WO1999008167A1 - Procede permettant de generer une consigne d'acceleration/deceleration destinee a un robot industriel - Google Patents
Procede permettant de generer une consigne d'acceleration/deceleration destinee a un robot industriel Download PDFInfo
- Publication number
- WO1999008167A1 WO1999008167A1 PCT/JP1998/003462 JP9803462W WO9908167A1 WO 1999008167 A1 WO1999008167 A1 WO 1999008167A1 JP 9803462 W JP9803462 W JP 9803462W WO 9908167 A1 WO9908167 A1 WO 9908167A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- acceleration
- torque
- deceleration
- speed
- generated
- Prior art date
Links
- 230000001133 acceleration Effects 0.000 title claims abstract description 112
- 238000000034 method Methods 0.000 title claims abstract description 17
- 230000033001 locomotion Effects 0.000 claims abstract description 6
- 230000005540 biological transmission Effects 0.000 claims abstract description 4
- 230000003247 decreasing effect Effects 0.000 claims abstract description 3
- 230000003068 static effect Effects 0.000 claims description 10
- 230000005484 gravity Effects 0.000 claims description 4
- 238000012546 transfer Methods 0.000 claims description 4
- 239000003638 chemical reducing agent Substances 0.000 claims description 2
- 238000010586 diagram Methods 0.000 description 10
- 238000013459 approach Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/18—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
- G05B19/416—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control of velocity, acceleration or deceleration
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/43—Speed, acceleration, deceleration control ADC
- G05B2219/43057—Adjust acceleration, speed until maximum allowable moment for axis
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/43—Speed, acceleration, deceleration control ADC
- G05B2219/43059—Accelerate, decelerate all axis as function of max, min, average speed axis
Definitions
- the present invention relates to an acceleration / deceleration pattern generation method for minimizing the acceleration / deceleration time during the positioning control of an industrial robot.
- Japanese Patent Application Laid-Open No. Hei 4-3627010 discloses that the response speed-acceleration curve of the servomotor is calculated from the torque curve of the servomotor as the dynamic curve.
- An optimal acceleration / deceleration control method for a servo motor has been proposed in which the acceleration / deceleration-degree is increased so as to approach within the range of the speed-acceleration curve obtained by subtraction.
- an object of the present invention is to generate an optimal acceleration / deceleration pattern in consideration of a response of a servo system and an uncontrollable torque such as a load torque and a friction torque generated by an operation of a robot.
- a first means of the present invention is an industrial port having a plurality of arms connected by a plurality of joints each driven by a servomotor.
- the position of the axis, the speed command of the axis, the acceleration-degree upper limit of the axis, the friction torque of the axis, and the deceleration of the axis -Increase or decrease the command acceleration / deceleration so that the peak value of the generated torque is maximized within the effective range of the speed-torque of the entire servo system derived from the requirements such as the reduction ratio and transmission efficiency of the machine.
- the acceleration / deceleration time is adjusted in accordance with this, and an acceleration / deceleration pattern represented by the acceleration / deceleration and the acceleration / deceleration time is generated.
- -A second means of the present invention is a method for generating an acceleration / deceleration pattern of an industrial robot having several arms each connected by a plurality of joints each driven by a servomotor.
- the acceleration / deceleration time is adjusted accordingly, the maximum value of the acceleration / deceleration time obtained for all axes is determined as the acceleration / deceleration time common to all axes, and the acceleration / deceleration pattern of each axis servo motor is generated. I do.
- the generated acceleration is the dynamic speed-torque curve of the servo system. • Since the acceleration / deceleration pattern is generated to approach within the range, the obtained acceleration / deceleration pattern is the same as the shortest acceleration / deceleration pattern within the dynamic speed-torque limit of the servo system. Obviously, the generated acceleration is the dynamic speed-torque curve of the servo system. • Since the acceleration / deceleration pattern is generated to approach within the range, the obtained acceleration / deceleration pattern is the same as the shortest acceleration / deceleration pattern within the dynamic speed-torque limit of the servo system. Become.
- FIG. 1 is an explanatory diagram showing the configuration of the robot model
- Fig. 2 is a schematic diagram showing the configuration of the drive shaft-a perspective view
- Fig. 3 is an explanatory diagram showing the static speed-acceleration effective range of the servo system
- Fig. 4 is-
- FIG. 5 is an explanatory diagram showing a static speed-acceleration effective range of a servo system in this embodiment
- FIG. 5 is a block diagram from a speed-speed command to a speed response of a drive shaft
- FIG. 6 is a servo diagram in this embodiment
- FIG. 7 is an explanatory diagram showing a dynamic speed-acceleration effective range of the system 0
- FIG. 7 is an explanatory diagram showing an acceleration / deceleration pattern assumed at the time of acceleration / deceleration derivation in this embodiment.
- the speed-torque characteristics of the servomotor, the torque upper limit value based on the current 5 capacity of the servo amplifier, the allowable speed of the movable part and the allowable torque are included. From the effective torque area, subtract the torque that cannot be used for the acceleration / deceleration that occurs during the operation of-the interference torque from the arm side to the servo motor side, the holding torque due to gravity, and the friction torque-including the interference between the axes. Increase or decrease the 0 command acceleration / deceleration so that the peak value of the generated torque is maximized within the effective range of the dynamic-speed-torque of the servo system, and adjust the acceleration / deceleration time accordingly.
- the above-described method generates an acceleration / deceleration pattern represented by acceleration / deceleration and acceleration / deceleration time.
- the command acceleration / deceleration is increased or decreased by the transfer function of the servo system so that the peak value of the generated torque is maximized-within the effective range of the speed-torque of the entire servo system. Adjust the acceleration / deceleration and acceleration / deceleration time according to.
- the transfer function of the servo system including the filter will Within the effective range of speed-torque, increase or decrease the commanded acceleration so that the peak value of the generated torque becomes the maximum-and accelerate / decelerate accordingly. -Adjust the deceleration time.
- the configuration of the robot model described in this embodiment is shown in FIG.
- the robot is composed of three-drive axes, 1 is the first axis that has a degree of freedom around the axis parallel to the ground, 25 is the first axis, the first arm that is driven once, and 3 is the first arm.
- 2nd axis with degree of freedom around axis parallel to 1st axis 1 4 drives around 2nd axis 3-2nd arm
- 5 2nd arm 4
- a third axis 6 provided at the distal end and having a degree of freedom about an axis parallel to the second axis, and 6 is a third arm driven around the third axis 5 and having a mass at the distal end.
- Each axis has one degree of freedom, and it has a total of three degrees of freedom. And each axis is affected by gravitational moment, inertia due to acceleration-degree, and interference torque due to movement of other axes.
- - Figure 2 shows the configuration of the drive shaft. It comprises a servomotor 7 for driving each axis and a load shaft 9 to which each arm is connected via a speed reducer 8.
- - Figure 3 shows the static speed-acceleration effective range of the servo system.
- Servo motor speed-acceleration characteristic curve 10 and acceleration capacity limited by the current capacity of the servo amplifier-speed limit 11 1, provided for acceleration reduction and reduction gear protection provided for reduction gear protection The range included in the speed limit 1 2 is the servo system static acceleration 10 effective speed range 13, and the thick line is the servo system static speed-acceleration curve 1 4 •.
- the range of the acceleration upper limit value Amax and the speed Vmax as shown in FIG. 4 will be described as the static speed-acceleration effective range 15 of the servo system.
- - Figure 5 is a block diagram from the speed command to the speed response of the drive shaft.
- the speed command that has been subjected to the acceleration / deceleration processing 5 is sent to the servo system 19 composed of the controller 17 and the servo motor 18 via the speed filter 16 so that each drive shaft 20 Driven.
- T 2 , T s the response of a servo system including a velocity filter
- T s the time constant of the response of each axis.
- the friction torque generated on each axis during operation is Dl, D2, D3. '' Assuming that the reduction gear ratio of each axis is N and N2, N3, and the transmission efficiency to the load axis is 7-2, 5 7-3, the upper limit of acceleration that can be generated by each axis servo motor Is derived by the following equation.
- J m is the moment of inertia of the movable part.
- the acceleration / deceleration parameter can be obtained as a constant value as shown in Fig. 6.
- Fig. 6, -15 is the effective range of the static acceleration and speed of the servo system
- 21 is the torque that cannot be used for acceleration and deceleration that occurs during operation
- 22 is the dynamic range of the servo system in this embodiment.
- Acceleration is the effective range of speed-degree.
- the acceleration upper limit A i max ' is substituted for the commanded acceleration a i to determine the temporary acceleration time t i'0,
- Equation 6 is a modification of the general first-order lag equation below.
- the acceleration time t is determined by adjusting the acceleration / deceleration time for all axes.
- the commanded acceleration is adjusted by the acceleration time t.
- the optimal acceleration / deceleration can be performed by calculating the torque generated on the load axis from the state at the operation end point and performing the same calculation as during acceleration based on this.
- the acceleration / deceleration pattern obtained above is input to the speed filter 16 as a speed command in the block diagram of FIG. 5, and is input to the servo system 19 after being smoothed.
- the torque command calculated by the controller 17 is commanded to the servo motor 18 and transmitted to the drive shaft 20 as torque.
- the speed of the controller 17, servo motor 18, and drive shaft 20-acceleration and deceleration so that the torque command to the servo motor 18 becomes maximum within the range of torque characteristics-degree and acceleration and deceleration Since the time is adjusted in advance and input to the speed filter 16, the drive shaft 20 is always driven in the shortest time.
- the -peak value of the torque generated within the effective range of the dynamic speed-acceleration of the entire servo system is reduced. Since it can be adjusted to be the maximum, the shortest operable acceleration / deceleration pattern can be generated. Also consider the allowable values of the moving parts and the current amplifier. -As a result, the operating life can be shortened and the life of the equipment can be improved.
- the present invention can be used in the field of control of industrial robots used for automobile assembly, automatic welding, and the like. 0 5 0 5
Landscapes
- Engineering & Computer Science (AREA)
- Human Computer Interaction (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Numerical Control (AREA)
- Control Of Position Or Direction (AREA)
- Manipulator (AREA)
Description
- 明 細 書
- 産業用ロボットの加減速パターン生成方法
- 技術分野
5 本発明は、 産業用ロボットの位置決め制御時における加減速時間を最短にす - る加減速バタ一ン生成方法に関する。
- 背景技術
- 各々がサ一ボモータにより駆動される複数の関節によって結合されたいくつ0 かのアームを有する産業用ロボットの加減速パターン生成方法の一般的な方法 - として、 工場もしくは現地で調整され、 コントローラ内部に設定された各軸の - 加減速度パラメータにより、 速度に応じた加減速時間を求め、 加減速パターン - を生成する方法が用いられる。
- しかし、 この手法では、 動作距離が短い場合、 サ一ボ系の追従遅れのため、5 速度や加速度が十分発生されず、 指令速度を上げても、 動作時間が短縮できな - いといった問題があった。 また、 ある作業で、 最適な加減速度のパラメ一タを - 設定すると姿勢が大きく変わった場合や指令速度が変わった場合に、 速度ゃト - ルクカ制限値を超えてしまうといった問題があった。
- このような問題を解決するために、 特開平 4一 3 6 2 7 1 0号公報には、 サ0 —ボモータの応答の速度一加速度曲線が、 サーボモータのトルクカーブから動 - 摩擦分を差し引いて求めた速度一加速度曲線の範囲内で接近するように加減速 - 度を増大させるサ一ボモータの最適加減速制御方法が提案されている。
- しかしながら、 上記の手法を用いても、 各々がサ一ボモータにより駆動され - る複数の関節によって結合されたいくつかのアームを有する産業用ロボットの5 場合、 各アーム間の干渉力および負荷側アームからサ一ボモータへの干渉力や - 重力による落下を防いでいるサ一ボモータの保持トルクの影響により、 トルク - の制限値オーバ一やトルク不足が発生する可能性がある。 また、 サ一ボアンプ - の容量が小さい場合や負荷の重量が大きい場合には、 サ一ボモータの速度一ト
- ルクの特性を十分生かせない場合がある。
- 発明の開示
- そこで本発明は、 ロボットの動作によって発生する負荷トルクおよび摩擦ト 5 ルクなど制御不能なトルクとサーボ系の応答を考慮した最適な加減速パターン - を生成することを目的とする。
- 上記問題点を解決するため、 本発明の第 1の手段は、 各々がサーボモータに - より駆動される複数の関節によって結合された複数のアームを有する産業用口 • ボットの加減速パターン生成方法において、 前記各関節に対応する各軸のうち0 少なくとも 1つの軸に関し、 前記軸の位置、 前記軸の速度指令、 前記軸の加速 - 度上限値、 前記軸の摩擦トルク、 前記軸の減速機の減速比および伝達効率等の - 要件から導かれるサ一ボ系全体の持つ速度一トルクの有効範囲内で、 発生され - るトルクのピーク値が最大になるよう指令加減速度を増大または減少させ、 こ - れに応じて加減速時間を調整し、 前記加減速度および加減速時間で表される加5 減速パターンを生成することを特徴とする。
- また、 本発明の第 2の手段は、 各々がサ一ボモータにより駆動される複数の - 関節によって結合されたいくつかのアームを有する産業用ロボットの加減速パ • ターン生成方法において、 前記各関節に対応する各軸に関し、 サーボモータの - 速度—トルク特性、 サ一ボアンプの電流容量に基づく トルク上限値、 可動部の0 許容速度および許容トルクに内包されるサーボ系の静的な速度一トルクの有効 • 範囲から、 軸間の干渉を含むアーム側からサーボモータ側への干渉トルク、 重 • 力による保持トルク、 および摩擦トルク、 の動作時に発生する加減速に使用不 • 能なトルクを差し引いたサーボ系の動的な速度一トルクの有効範囲内で、 発生 - されるトルクのピーク値が最大となるよう指令加減速度を増大または減少さ5 せ、 これに応じて加減速時間を調整し、 全軸について求められた加減速時間の - 最大値を全軸共通の加減速時間と定め、 各軸サ一ボモータの加減速パターンを - 生成することを特徴とする。
- 上記手段により、 発生される加速度がサ一ボ系の動的な速度一トルク曲線の
• 範囲内で接近するように加減速パターンが生成されるため、 得られる加減速パ - ターンは、 サ一ボ系の動的な速度一トルク制限の範囲内で最短の加減速パター - ンとなる。
5 図面の簡単な説明
- 図 1はロボットモデルの構成を示す説明図、 図 2は駆動軸の構成を示す概略 - 斜視図、 図 3はサーボ系の静的な速度一加速度有効範囲を示す説明図、 図 4は - 本実施例でのサ一ボ系の静的な速度一加速度有効範囲を示す説明図、 図 5は速 - 度指令から駆動軸の速度応答までのプロック図、 図 6は本実施例でのサーボ系0 の動的な速度一加速度有効範囲を示す説明図、 図 7は本実施例で加減速度導出 - 時に仮定する加減速パターンを示す説明図である。
- 発明を実施するための最良の形態
- 本発明においては、 サ一ボモータの速度一トルク特性、 サーボアンプの電流5 容量に基づく トルク上限値、 可動部の許容速度および許容トルクに内包される - サ一ボ系の静的な速度一トルクの有効領域から、 軸間の干渉を含むアーム側か - らサ一ボモータ側への干渉トルク、重力による保持トルク、 および摩擦トルク、 - の動作時に発生する加減速に使用不能なトルクを差し引いたサーボ系の動的な - 速度一トルクの有効範囲内で、 発生されるトルクのピーク値が最大となるよう0 指令加減速度を増大または減少させ、 これに応じて加減速時間を調整し、 前記 - 加減速度および加減速時間で表される加減速バターンを生成する。
- また、 サ一ボ系の伝達関数により、 サーボ系全体の速度一トルクの有効範囲 - 内で、 発生されるトルクのピーク値が最大になるよう指令加減速度を増大また - は減少させ、 これに応じて加減速度および加減速時間を調整する。
5 加減速処理された移動指令に対して、 さらにフィルタ処理を施して各軸サー - ボ系に指令される場合、 フィルタを含めたサ一ボ系の伝達関数により、 サ一ボ - 系全体の速度一トルクの有効範囲内で、 発生させるトルクのピーク値が最大と - なるように指令加速度を増大または減少させ、 これに応じて加減速度および加
- 減速時間を調整する。
- 以下、 本発明の実施例を具体的に説明する。
- 本実施例で説明するロボットモデルの構成を図 1に示す。 ロボットは、 3つ - の駆動軸により構成され、 1は大地に平行な軸回りに自由度を持つ第 1軸、 2 5 は第 1軸 1回リに駆動する第 1アーム、 3は第 1アーム 2の先端部に設けられ、 - 第 1軸 1に平行な軸回りに自由度を持つ第 2軸、 4は第 2軸 3回りに駆動する - 第 2アーム、 5は第 2アーム 4の先端部に設けられ、 第 2軸に平行な軸回りに - 自由度を持つ第 3軸、 6は第 3軸 5回りに駆動し、 先端部に質点を有する第 3 - アームである。 各軸は 1自由度ずつ有し、 合計 3自由度を有する、 X Y平面内0 を動作するロボットである。 そして、 各軸がそれぞれ、 重力モーメント、 加速 - 度による慣性、 他軸の動作による干渉トルク等の影響を受ける。
- 図 2は、 駆動軸の構成を示すものである。 各軸を駆動するサ一ボモータ 7と - 減速機 8を介して、 各アームが結合された負荷軸 9で構成されている。
- 本実施例では、 簡単のため、 速度一トルクの特性を速度一加速度に換算して5 説明する。
- 図 3は、 サーボ系の静的な速度一加速度有効範囲を示している。 サーボモー - タの速度—加速度特性曲線 1 0とサ一ボアンプの電流容量により制限される加 - 速度制限 1 1、 減速機保護のために設けられた加速度制限および減速機保護の - ために設けられた速度制限 1 2に内包される範囲がサ一ボ系の静的な加速度一0 速度の有効範囲 1 3となり、 太線部をサーボ系の静的な速度一加速度曲線 1 4 • とする。 本実施例では、 簡単のため、 図 4に示すように加速度上限値 Am a x、 - 速度 Vm a xの範囲をサーボ系の静的な速度一加速度の有効範囲 1 5として説明 - する。
- 図 5は、 速度指令から駆動軸の速度応答までのブロック図である。 加減速処5 理された速度指令は、 速度フィルタ 1 6を介し、 コントローラ 1 7、 サ一ボモ - —タ 1 8により構成されるサ一ボ系 1 9へ指令され、 各駆動軸 2 0が駆動され - る。 本実施例では、 速度フィルタを含めたサ一ボ系の応答を 1次遅れでモデル • 化した場合について、 各軸の応答の時定数を Tし T 2、 T sとして、 説明する。
各軸の位置、 速度指令、 加速度上限値 Arnaxより、 一般的なラグランジェの 運動方程式を使って、 各負荷軸に発生されるトルクを計算し、 て 1、 て 2、 て 3 とする。 また、 動作時に各軸に発生される摩擦トルクを Dl、 D2、 D 3とする。 ' 各軸の減速機の減速比を Nし N2、 N 3、 負荷軸への伝達効率を 7? 2、 5 7? 3とすると、各軸サ一ボモータで発生させることが出来る加速度の上限値は、 下記の式で導出される。 但し、 J mは可動部の慣性モーメントである。
- 簡単のため、 各軸に対応した添え字を i = { 1, 2, 3} とする。
0 式 1の右辺第 2項を動作開始時の状態から一定値として求めると、 図 6に示 - すように加減速パラメ一タを一定値として求めることができる。図 6において、 - 1 5はサーボ系の静的な加速度一速度の有効範囲、 2 1は動作時に発生する加 • 減速に使用不能なトルク分、 2 2は本実施例でのサーボ系の動的な加速度一速 - 度の有効範囲である。
5 ここで、 速度の上限を無視し、 図 7に示すように指令速度波形を加速度一定 - の対称な三角波形 24とすると、 指令加速度 a i、 加速時間 t i、 移動距離 (回 - 転角度) S iの関係式は、 下記の式で表される。
. 12= Si/a j . . . . (2)
- ここで、 指令加速度 a iに加速度上限値 A i max'を代入し、 仮の加速時間 t i'0 を求め、
• ti'={Si/Aimax' · · · · (3)
- 仮の加減速時間 t' を全軸で最大のものにそろえ、
. t'= ax{tj', t2 , ΐβ'] 、4)
- 式 2を変形した下記の式により、 到達目標の加速度 A iを計算する。
5 Aj=Sj/t'2 · · · · (5)
• 到達目標の加速度 A iに対して、 i軸の指令加速度 a iは次式により求めら
- れる。
- Aj
ai= ~~—r ( 6 )
- 式 2に式 6より求められた指令加速度 a iを代入することにより、 各軸の最 - 適な加減速時間 tが求められる。
- 上記加速度指令 a iにより、 加減速パターンを生成すれば、 サ一ボ系全体の
- 速度一加速度制限の範囲内で最短の加減速パターンとなる。
. ロングモーションの場合、 動作終了点での状態から負荷軸に発生されるトル5 クを求め、 これに基づき加速時と同様の計算を行うことにより、 最適な加減速 - を行うことができる。
- 上記で得られた加減速パターンは、 図 5のブロック図において、 速度指令と - して速度フィルタ 1 6に入力され、 平滑化された後、 サ一ボ系 1 9に入力され - る。 サ一ボ系 1 9内では、 コントローラ 1 7により算出されたトルク指令がサ0 ーボモータ 1 8に指令され、 トルクとして駆動軸 2 0に伝達される。
- 本発明では、 コントローラ 1 7、 サ一ボモータ 1 8、 駆動軸 2 0の速度—ト - ルク特性の範囲内でサーボモータ 1 8へのトルク指令が最大となるよう加減速 - 度および加減速時間をあらかじめ調整して、速度フィルタ 1 6に入力するため、 - 駆動軸 2 0が常に最短の時間で駆動されるものとなる。
5 以上述べたように、 本発明によれば、 産業用ロボットの位置決め制御時にお - いて、 サ一ボ系全体の動的な速度一加速度の有効範囲内で発生されるトルクの - ピーク値を最大となるように調整できるため、 動作可能な最短の加減速バタ一 - ンを生成することができる。 また、 可動部および電流アンプの許容値を考慮し
- ているため、 動作時間を短縮しながらも、 機器の寿命の向上を実現することが • できる。
• 産業上の利用可能性
5 本発明は、 自動車組立、 自動溶接等に用いる産業用ロボットの制御の分野に - おいて利用できる。 0 5 0 5
Claims
- 請 求 の 範 囲
- 1 . 各々がサ一ボモータにより駆動される複数の関節によって結合された複数
- のアームを有する産業用ロボットの加減速パターン生成方法において、
5 前記各関節に対応する各軸のうち少なくとも 1つの軸に関し、
- 前記軸の位置、 前記軸の速度指令、 前記軸の加速度上限値、 前記軸の摩擦ト • ルク、 前記軸の減速機の減速比および伝達効率等の要件から導かれるサ一ボ系 • 全体の持つ速度一トルクの有効範囲内で、 発生されるトルクのピーク値が最大 - になるよう指令加減速度を増大または減少させ、 これに応じて加減速時間を調0 整し、 前記加減速度および加減速時間で表される加減速パターンを生成するこ • とを特徴とする産業用ロボットの加減速パターン生成方法。
- 2 . サーボモータの速度一トルク特性、 サ一ボアンプの電流容量に基づく トル - ク上限値、 可動部の許容速度および許容トルクに内包されるサ一ボ系の静的な - 速度—トルクの有効領域から、 軸間の干渉を含むアーム側からサーボモータ側5 への干渉トルク、 重力による保持トルク、 および摩擦トルク、 の動作時に発生 • する加減速に使用不能なトルクを差し引いたサ一ボ系の動的な速度—トルクの - 有効範囲内で、 発生されるトルクのピーク値が最大となるよう指令加減速度を - 増大または減少させ、 これに応じて加減速時間を調整し、 前記加減速度および • 加減速時間で表される加減速パターンを生成することを特徴とする請求の範囲0 1記載の産業用ロボットの加減速パターン生成方法。
- 3 . 各々がサ一ボモータにより駆動される複数の関節によって結合されたいく - つかのアームを有する産業用ロボットの加減速パターン生成方法において、 - 前記各関節に対応する各軸に関し、
- サ一ボモータの速度一トルク特性、 サ一ボアンプの電流容量に基づくトルク5 上限値、 可動部の許容速度および許容トルクに内包されるサーボ系の静的な速 - 度一トルクの有効範囲から、 軸間の干渉を含むアーム側からサ一ボモータ側へ - の干渉トルク、 重力による保持トルク、 および摩擦トルク分の動作時に発生す - る加減速に使用不能なトルク分を差し引いたサーボ系の動的な速度—トルクの
- 有効範囲内で、 発生されるトルクのピーク値が最大となるよう指令加減速度を - 増大または減少させ、 これに応じて加減速時間を調整し、
- 全軸について求められた加減速時間の最大値を全軸共通の加減速時間と定 • め、 各軸サ一ボモータの加減速パターンを生成することを特徴とする産業用口 5 ボッ卜の加減速パターン生成方法。
- 4 .サ一ボ系の伝達関数により、サーボ系全体の速度一トルクの有効範囲内で、
- 発生させるトルクのピーク値が最大となるように指令加速度を増大または減少 - させ、 これに応じて加減速度および加減速時間を調整することを特徴とする請
• 求の範囲 1、 2または 3記載の産業用ロボッ卜の加減速パターン生成方法。
0 5 . 加減速処理された移動指令に対して、 さらにフィルタ処理を施して各軸サ - ーボ系に指令される場合、
- フィルタを含めたサーボ系の伝達関数により、 サーボ系全体の速度一トルク - の有効範囲.内で、 発生させるトルクのピーク値が最大となるように指令加速度 - を増大または減少させ、 これに応じて加減速度および加減速時間を調整するこ5 とを特徴とする請求の範囲 1から 4のいずれかの項に記載の産業用口ボットの - 加減速パターン生成方法。
0
5
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9/210967 | 1997-08-05 | ||
JP21096797A JPH1153021A (ja) | 1997-08-05 | 1997-08-05 | 産業用ロボットの加減速パターン生成方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1999008167A1 true WO1999008167A1 (fr) | 1999-02-18 |
Family
ID=16598095
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP1998/003462 WO1999008167A1 (fr) | 1997-08-05 | 1998-08-03 | Procede permettant de generer une consigne d'acceleration/deceleration destinee a un robot industriel |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPH1153021A (ja) |
WO (1) | WO1999008167A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1197820A3 (en) * | 2000-10-18 | 2004-01-21 | Fanuc Ltd. | Acceleration and deceleration control method |
CN109543332A (zh) * | 2018-11-30 | 2019-03-29 | 东北大学 | 一种系列化机器人腕部减速器选型方法 |
CN112157661A (zh) * | 2020-12-02 | 2021-01-01 | 成都卡诺普自动化控制技术有限公司 | 一种基于机器人动力学的关节运动轨迹优化方法 |
CN112223298A (zh) * | 2020-12-08 | 2021-01-15 | 成都卡诺普自动化控制技术有限公司 | 一种确定机器人关节最大加速度和最大速度的方法 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4627740B2 (ja) * | 2006-04-04 | 2011-02-09 | 三菱電機株式会社 | 数値制御装置 |
JP5120435B2 (ja) * | 2010-09-30 | 2013-01-16 | ブラザー工業株式会社 | モータ制御装置 |
US9242376B2 (en) | 2013-03-28 | 2016-01-26 | Denso Wave Incorporated | Method of generating path of multiaxial robot and control apparatus for the multiaxial robot |
US9221175B2 (en) | 2013-03-28 | 2015-12-29 | Denso Wave Incorporated | Method of generating path of multiaxial robot and control apparatus for the multiaxial robot |
JP7115090B2 (ja) * | 2018-07-17 | 2022-08-09 | オムロン株式会社 | 加速度調整装置及び加速度調整プログラム |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04362710A (ja) * | 1991-06-10 | 1992-12-15 | Fanuc Ltd | サーボモータの最適加減速制御方式 |
JPH05333909A (ja) * | 1992-05-28 | 1993-12-17 | Yokogawa Electric Corp | ロボット制御装置 |
JPH07244520A (ja) * | 1994-03-03 | 1995-09-19 | Fanuc Ltd | 干渉トルクを考慮した自動機械の加減速制御方法 |
JPH08137524A (ja) * | 1994-11-09 | 1996-05-31 | Fanuc Ltd | ロボットの軌道計画時における時定数の設定方法 |
-
1997
- 1997-08-05 JP JP21096797A patent/JPH1153021A/ja active Pending
-
1998
- 1998-08-03 WO PCT/JP1998/003462 patent/WO1999008167A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04362710A (ja) * | 1991-06-10 | 1992-12-15 | Fanuc Ltd | サーボモータの最適加減速制御方式 |
JPH05333909A (ja) * | 1992-05-28 | 1993-12-17 | Yokogawa Electric Corp | ロボット制御装置 |
JPH07244520A (ja) * | 1994-03-03 | 1995-09-19 | Fanuc Ltd | 干渉トルクを考慮した自動機械の加減速制御方法 |
JPH08137524A (ja) * | 1994-11-09 | 1996-05-31 | Fanuc Ltd | ロボットの軌道計画時における時定数の設定方法 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1197820A3 (en) * | 2000-10-18 | 2004-01-21 | Fanuc Ltd. | Acceleration and deceleration control method |
US6920363B2 (en) | 2000-10-18 | 2005-07-19 | Fanuc Ltd | Acceleration and deceleration control method |
CN109543332A (zh) * | 2018-11-30 | 2019-03-29 | 东北大学 | 一种系列化机器人腕部减速器选型方法 |
CN112157661A (zh) * | 2020-12-02 | 2021-01-01 | 成都卡诺普自动化控制技术有限公司 | 一种基于机器人动力学的关节运动轨迹优化方法 |
CN112157661B (zh) * | 2020-12-02 | 2021-03-05 | 成都卡诺普自动化控制技术有限公司 | 一种基于机器人动力学的关节运动轨迹优化方法 |
CN112223298A (zh) * | 2020-12-08 | 2021-01-15 | 成都卡诺普自动化控制技术有限公司 | 一种确定机器人关节最大加速度和最大速度的方法 |
Also Published As
Publication number | Publication date |
---|---|
JPH1153021A (ja) | 1999-02-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109664297B (zh) | 机器人的振动抑制方法、系统、装置及计算机可读存储器 | |
US12350838B2 (en) | Input shaping control of a robot arm in different reference spaces | |
US5214749A (en) | Dynamic control of a robot with its center of mass decoupled from an end effector by a redundant linkage | |
WO2005009692A1 (ja) | ロボットアームの制御方法および制御装置 | |
KR20140005771A (ko) | 로봇 제어 장치 및 로봇 제어 방법 | |
JPH08118275A (ja) | マニピュレータの制御装置 | |
US6684128B1 (en) | Robot and method of controlling the robot | |
WO1999008167A1 (fr) | Procede permettant de generer une consigne d'acceleration/deceleration destinee a un robot industriel | |
US8547047B2 (en) | Method and device for monitoring a movement-controlled machine with an electronically commutated drive motor | |
EP1023973B1 (en) | Robot control method and device | |
JP2013223895A (ja) | ロボット制御方法及びロボット制御装置 | |
JPH03245978A (ja) | ロボット | |
JP2008194760A (ja) | ロボットアーム、及びその制御方法 | |
JP6021478B2 (ja) | ロボット制御装置、及びロボット制御方法 | |
WO1997001801A1 (fr) | Procede de regulation des operations d'acceleration et de deceleration d'un robot | |
CN111830992B (zh) | 一种轮式机器人的力控制方法、装置及轮式机器人 | |
Yamakawa et al. | Development of a brachiation robot with hook-shaped end effectors and realization of brachiation motion with a simple strategy | |
JPH09204216A (ja) | 多関節ロボットの加減速制御方法 | |
JPH08234801A (ja) | モータ駆動式関節アームのための制御装置及び制御方法 | |
JP5633268B2 (ja) | ロボットの制御装置 | |
JPH11345010A (ja) | ロボットの制御装置 | |
Takahashi et al. | Position Control of a Two-Degree-of-Freedom Parallel Robot Including Torsion Springs and Motor/Load-Side Encoders | |
JP3174352B2 (ja) | ロボットの加減速制御方法および装置 | |
JPS63314607A (ja) | 多関節ロボットの制御装置 | |
JPH0255803B2 (ja) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CN KR US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
NENP | Non-entry into the national phase |
Ref country code: KR |
|
122 | Ep: pct application non-entry in european phase |