WO1998030352A1 - Fer a souder du type sans contact et pouvant effectuer une soudure discontinue - Google Patents
Fer a souder du type sans contact et pouvant effectuer une soudure discontinue Download PDFInfo
- Publication number
- WO1998030352A1 WO1998030352A1 PCT/JP1998/000021 JP9800021W WO9830352A1 WO 1998030352 A1 WO1998030352 A1 WO 1998030352A1 JP 9800021 W JP9800021 W JP 9800021W WO 9830352 A1 WO9830352 A1 WO 9830352A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- nozzle
- chamber
- temperature
- gas
- gas flow
- Prior art date
Links
- 238000005476 soldering Methods 0.000 title claims abstract description 160
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 title claims abstract description 143
- 229910052742 iron Inorganic materials 0.000 title claims abstract description 71
- 238000010438 heat treatment Methods 0.000 claims abstract description 133
- 239000007789 gas Substances 0.000 claims description 218
- 239000011261 inert gas Substances 0.000 claims description 58
- 238000000034 method Methods 0.000 claims description 15
- 238000005338 heat storage Methods 0.000 claims description 12
- 230000002829 reductive effect Effects 0.000 claims description 9
- 238000002347 injection Methods 0.000 claims description 8
- 239000007924 injection Substances 0.000 claims description 8
- 230000007246 mechanism Effects 0.000 claims description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 4
- 238000004891 communication Methods 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 239000010949 copper Substances 0.000 claims description 4
- 229910000881 Cu alloy Inorganic materials 0.000 claims description 2
- 238000011144 upstream manufacturing Methods 0.000 claims description 2
- 235000012745 brilliant blue FCF Nutrition 0.000 claims 1
- 238000010304 firing Methods 0.000 claims 1
- 239000007921 spray Substances 0.000 claims 1
- 238000003466 welding Methods 0.000 claims 1
- 229910000679 solder Inorganic materials 0.000 abstract description 50
- 238000007664 blowing Methods 0.000 abstract description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 29
- 229910001873 dinitrogen Inorganic materials 0.000 description 29
- 239000010935 stainless steel Substances 0.000 description 23
- 229910001220 stainless steel Inorganic materials 0.000 description 23
- 239000013078 crystal Substances 0.000 description 17
- 230000001681 protective effect Effects 0.000 description 11
- 230000004907 flux Effects 0.000 description 10
- 230000000694 effects Effects 0.000 description 8
- 238000007711 solidification Methods 0.000 description 7
- 230000008023 solidification Effects 0.000 description 7
- 239000012535 impurity Substances 0.000 description 6
- 230000004048 modification Effects 0.000 description 6
- 238000012986 modification Methods 0.000 description 6
- 238000010926 purge Methods 0.000 description 6
- 238000005204 segregation Methods 0.000 description 6
- 239000000758 substrate Substances 0.000 description 6
- 229910045601 alloy Inorganic materials 0.000 description 5
- 239000000956 alloy Substances 0.000 description 5
- 230000001965 increasing effect Effects 0.000 description 4
- 229910052718 tin Inorganic materials 0.000 description 4
- 238000001816 cooling Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000001976 improved effect Effects 0.000 description 3
- 229910052745 lead Inorganic materials 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 125000006850 spacer group Chemical group 0.000 description 3
- 230000008646 thermal stress Effects 0.000 description 3
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 2
- 210000001787 dendrite Anatomy 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910001369 Brass Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 229940037003 alum Drugs 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- DMFGNRRURHSENX-UHFFFAOYSA-N beryllium copper Chemical compound [Be].[Cu] DMFGNRRURHSENX-UHFFFAOYSA-N 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- ZTXONRUJVYXVTJ-UHFFFAOYSA-N chromium copper Chemical compound [Cr][Cu][Cr] ZTXONRUJVYXVTJ-UHFFFAOYSA-N 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 235000000396 iron Nutrition 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000000116 mitigating effect Effects 0.000 description 1
- 229910001120 nichrome Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K3/00—Tools, devices, or special appurtenances for soldering, e.g. brazing, or unsoldering, not specially adapted for particular methods
- B23K3/04—Heating appliances
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K1/00—Soldering, e.g. brazing, or unsoldering
- B23K1/012—Soldering with the use of hot gas
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K3/00—Tools, devices, or special appurtenances for soldering, e.g. brazing, or unsoldering, not specially adapted for particular methods
- B23K3/02—Soldering irons; Bits
- B23K3/03—Soldering irons; Bits electrically heated
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K3/00—Tools, devices, or special appurtenances for soldering, e.g. brazing, or unsoldering, not specially adapted for particular methods
- B23K3/02—Soldering irons; Bits
- B23K3/03—Soldering irons; Bits electrically heated
- B23K3/0338—Constructional features of electric soldering irons
- B23K3/0353—Heating elements or heating element housings
Definitions
- Non-contact soldering iron capable of intermittent soldering
- the present invention relates to a soldering iron capable of intermittently and non-contactly soldering electronic components, for example.
- soldering iron In this type of soldering iron, a method is widely used in which a tip chip heated by a heater or the like is brought into contact with a land of an electronic substrate to melt the solder, and the tip chip is separated to solidify the solder.
- an air passage is formed in the soldering iron 100, a heating nozzle 101 is built in, and a nozzle 102 made of stainless steel is provided at the tip.
- Non-contact soldering irons which are soldered by blowing high-temperature air, have also been proposed.
- an object of the present invention is to provide a soldering iron that can quickly generate a high-temperature gas flow in response to an intermittent soldering operation in a non-angled ⁇ soldering iron.
- the soldering iron according to the present invention includes a first chamber for generating a main heating gas flow having a first nozzle at a tip thereof, and a second nozzle which is opened to cover the outside of the first nozzle.
- a nozzle means provided at the tip, surrounding at least the first chamber, and including at least a second chamber for generating a preheating gas flow; and an inner wall in the first chamber near the central first nozzle.
- a first core heating means having a heat source for heating an inert gas ejected from a nozzle port through the clearance, and forming at least a distal end of the first chamber; Heating means including at least a second heating means surrounding the heat source of the first core heating means, storing heat, and passing between the first chamber and the second chamber and heating an inert gas.
- An inert gas supply means for communicating with the first chamber, supplying an inert gas, and branching and supplying the inert gas to be supplied to the first chamber to the second chamber; Inert gas supplied to 1 chamber While the gas passes through the clearance, the temperature rises to a predetermined heating temperature, and the inert gas that rises in temperature and expands in the first chamber is branched and lined into the second chamber by its back pressure. It is characterized by the following.
- the gas stream is preferably a high concentration of inert gas. This is because an inert gas such as nitrogen gas is preferable in consideration of the effect of O 2 in air on soldering quality.
- the first core heating means only needs to generate heat, such as a nichrome wire heater, a ceramic heater, a high frequency heater, a medium frequency heater, a low frequency heater, an infrared heater, a plasma heater, an ultrasonic heater, An elema heating element or the like can be used.
- the first core heating means has an inner wall and a clearance inside the first chamber, and has a rod-like shape inserted therein. heating evening, lock de-shaped heating evening force desirable especially A ⁇ 2 0 made 3.
- One of the features of the present invention is to arrange the outer nozzle around the inner nozzle, form the outer gas flow by utilizing the temperature rise expansion of the inner gas flow, and preheat with the outer gas flow, Surrounded by the outside gas flow.
- the point is that soldering is performed by the inside gas flow in the surrounding air.
- soldering can be performed in a short time in a non-contact manner, and the effects of leakage current, noise, and harmonics on products can be eliminated.
- the core heating means quickly raises the inert gas to a desired temperature without having to set the temperature to a high temperature such as when merely flowing the inert gas.
- the soldering work can be quickly performed not only in the case of continuous soldering but also in the case of intermittent soldering.
- static electricity the friction of the gas flow, especially when the gas flow is ejected at a high speed, charges the gas flow, and there is still concern about the electrical effects on the product. .
- the main heating gas flow and scope as the ejection pressure of the preheating gas stream charged gas flow is enough not a concern of electrical influence, specifically to a pressure of 1 ⁇ 3 kgicm 2 ⁇ G
- the gas pressure from the first nozzle is higher than the gas pressure from the second nozzle. Also, by selecting such a pressure range, It is possible to prevent lowering of the retained energy on the flow side and shorten the soldering time.
- the second heating means is preferably formed at least at the tip end of the first chamber, and is made of a member having a heat storage function for transferring heat from the first core heating means. It is preferable that the nozzle member has a nozzle member, and a nozzle orifice is inserted into the nozzle opening to adjust the nozzle diameter.
- This second heating means is preferably a copper or copper alloy nozzle member.
- the first chamber has a gas communication port communicating with the second chamber, and the inert gas supplied to the first chamber is heated and expanded by the first core heating means.
- the pressure is preferably such that the inert gas supplied to the first chamber 1 is partially supplied to the second chamber via the gas flow port.
- the opening diameter of the first nozzle is larger than the opening diameter of the branch supply port of the second chamber, and the first nozzle is sprayed with the heated inert gas from the tip opening of the first nozzle.
- a part of the inert gas supplied into the first nozzle by the back pressure in the nozzle is preferably supplied to the second nozzle.
- soldering is performed in an atmosphere where the adhered molten solder can be slowly cooled with moderate temperature characteristics, and rapidly cooled in an atmosphere at room temperature or below immediately before the start of solidification. It is important to do so.
- the gas flow is made into an inner / outer double, preheated by the outer preheating gas flow, soldered by the inner main heating gas flow, and then slowly cooled to just before the start of solidification by the outer preheating gas flow to room temperature. Exposure to the following atmosphere allows rapid cooling.
- the inert gas supplied to the first nozzle is 250 to 100 ° C., particularly 300 to 6 ° C.
- the first core heating means 0 (it is preferable to be heated to TC, and the inert gas supplied to the second nozzle is 100 to 300, particularly preferably 150 to 200 ° C. Further, it is preferable that the flow rate of the inert gas injected from the first nozzle is 1 to 3 ⁇ // min in order to increase the heat input and shorten the soldering time.
- the inner diameter of the tip of the first chamber, which forms the second heating means, and the first core heating is set to a size set so that the temperature can be raised to a predetermined temperature after passing the inert gas force passing therethrough.
- a clearance of 0.1 to 0.15 mm can be adopted.
- the opening diameter of the first nozzle can be 0.2 to 1 mm to 5, and the opening diameter of the second nozzle can be 2 to 3 mm ⁇ .
- a cylindrical body having a nozzle portion at a front end, wherein a high-temperature gas injection mechanism for heating a gas flow supplied from the rear to a predetermined temperature in the cylindrical body and ejecting the gas flow from the nozzle portion.
- a core heat source extending in the axial direction of the cylindrical body via a predetermined clearance with the inner wall of the cylindrical body, and a heat storage cover surrounding the outer periphery of the core heat source and extending in the axial direction forming a part of the cylindrical body
- a high-temperature gas injection mechanism comprising: a heating means comprising a heating means, wherein the clearance is set such that a gas flow reaching the upstream of the heating means has a predetermined injection temperature before being fired from the nozzle portion after passing through the clearance.
- the cylinder preferably has a flow opening for diverting the supply gas flow to the outside of the cylinder when the back pressure in the cylinder becomes equal to or higher than a predetermined value.
- a temperature sensor is provided in front of the nozzle portion in front of the core heat source to detect a gas flow temperature after passing through the clearance and to control the core heat source temperature.
- the inert gas when supplying an inert gas to the soldering iron and performing heating and jetting, the inert gas is supplied to the first chamber, and the inert gas is supplied to the front of the first chamber. Raising the temperature to a predetermined third temperature through a clearance formed by a core heat source extending in the axial direction near the nozzle provided at the tip and a heat storage cover surrounding the core heat source; An inert gas is supplied through a communication port to a second chamber surrounding the first chamber by a back pressure generated by a temperature rise and expansion of the inert gas, and is located in front of the second chamber. Raising the temperature to a predetermined second temperature by passing through the outer periphery of the heat storage cover,
- a non-contact type soldering method in which a gas flow surrounded by a gas at a second temperature and centered on a gas at a second temperature is injected to a predetermined soldering site.
- the time for raising the temperature of the inert gas through the clearance between the core heat source and the heat storage cover in the first chamber is preferably set to a time that quickly responds to the intermittent work of soldering. Good.
- oxidation and porosity may be caused, and oxidation of solder immediately before solidification is the largest cause of generation of bridges, knuckles, and errata.
- the low-temperature nitrogen gas atmosphere is set to room temperature, specifically, a temperature of 25 ° C. or lower, but it is preferable to secure a quenching effect.
- the temperature may be between 120 ° C. and 130 ° C.
- the work surface is exposed to a low-temperature nitrogen gas atmosphere, the molten solder is rapidly cooled from the front surface side. It is preferable because a finer rapidly solidified structure can be obtained.
- the main heating gas flow generation chamber 1 is preferably formed around the heating element from the viewpoint of manufacturing simplicity, but may be formed inside the heating element.
- the shape of the nozzle is not particularly limited, but it is preferable to use a diverge X-in nozzle, for example, since it is better to jet the gas stream at a higher speed.
- the preheating gas flow may be ejected straight around the main heating gas flow, but a spiral fin and a spiral groove are formed on the inner surface of the preheating gas flow generation chamber 1 so that the preheating gas flow is formed into a spiral shape.
- the tip of the second nozzle may be made to protrude from the tip of the first nozzle, or the positional relationship may be reversed.
- the latter is preferable when the element of the work is small, especially when the element has an ultra fine pitch, for example, when soldering electronic components.
- the main body of the trowel is grounded, and negative charges are electrostatically induced inside the main heating gas flow generation chamber and the preheating gas flow generation chamber to remove the brass charges of the main heating gas flow and the preheating gas flow. It is better to be able to do it.
- the soldering portion of the work is preheated by the preheating gas flow, even if the tip is brought into contact with the soldering portion, the temperature drop of the tip is small and the tip is preheated. As a result of being heated by the gas flow and rapidly raising the temperature, the thermal stress of the tip can be reduced.
- the temperature of the tip of the soldering iron is lower than that of the above-mentioned tip and sufficient for preheating the solder.
- the preheated gas flow is blown around the above-mentioned tip, and the preheated gas flow is blown onto the soldering portion of the work to preheat the preheated gas. Then, the preheated gas is blown out of the preheated work by the tip. It is possible to provide a contact-type soldering method characterized in that the soldering is performed in an atmosphere surrounded by a flow.
- the preheated gas flow reduces the heat cycle of the tip and quickly returns the temperature-reduced tip to a predetermined temperature, and is more effective than the above-described case of forming the inner / outer double gas flow.
- High temperature is preferred Forces may affect the work and elements (eg, electronic elements) near the soldering site. Therefore, a low-temperature gas flow, which is lower than the preheating gas flow, is sprayed around the preheating gas flow from the tip of the soldering iron, and the pre-heating of the work soldering part and the work near the soldering part at the time of soldering are performed.
- the element may be protected from the heat of the preheated gas stream with a cold gas stream. Further, according to the present invention, it is possible to provide a soldering iron used in the above-mentioned contact-type soldering method.
- the tip of the tip is placed around the heating element.
- a preheating gas flow generation chamber is opened to the periphery to form a preheating gas flow generation chamber, and the heat generated by the heating element generates a preheating gas flow at a temperature lower than the tip chip and at a temperature sufficient to preheat the solder, and It is possible to provide a hornworm-type soldering iron characterized in that it is ejected to the surroundings.
- a low-temperature gas flow generation chamber is formed around the preheating gas flow generation chamber, and the leading end side is opened around the leading end opening of the preheating gas flow.
- a structure may be adopted in which a low-temperature gas flow lower than the preheating gas flow is generated by convection heat from the generation chamber 1 and heating by Z or radiant heat, and the low-temperature gas flow is jetted around the preheating gas flow.
- high-temperature inert gas such as high-temperature nitrogen gas is sprayed onto the soldering part when soldering with a soldering robot or an automatic soldering machine.
- an inert gas purge device suitable for protecting the soldering portion from the atmosphere and preheating.
- the inert gas purging apparatus has a soldering iron shape as a whole, and has a built-in heating element.
- a preheating gas flow generation chamber is formed around the heating element while opening the tip side around the tip of the heating element while the heating element can be heated.
- a high-temperature gas flow is generated by the radiant heat and is ejected forward.
- FIG. 1 is a sectional view showing a principal part of a first embodiment of a soldering iron according to the present invention.
- FIG. 2 is a sectional view showing a principal part of a second embodiment of the soldering iron according to the present invention.
- FIG. 3 is a sectional view taken along the line II.
- FIG. 4 is a diagram for explaining a soldering method using the above-mentioned soldering iron.
- FIG. 5 is a sectional view showing a first modification of the above-mentioned soldering iron.
- FIG. 6 is a sectional view showing a second modification of the above-mentioned soldering iron.
- FIG. 7 is a sectional view showing a principal part of a third embodiment of the soldering iron according to the present invention.
- FIG. 8 is a sectional view showing a principal part of a third embodiment of the soldering iron according to the present invention.
- FIG. 9 is a perspective view showing the holder 135 in the soldering iron of FIG.
- FIG. 10 is a configuration diagram showing a conventional non-contact soldering iron.
- FIG. 11 is a view showing a preferred embodiment of the inert gas purge device according to the present invention.
- FIG. 12 is a diagram showing a modification of FIG.
- FIG. 1 illustrates the present invention.
- a preferred embodiment of such a non-contact soldering iron is shown.
- the rear end of the iron body 11 is attached to the tip of the iron base by means of a screw or the like, and the iron body 11 is attached to the inner and outer double stainless steel cylinders 12 and 13 and the center.
- a rod-shaped alumina ceramic heater (core heating means) 14 14.
- a copper first nozzle 19 (also used as a heat storage cover) 19 having an opening diameter of 2 to 3 mm is fitted and fixed, and the inner diameter surface of the first nozzle 19 and the heating nozzle are fixed.
- a clearance of 0.1 to 0.15 mm is formed between the outer diameter surface of evening 14 and the outer diameter surface.
- a stainless steel pipe 61 is inserted into the tip of the first nozzle 19 to adjust the nozzle diameter to 0.5 to 1.0 mm.
- a main heating gas flow having a high temperature enough to melt and soften the solder by heating the heater is generated.
- the preheating gas flow generation chamber 1 (second chamber 1) 18 that generates a preheating gas flow at a temperature sufficient to perform
- a preheat nozzle (second nozzle) 20 that covers the entire outer periphery of the first nozzle 19 is externally fitted to the end of the outer stainless steel cylinder 12.
- the base of the trowel has a hollow shape and the inside is a gas supply passage.
- a first gas circulation port 22 is formed at the rear end of the trowel main body 11 to form a main heating gas flow generation chamber.
- An inert gas is supplied to one of the seventeen.
- the gas supply passage may be constituted by a hose or the like supported outside the base of the iron.
- a gas flow port 25 is formed on the base side of the inner stainless steel cylinder 13, and a part of the inert gas that has been heated and expanded in the main heating gas generation chamber 17 is generated by the back pressure.
- the preheated gas flow generation chamber 18 is branched and supplied.
- a sensor 27 for detecting and controlling the temperature of the main heating gas flow is attached to the end of the heater 14, and although not shown, the stainless steel cylinders 12 and 13 are grounded. It is connected.
- the heating nozzle 14 is heated to a surface temperature of 700 to 900 ° C, and the radiant heat causes the first nozzle 19 to be heated to 300 to 57 (TC,
- TC TC
- the inert gas is supplied into the inner stainless steel 12 and reaches the clearance, the temperature is raised to 300 to 600 ° C and expanded two to three times, and the first nozzle 1 is used as the main heating gas flow.
- part of the expanded inert gas is guided to the preheating gas flow generation chamber 18 by its back pressure, where the radiant heat of the first nozzle 19 and the gas itself are Maintained at 150 to 280 ° C by convection heat and injected as a preheating gas flow around the main heating gas flow, so that the main heating gas flow does not lower the temperature and entrains oxygen
- pre-heating the soldering part by gas flow You can also.
- FIGS. 2 and 3 show a second embodiment of a non-contact soldering iron according to the present invention.
- the rear end of the iron body 11 is attached to the tip of the iron base 10 by a method such as screwing and screwing.
- the inner stainless steel tube 13 is supported on the inner surface of the outer stainless steel tube 12 by a spacer piece (not shown). Have been.
- the heating heater 14 is supported on the inner surface of the inner stainless steel tube 13 by a metal cover 15, and a plate-shaped spacer 16 is formed at the rear end of the cover 15.
- Main heating gas flow generation chamber that generates a main heating gas flow that is hot enough to melt and soften the solder by heating the heater between 15 and the inner stainless steel cylinder 13
- a first nozzle 19 made of molybdenum is fitted to the tip of the inner stainless steel cylinder 13, and the first nozzle 19 is projected from a through hole in the tip wall of the outer stainless steel cylinder 12.
- the tip of the outer stainless steel tube 12 covers the entire outer periphery of the first nozzle 19
- the second nozzle 20 is externally fitted.
- the base 10 has a hollow shape and the inside is a gas supply passage 21, and a first gas circulation port 22 is provided at the rear end of the A second gas flow port 23 is formed in the plate-like spacer 16, and a third gas flow port 24 is formed in the tip of the cover 15.
- the generated main heating gas flow is guided toward the first nozzle 19.
- the gas supply passage 21 may be constituted by a hose or the like supported outside the iron base 10.
- a fourth gas flow port 25 is formed on the inner stainless steel 13 behind the cover 15 at the end of the outer stainless steel cylinder 12 to form a fifth heated gas flow port 26.
- a part of the inert gas heated and expanded in the chamber 17 is branched and supplied to the preheating gas flow generation chamber 18 by the back pressure.
- a sensor 17 for detecting the temperature of the main heating gas flow 30 and performing control is attached, and although not shown, a stainless steel 1 2 And 13 are connected to ground.
- the heating heater 14 is energized, and nitrogen gas is supplied to the gas supply passage 21 in the base 10.
- the nitrogen gas may be preheated to a predetermined temperature, for example, 40 to 50 ° C.
- the nitrogen gas is guided to the main heating gas flow generation chamber 17 through the gas flow ports 22 and 23, and is heated to 250 to 600 ° C. by the heating heater 14 so that the main heating is performed.
- a gas stream 30 is generated, and the main heated gas stream 30 is ejected from the first nozzle 19 via the gas flow port 24.
- the ejection amount of this main heating gas stream 30 is set to 0.5 to 2.0 liters Z, and the ejection pressure is set to 0.1 to 2.0 kgf / cm 2 ⁇ G.
- a part of the nitrogen gas heated and expanded in the main heating gas flow generation chamber 117 is guided by the back pressure to the preheating gas flow generation chamber 118 via the gas flow port 25, and is 1 0 0 ⁇ 2 0 0 a C be heated preheat gas flow 3 1 produced by radiant heat from the convection and heat arsenide Isseki 1 4 hot nitrogen gas in the flow generating chamber one 1 7, the gas flow port 2 6 Around the main heating gas flow 30 from the second nozzle 20 through It is squirted over.
- the ejection amount of this preheating gas stream 31 is set to 0.5 to 2.0 liters Z, and the ejection pressure is set to 0.1 to 2.0 kgf / cm 2 ⁇ G.
- a preheating gas flow 31 is blown onto the soldering portion W of the substrate to preheat the soldering portion W, and then the main heating gas flow 30 is blown.
- 0 is sprayed onto the soldering site W with its surroundings covered by the preheating gas flow 31 as shown in Fig. 3, and it does not scatter around as it is in the past, so the solder melts immediately .
- the molten solder is slowly cooled by a preheating gas stream 31 until just before the start of solidification, and then rapidly cooled by being exposed to the atmosphere.
- the non-contact soldering iron of the present example required 1 second. It was confirmed that the soldering could be completed in a certain degree. Therefore, the non-contact type soldering of the present embodiment can be practically adopted instead of the conventional soldering port bot / soldering in the automatic soldering machine.
- the molten solder when the heat of the molten solder is rapidly absorbed by the surroundings, the molten solder is rapidly cooled as a whole, and fine quenched crystals, fine columnar crystals, and fine free crystals are formed, but the columnar crystals are crystal columns. Grain boundaries containing impurities and gases are likely to be generated in parallel with the crystal, and the free crystals are likely to contain flux gases and impurity gases.
- the main heating gas flow 30 and the preheating gas flow 31 with appropriate pressure are blown to the molten solder, the solder and flux do not flow out of the soldering portion W, and the molten solder force is applied. Pressurizes and releases gas, eliminating bubbles and gas holes.
- the dendrites can be filled with the molten solder by this pressurization, and microporosity and macroporosity (porosity) can be prevented, resulting in a dense crystal structure.
- the whole of the molten solder is rapidly cooled, so that the distance between the liquidus and solidus of the molten solder is substantially reduced, and the pressurizing effect is exerted, resulting in macro-segregation (Pb, Sn, etc.) and micro-segregation.
- Pb, Sn, etc. macro-segregation
- micro-segregation Dendritic crystals, layered structure, nucleated structure, etc., of segregation are reduced, impurities and gas are reduced, and solidified solder with fine crystal structure can be obtained.
- the ejection pressure of the main heating gas flow 30 and the preheating gas flow 31 is set appropriately. Therefore, electrification due to gas friction is unlikely to occur, and since the iron body 11 is grounded, the main heating gas flow generation chamber 117 As a result, the positive charge of the main heating gas flow 30 and the preheating gas flow 31 can be removed by electrostatically inducing a negative charge inside the flow generation chamber 18, and as a result, the electrostatic breakdown at the soldering site W is reduced. The fear can be reliably eliminated.
- FIG. 5 shows a first modification of the above embodiment.
- the tip of the second nozzle 20 protrudes forward from the tip of the first nozzle 19, and the inner stainless steel tube 13 is made of beryllium copper, chromium copper, or another alloy having good heat conductivity.
- the inner alloy tube 13 and the first nozzle 19 are integrally formed, and the second nozzle 20 and the outer stainless steel tube 12 are integrally formed.
- the first nozzle 19 employs a divergent nozzle structure in which the inner surface expands in an arcuate cross section.
- the inner diameter of the tip of the first nozzle 19 is set to 0.1 to 0.5 mm
- the inner diameter of the second nozzle 20 is set to 0.5 to 4.0 mm
- a flat surface 20a of 1-2 mm is formed on the inner surface of the tip portion of the nozzle 20 to stabilize the preheating gas flow.
- the die nozzle is used as the first nozzle 19, so that a high-speed main heating gas flow can be obtained by the structure, and the tip of the second nozzle 20 is connected to the first nozzle 19. Since the preheating gas flow and the high-speed main heating gas flow accelerate each other, the main heating gas flow and the high-speed preheating gas flow are further increased. As a result, even after a certain distance between the tip of the first and second nozzles 19 and 20 and the work soldering site, Thermal decay of the main heating gas flow and the preheating gas flow until reaching the work soldering site is small, and the consumption of nitrogen gas (or air) can be suppressed.
- FIG. 6 shows a second modification.
- a hollow ceramic heater is used as the heater 14, and a main heating gas flow generation chamber 117 is formed inside the heater 14.
- a coil-shaped material 17a made of a molybdenum-based alloy or a tungsten-based alloy is housed in the heater 14 to impart a swirl to the main heating gas flow to reduce heat unevenness of the main heating gas flow.
- the second nozzle 2 A spiral fin or a spiral groove is formed on at least one of 0 and Z or the outer surface of the outer cylinder 12 and the first nozzle 19 and Z or the outer surface of the inner nozzle 13 so as to impart a swirl to the preheating gas flow. Is also good.
- FIG. 7 shows a third embodiment of the present invention.
- the soldering iron body 30 and the grip portion (trowel base) 31 and the force, and the iron body 30 have a heating heater (for example, a round barbed aluminum nitride
- the tip of the heater 32 is inserted into the hole of the tip holder 33, the tip 34 of the tip holder 33 is fixed to the tip 34, and the heat of the heating heater 32 is generated.
- the tip 34 is transmitted to the tip 34 to be heated.
- the rear end of the heater 32 is inserted into and held by a central hole of a holder 135 built in the tip of the grip portion 30, and the heating heater 32 is provided with a temperature sensor (not shown). ) Is attached.
- An auxiliary heater for controlling the temperature of the preheated gas flow may be installed.
- a plurality of nitrogen gas supply holes are formed in an annular shape in the holder 35, and the end of a nitrogen gas supply pipe 36 inserted into the grip portion 30 is connected to the holder 35, and a heater 3 2
- a power line 32a extends rearward in the nitrogen gas supply pipe 36 from the rear end.
- a first protective cover 37 is fixed to the end of the grip portion 30.
- the first protective cover 37 covers the periphery of the heating heater 32 and is provided between the tip holder 33 and the heating cover 32.
- a predetermined gap for example, 1 mm, is left to the front end side with a predetermined gap, and the front end is opened around the front end tip 34, thus constituting the preheating gas flow generation chamber 38.
- the tip of the first protective cover 37 extends as close to the tip 34 as possible, so that it does not touch the workpiece during soldering.
- the heater 32 is energized to heat the tip chip 34 at 280 to 38 (while heating to TC, while nitrogen gas is applied to the soldering iron).
- the supply pipe 36 is supplied with nitrogen gas having a pressure of 1.0 to 5.0 kg / cm 2 , a flow rate of 4 liters Zmin, and a purity of 99 to 99.9%. Good, intermittent supply, then preheating gas flow
- the nitrogen gas passing through the chamber 38 is heated to 200 CC to 25 O CC by the radiant heat of the tip 34 due to the heat generated by the heater 32, increasing its volume and discharged forward as it is. You.
- the flow rate and pressure of the nitrogen gas can be adjusted by setting the inner diameter and number of the nitrogen gas supply holes of the holder 135. It is also possible with an external pressure regulator or flow regulator.
- a preheating gas flow is blown to the soldering portion of the board for 2 to 5 seconds to preheat the soldering portion, thereby activating a low residue flux at the soldering portion.
- the tip 34 may be brought into contact with the soldering portion at the same time as the preheating gas flow is sprayed.
- the concentration of O 2 is 5 ppm or less, flat soldering is possible.
- the tip 34 is brought into contact with the soldering site and heated to supply the low-residue flux-containing threaded solder, which melts at the soldering site in a preheated gas flow atmosphere. A solder pile is formed. Next, the tip 34 is separated from the soldering site, and the molten solder is exposed to the atmosphere of the preheated gas flow, while rapidly cooling by blowing nitrogen gas at room temperature from the back surface of the substrate.
- the pressurized high-temperature nitrogen gas 65 can be used to pressurize and fill the gaps between the molten metals with the molten solder melt, preventing micro-macroporosity (porosity) and achieving a dense crystal structure. Become.
- the whole of the molten solder is rapidly cooled, so that the distance between the liquidus and solidus of the molten solder is substantially reduced, and a pressurizing effect is exerted, and macro-segregation (Pb, Sn, etc.)
- the solidified solder of fine crystal structure with few impurities and gas can be obtained by reducing the segregation of dendrite, lamellar structure, nucleated structure, etc.
- the solder flux is preheated to activate the flux and prevent the flux-solder ball from scattering, so that a smooth and good soldering operation can be performed.
- Preheating the electronic board before contacting the board mitigating local and rapid temperature rise (heat shock) of the electronic board and preventing thermal destruction of electronic components, as well as flux, electronic board and supplied solder
- the wire can also be preheated, so that the hot brittleness of the solder layer can be prevented.
- the solder and flux can be preheated with high-temperature nitrogen gas, the amount of heat stored in the tip of the soldering iron is small, and even if the tip of the chip is extremely fine, sufficient amount of heat can be used for soldering, resulting in low-temperature soldering. Can be achieved. Further, since the soldering iron chip is in a non-oxidizing atmosphere, the oxidation of the chip is prevented, the wettability of the molten solder can be improved, and the chip cleaning is almost unnecessary, and the chip life can be greatly improved.
- FIG. 8 shows a fourth embodiment of the present invention.
- a second protective cover 39 is fixed to the tip of the grip portion 30 outside the first protective cover 37, and the second protective force bar 39 is a first protective cover 3 7 is airtightly covered with a predetermined gap, for example, a gap of mm, and extends to the front end, and the front end is opened near the front end of the first protective cover 37, thereby generating a low-temperature gas flow.
- a chamber 40 is configured.
- a nitrogen gas supply hole is formed in the holder 135 such that the nitrogen gas is supplied to the low-temperature gas flow generation chamber 140 so that the nitrogen gas is also supplied to the holder 135.
- soldering is performed in substantially the same manner as in the above-described second embodiment.
- the substrate is exposed to the low temperature generated at 0, for example, the nitrogen gas atmosphere at room temperature. : Prevents child parts from receiving thermal alum.
- FIG. 11 shows a preferred embodiment of an inert gas purging apparatus to which the concept of the present invention is applied.
- the inert gas purging device comprises a main body 30 and a grip portion 31.
- the main body 30 has a built-in heater (for example, a round barbed aluminum nitride heater) 32, and a tip of the heater 32.
- a heat-insulating member made of a copper-based alloy with good thermal conductivity.
- Body 33 is inserted into the hole, and the heat generated by the heater 32 is transmitted to the heat retaining member 33 to heat the heat retaining member 33.
- the rear end of the heater 32 is inserted and held in the center hole of a holder 35 built in the tip of the grip portion 30, and a temperature sensor 39 is attached to the heater 32.
- a temperature sensor 39 is attached to the heater 32.
- a plurality of nitrogen gas supply holes are formed in an annular shape in the holder 35, and the end of a nitrogen gas supply pipe 36 passed through the grip portion 30 is connected to the holder 135, and a heater is provided.
- the power line 32 extends from the rear end of the line 32, and the nitrogen gas supply pipe 36 extends rearward in the line.
- a first protective cover 37 is fixed to the end of the grip portion 30.
- the first protective cover 37 covers the periphery of the heater 32 and is provided between the first protective cover 37 and the heat retaining member 33.
- a predetermined gap for example, a gap of l mm is extended to the front end side, and the front end is opened to surround the front end of the heat retaining member 33, thereby forming a high temperature gas flow generation chamber 38.
- inert gas purging equipment of this example when soldering with a soldering port bot and an automatic soldering machine, high-temperature inert gas is blown to the soldering area to protect the soldering area from the atmosphere. Ideal for preheating as well as for heating.
- FIG. 12 is a modification of the embodiment shown in FIG. 7, in which a cover 37 is attached to an existing soldering iron so as to cover a portion of the heating heater 33, and a gas is attached to the cover 37.
- the supply hose 62 is connected to achieve the same operation and effect as in FIG.
- the inner gas flow is heated within a predetermined clearance, and the expansion is used to reduce the outer gas flow. Since the gas flow is generated, the gas flow can be heated to a predetermined temperature without increasing the temperature of the heating means, so that not only continuous soldering but also intermittent soldering can be performed in a short time.
- soldering was performed with the inner main heating gas flow in the atmosphere surrounded by the outer preheating gas flow, so that the The heat of the main heated gas stream is not scattered to the surroundings. In addition, it can be efficiently transmitted to the soldering part of the work, and can be soldered in a short time without contact, that is, without using a tip chip.
- the molten solder since the soldering can be performed in an atmosphere in which the molten solder is slowly cooled, the molten solder has a preferable surface tension and exhibits a substantially hemispherical shape in a raised state. In addition, immediately before the start of solidification of the molten solder, it is rapidly cooled in an atmosphere at room temperature or lower, and it is possible to give the molten solder a directional solidification in which the distance between its liquidus and solidus is substantially reduced. This allows the solder to have a finely solidified structure.
- soldering can be performed.
- a preheating gas flow is injected around the tip tip, a low-temperature gas flow is injected as necessary around the tip, and the soldering portion is preheated with the preheating gas flow. Since the tip is used for soldering, there is little change in temperature of the tip due to contact with the soldered part, and the tip is heated by the preheating gas flow, resulting in almost all thermal stress on the tip Without this, the life of the tip can be greatly improved.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Electric Connection Of Electric Components To Printed Circuits (AREA)
Description
明糸田
間欠的半田付けが可能な非接触型半田ごて
技術分野
この発明は、 例えば電子部品の半田付けを非接触式でかつ間欠的に行えるよう にした半田ごてに関する。
背景技術
例えば、 電子機器を組立てる場合、 半田ごてを用いて電子基板に各種電子部品 や配線を半田付けすること力多い。
この種の半田ごてではヒー夕等で加熱した先端チップを電子基板のランドゃヮ ―クに接触させて半田を溶融させ、 先端チップを離して半田を凝固させる方式が 広く採用されている。
他方、 図 1 0に示すように、 半田ごて 1 0 0内にエアー通路を形成すとともに 、 加熱ヒ一夕 1 0 1を内蔵し、 先端にステンレス鋼ゃ真錄製のノズル 1 0 2を取 付け、 高温エアーを吹き付けて半田付けするようにした非接触式の半田ごても提 案されている。
しかし、 従来の接触式の半田付け方法では、 先端チップを半田付け部位に接触 させる関係上、 先端チップにヒートサイクルによる熱ストレスが作用するととも に、 錫の拡散及びフラックスによる浸蝕が発生して先端チップの寿命が短く、 半 田付けの精度を確保するためには 4〜5万回程度で交換する必要があった。 また 、 先端チップが電子基板や電子部品に直接接触するので、 先端チップから電子基 板や電子部品に洩れ電流、 ノイズ、 高調波、 静電気等が伝わり、 製品の電気特性 が劣化することが懸念されていた。
他方、 従来の非接触式の半田ごてでは、 上述のような問題は生じないものの、 高温エアーがワークに当たった後、 周囲に飛散してしまい、 熱を必要な箇所にス ポッ ト的に集中させることができず、 半田付けに 4〜5秒もかかってしまって実 用的でなく、 半田付けされた電子部品の取外し (リワーク) に利用されているの が実情である。
他方、 特公平 7— 8 3 9 4 0号に開示の半田付け方法では、 半田ごてを用い、 ワークの半田付け部位に高温気体流を吹き付けてヮークを半田付けするにあたり 、 半田ごての先端から半田を溶融軟化させるのに十分な高温の主加熱気体流を噴 出させるとともに、 上記主加熱気体流よりも低温でかつ半田を予熱するのに十分 な温度の予熱気体流を上記主加熟気体流を囲んで噴出させ、 上記予熱気体流をヮ ークの半田付け部位に吹き付けて予熱しながら、 上記主加熱気体流を予熱したヮ ークの半田付け部位に吹き付け、 上記予熱気体流で囲まれた雰囲気中で半田付け を行なうようにしている。 しかしながら、 かかる方法では連続的に気体流を噴出 させる場合は問題ないが、 間欠的に行う場合には加熱ヒータを十分に高温に昇温 させてから気体流を流通させる必要があり、 迅速に高温気体流を生成噴出するこ とが困難で、 実用的でない。
そこで、 本発明は、 非接角 ί式半田ごてにおいて、 間欠的半田付け作業に応答 して高温気体流を迅速に発生させることができる半田ごてを提供することを課題 とする。
発明の開示
本発明に係る半田ごては、 第 1のノズルを先端に備える主加熱気体流を生成す る第 1のチャンバ一、及び上記第 1のノズルの外側を覆って開放する第 2のノズ ルを先端に備え、 上記第 1のチャンバ一を包囲し、 予熱気体流を生成する第 2の チャンバ一を少なくとも備えるノズル手段と、 上記中央の第 1のノズル近傍の第 1のチャンバ一内に内壁とクリアランスをおいて配置され、 そのクリアランスを 通って、 ノズル口より噴出される不活性ガスを加熱する熱源を有する第 1のコア 加熱手段、 及び上記第 1のチヤンバーの少なくとも先端部を形成し、 上記第 1の コア加熱手段の熱源を包囲して蓄熱し、 上記第 1のチャンバ一と第 2のチヤンバ 一との間を通過する、 不活性ガスを加熱する第 2の加熱手段を少なくとも備える 加熱手段と、 上記第 1のチャンバ一に連通し、 不活性ガスを供給するとともに、 上記第 1のチヤンバーに供給する不活性ガスを第 2のチャンバ—に分岐して供給 する不活性ガス供給手段とを備え、 上記第 1のチヤンバーに供給される不活性ガ
スが上記クリアランスを通過する間に所定の加熱温度に昇温する一方、 第 1のチ ャンバ一内で昇温膨張する不活性ガスをその背圧により上記第 2のチヤンバーに 分岐供袷するようになしたことを特徴とする。
気体流は高濃度の不活性ガスが好ましい。 半田付け品質に対するエアー中の 0 2 の影響を考慮すると、 窒素ガス等の不活性ガスが好ましいからである。 第 1の コア加熱手段は発熱するものであればよく、 ニクロム線ヒータ、 セラミックスヒ 一夕、 高周波ヒー夕、 中周波ヒータ、 低周波ヒータ、 赤外線ヒー夕、 プラズマ発 熱体、 超音波発熱体、 エレマ発熱体等を用いることができるが、 本発明の作用効 果を奏する上で、 第 1のコア加熱手段は第 1のチャンバ一内に内壁とクリアラン スをおいて、 内挿されたロッド状ヒー夕、 特に A ^ 2 0 3 製ロッ ド状ヒー夕力望 ましい。
本発明の特徴の 1つは内側のノズルを囲んで外側のノズルを配置し、 内側の気 体流の昇温膨張を利用して外側の気体流を形成し、 外側の気体流で予熱し、 外側 気体流で囲んだ棼囲気中において内側の気体流で半田付けを行なうようにした点 にある。 これにより、 内側の気体流の熱が周囲に飛散してしまうことがなく、 非 接触式で短時間で半田付けが行なえ、 製品に対する洩れ電流、 ノイズ、 高調波の 影響を除去できる。 また、 所定のクリアランス内で不活性ガスを昇温させるよう にしているので、 コア加熱手段は単に不活性ガスを流通させる場合のような高温 にしなくとも不活性ガスを迅速に所望の温度に昇温させることができ、 連続的に 半田付けを行う場合ばかりでなく、 間欠的に半田付けを行う場合にも半田付け作 業を迅速に行うことができる。 但し、 静電気については気体流の摩擦、 特に気体 流を高速で噴出する場合における摩擦によって気体流が帯電し、 製品に対する電 気的影響が依然として懸念されるので、 これに対処することが必要である。 そこ で、 主加熱気体流及び予熱気体流の噴出圧力を気体流の帯電が電気的影響の懸念 されない程度となるような範囲、 具体的には 1〜3 k g i c m 2 · Gの圧力と するのが好ましレ、が、 第 1のノズルからのガス圧が第 2のノズルからのガス圧よ り大きくするのがよい。 また、 かかる圧力範囲を選択することによってノズル下
流側での保有エネルギーの低下を防止して半田付け時間を短縮できる。
また、 第 2の加熱手段は第 1のチャンバ一の先端部に少なくとも形成され、 上 記第 1のコァ加熱手段からの伝熱を蓄熱機能を有する部材からなるのがよく、 特 に蓄熱機能を有するノズル部材であつて、 ノズル口にノ、'ィブを挿入してノズル口 径を調節可能とするのが好ましい。 この第 2の加熱手段は銅又は銅合金製ノズル 部材とするのが好ましい。
また、 第 1のチヤンバーには第 2のチャンバ一と連通する気体流通口を有し、 第 1のチャンバ一に供給される不活性ガスを第 1のコア加熱手段により加熱膨張 されるとその背圧により、 第 1のチャンバ一に供給される不活性ガスの一部力上 記気体流通口を介して第 2のチヤンバーに供給されるように構成するのがよい。 この場合、 第 1のノズルの開口径が第 2のチヤンバ一^ ^の分岐供給口の開口径よ りも大きく、 第 1のノズル先端開口から加熱不活性ガスを噴射しつつ、 第 1のノ ズル内の背圧により第 1のノズル内に供給された不活性ガスの一部を第 2のノズ ルに供給するのがよい。
緻密でかつ盛りのょレ、半田付けとする上で、 付着した溶融半田をゆるやかな温 度特性でもって緩冷却しうる雰囲気中で半田付けを行い、 凝固開始直前から室温 以下の雰囲気で急冷却するのが肝要である。 本発明では気体流を内外二重とし、 外側の予熱気体流でもって予熱し、 内側の主加熱気体流で半田付けを行なった後 、 外側の予熱気体流で凝固開始直前まで緩冷却して室温以下の雰囲気に曝して急 冷却することができる。 本発明を電子部品の半田付けに適用する場合、 第 1のノ ズルに供給される不活性ガスは第 1のコア加熱手段により 2 5 0〜1 0 0 0 °C、 特に 3 0 0〜 6 0 (TCに加熱されるのがよく、 第 2のノズルに供給される不活性 ガスは 1 0 0〜3 0 0で、 特に 1 5 0〜2 0 0 °Cに加熱されるのが好ましい。 ま た、 第 1のノズルから噴射される不活性ガス流量が 1〜3 ^ //分とするのが入熱 両を大きくして半田付け時間を短縮する上で好ましい。
また、 本発明の作用効果を奏する上で、 クリアランスが非常に重要である。 そ こで、 第 2の加熱手段をなす第 1のチャンバ一の先端部内径と、 第 1のコア加熱
手段をなす口ッ ド状ヒータの先端部外径とのクリアランスがそこを通過する不活 性ガス力通過後所定の温度まで昇温可能に設定される寸法に設定する。 例えば、 ク リアランスは 0 . 1〜0 . 1 5 mmを採用できる。 第 1のノズル開口径は 0 . 2 〜 1 mm ?5、 第 2のノズルの開口径は 2〜 3 mm øを採用できる。
また、 本発明によれば、 前方先端にノズル部を有する筒体であって、 後方から 供給される気体流を筒体内で所定の温度まで加熱してノズル部から噴出させる高 温ガス噴射機構であつて、 ノズル部近傍に筒体内壁と所定のクリアランスを介し て筒体軸方向に延びるコア熱源と該コア熱源の外周を囲み、 上記筒体の一部をな して軸方向に延びる蓄熱カバ一とからなる加熱手段を備え、 上記クリアランスを 該加熱手段上流に至る気体流がクリアランス通過後ノズル部から発射前に所定の 噴射温度になるように設定してなる高温ガス噴射機構を提供できる。
筒体が筒体内背圧が所定以上になると筒体外に供給気体流を分流させる流通口 を有するのがよい。 また、 コア熱源前方のノズル部手前に温度センサ一を備え、 上記クリアランス通過後の気体流温度を検知し、 上記コア熱源温度を制御する、 のが好ましい。
また、 本発明によれば、 非接触式半田付け方法において、 不活性ガスを半田ご てに供給して加熱噴射するにあたり、 不活性ガスを第 1のチャンバーに供給し、 第 1のチヤンバーの前方先端に設けられたノズル近傍にて軸方向に延びるコア熱 源とそれを包囲する蓄熱カバ一とがなすクリアランスを通して所定の第】の温度 に昇温する工程と、 上記第 1のチャンバ一内で不活性ガスの昇温膨張によって生 ずる背圧により第 1のチャンバ一を囲む第 2のチャンバ一に連通口を介して不活 性ガスを供給し、 上記第 2のチャンバ一の前方に位置する上記蓄熱カバーの外周 を通過させることにより、 所定の第 2の温度に昇温する工程とを備え、
第 1の温度のガスを中心とし、 第 2の温度のガスが包囲するガス流を所定の半 田付け部位に噴射する、 非接触式半田付け方法を提供できる。 第 1のチャンバ一 内でのコア熱源と蓄熱カバーとがなすクリアランスを通過して不活性ガスを昇温 する時間が半田付けの間欠的作業に迅速に応答する時間に設定されているのが好
ましい。
溶融半田の凝固開始直前からの急冷却は大気に曝して行つてもょレ、が、 溶融半 田が凝固に際して潜熱を放出し、 それと同時に大気中の 02、 H 2、 C O等を溶 解し、 酸化及び気孔発生の原因となり、 又凝固直前の半田の酸化はブリッジ、 ッ ノ、 ッララ発生の最大要因であるので、 周囲を室温以下の低温窒素ガス雰囲気と してもよい。 低温窒素ガス雰囲気は室温、 具体的には 2 5 °C以下の温度とするが 、 急冷効果を確保することが好ましい。 例えば、 一 2 0 °C〜一 3 0 °Cとしてもよ い。 また、 ワーク表面側を低温窒素ガス雰囲気に曝すと、 溶融半田は表面側から 急冷却されるが、 ワーク裏面側に低温窒素ガスを吹き付けてワーク裏面側からも 急冷却すると急冷効果を促進してより一層微細な急冷凝固組織が得られるので好 ましい。
主加熱気体流生成チャンバ一は製造の簡単さの観点からは発熱体の周囲に形成 するのがよいが、 発熱体の内部に形成してもよい。 ノズルの形状は特に限定され ないが、 気体流はより高速で噴射するのがよいことから、 例えばダイバージ Xン トノズルを使用するのが好ましい。 また、 予熱気体流は主加熱気体流を囲んで真 直に噴出させてもよいが、 予熱気体流生成チャンバ一の内面に螺旋状フィンゃ螺 旋溝を形成し、 予熱気体流を螺旋状に旋回させて予熱気体流で囲まれる空間内の エアーを吸い出し、 その伏態で主加熱気体流を噴射させ、 主加熱気体流の半田付 け効率をアップさせることができる。 第 1、 第 2のノズルの先端の位置関係は第
1ノズルの先端よりも第 2ノズルの先端を突出させてもよく、 逆の位置関係にな つてもよレ、。 後者はワークの素子が小さい、 特に超ファインピッチの場合、 例え ば電子部品の半田付けを行う場合に好ましい。
ところで、 上述のように主加熱気体流体及び予熱気体流体の噴出圧力を適切に 設定しても気体流の帯電は依然として残ることがある。 そこで、 こて本体をァー スし、 主加熱気体流生成チャンバ一及び予熱気体流生成チャンバ一の内側にマイ ナス電荷を静電誘導させて主加熱気体流及び予熱気体流のブラス電荷を除去でき るようにするのがよい。
また、 本発明ではワークの半田付け部位を予熱気体流で予熱しているので、 先 端チップを半田付け部位に接触させる方式であっても、 先端チップの温度低下は 小さく、 しかも先端チップが予熱気体流で加熱されて迅速に昇温する結果、 先端 チップの熱ストレスを小さくできる。
即ち、 本発明によれば、 半田ごてを用いてワークの半田付け部位を半田付けす るにあたり、 半田ごての先端から上記先端チップよりも低温でかつ半田を予熱す るのに十分な温度の予熱気体流を上記先端チップを囲んで噴出させ、 該予熱気体 流をワークの半田付け部位に吹き付けて予熱した後、 該予熱したワークの半田付 け部位を上記先端チップによつて上記予熱気体流で囲まれた雰囲気中で半田付け するようにしたことを特徵とする接触式の半田付け方法を提供できる。
この場合、 予熱気体流は先端チップのヒートサイクルを小さく しかつ温度低下 した先端チップを迅速に所定温度に復帰させる上で、 上述の内外二重の気体流を 形成する場合に比してより一層高温とするのが好ましい力 半田付け部位近傍の ワークや素子 (例えば、 電子素子) に対する熱影響が懸念される。 そこで、 半田 ごての先端から予熱気体流の周囲を囲んで予熱気体流より低温の低温気体流を噴 射させ、 ワーク半田付け部位の予熱時及び半田付け時に半田付け部位近傍のヮ― ク及び素子を低温気体流で予熱気体流の熱から保護するようにしてもよい。 また、 本発明によれば上述の接触式の半田付け方法に使用する半田ごてを提供 することができる。
即ち、 本発明によれば、 こて本体に内蔵された発熱体の発熱にて先端チップを 加熱可能となした半田ごてにおいて、 上記発熱体の周囲にはその先端側を先端チ ップの周囲に開放して予熱気体流生成チャンバ一が形成され、 上記発熱体の発熱 によって上記先端チップよりも低温でかつ半田を予熱するのに十分な温度の予熱 気体流が生成されて上記先端チップの周囲に噴出されるようになしたことを特徴 とする接角虫式の半田ごてを提供することができる。
この場合、 予熱気体流生成チャンバ—の周囲には低溫気体流生成チャンバ一を 形成してその先端側を予熱気体流の先端開放口部の周囲に開放させ、 予熱気体流
生成チャンバ一からの対流熱及び Z又は輻射熱による加熱によって予熱気体流よ りも低温の低温気体流を生成して予熱気体流の周囲に噴出させる構造を採用して もよい。
また、 上述の接触式の半田ごての構造を利用すれば、 半田付ロボッ トゃ自動半 田付機において半田付けする際に、 その半田付け部位に高温の窒素ガス等、 高温 不活性ガスを吹き付け、 半田付け部位を大気から保護するとともに予熱するのに 適した不活性ガスパ一ジ器具を提供することができる。
即ち、 本発明に係る不活性ガスパージ器具は、 全体として半田ごて形状をなし 、 発熱体を内蔵し、 該発熱体の先端部に保熱体が取付けられて上記発熱体の発熱 (こて上記保熱体を加熱可能となす一方、 上記発熱体の周囲にはその先端側を上記 保熱体の先端周囲に開放して予熱気体流生成チャンバ一が形成され、 上記発熱体 及び保熱体からの輻射熱によつて高温気体流が生成されて前方に噴出されるよう になしたことを特徴とする。
図面の簡単な説明
第 1図は本発明に係る半田ごての第 1の実施形態を示す要部断面構成図である 。 第 2図は本発明に係る半田ごての第 2の実施形態を示す要部断面構成図であ る。 第 3図はその I— I線断面図である。 第 4図は上記半田ごてを用いた半田付 け方法を説明するための図である。 第 5図は上記半田ごての第 1の変形例を示す 断面図である。 第 6図は上記半田ごての第 2の変形例を示す断面図である。 第 7 図は本発明に係る半田ごての第 3の実施形態を示す要部断面構成図である。 第 8 図は本発明に係る半田ごての第 3の実施形態を示す要部断面構成図である。 第 9 図は第 8図の半田ごてにおけるホルダ一 3 5を示す斜視図である。 第 1 0図は従 来の非接触式の半田ごてを示す構成図である。 第 1 1図は本発明に係る不活性ガ スパージ器具の好ましい実施形態を示す図である。 第 1 2図は第 7図の変形例を 示す図である。
好ましい実施形態の説明
以下、 本発明を図面に示す具体例に基づいて詳細に説明する。 図 1は本発明に
係る非接触による半田ごての好ましい実施形態を示す。 こて基部の先端にはこて 本体 1 1の後端部が螺合ゃビス止め等の方法によって取付けられ、 該こて本体 1 1は内外二重のステンレス筒 1 2、 1 3と中央のロッド状アルミナセラミック製 の加熱ヒータ (コア加熱手段) 1 4とを含んて構成されている。
内側のステンレス筒 1 2の先端には開口径 2〜 3 mmの銅製の第 1のノズル ( 蓄熱カバーを兼用) 1 9が嵌合固定され、 該第 1のノズル 1 9の内径面と加熱ヒ —夕 1 4の外径面との間には 0 . 1〜0 . 1 5 mmのクリアランスが形成されて いる。 また、 第 1のノズル 1 9の先端にはステンレス製パイプ 6 1が差し込まれ てノズル径が 0 . 5〜1 . O mmに調整されている。
また、 第 1のノズル 1 9及び内側ステンレス筒 1 3と力 Π熱ヒータ 1 4との間は ヒータ加熱によつて半田を溶融軟化するのに十分な高温の主加熱気体流を生成す る主加熱気体流生成チャンバ一(第 1のチャンバ一) 1 7、 内外のステンレス筒 体 1 2、 1 3の間は対流熱及び 又は輻射熱による加熱によって主加熱気体流よ りも低温でかつ半田を予熱するのに十分な温度の予熱気体流を生成する予熱気体 流生成チャンバ一 (第 2のチャンバ一) 1 8となっている。
また、 外側ステンレス筒 1 2の先端には第 1のノズル 1 9の外側全周を覆うプ リヒートノズル (第 2のノズル) 2 0が外嵌されている。
また、 こて基部は中空状をなして内部が気体供給通路となっており、 こて本体 1 1の後端部には第 1の気体流通口 2 2が形成されて主加熱気体流生成チャンバ 一 1 7に不活性ガスを供給するようになっている。 なお、 気体供給通路はこて基 部の外側に支持したホース等で構成することもできる。
さらに、 内側ステンレス筒 1 3の基部側には気体流通口 2 5が形成され、 主加 熱気体生成チャンバ一 1 7内で昇温膨張した不活性ガスの一部がその背圧によつ て予熱気体流生成チャンバ一 1 8に分岐供給されるようになっている。
また、 加熱ヒータ 1 4の先端には主加熱気体流の温度を検知してコントロール を行なうためのセンサー 2 7が取付けられ、 又図示していないが、 ステンレス筒 1 2及び 1 3にはアースが接続されている。
本例においては加熱ヒ一夕 1 4が表面温度 7 0 0〜9 0 0 °Cに加熱され、 その 輻射熱によって第 1のノズル 1 9が 3 0 0〜5 7 (TCに加熱されており、 不活性 ガスが内側ステンレス 1 2内に供給され、 クリアランスに達すると、 3 0 0〜6 0 0 °Cに昇温されて 2〜 3倍に膨張し、 主加熱気体流として第 1のノズル 1 9か ら瞬時に噴射されるが、 同時に膨張した不活性ガスの一部はその背圧によって予 熱気体流生成チャンバ一 1 8に案内され、 そこで第 1のノズル 1 9の輻射熱及び ガス自体の対流熱によって 1 5 0〜2 8 0 °Cに維持され、 予熱気体流として主加 熱気体流の周囲に噴射される。 その結果、 主加熱気体流は温度低下することなく 、 又酸素を巻き込むことなく半田付け部位に投与されることとなる。 また、 予熱 気体流によって半田付け部位を予熱することもできる。
図 2及び図 3は本発明に係る非接触による半田ごての第 2の実施形態を示す。 こて基部 1 0の先端にはこて本体 1 1の後端部が螺合ゃビス止め等の方法によつ て取付けられ、 該こて本体 1 1は内外二重のステンレス筒 1 2、 1 3と中央の棒 状アルミナセラミック製の加熱ヒータ (発熱体) 1 4とを含み、 内側ステンレス 筒 1 3は外側ステンレス筒 1 2の内面にスぺ一サ片 (図示せず) によって支持さ れている。
上記加熱ヒー夕 1 4は金属製のカバー 1 5によって内側ステンレス筒 1 3内面 に支持され、 上記カバー 1 5の後端には板状スぺ一サ部 1 6が形成されており、 上記カバー 1 5と内側ステンレス筒 1 3との間はヒータ加熱によって半田を溶融 軟化するのに十分な高温の主加熱気体流を生成する主加熱気体流生成チヤンバー
1 7、 内外のステンレス筒体 1 2、 1 3の間は対流熱及びノ又は輻射熱による加 熱によって主加熱気体流よりも低温でかつ半田を予熱するのに十分な温度の予熱 気体流を生成する予熱気体流生成チャンバ一 1 8となっている。
また、 内側のステンレス筒 1 3の先端にはモリプデン製の第 1のノズル 1 9が 嵌合され、 該第 1のノズル 1 9は外側ステンレス筒 1 2の先端壁の揷通穴から突 設され、 外側ステンレス筒 1 2の先端には第 1のノズル 1 9の外側全周を覆う第
2のノズル 2 0が外嵌されている。
また、 こて基部 1 0は中空状をなして内部が気体供給通路 2 1となっており、 こて本体 1 1の後端部には第 1の気体流通口 2 2が、 カバー 1 5の板伏スぺーサ 部 1 6には第 2の気体流通口 2 3が、 さらにカバー 1 5の先端部には第 3の気体 流通口 2 4が形成されて主加熱気体流生成チヤンバー 1 7で生成された主加熱気 体流が第 1のノズル 1 9に向けて案内されるようになっている。 なお、 気体供給 通路 2 1はこて基部 1 0の外側に支持したホース等で構成することもできる。 さらに、 カバー 1 5より後方の内側ステンレス茼 1 3には第 4の気体流通口 2 5力 外側ステンレス筒 1 2の先端には第 5の気体流通口 2 6が形成され、 主加 熱気体生成チャンバ— 1 7内で昇温膨張した不活性ガスの一部がその背圧によつ て予熱気体流生成チャンバ一 1 8に分岐供給されるようになっている。
また、 加熱ヒータ 1 4の先端には主加熱気体流 3 0の温度を検知してコント口 ールを行なうためのセンサ一 2 7が取付けられ、 又図示していないが、 ステンレ ス茼 1 2及び 1 3にはアースが接続されている。
次に、 半田付け方法について説明する。 本例の半田ごてを用いて非接触で半田 付けを行う場合、 まず加熱ヒー夕 1 4に通電するとともに、 こて基部 1 0内の気 体供給通路 2 1に窒素ガスを供給する。 この窒素ガスは予め所定温度、 例えば 4 0〜5 0 °Cに予熱してもよし、。 すると、 窒素ガスは気体流通口 2 2、 2 3を介し て主加熱気体流生成チャンバ一 1 7に案内され、 加熱ヒー夕 1 4によって 2 5 0 〜6 0 0 °Cに加熱されて主加熱気体流 3 0が生成され、 主加熱気体流 3 0は気体 流通口 2 4を経て第 1のノズル 1 9から噴出される。 この主加熱気体流 3 0の噴 出量は 0 . 5〜2 . 0リットル Z分に、 噴出圧力は 0 . 1〜2 . 0 k g f / c m 2 · Gに設定される。
同時に、 主加熱気体流生成チャンバ一 1 7内で昇温膨張した窒素ガスの一部は その背圧によって気体流通口 2 5を介して予熱気体流生成チャンバ一 1 8に案内 され、 主加熱気体流生成チャンバ一 1 7における高温窒素ガスの対流及び加熱ヒ 一夕 1 4からの輻射熱によって 1 0 0〜2 0 0 aCに加熱されて予熱気体流 3 1が 生成され、 気体流通口 2 6を経て第 2のノズル 2 0から主加熱気体流 3 0の周囲
を覆って噴出される。 この予熱気体流 3 1の噴出量は 0 . 5〜2 . 0リットル Z 分に、 噴出圧力は 0 . 1〜2 . O k g f / c m 2 · Gに設定される。
こうして準備が済むと、 まず基板の半田付け部位 Wに予熱気体流 3 1を吹き付 けて半田付け部位 Wを予熱した後、 主加熱気体流 3 0を吹き付けるが、 高温の主 加熱気体流 3 0は図 3に示すように予熱気体流 3 1で周囲を覆われた状態で半田 付け部位 Wに吹き付けられ、 従来のように周囲にそのまま飛散することがないの で、 半田がすぐに溶融する。 その後、 溶融半田は予熱気体流 3 1で凝固開始直前 まで緩冷却され、 大気に曝されて急冷される。
本件発明者らの実験によれば、 従来の非接触式の半田ごてでは半田付けが完了 するまでに 4〜 5秒必要であつたが、 本例の非接触式の半田ごてでは 1秒程度で 半田付けを完了させることができることが確認された。 従って、 従来の半田付口 ボットゃ自動半田付機における半田付けに代え、 本例の非接触式の半田付けを実 用的に採用できる。
また、 溶融半田の熱が周囲に急激に吸熱されると、 溶融半田は全体として急冷 却され、 微細な急冷晶、 微細な柱状晶、 微細な自由晶が形成されるが、 柱状晶は 結晶柱に平行に不純物やガスを含む粒界が発生しやすく、 又自由晶はフラックス ガスや不純物ガスが含みやすい。 これに対し、 溶融した半田には適切な圧力の主 加熱気体流 3 0及び予熱気体流 3 1の吹き付けられるので、 半田やフラックスが 半田付け部位 Wの外方に流れ出ることなく、 溶融半田力加圧され、 ガスを放出さ せ、 気泡やガス穴をなくすことができる。 また、 かかる加圧によって樹枝状晶間 を溶融半田の融液で加 E充満させることができ、 ミクロポロシティ一やマクロポ 口シティ一(気孔) を防ぎ、 緻密な結晶構造となる。
従って、 溶融半田の全体が急冷されて溶融半田の液相線と固相線の間隔が実質 的に小さくなるとともに、 加圧効果が発揮され、 マクロ的偏析 (P b、 S n等) 及びミクロ的偏析の樹枝伏晶、 層状組織、 有核組織等を減少して不純物やガスの 少なし、微細な結晶組織の凝固半田が得られる。
また、 主加熱気体流 3 0及び予熱気体流 3 1の噴出圧力を適切に設定している
ので、 気体摩擦による帯電が起こり難く、 しかもこて本体 1 1をアースしている ので、 たとえ気体流 3 0、 3 1がブラスに帯電しても主加熱気体流生成チャンバ 一 1 7及び予熱気体流生成チャンバ一 1 8の内側にマイナス電荷を静電誘導させ て主加熱気体流 3 0及び予熱気体流 3 1のプラス電荷を除去することができる結 果、 半田付け部位 Wにおける静電破壊のおそれを確実に解消できる。
図 5は上記実施形態の第 1の変形例を示す。 本例では第 2のノズル 2 0の先端 が第 1のノズル 1 9の先端より前方に突設され、 又内側ステンレス筒 1 3がベリ リウム銅、 クロム銅又はその他の熱伝導性のよい合金の筒に変更され、 該内側の 合金筒 1 3と第 1のノズル 1 9とが一体に形成され、 又第 2のノズル 2 0と外側 ステンレス筒 1 2とが一体に形成されている。 第 1のノズル 1 9には内面が断面 円弧伏に脹らんだダイバージェントノズル構造が採用されている。 また、 寸法的 には第 1のノズル 1 9の先端内径は 0 . 1〜0 . 5 mmに、 第 2のノズル 2 0の 内径は 0 . 5〜4 . 0 mmに設定され、 又第 2のノズル 2 0の先端部位内面には 1〜2 mmの平坦面 2 0 aが形成されて予熱気体流が安定化されている。
本例では第 1のノズル 1 9にダイパージェントノズルを採用しているので、 そ の構造によって高速の主加熱気体流が得られ、 しかも第 2のノズル 2 0の先端を 第 1のノズル 1 9のそれよりも突設させているので、 予熱気体流と高速の主加熱 気体流とが相互に加速し合い、 より一層高速の主加熱気体流と高速の予熱気体流 が得られる。 その結果、 第 1、 第 2のノズル 1 9、 2 0の先端とワーク半田付け 部位との間に一定の距離をおいても、 第 1、 第 2のノズル 1 9、 2 0を出てから ワーク半田付け部位に達するまでの主加熱気体流及び予熱気体流の熱減衰が少な く、 窒素ガス (又はエア一) の消費量を抑制することができる。
また、 図 6は第 2の変形例を示す。 本例では加熱ヒータ 1 4として中空のセラ ミックスヒータが使用され、 加熱ヒータ 1 4の内部に主加熱気体流生成チャンバ 一 1 7が形成されている。 この加熱ヒータ 1 4内にはモリブデン系合金又はタン グステン系合金からコイル形状材 1 7 aが収容され、 主加熱気体流に旋回を付与 して主加熱気体流の熱ムラを低減するようになっている。 なお、 第 2のノズル 2
0及び Z又は外側筒 1 2内面、 及び第 1のノズル 1 9及び Z又は内側茼 1 3外面 の少なくとも一方に螺旋フィン又は螺旋溝を形成し、 予熱気体流に旋回を付与す るようにしてもよい。
図 7は本発明の第 3の実施形態を示す。 図において、 半田ごてはこて本体 3 0 とグリップ部 (こて基部) 3 1 と力、らなり、 こて本体 3 0には加熱ヒー夕 (例え ば、 丸棒伏の窒化アルミナヒ一夕) 3 2が内蔵され、 加熱ヒータ 3 2の先端部は チップホルダー 3 3の穴内に挿入され、 チップホルダ一 3 3の先端にはチップ 3 4が固定され、 加熱ヒ一夕 3 2の発熱が先端チップ 3 4に伝達されて先端チップ 3 4が加熱されるようになっている。
また、 加熱ヒータ 3 2の後端部はグリップ部 3 0の先端に内蔵されたホルダ一 3 5の中央穴に揷入して保持され、 又加熱ヒー夕 3 2には温度センサ一 (図示せ ず) が取付けられている。 なお、 予熱気体流を温度調節するための補助ヒー夕を 設置してもよい。 このホルダー 3 5には複数の窒素ガス供給穴が環状に形成され 、 ホルダ一 3 5にはグリッブ部 3 0内に挿通された窒素ガス供給パイプ 3 6の先 端が接続され、 加熱ヒータ 3 2の後端から電源線 3 2 aが窒素ガス供給パイブ 3 6内を後方に延設されている。
また、 グリップ部 3 0の先端には第 1の保護カバ一 3 7が固定され、 第 1の保 護カバー 3 7は加熱ヒー夕 3 2の周囲を覆うとともに、 チップホルダ一 3 3との 間に所定の隙間、 例えば l mmの隙間をあけて先端側に延び、 その先端は先端チ ッブ 3 4の周囲に開放され、 こうして予熱気体流生成チャンバ一 3 8が構成され ている。 この第 1の保護カバー 3 7の先端は半田付け時にワークと当たらない程 度で、 可能な限り先端チップ 3 4近傍まで延設するのがよい。
次に、 使用方法について説明する。 本例の半田ごてを用いて半田付けを行う場 合、 まず加熱ヒータ 3 2に通電して先端チップ 3 4を 2 8 0で〜 3 8 (TCに加熱 する一方、 半田ごての窒素ガス供給パイプ 3 6には圧力 1 . 0〜5 . 0 k g/ c m2 、 流量 4リッ トル Zm i n、 純度 9 9〜9 9 . 9 %の窒素ガスを供給する。 窒素ガスの供給は連続供給でもよく、 間欠供給でもよい。 すると、 予熱気体流生
成チヤンバー 3 8を通過する窒素ガスは加熱ヒータ 3 2の発熱による先端チップ 3 4の輻射熱により 2 0 0 'C〜2 5 O 'Cに加熱され、 体積が増大し、 そのまま前 方に放出される。 なお、 窒素ガスの流量及び圧力はホルダ一 3 5の窒素ガス供給 穴の内径や数の設定によって調整できる。 また、 外部の圧力調整器や流量調整器 によっても可能である。
こうして準備が済むと、 まず基板の半田付け部位に 2〜 5秒間、 予熱気体流を 吹き付けて半田付け部位の予熱(プリヒート) を行い、 これにより半田付け部位 の低残渣フラックスを活性化できる。 また、 予熱気体流を吹き付けると同時に、 先端チップ 3 4を半田付け部位に接触させてもよい。 また、 02 濃度 5 p p m以 下の場合はフラッタスレス半田付けを可能である。
次に、 約 0 . 3〜 8秒で、 先端チップ 3 4を半田付け部位に接触して加熱 して低残渣フラックス入りの糸半田を供給し、 予熱気体流の雰囲気中で半田付け 部位に溶融半田の盛りを形成させる。 次に、 半田付け部位から先端チップ 3 4を 離し、 溶融半田を予熱気体流の雰囲気に曝す一方、 基板の裏面から室温の窒素ガ スを吹き付けて急冷却する。
すると、 溶融半田の熱が周囲に急激に吸熱されて溶融半田は全体として急冷却 され、 微細な急冷晶、 微細な柱状晶、 微細な自由晶が形成される。 柱状晶は結晶 柱に平行に不純物やガスを含む粒界が発生しやすく、 又自由晶のフラックスガス や不純物ガスに対し高温窒素ガス 6 5の圧力 1 . 0〜5 . 0 k g / c z によつ て溶融半田を加圧し、 ガスを放出させ、 気泡やガス穴をなくすことができる。 ま た、 加圧された高温窒素ガス 6 5により樹技伏晶間を溶融半田の融液で加圧充満 させることができ、 ミクロ 'マクロポロシティ一(気孔) を防ぎ、 緻密な結晶構 造となる。
従って、 溶融半田の全体が急冷されて溶融半田の液相線と固相線の間隔が実質 的に小さくなるとともに、 加圧効果が発揮され、 マクロ的偏析 (P b、 S n等) 及びミクロ的偏析の樹技伏晶、 層状組織、 有核組織等を減少して不純物やガスの 少ない微細な結晶組織の凝固半田が得られる。
また、 半田フラックスを予熱してフラックスの活性化及びフラックスゃ半田ボ —ルの飛散防止を図って円滑で良好な半田付け作業を行うことができ、 又高温の 半田ごて 3 4のチップが電子基板に接触する前に電子基板を予熱し、 電子基板の 局部的で急激な温度上昇 (ヒートショック) を緩和して電子部品の熱破壊を防止 でき、 さらにはフラックス、 電子基板及び供給される半田線をも予熱できる結果 、 半田層の熱間脆性を予防できる。
また、 半田及びフラックスを高温窒素ガスで予熱できる結果、 半田ごてのチッ プの蓄熱量は少なくて済み、 チップ先端を極細にしても十分な熱量による半田付 けができ、 結果的には低温半田付けが達成できることとなる。 さらに、 半田ごて のチップが無酸化雰囲気内にあるので、 チップの酸化が防止されて溶融半田の濡 れ性を向上でき、 又チップクリーニングがほとんど不要となり、 チップ寿命を大 に向上できる。
図 8は本発明の第 4の実施形態を示す。 本例ではグリッブ部 3 0の先端には第 1の保護カバー 3 7の外側にて第 2の保護カバ一 3 9が固定され、 第 2の保護力 バー 3 9は第 1の保護カバ— 3 7の周囲を所定の隙間、 例えば mmの隙間をあ けて気密的に覆って先端側に延び、 その先端は第 1の保護カバー 3 7の先端部近 傍に開放され、 こうして低温気体流生成チャンバ一 4 0が構成されている。 なお 、 図 8に示されるように、 ホルダ一 3 5には低温気体流生成チャンバ一 4 0にも 窒素ガスが供給されるように窒素ガス供給穴を内外二重の環伏に形成する。 本例においては上記第 2の実施形態とほぼ同様の方法にて半田付けを行うが、 予熱時及び半田付け時においては半田付け部位の周囲の基板や電子部品は低温気 体流生成チャンバ一 4 0で生成された低温、 例えば室温の窒素ガスの雰囲気中に 曝されるので、 周囲の基板や!:子部品が熱影礬を受けるのを防止できる。
図 1 1は本発明の考え方を応用した不活性ガスパージ器具の好ましい実施形態 を示す。 不活性ガスパージ器具は本体部 3 0とグリップ部 3 1とからなり、 本体 部 3 0には加熱ヒータ (例えば、 丸棒伏の窒化アルミナヒー夕) 3 2が内蔵され 、 加熱ヒータ 3 2の先端部は熱伝導性の良好な銅系合金からなる保熱部材 (保熱
体) 3 3の穴内に挿入され、 加熱ヒータ 3 2の発熱が保熱部材 3 3に伝達されて 保熱部材 3 3が加熱されるようになっている。
また、 加熱ヒータ 3 2の後端部はグリップ部 3 0の先端に内蔵されたホルダー 3 5の中央穴に挿入して保持され、 又加熱ヒータ 3 2には温度センサー 3 9が取 付けられている。 このホルダ一 3 5には複数の窒素ガス供給穴が環状に形成され 、 ホルダ一 3 5にはグリップ部 3 0内に揷通された窒素ガス供給パイブ 3 6の先 端が接続され、 加熱ヒータ 3 2の後端から電源線 3 2 a力、'窒素ガス供給パイプ 3 6内を後方に延設されている。
また、 グリッブ部 3 0の先端には第 1の保護カバ一 3 7が固定され、 第 1の保 護カバ一 3 7は加熱ヒータ 3 2の周囲を覆うとともに、 保熱部材 3 3との間に所 定の隙間、 例えば l mmの隙間をあけて先端側に延び、 その先端は保熱部材 3 3 の先端を囲んで開放され、 こうして高温気体流生成チャンバ一 3 8が構成されて いる。
本例の不活性ガスパージ器具は半田付口ボッ トゃ自動半田付機におし、て半田付 けする際に、 その半田付け部位に高温不活性ガスを吹き付け、 半田付け部位を大 気から保護するとともに予熱するのに最適である。
第 1 2図は第 7図に示す実施形態の変形例で、 既存の半田ごてにその加熱ヒ一 夕 3 3の部分を覆ってカバー 3 7を後付けにて取付け、 カバー 3 7には気体供給 ホース 6 2を接続して第 7図と同様の作用効果を奏するようにしている。
産業上の利用可能性
本発明によれば、 半田ごての先端から噴出される内外二重の気体流のうち、 内 側の気体流を所定のクリアランス内で昇温させ、 その膨張を利用して外側の気体 流を生成するようにしたので、 加熱手段をそれほど高温にしなくとも気体流を所 定の温度まで昇温でき、 連続的半田付けばかりでなく、 間欠的半田付けをも短時 間で行える。 また、 外側の予熱気体流で予熱した後、 外側の予熱気体流で囲まれ た雰囲気中において内側の主加熱気体流で半田付けを行なうようにしたので、 ヮ ーク半田付け部位に吹き付けられた主加熱気体流の熱が周囲に飛散することがな
く、 効率よくワークの半田付け部位に伝えられ、 短時間の内に非接触で、 即ち先 端チップを用いることなく半田付けができる。
その結果、 先端チッブの接触に起因する製品の電気的特性の劣化を防止でき、 又主加熱気体流及び予熱気体流の噴出圧力を適切に設定し、 こて本体をアースす ると、 気体流の帯電を確実に防止でき、 これによつて電子部品の静電破壊を防止 して製品の電気的特性を保証できる。
また、 溶融半田が緩冷却される雰囲気中で半田付けを行うことができるので、 溶融半田はその表面張力にて好ましレ、盛り上がり状態であるほぼ半球状を呈する 。 また、 溶融半田の凝固開始直前に室温以下の雰囲気中で急冷却され、 溶融半田 にその液相線と固相線間の間隔が実質的に小さくなった措向性凝固を与えること ができ、 これにより半田を微細凝固組織とできる。
その結果、 半田ボール、 ブリッジあるいは半田の飛び散りがなく、 しかも緻密 で P b、 S nの偏析ゃ気孔が極めて少なくて耐ヒートショック性に優れ、 しかも 盛りのよい高品質の無酸化、 無洗浄の半田付けを行うことができる。
また、 本発明によれば、 先端チップの周囲に予熱気体流を噴射させ、 必要に応 じてその周囲に低温気体流を噴射させ、 予熱気体流で半田付け部位を予熱し、 そ の状態で先端チッブで半田付けを行うようにしたので、 半田付け部位への接触に 起因する先端チップの温度変化が少なく、 しかも予熱気体流によって先端チップ が加熱される結果、 先端チップの熱ストレスがほとんど発生せず、 先端チップの 寿命を大幅に向上できることとなる。
Claims
1 . 第 1のノズルを先端に備える主加熱気体流を生成する第 1のチヤンバー、 及び上記第 1のノズルの外側を覆って開放する第 2のノズルを先端に備え、 上記 第 1のチヤンバーを包囲し、 予熱気体流を生成する第 2のチヤンバーを少なくと も備えるノズル手段と、
上記中央の第 1のノズル近傍の第 1のチヤンバ一内に内壁とクリアランスをお いて配置され、 そのクリアランスを通って、 ノズル口より噴出される不活性ガス を加熱する熱源を有する第 1のコア加熱手段、 及び上記第 1のチャンバ一の少な くとも先端部を形成し、 上記第 1のコア加熱手段の熱源を包囲して蓄熱し、 上記 第 1のチヤンバーと第 2のチャンバ一との間を通過する、 不活性ガスを加熱する 第 2の加熱手段を少なくとも備える加熱手段と、
上記第 1のチャンバ一に連通し、 不活性ガスを供給するとともに、 上記第 1の チャンバ一に供給する不活性ガスを第 2のチヤンバーに分岐して供袷する不活性 ガス供給手段とを備え、
上記第 1のチャンバ一に供給される不活性ガスが上記クリアランスを通過する 間に所定の加熱温度に昇温する一方、 第 1のチヤンバ—内で昇温膨張する不活性 ガスをその背圧により上記第 2のチャンバ一に分岐洪給するようになした非接触 式の半田ごて。
2 . 上記第 1のコア加熱手段力第 1のチャンバ一内に内壁とクリアランスをお いて、 内挿されたロッド伏ヒー夕である、 請求項 1記載の非接触式の半田ごて。
3 . 上記第 1のコア加熱手段が A ^ 2 03 製ロッド状ヒ一夕である、 請求項 2 記載の非接触式の半田ごて。
4 . 上記第 2の加熱手段が第 1のチヤンバーの先端部に少なくとも形成され、 上記第 1のコア加熱手段からの伝熱を蓄熱機能を有する部材からなる、 請求項 1 記載の非接触式の半田ごて。
5 . 上記第 2の加熱手段が蓄熱機能を有するノズル部材であって、 ノズル口に ノ、'ィプを挿入してノズル口怪を調節可能である、 請求項 1又は 4記載の非接触式
の半田ごて。
6 . 上記第 2の加熱手段が銅又は銅合金製ノズル部材である、 請求項 5記載の 非接触式の半田ごて。
7 . 上記第 1のチャンバ一が第 2のチャンバ一と連通する気体流通口を有し、 上記第 1のチヤンバーに供給される不活性ガスが上記第 1のコア加熱手段により 加熱膨張されるとその背圧により、 第 1のチャンバ一に供給される不活性ガスの 一部が上記気体流通口を介して第 2のチャンバ一に供給される、 請求項 1記載の 非接触式の半田ごて。
8 . 上記第 1のノズルの開口径が第 2のチヤンバ一""^ ^の分岐供給口の開口径よ りも大きく、 第 1のノズル先端開口から加熱不活性ガスを噴射しつつ、 第 1のノ ズル内の背圧により第 1のノズル内に供給された不活 :1生ガスの一部を第 2のノズ ルに供給する、 請求項 1記載の非接触式の半田ごて。
9 . 上記第 1のノズルに供給される不活性ガスが第 1のコア加熱手段により 2 5 0 ~ 1 0 0 0 °C、 特に 3 0 0〜 6 0 0 °Cに加熱される、 請求項 1記載の非接触 式の半田ごて。
1 0 . 上記第 2のノズルに供給される不活性ガスが 1 0 0〜3 0 0 °C、 特に 1 5 0〜2 0 0 °Cに加熱される、 請求項 1記載の非接触式の半田ごて。
1 1 . 上記第 2の加熱手段をなす第 1のチャンバ一の先端部内径と、 第 1のコ ァ加熱手段をなす σッド伏ヒータの先端部外径とのクリアランスがそこを通過す る不活性ガスが通過後所定の温度まで昇温可能に設定されている、 請求項 1記載 の非接触式の半田ごて。
1 2 . 上記クリアランスが 0 . 1 ~ 0 . 1 5 mmである請求項 1 1記載の非接 触式の半田ごて。
1 3 . 第 1のノズル及び第 2のノズルからの不活性ガス圧力が、 1〜 3 k g ί / c m 2 · Gで、 第 1のノズルからのガス圧が第 2のノズルからのガス圧より大 きレ、、 請求項 1記載の非接触式の半田ごて。
1 4 . 第 1のノズルから噴射される不活性ガス流量が 1〜3 ^ 分である、 請
求項 1記載の非接触式の半田ごて。
1 5 . 第 1のノズル開口径が 0 . 2〜 l mm øである、 請求項 1記載の非接触 式の半田ごて。
1 6 . 第 2のノズルの開口径が 2 ~ 3 mm øである、 請求項 1 5記載の非接触 式の半田ごて。
1 7 . 前方先端にノズル部を有する筒体であって、 後方から供給される気体流 を筒体内で所定の温度まで加熱してノズル部から噴出させる高温ガス噴射機構で あって、 ノズル部近傍に筒体内壁と所定のクリアランスを介して筒体軸方向に延 びるコア熱源と該コア熱源の外周を囲み、 上記筒体の一部をなして軸方向に延び る蓄熱カバーとからなる加熱手段を備え、 上記クリアランスを該加熱手段上流に 至る気体流がクリアランス通過後ノズル部から発射前に所定の噴射温度になるよ うに設定してなる、 高温ガス噴射機構。
1 8 . 上記筒体が筒体内背圧が所定以上になると筒体外に供袷気体流を分流さ せる流通口を有する、 請求項 1 7記載の高温ガス噴射機構。
1 9 . 上記コア熱源 方のノズル部手前に温度センサーを備え、 上記クリァラ ンス通過後の気体流温度を検知し、 上記コア熱源温度を制御する、 請求項 1 8記 載の高温ガス噴射機構。
2 0 . 非接触式半田付け方法において、 不活性ガスを半田ごてに供給して加熱 噴射するにあたり、
不活性ガスを第 1のチヤンバーに供給し、 第 1のチヤンバーの前方先端に設け られたノズル近傍にて軸方向に延びるコア熱源とそれを包囲する蓄熱カバーとが なすクリアランスを通して所定の第 Iの温度に昇温する工程と、
上記だ 1いのチャンバ一内で不活性ガスの昇温膨張によって生ずる背圧により 第 1のチャンバ一を囲む第 2のチヤンバーに連通口を介して不活性ガスを供袷し 、 上記第 2のチャンバ一の前方に位置する上記蓄熱カバーの外周を通過させるこ とにより、 所定の第 2の温度に昇温する工程とを備え、
第 1の温度のガスを中心とし、 第 2の温度のガスが包囲するガス流を所定の半
田付け部位に噴射する、 非接触式半田付け方法。
2 1 . 上記第 1のチャンバ一内でのコア熱源と蓄熱カバ一とがなすクリ了ラン スを通過して不活性ガスを昇温する時間が半田付けの間欠的作業に迅速に応答す る時間に設定されている、 請求項 2 0記載の非接触式半田付け方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP53073998A JP3345722B2 (ja) | 1997-01-07 | 1998-01-07 | 間欠的半田付けが可能な非接触型半田ごて |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9/13122 | 1997-01-07 | ||
JP1312297A JP2000000657A (ja) | 1997-01-07 | 1997-01-07 | 非接触による半田付け方法及びその半田ごて |
JPPCT/JP97/01528 | 1997-05-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1998030352A1 true WO1998030352A1 (fr) | 1998-07-16 |
Family
ID=11824366
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP1997/001528 WO1998030351A1 (fr) | 1997-01-07 | 1997-05-06 | Procede de soudage et fer a souder |
PCT/JP1998/000021 WO1998030352A1 (fr) | 1997-01-07 | 1998-01-07 | Fer a souder du type sans contact et pouvant effectuer une soudure discontinue |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP1997/001528 WO1998030351A1 (fr) | 1997-01-07 | 1997-05-06 | Procede de soudage et fer a souder |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2000000657A (ja) |
WO (2) | WO1998030351A1 (ja) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000208918A (ja) * | 1999-01-18 | 2000-07-28 | Ueda Japan Radio Co Ltd | プリント配線基板へのパタ―ン状のはんだバンプの形成方法 |
JP2000263223A (ja) * | 1999-03-18 | 2000-09-26 | Japan Unix Co Ltd | ガス噴射式はんだ付け方法 |
JP2000334563A (ja) * | 1999-05-26 | 2000-12-05 | Yoshimasa Matsubara | 半田ごて |
JP2003251460A (ja) * | 2002-03-06 | 2003-09-09 | Nakajima Doukou Kk | 半田ごて |
US7060937B2 (en) * | 2003-04-04 | 2006-06-13 | Hakko Corporation | Cartridge-type soldering iron with inert gas emitted near the tip |
US7126086B2 (en) | 2003-04-04 | 2006-10-24 | Hakko Corporation | Cartridge-type soldering iron |
JP2006334598A (ja) * | 2005-05-31 | 2006-12-14 | Mitsubishi Electric Corp | ガス噴射式はんだ鏝 |
JP2007294954A (ja) * | 2006-04-21 | 2007-11-08 | Internatl Business Mach Corp <Ibm> | 導電性結合材の充填技術 |
JP2008279473A (ja) * | 2007-05-09 | 2008-11-20 | Kazuto Fujimoto | 半田ごて |
JP2018061978A (ja) * | 2016-10-13 | 2018-04-19 | 株式会社パラット | 半田付けシステム、半田付け製品製造方法、半田付け方法、及び半田 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1273256C (zh) * | 2003-04-04 | 2006-09-06 | 白光株式会社 | 电连接器构造体及具有该电连接器构造体的钎焊烙铁手柄或钎焊烙铁 |
CN100363138C (zh) * | 2004-01-27 | 2008-01-23 | 白光株式会社 | 电烙铁 |
JP4533077B2 (ja) * | 2004-10-04 | 2010-08-25 | 白光株式会社 | はんだごて、その組立て方法及びそのヒータカートリッジの交換方法 |
CN114769785B (zh) * | 2022-04-18 | 2023-10-20 | 翼龙半导体设备(无锡)有限公司 | 高压气自冷热锡喷头 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0783940B2 (ja) * | 1987-12-25 | 1995-09-13 | 松下電器産業株式会社 | 熱風リフロー半田付装置 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07132369A (ja) * | 1993-06-17 | 1995-05-23 | Noriyuki Yoshida | 半田ごて |
-
1997
- 1997-01-07 JP JP1312297A patent/JP2000000657A/ja active Pending
- 1997-05-06 WO PCT/JP1997/001528 patent/WO1998030351A1/ja active Application Filing
-
1998
- 1998-01-07 WO PCT/JP1998/000021 patent/WO1998030352A1/ja active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0783940B2 (ja) * | 1987-12-25 | 1995-09-13 | 松下電器産業株式会社 | 熱風リフロー半田付装置 |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000208918A (ja) * | 1999-01-18 | 2000-07-28 | Ueda Japan Radio Co Ltd | プリント配線基板へのパタ―ン状のはんだバンプの形成方法 |
JP2000263223A (ja) * | 1999-03-18 | 2000-09-26 | Japan Unix Co Ltd | ガス噴射式はんだ付け方法 |
JP2000334563A (ja) * | 1999-05-26 | 2000-12-05 | Yoshimasa Matsubara | 半田ごて |
US6633021B2 (en) | 1999-05-26 | 2003-10-14 | Kensei Matubara | Soldering iron with heated gas flow |
JP2003251460A (ja) * | 2002-03-06 | 2003-09-09 | Nakajima Doukou Kk | 半田ごて |
US7060937B2 (en) * | 2003-04-04 | 2006-06-13 | Hakko Corporation | Cartridge-type soldering iron with inert gas emitted near the tip |
US7126086B2 (en) | 2003-04-04 | 2006-10-24 | Hakko Corporation | Cartridge-type soldering iron |
JP2006334598A (ja) * | 2005-05-31 | 2006-12-14 | Mitsubishi Electric Corp | ガス噴射式はんだ鏝 |
JP2007294954A (ja) * | 2006-04-21 | 2007-11-08 | Internatl Business Mach Corp <Ibm> | 導電性結合材の充填技術 |
JP2008279473A (ja) * | 2007-05-09 | 2008-11-20 | Kazuto Fujimoto | 半田ごて |
JP2018061978A (ja) * | 2016-10-13 | 2018-04-19 | 株式会社パラット | 半田付けシステム、半田付け製品製造方法、半田付け方法、及び半田 |
Also Published As
Publication number | Publication date |
---|---|
JP2000000657A (ja) | 2000-01-07 |
WO1998030351A1 (fr) | 1998-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO1998030352A1 (fr) | Fer a souder du type sans contact et pouvant effectuer une soudure discontinue | |
EP0567569A1 (en) | Thermal spray method utilizing in-transit powder particle temperatures below their melting point | |
JPH0621335B2 (ja) | レ−ザ溶射法 | |
CN104797371B (zh) | 焊丝输送装置及方法 | |
JP3541307B2 (ja) | 半田ごて | |
JPH06128611A (ja) | 湯流の形成方法及び装置 | |
Fan et al. | Dynamic analysis of globular metal transfer in gas metal arc welding-a comparison of numerical and experimental results | |
JPH0653305B2 (ja) | 溶削方法及び装置 | |
KR101093939B1 (ko) | 금속분사장치 및 분사방법 | |
JP2010258000A (ja) | スルーホールの半田付けによる電子機器製造方法とそのための半田鏝 | |
JP3345722B2 (ja) | 間欠的半田付けが可能な非接触型半田ごて | |
JPH0766871B2 (ja) | 高速・温度制御式プラズマスプレー法及び装置 | |
JP2510091B2 (ja) | プラズマジェットト―チ | |
US9922870B2 (en) | Method for applying an image of an electrically conductive material onto a recording medium and device for ejecting droplets of an electrically conductive fluid | |
JP2969754B2 (ja) | 金属粉末製造装置 | |
JPH09181436A (ja) | 半田付け方法及び半田ごて | |
JP2000176637A (ja) | 非接触型半田ごて | |
JP2002217534A (ja) | 半田付け装置 | |
Watanabe et al. | Fume generation mechanism in wire arc spraying | |
JP2000263194A (ja) | 溶湯噴射用ノズル | |
JP3098707U (ja) | プラスチック部品補修用装置 | |
JP2004071785A (ja) | 噴流式はんだ付け装置 | |
JP2001105141A (ja) | スタッド溶接による部材接合方法 | |
JPH08323466A (ja) | 半田付け装置 | |
JP4772373B2 (ja) | 半田付け方法及びその装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CA CN JP KR SG US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 09341272 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase |