2 は一般式 (XI) と同一の定義を有する) 、 R2 0M2 (2)
(式中、 R2 は、 炭素数 1から 18の直鎖状または分岐状のアルキル基、 アル コキシアルキル基またはアルキルチオアルキル基を示し、 水素原子の 1つ以上が フエニル基、 ナフチル基、 トルィル基またはフッ素原子で置換されていてもよく、 M2 はアル力リ金属を示す) 、
R2 OOC— (CH2 ) m -X- (CH2 ) n -COOM1 (3)
(式中、 R2 は一般式 (2) と同一の定義を有し、 m, n, Xおよび M' は一 般式 (1) と同一の定義を有する) ) 。
2. 4級アンモニゥム塩または 3級アミンの存在下でエステル交換反応を行う 請求項 1の方法。
3. 一般式 (2) で示される金属アルコキシドの存在下で一般式 (1) で示さ れる原料としてのジカルボン酸モノエステルまたはジカルボン酸モノエステルの アルカリ金属塩と一般式 (4) で示されるアルコールとをエステル交換反応に付 すことからなる一般式 (5) で示されるジカルボン酸モノエステルを製造する方 法:
R3 0H (4)
(式中、 R3 は、 炭素数 1から 1 8の直鎖状または分岐状のアルキル基、 アル コキシアルキル基またはアルキルチオアルキル基を示し、 水素原子の 1つ以上が フエニル基、 ナフチル基、 トルィル基またはフッ素原子で置換されていてもよい)
R3 OOC- (CH2 ) m -X- (CH2 ) n -COOM1 (5)
(式中 R3 は一般式 (4) と同一の定義を有し、 m, n, Xおよび M1 は一般 式 (1) と同一の定義を有する) 。
4. 4級アンモニゥム塩または 3級アミンの存在下でエステル交換反応を行う 請求項 2の方法。
PCT/JP1997/003682 1996-10-15 1997-10-14 Processus de preparation de monoesters d'acide dicarboxylique WO1998016495A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE69709898T DE69709898T2 (de) 1996-10-15 1997-10-14 Verfahren zur herstellung von dicarbonsäuremonoestern
JP51818798A JP3357076B2 (ja) 1996-10-15 1997-10-14 ジカルボン酸モノエステルの製造方法
EP97944111A EP0943600B1 (en) 1996-10-15 1997-10-14 Processes for the preparation of dicarboxylic acid monoesters
US09/269,765 US6355830B1 (en) 1996-10-15 1997-10-14 Process for preparation of dicarboxylic acid monoesters

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP27268296 1996-10-15
JP8/272682 1996-10-15

Publications (1)

Publication Number Publication Date
WO1998016495A1 true WO1998016495A1 (fr) 1998-04-23

Family

ID=17517334

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/003682 WO1998016495A1 (fr) 1996-10-15 1997-10-14 Processus de preparation de monoesters d'acide dicarboxylique

Country Status (6)

Country Link
US (1) US6355830B1 (ja)
EP (1) EP0943600B1 (ja)
JP (1) JP3357076B2 (ja)
CN (1) CN1125808C (ja)
DE (1) DE69709898T2 (ja)
WO (1) WO1998016495A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7332548B2 (en) * 2004-03-04 2008-02-19 Eastman Chemical Company Process for production of a polyester product from alkylene oxide and carboxylic acid
JP7062783B2 (ja) * 2018-09-27 2022-05-06 富士フイルム株式会社 ジカルボン酸モノエステルの製造方法
CN113462441B (zh) * 2020-03-30 2023-01-13 中国石油化工股份有限公司 柴油抗磨剂组合物、其制备方法及柴油组合物

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5998036A (ja) * 1982-10-26 1984-06-06 アリイド・コロイド・リミテツド ビニルエステル製造法
JPH04182452A (ja) * 1990-11-19 1992-06-30 Sumitomo Chem Co Ltd 脂肪族ジカルボン酸モノエステルの製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS46485Y1 (ja) * 1966-12-29 1971-01-09
US3714234A (en) 1968-07-02 1973-01-30 Rohm & Haas Catalysts and esterification process
US4076948A (en) * 1968-10-10 1978-02-28 El Paso Products Company Process for treatment of adipic acid mother liquor
US3843697A (en) * 1971-08-26 1974-10-22 G Khaidukov Process for producing esters of monohydric alcohols and carboxylic acids by esterification thereof and removal of acidic impurities from the resulting product
DE2324165C3 (de) * 1973-05-12 1975-10-30 Basf Ag, 6700 Ludwigshafen Verfahren zur kontinuierlichen Herstellung von Dicarbonsäurediestern
US4314071A (en) * 1978-10-25 1982-02-02 Babler James H Method of preparing monoesters
US4559180A (en) * 1982-11-26 1985-12-17 Bp Chemicals Limited Transesterification of esters
US4585889A (en) * 1985-01-28 1986-04-29 Eastman Kodak Company Carbonylation process for the production of monoesters aromatic dicarboxylic acids from phosphonium salts
GB8511305D0 (en) * 1985-05-03 1985-06-12 Procter & Gamble Liquid detergent compositions
US5047574A (en) 1988-12-14 1991-09-10 Shionogi & Co., Ltd. Certain optically active mono esters of dicarboxylic acids
JP2579383B2 (ja) 1990-09-01 1997-02-05 鐘淵化学工業株式会社 マロン酸モノt‐ブチルエステルの製造法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5998036A (ja) * 1982-10-26 1984-06-06 アリイド・コロイド・リミテツド ビニルエステル製造法
JPH04182452A (ja) * 1990-11-19 1992-06-30 Sumitomo Chem Co Ltd 脂肪族ジカルボン酸モノエステルの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0943600A4 *

Also Published As

Publication number Publication date
US6355830B1 (en) 2002-03-12
EP0943600A4 (en) 2000-01-05
CN1237152A (zh) 1999-12-01
EP0943600A1 (en) 1999-09-22
JP3357076B2 (ja) 2002-12-16
EP0943600B1 (en) 2002-01-02
DE69709898D1 (de) 2002-02-28
CN1125808C (zh) 2003-10-29
DE69709898T2 (de) 2002-08-08

Similar Documents

Publication Publication Date Title
JP2013227345A (ja) ハーフエステルの合成方法
JP2004300131A (ja) エステル類の水素化によりアルコール類を製造する方法
WO1998016495A1 (fr) Processus de preparation de monoesters d'acide dicarboxylique
JPH11130728A (ja) マロン酸モノ第3級アルキルエステルの製造方法
JP4667593B2 (ja) 2−アルキル−2−アダマンチル(メタ)アクリレート類の製造法
US6570035B2 (en) Process for producing pivaloyl-acetic acid ester
JP4509327B2 (ja) N,n−ジ置換−4−アミノクロトン酸エステルの製造方法
JP2007254293A (ja) α−メチレン−β−アルキル−γ−ブチロラクトンの製造法
EP0652213B1 (en) Method for producing alkyl 3-phthalidylideneacetate
JP5205971B2 (ja) テトラヒドロピラン化合物の製造方法
JP4030289B2 (ja) β−ケトニトリル類の製法
JP2006312644A (ja) β−ケトニトリル類の製法
JP4561635B2 (ja) 4−アルコキシカルボニルテトラヒドロピラン又はテトラヒドロピラニル−4−カルボン酸の製法
JP3254746B2 (ja) 末端アセチレン化合物およびその製造法
JP4368494B2 (ja) カルボン酸3級アルキルエステルの製造方法
JP2007106757A (ja) α−メチレン−β−アルキル−γ−ブチロラクトンの製造法
JP4470348B2 (ja) 第3級カルボン酸エステルの製造方法
JP3855686B2 (ja) 3,3−ジアルコキシ−2−ヒドロキシイミノ誘導体及びその製造法
WO2025022637A1 (ja) カルボン酸エステル誘導体の脱水縮合をともなう環化反応による環化生成物の製造方法、および1,3,4-置換-ピラゾール-5-カルボン酸エステル類の製造方法
KR100525358B1 (ko) 카르복실 벤조트리아졸 알킬에스테르의 제조방법
JPH11279169A (ja) 3−イソクロマノン類の製造方法
JP2001048826A (ja) 1−フェニル−1,3−ブタンジオン誘導体の製造方法
JPH0321537B2 (ja)
JPH05286904A (ja) アリルエステル類の製法
KR101200294B1 (ko) 4,4-디플루오로-3-옥소부탄산 에스테르의 제조방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 97199632.6

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1997944111

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09269765

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1997944111

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1997944111

Country of ref document: EP