[go: up one dir, main page]

WO1999008167A1 - Procede permettant de generer une consigne d'acceleration/deceleration destinee a un robot industriel - Google Patents

Procede permettant de generer une consigne d'acceleration/deceleration destinee a un robot industriel Download PDF

Info

Publication number
WO1999008167A1
WO1999008167A1 PCT/JP1998/003462 JP9803462W WO9908167A1 WO 1999008167 A1 WO1999008167 A1 WO 1999008167A1 JP 9803462 W JP9803462 W JP 9803462W WO 9908167 A1 WO9908167 A1 WO 9908167A1
Authority
WO
WIPO (PCT)
Prior art keywords
acceleration
torque
deceleration
speed
generated
Prior art date
Application number
PCT/JP1998/003462
Other languages
English (en)
Japanese (ja)
Inventor
Nobuhiro Umeda
Koji Tomita
Hirokazu Kariyazaki
Original Assignee
Kabushiki Kaisha Yaskawa Denki
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Yaskawa Denki filed Critical Kabushiki Kaisha Yaskawa Denki
Publication of WO1999008167A1 publication Critical patent/WO1999008167A1/fr

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/416Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control of velocity, acceleration or deceleration
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/43Speed, acceleration, deceleration control ADC
    • G05B2219/43057Adjust acceleration, speed until maximum allowable moment for axis
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/43Speed, acceleration, deceleration control ADC
    • G05B2219/43059Accelerate, decelerate all axis as function of max, min, average speed axis

Definitions

  • the present invention relates to an acceleration / deceleration pattern generation method for minimizing the acceleration / deceleration time during the positioning control of an industrial robot.
  • Japanese Patent Application Laid-Open No. Hei 4-3627010 discloses that the response speed-acceleration curve of the servomotor is calculated from the torque curve of the servomotor as the dynamic curve.
  • An optimal acceleration / deceleration control method for a servo motor has been proposed in which the acceleration / deceleration-degree is increased so as to approach within the range of the speed-acceleration curve obtained by subtraction.
  • an object of the present invention is to generate an optimal acceleration / deceleration pattern in consideration of a response of a servo system and an uncontrollable torque such as a load torque and a friction torque generated by an operation of a robot.
  • a first means of the present invention is an industrial port having a plurality of arms connected by a plurality of joints each driven by a servomotor.
  • the position of the axis, the speed command of the axis, the acceleration-degree upper limit of the axis, the friction torque of the axis, and the deceleration of the axis -Increase or decrease the command acceleration / deceleration so that the peak value of the generated torque is maximized within the effective range of the speed-torque of the entire servo system derived from the requirements such as the reduction ratio and transmission efficiency of the machine.
  • the acceleration / deceleration time is adjusted in accordance with this, and an acceleration / deceleration pattern represented by the acceleration / deceleration and the acceleration / deceleration time is generated.
  • -A second means of the present invention is a method for generating an acceleration / deceleration pattern of an industrial robot having several arms each connected by a plurality of joints each driven by a servomotor.
  • the acceleration / deceleration time is adjusted accordingly, the maximum value of the acceleration / deceleration time obtained for all axes is determined as the acceleration / deceleration time common to all axes, and the acceleration / deceleration pattern of each axis servo motor is generated. I do.
  • the generated acceleration is the dynamic speed-torque curve of the servo system. • Since the acceleration / deceleration pattern is generated to approach within the range, the obtained acceleration / deceleration pattern is the same as the shortest acceleration / deceleration pattern within the dynamic speed-torque limit of the servo system. Obviously, the generated acceleration is the dynamic speed-torque curve of the servo system. • Since the acceleration / deceleration pattern is generated to approach within the range, the obtained acceleration / deceleration pattern is the same as the shortest acceleration / deceleration pattern within the dynamic speed-torque limit of the servo system. Become.
  • FIG. 1 is an explanatory diagram showing the configuration of the robot model
  • Fig. 2 is a schematic diagram showing the configuration of the drive shaft-a perspective view
  • Fig. 3 is an explanatory diagram showing the static speed-acceleration effective range of the servo system
  • Fig. 4 is-
  • FIG. 5 is an explanatory diagram showing a static speed-acceleration effective range of a servo system in this embodiment
  • FIG. 5 is a block diagram from a speed-speed command to a speed response of a drive shaft
  • FIG. 6 is a servo diagram in this embodiment
  • FIG. 7 is an explanatory diagram showing a dynamic speed-acceleration effective range of the system 0
  • FIG. 7 is an explanatory diagram showing an acceleration / deceleration pattern assumed at the time of acceleration / deceleration derivation in this embodiment.
  • the speed-torque characteristics of the servomotor, the torque upper limit value based on the current 5 capacity of the servo amplifier, the allowable speed of the movable part and the allowable torque are included. From the effective torque area, subtract the torque that cannot be used for the acceleration / deceleration that occurs during the operation of-the interference torque from the arm side to the servo motor side, the holding torque due to gravity, and the friction torque-including the interference between the axes. Increase or decrease the 0 command acceleration / deceleration so that the peak value of the generated torque is maximized within the effective range of the dynamic-speed-torque of the servo system, and adjust the acceleration / deceleration time accordingly.
  • the above-described method generates an acceleration / deceleration pattern represented by acceleration / deceleration and acceleration / deceleration time.
  • the command acceleration / deceleration is increased or decreased by the transfer function of the servo system so that the peak value of the generated torque is maximized-within the effective range of the speed-torque of the entire servo system. Adjust the acceleration / deceleration and acceleration / deceleration time according to.
  • the transfer function of the servo system including the filter will Within the effective range of speed-torque, increase or decrease the commanded acceleration so that the peak value of the generated torque becomes the maximum-and accelerate / decelerate accordingly. -Adjust the deceleration time.
  • the configuration of the robot model described in this embodiment is shown in FIG.
  • the robot is composed of three-drive axes, 1 is the first axis that has a degree of freedom around the axis parallel to the ground, 25 is the first axis, the first arm that is driven once, and 3 is the first arm.
  • 2nd axis with degree of freedom around axis parallel to 1st axis 1 4 drives around 2nd axis 3-2nd arm
  • 5 2nd arm 4
  • a third axis 6 provided at the distal end and having a degree of freedom about an axis parallel to the second axis, and 6 is a third arm driven around the third axis 5 and having a mass at the distal end.
  • Each axis has one degree of freedom, and it has a total of three degrees of freedom. And each axis is affected by gravitational moment, inertia due to acceleration-degree, and interference torque due to movement of other axes.
  • - Figure 2 shows the configuration of the drive shaft. It comprises a servomotor 7 for driving each axis and a load shaft 9 to which each arm is connected via a speed reducer 8.
  • - Figure 3 shows the static speed-acceleration effective range of the servo system.
  • Servo motor speed-acceleration characteristic curve 10 and acceleration capacity limited by the current capacity of the servo amplifier-speed limit 11 1, provided for acceleration reduction and reduction gear protection provided for reduction gear protection The range included in the speed limit 1 2 is the servo system static acceleration 10 effective speed range 13, and the thick line is the servo system static speed-acceleration curve 1 4 •.
  • the range of the acceleration upper limit value Amax and the speed Vmax as shown in FIG. 4 will be described as the static speed-acceleration effective range 15 of the servo system.
  • - Figure 5 is a block diagram from the speed command to the speed response of the drive shaft.
  • the speed command that has been subjected to the acceleration / deceleration processing 5 is sent to the servo system 19 composed of the controller 17 and the servo motor 18 via the speed filter 16 so that each drive shaft 20 Driven.
  • T 2 , T s the response of a servo system including a velocity filter
  • T s the time constant of the response of each axis.
  • the friction torque generated on each axis during operation is Dl, D2, D3. '' Assuming that the reduction gear ratio of each axis is N and N2, N3, and the transmission efficiency to the load axis is 7-2, 5 7-3, the upper limit of acceleration that can be generated by each axis servo motor Is derived by the following equation.
  • J m is the moment of inertia of the movable part.
  • the acceleration / deceleration parameter can be obtained as a constant value as shown in Fig. 6.
  • Fig. 6, -15 is the effective range of the static acceleration and speed of the servo system
  • 21 is the torque that cannot be used for acceleration and deceleration that occurs during operation
  • 22 is the dynamic range of the servo system in this embodiment.
  • Acceleration is the effective range of speed-degree.
  • the acceleration upper limit A i max ' is substituted for the commanded acceleration a i to determine the temporary acceleration time t i'0,
  • Equation 6 is a modification of the general first-order lag equation below.
  • the acceleration time t is determined by adjusting the acceleration / deceleration time for all axes.
  • the commanded acceleration is adjusted by the acceleration time t.
  • the optimal acceleration / deceleration can be performed by calculating the torque generated on the load axis from the state at the operation end point and performing the same calculation as during acceleration based on this.
  • the acceleration / deceleration pattern obtained above is input to the speed filter 16 as a speed command in the block diagram of FIG. 5, and is input to the servo system 19 after being smoothed.
  • the torque command calculated by the controller 17 is commanded to the servo motor 18 and transmitted to the drive shaft 20 as torque.
  • the speed of the controller 17, servo motor 18, and drive shaft 20-acceleration and deceleration so that the torque command to the servo motor 18 becomes maximum within the range of torque characteristics-degree and acceleration and deceleration Since the time is adjusted in advance and input to the speed filter 16, the drive shaft 20 is always driven in the shortest time.
  • the -peak value of the torque generated within the effective range of the dynamic speed-acceleration of the entire servo system is reduced. Since it can be adjusted to be the maximum, the shortest operable acceleration / deceleration pattern can be generated. Also consider the allowable values of the moving parts and the current amplifier. -As a result, the operating life can be shortened and the life of the equipment can be improved.
  • the present invention can be used in the field of control of industrial robots used for automobile assembly, automatic welding, and the like. 0 5 0 5

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Numerical Control (AREA)
  • Control Of Position Or Direction (AREA)
  • Manipulator (AREA)

Abstract

On génère une consigne d'accélération/décélération optimale en tenant compte des couples non contrôlables, tels que les couples de charge et de friction générés par le déplacement d'un robot, et de la réponse du servomécanisme. Selon un procédé permettant de générer une consigne d'accélération/décélération destinée à un robot industriel comportant une pluralité de bras réunis par une pluralité d'articulations entraînées par des servomoteurs, une accélération/décélération prescrite est accrue ou réduite par rapport à au moins un des axes correspondants aux articulations, de façon que la valeur de crête du couple généré soit égale à un maximum compris dans la plage efficace des couples associés à la vitesse (14) de l'ensemble du servomécanisme et dérivé des contraintes telles que position de l'axe, instruction de vitesse, limite supérieure d'accélération (11), couple de frottement, coefficient de réduction d'un réducteur de l'axe et rendement de la transmission. Le temps d'accélération/décélération est ajusté en réponse à ces éléments, et une consigne d'accélération/décélération, exprimée par la vitesse d'accélération/décélération et le temps d'accélération/décélération, est générée. La consigne d'accélération/décélération générée est ainsi la plus courte à l'intérieur de la plage dynamique des limites vitesse/accélération du servomécanisme.
PCT/JP1998/003462 1997-08-05 1998-08-03 Procede permettant de generer une consigne d'acceleration/deceleration destinee a un robot industriel WO1999008167A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP9/210967 1997-08-05
JP21096797A JPH1153021A (ja) 1997-08-05 1997-08-05 産業用ロボットの加減速パターン生成方法

Publications (1)

Publication Number Publication Date
WO1999008167A1 true WO1999008167A1 (fr) 1999-02-18

Family

ID=16598095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/003462 WO1999008167A1 (fr) 1997-08-05 1998-08-03 Procede permettant de generer une consigne d'acceleration/deceleration destinee a un robot industriel

Country Status (2)

Country Link
JP (1) JPH1153021A (fr)
WO (1) WO1999008167A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1197820A3 (fr) * 2000-10-18 2004-01-21 Fanuc Ltd. Méthode de commande d'accélération et de décélération
CN109543332A (zh) * 2018-11-30 2019-03-29 东北大学 一种系列化机器人腕部减速器选型方法
CN112157661A (zh) * 2020-12-02 2021-01-01 成都卡诺普自动化控制技术有限公司 一种基于机器人动力学的关节运动轨迹优化方法
CN112223298A (zh) * 2020-12-08 2021-01-15 成都卡诺普自动化控制技术有限公司 一种确定机器人关节最大加速度和最大速度的方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4627740B2 (ja) * 2006-04-04 2011-02-09 三菱電機株式会社 数値制御装置
JP5120435B2 (ja) * 2010-09-30 2013-01-16 ブラザー工業株式会社 モータ制御装置
US9242376B2 (en) 2013-03-28 2016-01-26 Denso Wave Incorporated Method of generating path of multiaxial robot and control apparatus for the multiaxial robot
US9221175B2 (en) 2013-03-28 2015-12-29 Denso Wave Incorporated Method of generating path of multiaxial robot and control apparatus for the multiaxial robot
JP7115090B2 (ja) * 2018-07-17 2022-08-09 オムロン株式会社 加速度調整装置及び加速度調整プログラム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04362710A (ja) * 1991-06-10 1992-12-15 Fanuc Ltd サーボモータの最適加減速制御方式
JPH05333909A (ja) * 1992-05-28 1993-12-17 Yokogawa Electric Corp ロボット制御装置
JPH07244520A (ja) * 1994-03-03 1995-09-19 Fanuc Ltd 干渉トルクを考慮した自動機械の加減速制御方法
JPH08137524A (ja) * 1994-11-09 1996-05-31 Fanuc Ltd ロボットの軌道計画時における時定数の設定方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04362710A (ja) * 1991-06-10 1992-12-15 Fanuc Ltd サーボモータの最適加減速制御方式
JPH05333909A (ja) * 1992-05-28 1993-12-17 Yokogawa Electric Corp ロボット制御装置
JPH07244520A (ja) * 1994-03-03 1995-09-19 Fanuc Ltd 干渉トルクを考慮した自動機械の加減速制御方法
JPH08137524A (ja) * 1994-11-09 1996-05-31 Fanuc Ltd ロボットの軌道計画時における時定数の設定方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1197820A3 (fr) * 2000-10-18 2004-01-21 Fanuc Ltd. Méthode de commande d'accélération et de décélération
US6920363B2 (en) 2000-10-18 2005-07-19 Fanuc Ltd Acceleration and deceleration control method
CN109543332A (zh) * 2018-11-30 2019-03-29 东北大学 一种系列化机器人腕部减速器选型方法
CN112157661A (zh) * 2020-12-02 2021-01-01 成都卡诺普自动化控制技术有限公司 一种基于机器人动力学的关节运动轨迹优化方法
CN112157661B (zh) * 2020-12-02 2021-03-05 成都卡诺普自动化控制技术有限公司 一种基于机器人动力学的关节运动轨迹优化方法
CN112223298A (zh) * 2020-12-08 2021-01-15 成都卡诺普自动化控制技术有限公司 一种确定机器人关节最大加速度和最大速度的方法

Also Published As

Publication number Publication date
JPH1153021A (ja) 1999-02-26

Similar Documents

Publication Publication Date Title
CN109664297B (zh) 机器人的振动抑制方法、系统、装置及计算机可读存储器
US12350838B2 (en) Input shaping control of a robot arm in different reference spaces
US5214749A (en) Dynamic control of a robot with its center of mass decoupled from an end effector by a redundant linkage
WO2005009692A1 (fr) Procede de commande du bras d'un robot et dispositif de commande associe
KR20140005771A (ko) 로봇 제어 장치 및 로봇 제어 방법
JPH08118275A (ja) マニピュレータの制御装置
US6684128B1 (en) Robot and method of controlling the robot
WO1999008167A1 (fr) Procede permettant de generer une consigne d'acceleration/deceleration destinee a un robot industriel
US8547047B2 (en) Method and device for monitoring a movement-controlled machine with an electronically commutated drive motor
EP1023973B1 (fr) Procede et dispositif de commande de robot
JP2013223895A (ja) ロボット制御方法及びロボット制御装置
JPH03245978A (ja) ロボット
JP2008194760A (ja) ロボットアーム、及びその制御方法
JP6021478B2 (ja) ロボット制御装置、及びロボット制御方法
WO1997001801A1 (fr) Procede de regulation des operations d'acceleration et de deceleration d'un robot
CN111830992B (zh) 一种轮式机器人的力控制方法、装置及轮式机器人
Yamakawa et al. Development of a brachiation robot with hook-shaped end effectors and realization of brachiation motion with a simple strategy
JPH09204216A (ja) 多関節ロボットの加減速制御方法
JPH08234801A (ja) モータ駆動式関節アームのための制御装置及び制御方法
JP5633268B2 (ja) ロボットの制御装置
JPH11345010A (ja) ロボットの制御装置
Takahashi et al. Position Control of a Two-Degree-of-Freedom Parallel Robot Including Torsion Springs and Motor/Load-Side Encoders
JP3174352B2 (ja) ロボットの加減速制御方法および装置
JPS63314607A (ja) 多関節ロボットの制御装置
JPH0255803B2 (fr)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: KR

122 Ep: pct application non-entry in european phase