[go: up one dir, main page]

WO1999008321A1 - Epoxy resin sealing material for molding semiconductor chip and method for manufacturing the same - Google Patents

Epoxy resin sealing material for molding semiconductor chip and method for manufacturing the same Download PDF

Info

Publication number
WO1999008321A1
WO1999008321A1 PCT/JP1997/002774 JP9702774W WO9908321A1 WO 1999008321 A1 WO1999008321 A1 WO 1999008321A1 JP 9702774 W JP9702774 W JP 9702774W WO 9908321 A1 WO9908321 A1 WO 9908321A1
Authority
WO
WIPO (PCT)
Prior art keywords
granules
epoxy resin
particles
resin
particle size
Prior art date
Application number
PCT/JP1997/002774
Other languages
English (en)
French (fr)
Inventor
Takanori Kushida
Akio Kobayashi
Yosuke Obata
Hironori Ikeda
Taro Fukui
Masashi Nakamura
Original Assignee
Matsushita Electric Works, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works, Ltd. filed Critical Matsushita Electric Works, Ltd.
Priority to JP10531352A priority Critical patent/JP3135926B2/ja
Priority to US09/147,799 priority patent/US6120716A/en
Priority to PCT/JP1997/002774 priority patent/WO1999008321A1/ja
Publication of WO1999008321A1 publication Critical patent/WO1999008321A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to an epoxy resin sealing material for molding a semiconductor chip and a method for manufacturing the same.
  • BACKGROUND ART Semiconductor chips are sealed by transfer molding using a so-called tablet obtained by compressing a sealing composition comprising an epoxy resin, a curing agent, and an inorganic filler.
  • This tablet is formed by kneading the above-mentioned sealing composition, semi-curing the kneading composition, and pulverizing a cured product obtained by compressing the cured product into a cylindrical shape.
  • the tablet thus obtained is supplied to a pot of a transfer molding machine, and then is forcibly sent to a mold cavity where it is formed in a form surrounding a semiconductor chip.
  • this multi-pot type transfer molding machine a plurality of pots are provided, and a corresponding cavity is provided from the pots.
  • the length of the runner is shortened to seal multiple semiconductor chips at once.
  • this fine powder has a tendency to adhere to granules having a large particle size, so that it is difficult to classify the granules by a sieve, and the fine particles are easily subjected to vibration applied when the granules are supplied to a pot-mold cavity. Separated from granules. Furthermore, the vibrations cause the particles to be squared, and fine powder is newly generated.
  • the tablet may be vibrated while being supplied to the pot or the cavity, and the fine powder may be easily separated from the tablet, thereby clogging the transfer path to the cavity. There is.
  • the present invention provides an improved epoxy resin sealing material that solves the above-mentioned problems, and a method for producing the same.
  • the epoxy resin encapsulating material according to the present invention has a composition comprising an epoxy resin, a curing agent, an inorganic filler, and a release agent, and comprises a granular material having a particle size of 0.1 mm to 5.0 mm. Granules having a particle size of 9 wt% or more and less than 0.1 mm account for 1 wt% or less of the whole.
  • This epoxy resin encapsulant has a characteristic feature that its angle of repose is 20 ° to 40 °, which ensures good flow without clogging the material transfer path to the mold cavity. Demonstrates excellent sealing performance.
  • This epoxy resin sealing material is manufactured by the following process. First, the above-mentioned sealing composition is kneaded to obtain a B-stage semi-cured product, and the semi-cured product is pulverized to obtain a pulverized piece having a diameter of 5 mm or less.
  • the material contains granules with a particle size of 0.1 mm to 5.0 mm and minute powders with a particle size of less than 0.1 mm (minute powder).
  • the fine powder is captured in the molten phase of the resin component, and then, the resin that captures the fine powder by solidifying the molten phase
  • the granular epoxy resin sealing material covered with the layer is obtained.
  • a resin layer is formed on the surface of the granular material having a particle size of 0.1 mm to 5.0 mm, and fine powder having a particle size of less than 0.1 mm is captured by the resin layer.
  • the resin component of the sealing composition can be efficiently melted on the surface of the whole granules, and the granules can be mutually separated. Prevents unnecessarily large lumps from sticking together, making it easy to manufacture epoxy resin encapsulants of uniform size.
  • a pretreatment for forming a resin layer on the surfaces of the granules by heating it is desirable to add water to the pulverized material to wet the surfaces of the granules.
  • the fine powder can be attached to the surface of the granules before the resin component is melted to form a molten phase, and the fine phase can be added to the molten phase in the process immediately thereafter. The efficiency of capturing fine powder can be improved.
  • Granulation can be performed by adding a solvent or a wetting agent to the aggregate of granules being stirred.
  • a solvent capable of dissolving and dissolving the resin component in the sealing composition on the surface of the granular material is selected, whereby the surface is wetted and fine powder is absorbed therein.
  • the wetting agent also wets the surface and absorbs the fine powder, and is one or more selected from the group consisting of an epoxy resin, a curing agent, a release agent, a surfactant and water. It is desirable to use a release agent as the wetting agent because the sealing process can be facilitated.
  • FIG. 1 is a schematic diagram showing a mixer used for producing an epoxy resin sealing material according to the present invention
  • FIG. 2 is a schematic view showing a flow vessel used for manufacturing the epoxy resin sealing material according to the present invention.
  • the epoxy resin encapsulant of the present invention is provided as a granular material and is used for embedding and molding a semiconductor chip in a transfer molding machine.
  • the epoxy resin material is prepared from a sealing composition comprising an epoxy resin, a curing agent, a release agent, and an inorganic filler.
  • the composition contains a curing accelerator, a surfactant, a silane coupling agent, a coloring agent, a stress reducing agent, and a flame retardant as necessary.
  • the epoxy resin encapsulating composition contains a resin component other than the inorganic filler and the colorant.
  • Epoxy resins include ortho-cresol novolak epoxy resins, bisphenol A epoxy resins, biphenyl epoxy resins, dicyclopentagen epoxy resins, linear aliphatic epoxy resins, alicyclic epoxy resins, heterocyclic epoxy resins, etc. These specific epoxy resins may be used alone or in combination.
  • the curing agent examples include phenol novolak resin and its derivative, cresol novolak resin and its derivative, mono- or dihydroxynaphthalene novolak resin and its derivative, phenols and condensates of naphthols and p-xylene, Examples include phenol-based curing agents such as pentagen-phenol copolymers, amine-based curing agents, and acid anhydrides. These specific curing agents may be used alone or in combination. The use of a phenol nopolak resin is preferable because the moisture absorption of the cured resin can be reduced. The compounding amount is usually 0.1 to 10 in an equivalent ratio to the epoxy resin.
  • the release agent examples include fatty acids such as stearic acid, montanic acid, palmitic acid, oleic acid, and linoleic acid, salts such as calcium salts, magnesium salts, aluminum salts, and zinc salts of the fatty acids, amides of the fatty acids, and phosphorus.
  • fatty acids such as stearic acid, montanic acid, palmitic acid, oleic acid, and linoleic acid
  • salts such as calcium salts, magnesium salts, aluminum salts, and zinc salts of the fatty acids, amides of the fatty acids, and phosphorus.
  • Examples include acid esters, polyethylene, bisamide, carboxyl-containing polyolefin, and natural carnauba.
  • the inorganic filler examples include crystalline silica, fused silica, alumina, magnesium, titanium oxide, calcium carbonate, magnesium carbonate, silicon nitride, talc, calcium silicate and the like.
  • the above inorganic filler is used alone Also, two or more types may be used in combination.
  • silica such as crystalline silica or fused silica is used as the inorganic filler, the coefficient of linear expansion of the cured resin becomes small, and is preferably close to the coefficient of linear expansion of the semiconductor element.
  • the inorganic filler is desirably contained in an amount of 60 to 95 parts by weight in a total of 100 parts by weight of the resin component and the inorganic filler, whereby the moisture absorption of the cured resin can be reduced and Excellent heat resistance to heat during soldering of the sealed semiconductor.
  • the inorganic filler one having an average particle size of 0.5 to 50 / m is used.
  • curing accelerators examples include tertiary amine compounds such as 1,8-diazabicyclo (5,4,0) pandecene-17, triethylenediamine and benzyldimethylamine, 2-methylimidazole, Imidazoles such as ethyl 4-methylimidazole, 2-phenylimidazole, 2-phenylimidazole, and organic phosphine compounds such as triphenylinolephosphine and triptinolephosphine; Is mentioned.
  • tertiary amine compounds such as 1,8-diazabicyclo (5,4,0) pandecene-17, triethylenediamine and benzyldimethylamine, 2-methylimidazole, Imidazoles such as ethyl 4-methylimidazole, 2-phenylimidazole, 2-phenylimidazole, and organic phosphine compounds such as triphenylinolephosphine and triptinolephosphine;
  • surfactant examples include polyethylene glycol fatty acid esters, sorbitan fatty acid esters, and fatty acid monoglycerides.
  • silane coupling agent examples include epoxy silanes such as ⁇ -daricidoxypropyltrimethoxysilane and aminosilanes such as phenyl- ⁇ -aminopropyltrimethoxysilane.
  • coloring agent examples include carbon black and titanium oxide.
  • low stress agent examples include silicone gel, silicone rubber, and silicone oil.
  • Examples of the flame retardant include antimony trioxide, a halogen compound, a phosphorus compound and the like.
  • One or more of each of these curing accelerators, silane coupling agents, release agents, coloring agents, low stress agents, surfactants, and flame retardants are used.
  • silane coupling agents, release agents, coloring agents, low stress agents, surfactants, and flame retardants are used.
  • the above resin component and the inorganic filler are mixed with a mixer such as a Henschel mixer and kneaded while ripening to soften the resin component, and then into a sheet, a rod or the like. Extruded as other semi-cured bodies.
  • the kneading and the extrusion are performed, for example, using a hot roll, a twin-screw extruder and an extruder.
  • the kneading is carried out for a time such that the curing of the resin component does not proceed so much and that the familiarity between the resin component and the inorganic filler is sufficient.
  • the cured product is pulverized to obtain a pulverized product having a particle size of 5.0 mm or less. If any of them exceeds 5.0 mm, remove them by sieving.
  • This pulverization is performed using, for example, a rotary cutter or a roller mill / hammer mill.
  • the pulverized material thus pulverized has granules having a diameter of 0.1 mm or more, and fine powder having a diameter of less than 0.1 mm.
  • the final epoxy resin-sealed granules having each of them are obtained.
  • Heat and the like and stirring are added to the pulverized material in combination to perform granulation with capture of fine powder. That is, by applying heat or the like while stirring, the resin component on the particle surface is melted to form a molten phase, which captures fine powder.
  • FIG. 1 One method of performing the above granulation uses a mixer as shown in FIG.
  • This mixer is composed of a container 10 having an upper opening and a stirring blade 11 rotated by a motor 12 in the container.
  • the stirring blade 11 By rotating the stirring blade 11 at a high speed, the pulverized material particles G in the container 10 are intensely agitated and collide with each other to generate frictional heat, and the frictional heat generates a seal existing on the particle surface.
  • the resin component with the lowest melting point in the stop composition is melted. Temperature or frictional heat is adjusted by selecting motor speed Thus, the resin component having the lowest melting point can be melted. Particles having a molten phase collide with each other and collect at the interface between the molten phases by collision.
  • the agglomerate When the agglomerate has a predetermined diameter, it is sheared by the rotating stirring blade 11 and returned to a small diameter. This aggregation and shearing are repeated to obtain granules of an appropriate size, and during this time the chance of the fine powder being captured in the molten phase increases. Thereafter, the rotation speed of the stirring blade 11 is reduced to stop the melting of the resin component, but the stirring of the granules is continued, and the molten phase is cooled to bind the fine powder to the resin layer formed on the surface of the granules. By this stirring, granules having a repose angle in a predetermined range of 20 ° to 40 ° are obtained.
  • a release agent when lowering the rotation speed of the stirring blade, whereby the release agent layer or the release agent is melted or mixed with the resin on the surface of the granules. A combination layer is formed.
  • the sealing process can be easily performed by adding the release agent to the particle surface.
  • a mixer in this method a Henschel mixer, a Unino-kusanore mixer, and a ribbon blender @ suno-1 mixer are used.
  • Another method of granulation is to add a heater to the above mixer.
  • This heater is provided in the wall of the container shown in FIG. 1, and heats to the temperature at which the melting point of the sealing composition present on the surface of the pulverized particles is the lowest and the resin component is melted.
  • the stirring by the stirring blade 11 is performed during the heating, so that the particles are aggregated through the interface of the molten phase of the resin component, and at the same time, the diameter is prevented from increasing due to the shearing by the rotating stirring blade.
  • the fine powder is captured in the molten phase.
  • the agglomerated particles are divided into particles having a uniform diameter by the shearing action of the stirring blade.
  • a granular material having a repose angle in a predetermined range of 20 ° to 40 ° is obtained by this stirring.
  • a fluidized-bed container as shown in FIG. 2 is used.
  • This fluidized bed container is composed of a container 20, a blower 21, and a heater 22.
  • the crushed granules G are stored on a screen 23 in a container 20 and suspended in a rising air flow supplied from a blower 21 to form a fluidized bed.
  • a filter 124 is provided in the vicinity of the exhaust port to collect particles.
  • the heater is operated to heat the granules suspended and stirred by air to melt the resin component having the lowest melting point in the sealing composition on the granule surface.
  • the granules having such a molten phase collide with each other in a fluidized bed and are agglomerated to an appropriate size via an interface of the molten phase. During this time, fine powder is captured in the molten phase. Since the granules are constantly moving in the fluidized bed, the agglomerated granules are always divided, and the granules are granulated to an appropriate size without becoming excessively large agglomerates. Thereafter, the temperature of the heater is lowered to solidify the aggregated particles in the fluidized bed, and as a result, particles having a uniform diameter in which the fine powder is captured in the resin layer formed are obtained. Fine powder that could not be captured in the molten phase is flowed above the fluidized bed and collected by the filter 24. By this stirring, a granular material having a repose angle in a predetermined range of 20 ° to 40 ° is obtained.
  • Granulation method D As a fluidized bed container used in this method, a device using a centrifugal air flow or a spiral air flow can be used.
  • a solvent is added to the aggregate of the pulverized material while stirring the pulverized material using the mixer shown in Fig. 1.
  • the addition of this solvent dissolves the resin component in the sealing composition on the surface of the granules, wets the surface, adsorbs fine powder and agglomerates the granules while stirring the pulverized material.
  • the aggregates have a predetermined diameter, they are sheared back to a small diameter by the rotating stirring blade 11. This aggregation and shearing are repeated to obtain granules of an appropriate size, during which time the opportunity for fine powder to be trapped on the surface of the moist granules increases.
  • the surface of the granules is dried by supplying cool air or warm air while continuing to stir to obtain granules having fine powder captured on the surface.
  • a granular material having a repose angle in a predetermined range of 20 ° to 40 ° is obtained.
  • the solvent may be added all at once or may be added several times during the stirring of the granules.
  • methanol, xylene, toluene, hexane, methyl ethynole ketone, ethynoleate acetate, cyclohexane, isopropanol, benzene, methyl acetone, and anhydrous ethanol are used.
  • a wetting agent is added to the pulverized material while stirring the pulverized material.
  • the wetting agent is at least one selected from the group consisting of an epoxy resin, a curing agent, a release agent, and a surfactant.
  • the wetting agent covers and wets the granule surface as a liquid, adsorbing the fine powder onto the moistened surface and agglomerating the granules during stirring of the granules. Thereafter, cooling air or hot air is supplied while stirring is continued to solidify the wetting agent covering the surface of the granules to obtain granules having fine powder captured on the surface.
  • granules having a repose angle in a predetermined range of 20 ° to 40 ° are obtained.
  • the agent may be added at once, or may be added several times during the stirring of the granules. Those that are solid at room temperature as a wetting agent are heated and liquefied before being added to the granules. By using a wetting agent that is solid at room temperature, desired granules can be obtained without forcibly cooling the granules.
  • a release agent that facilitates the sealing process is desirable. Further, it is desirable to add 0.1 to 5 parts by weight of the wetting agent to 100 parts by weight of the pulverized material in order to balance granulation performance and drying performance.
  • the epoxy sealing composition was kneaded using a kneading extruder, extruded into a rod shape from the die outlet, cut in a molten state, then cooled and solidified while being rounded, and the diameter was reduced to 0.
  • a granular material of 5 mm to 5.0 mm is obtained.
  • Example 1 Water is added to the aggregate of the pulverized granules during stirring to wet the surface of the granules to coagulate the granules and to adsorb the fine powder. The granules are then dried while stirring to remove moisture. This treatment causes the fine powder to adhere to the moistened granule surface.
  • agglomeration is carried out using the above-mentioned mixer or fluidized-bed container, and after this treatment, it is granulated by one of the above methods A to E.
  • a liquid that does not dissolve the resin component of the epoxy encapsulating composition other than water for example, a liquid of the same or a different type as that mixed in the epoxy resin composition. Poxy resins, curing agents, release agents, surfactants, etc. can be used.
  • the following examples are illustrative of the invention and do not limit the scope of the claims.
  • an epoxy resin sealing material is manufactured based on the above granulation method A.
  • Biphenyl type epoxy resin [YX40 00H, manufactured by Yuka Shell Epoxy Co., Ltd.] 3 parts by weight
  • Phenol resin [Tamanol 752, manufactured by Arakawa Chemical Co., Ltd.] 5 parts by weight
  • the epoxy resin composition of the above composition is put into a twin-screw kneader, kneaded at a temperature of 85 ° C for 5 minutes, cooled, and then pulverized with a cutter mill.5. I got This pulverized material weighs 90 weight of granules with a diameter of 0.1 to 5.0 mm. /. Contains 10% by weight of fine powder having a diameter of 0.1 mm or less.
  • an epoxy resin sealing material is manufactured based on the above granulation method A with pretreatment.
  • the milled material of 5 OKg prepared in Example 1 was put into a Henschel mixer [Mitsui Mining Co., Ltd.], and 2 kg of the material was rotated while rotating the stirring blade 11 at 400 rpm. Pure water was sprayed on the granules, and stirring was continued for 20 minutes to wet the surface of the granules. Next, the stirring blade 11 is rotated at 1500 rpm for 10 minutes, and the resin component on the surface of the granules is melted by frictional heat generated by stirring to capture the fine powder in the molten phase.
  • an epoxy resin sealing material is manufactured based on the above granulation method C.
  • Example 4 50 kg of the crushed product of the epoxy resin composition prepared in Example 1 was charged into a fluidized-bed container [manufactured by Okawara Seisakusho] as shown in FIG. 2 and air at room temperature was blown upward from the bottom of the container. To form a fluidized bed of granules. Then, 0.5 kg of toluene was added, and the mixture was stirred for 10 minutes to dissolve the resin component of the epoxy resin composition on the surface of the particles, thereby forming a dissolved phase. Thereafter, the temperature of the air was raised to 40 ° C., and the mixture was stirred for 60 minutes, and the melt phase was dried to obtain an epoxy resin-sealed granular material having a resin layer on the surface of which fine powder was captured. Was.
  • Example 4 50 kg of the crushed product of the epoxy resin composition prepared in Example 1 was charged into a fluidized-bed container [manufactured by Okawara Seisakusho] as shown in FIG. 2 and air at room temperature was blown upward
  • an epoxy resin sealing material is manufactured based on the above granulation method E.
  • Example 5 50 kg of the pulverized epoxy resin composition prepared in Example 1 was charged into a ribbon blender, and the mold release agent was added to the epoxy resin composition while rotating the stirring blade of the blender at 200 rpm. Stearin similar to the release agent blended as The acid was added by heating to 0.5 Kg at 70 ° C. During this stirring, the surface of the granules is moistened with stearic acid, and the fine powder is trapped here to form granules, and the stearic acid is cooled, and the fine powder is trapped on the surface. I got Example 5
  • an epoxy resin sealing material is manufactured based on the above granulation method F.
  • Example 1 The same epoxy resin sealing composition as in Example 1 was charged into a kneading extruder and kneaded. Then, the mixture was extruded into a rod while being melted by passing through a heated die outlet having a diameter of 1.5 mm, cut, and then cooled while rolling the inclined surface to obtain an epoxy resin-sealed granular material having a round shape. Comparative Example 1
  • the pulverized product of the epoxy resin composition prepared in Example 1 was compression-molded into a cylindrical tablet having a compression ratio of 92%, a weight of 1.2 g and a diameter of 7.4 mm. Comparative Example 4
  • Example 1 The granules obtained in Example 1 were ground again with a universal mixer at 400 rpm for 10 minutes. Evaluation of Examples and Comparative Examples
  • Example 5 0.2 0.3 Comparative Example 1 2.0 3.0 Comparative Example 2 0.5 1.0
  • Comparative Example 4 0.5 1.0
  • the particle size distribution was determined using a series of sieves provided on a low tap vibrator. While sifting these sieves for 30 minutes, a sample of 200 g was passed through the sieve and classified to measure the weight of the granular material and the granular material remaining on each sieve. Based on the weight measured in this way, based on the weight of the sample before classification, the weight ratio of the particles having a particle size of 0.1 mm to 5.0 mm and the fine powder having a particle size of less than 0.1 mm is calculated. did.
  • the angle of repose was determined using a 50 mm long glass cylindrical funnel with an upper opening diameter of 50 mm and a 7 mm long outlet tube of 7 mm diameter. This funnel was placed vertically and coaxially with the disc on a 30 mm thick, 100 mm diameter glass disc with the lower end of the outlet tube at a height of 100 mm from the disc. . Based on the sampling method specified in JIS K6911, 300 g of granules or granules are passed through a funnel and gently poured onto a circular plate, and granules having a slope on top of them. A granular mass formed.
  • the angle of repose ( ⁇ ) determined by the following equation was obtained from the height (h) of the inclined mass. The angle of repose ( ⁇ ) was measured seven times for each sample, and the average of the five intermediate values excluding the maximum and minimum was selected for evaluation.
  • the secondary dust ratio is a 2-liter synthetic resin attached to a low tap vibrator. Asked using a bottle. Place a 500 g sample in a bottle and vibrate for 30 minutes and 60 minutes respectively, and shake the weight ratio of dust less than 0.1 mm diameter to the sample weight before applying vibration for 30 minutes and 60 minutes Later samples were determined.
  • the measurement error was measured as an indicator of the measurement stability, that is, the difficulty of clogging in the route to the mold cavity in the transfer molding machine.
  • Granules and granules were weighed using 5 cc and 10 cc weighing containers. This weighing error is obtained by repeating 100 times cycles of taking granules and granules into each container and taking them out through the material transfer path in the molding machine, and the granules and granules taken out of the containers are obtained. It was defined as the difference between the maximum and minimum weight of

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)

Description

明 細 書 半導体チップをモールドするためのエポキシ樹脂封止材料及びその製 造方法
技術分野
本発明は、 半導体チップをモールドするためのエポキシ樹脂封止材料 及びその製造方法に関する。
背景技術
エポキシ樹脂、 硬化剤、 無機充填材からなる封止組成物を圧縮してで きた所謂タブレツトを使用してトランスファー成形により半導体チップの 封止が行なわれている。 このタブレットは、 上記封止組成物を混練し、 こ れを半硬化してできた硬化物を粉砕して得た粒状物を円筒状に圧縮して形 成される。 このようにして得られたタブレツトはトランスファ一成形機の ポットに供給されてから、 モールドのキヤビティに強制的に送られてここ で半導体チップを包囲する形で成形される。 近年、 封止性能を向上させる ために、 マルチポッ ト型のトランスファー成形機を使用することが提案さ れており、 このマルチポット型のトランスファー成形機では複数のポット が設けられてポットから対応するキヤビティまでのランナー長を短くして 複数の半導体チップを一度に封止するようになっている。 ポット数が多く なると、 タブレツ トのサイズを小さく して一つのポッ トに供給されるタブ レッ トの十分な個数とすることが必要とされる。 この点を考慮して、 タブ レツトに圧縮する前の粉砕物を利用することが考えられる。
しかしながら、 半硬化したェポキシ組成物を粉砕した後の粉砕物には 多数の微細粉が含まれており、 この微細粉は封止材料を計量器に供給する ための材料移送経路や封止材料をポットに供給するための材料移送経路で 目詰まりを起こしゃすく、 その結果モールドキヤビティに封止材料が十分 に供給されず、 その結果封止性能が低下することになる。 また、 この微細 粉は粒径の大きな粒体に付着する傾向が有るため、 篩によって分級するこ とが困難であり、 粒体をポットゃモールドキヤビティに供給する際に加え られる振動によって容易に粒体から分離してしまう。 更には、 振動によつ て粒体の角かけが起こり、 微細粉が新たに発生するものである。
更に、 たとえタブレットを使用しても、 タブレットがポッ ト乃至キヤ ビティに供給される間に振動を受けて微細粉が容易にタブレツ 卜から分離 されて、 キヤビティに至る移送経路の目詰まりを起こすことがある。
上記の問題に鑑みて、 トランスファ一成形機の材料移送経路に目詰ま りが発生しにくい粒状のエポキシ封止材料を提供することが望まれる。 発明の開示
本発明では、 上述の問題点を解消する改良されたエポキシ樹脂封止材 料及びその製造方法を提供する。 本発明によるエポキシ樹脂封止材料は、 エポキシ樹脂、 硬化剤、 無機充填材、 離型剤からなる組成を有し、 0 . 1 mm〜 5 . 0 mmの粒径を有する粒状体が全体の 9 9 w t %以上で、 0 . 1 mm未満の粒径を有する粒状体が全体の 1 w t %以下である。 このェポ キシ樹脂封止材料はその安息角が 2 0 ° 〜4 0 ° であることが特徴であり、 これによりモールドキヤビティに至る材料移送経路に目詰まりを起こすこ とが無い良好な流動性を発揮して、 優れた封止性能を保証する。 なお、 0 . 1 mm未満の粒径を有する微細粉が 1 w t %を超える場合や、 0 . 1 mm 〜 5 . 0 mmの粒径を有する粒状体が 9 9 w t %未満の場合、 材料移送経 路に目詰まりが発生しやすくなる。 また、 安息角が 4 0 ° を超える場合も、 材料移送経路に目詰まりが発生しやすくなる。 安息角が 2 0 ° 未満の封止 材料は製造しようとすると製造するために長時間かかり、 経済的でない。
このエポキシ樹脂封止材料は以下の過程により製造される。 先ず、 上 記成分の封止組成物を混練して B—ステージ状態の半硬化物を得て、 この 半硬化物を粉砕して直径が 5 mm以下の粉砕物 (piece) を得る、 この粉砕 物は粒径が 0 . 1 mmから 5 . 0 mmの粒体 (granule)と粒径が 0 . 1 mm 未満の微細粉 (minute powder)とを含み、 粒体を継続的に動かしながら粒体 の表面にあるェポキシ封止組成物の樹脂成分を溶融させることで、 上記微 細粉を樹脂成分の溶融相内に捕捉し、 次いで、 上記溶融相を固化させるこ とで微細粉を捕捉した樹脂層で被覆された粒状の上記ェポキシ樹脂封止材 料が得られる。 この結果、 0 . l mm〜5 . 0 mmの粒径を有する粒状体 の表面には樹脂層が形成され、 この樹脂層に 0 . 1 mm未満の粒径を有す る微細粉が捕捉される。 この方法により、 分離した微細粉が少ないェポキ シ樹脂封止材料が成功裏に得られて、 上記の粒度分布と上記の安息角が満 足できる。
好ましい実施例においては、 粒体を攪拌しながら加熱することで、 全 体の粒体についてその表面で上記封止組成物の樹脂成分を効率よく溶融さ せることができると共に、 粒体が互いにくつっき合ってむやみに大きな塊 となるのと防止して、 一様なサイズのエポキシ樹脂封止材料の製造を容易 に行なえる。
また、 粒体の表面へ加熱により樹脂層を形成する前処理として、 粉砕 物に水を添加して上記粒体の表面を湿潤化させることが望ましい。 この前 処理を行なうことで、 樹脂成分を溶融させて溶融相を形成する前に、 微細 粉を粒体表面に付着させることができて、 その直後の過程での溶融相への 微細粉の捕捉効率をあげることができる。
溶剤や湿潤化剤を攪拌中の粒体の集合体に添加して造粒を行なうこと ができる。 溶剤としては粒体表面での封止組成中の榭脂成分を溶かして溶 融することができるものが選択されこれにより表面を湿潤化してここに微 細粉を吸収する。 湿潤化剤も同様に表面を湿潤化して微細粉を吸収するも のであり、 エポキシ樹脂、 硬化剤、 離型剤、 界面活性剤及び水の群から選 択された一つまたはそれ以上である。 湿潤化剤として離型剤を用いること は封止過程を容易とすることができる上で望ましい。
上述した目的や利点及びその他の目的や利点は以下に述べる図面を参 照した発明の詳細な説明や実施例から明白になろう。 図面の簡単な説明
図 1は本発明に係るエポキシ樹脂封止材料の製造に使用されるミキサーを 示す概略図;
図 2は本発明に係るエポキシ樹脂封止材料の製造に使用される流動容器を 示す概略図 発明を実施するための最良の形態
本発明のエポキシ樹脂封止材料は粒状体として提供されてトランスフ ァー成形機で半導体チップを埋入成形するために使用される。 エポキシ樹 脂材料は、 エポキシ樹脂、 硬化剤、 離型剤、 無機充填材からなる封止組成 物から調製される。 この他、 組成物には必要に応じて、 硬化促進剤、 界面 活个生剤、 シランカップリング剤、 着色剤、 低応力化剤、 難燃剤が含まれる。 このェポキシ樹脂封止組成物は樹脂成分として無機充填材ゃ着色剤以外の ものが含まれる。 ェポキシ樹脂としては、オルソクレゾールノボラック型ェポキシ榭脂、 ビスフエノール A型エポキシ樹脂、 ビフエニル型エポキシ樹脂、 ジシクロ ペンタジェン型エポキシ樹脂、 線状脂肪族エポキシ樹脂、 脂環式エポキシ 樹脂、 複素環式エポキシ樹脂等が挙げられ、 これらの特定のエポキシ樹脂 を単独や組み合わせて使用してもよレ、。
硬化剤としては、 フヱノールノボラック樹脂及びその誘導体、 クレゾ 一ルノボラック樹脂及びその誘導体、 モノまたはジヒ ドロキシナフタレン ノボラック樹脂及びその誘導体、 フエノール類やナフトール類と p—キシ レンの縮合体、 ジシク口ペンタジェンとフエノールの共重合体等のフエノ ール系硬化剤や、 アミン系硬化剤や、 酸無水物等が挙げられる。 これら特 定の硬化剤は、 単独や組み合わせて使用してもよい。 なお、 フエノールノ ポラック樹脂を用いた場合、 樹脂硬化物の吸湿率を低下することができ好 ましい。 その配合量としては、 通常エポキシ樹脂に対して、 当量比で 0 . 1〜1 0の範囲で配合される。
離型剤としては、 ステアリン酸、 モンタン酸、 パルミチン酸、 ォレイ ン酸、 リノール酸等の脂肪酸、 その脂肪酸のカルシウム塩、 マグネシウム 塩、 アルミニウム塩、 亜鉛塩等の塩、 その脂肪酸のアミ ド、 リン酸エステ ル、 ポリエチレン、 ビスアマイ ド、 カルボキシル基含有ポリオレフイン及 び天然カルナバ等が挙げられる。 離型剤を含有することにより半導体素子 やリードフレームとの密着性の高いエポキシ樹脂の使用が可能となり、 ト ランスファ一成形時、 樹脂硬化物とプランジャーや金型との離型性が保証 される。
無機充填材としては、 結晶シリカ、 溶融シリカ、 アルミナ、 マグネシ ァ、 酸化チタン、 炭酸カルシウム、 炭酸マグネシウム、 窒化ケィ素、 タル ク、 ケィ酸カルシウム等が挙げられる。 上記無機充填材は、 単独で用いて も、 2種類以上を併用してもよい。 なお、 無機充填材として結晶シリカ又 は溶融シリカ等のシリカを用いた場合、 樹脂硬化物の線膨張係数が小さく なり、 半導体素子の線膨張係数に近づくため好ましい。 なお、 無機充填材 を、 樹脂成分と無機充填材の合計 1 0 0重量部中に 6 0〜9 5重量部含有 することが望ましく、 これにより樹脂硬化物の吸湿量が低下させることが できると共に封止された半導体の半田付け時の熱に対する耐熱性が優れる。 無機充填材としては、 0 . 5〜5 0 / mの平均粒径のものが用いられる。
硬化促進剤としては、 1, 8—ジァザ一ビシクロ (5 , 4, 0 ) ゥン デセン一 7、 トリエチレンジァミン、 ベンジルジメチルァミン等の三級ァ ミン化合物、 2—メチルイミダゾール、 2—ェチルー 4ーメチルイミダゾ ール、 2—フエ二ルイミダゾール、 2—フエ二ルー 4一メチルイミダゾ一 ノレ等のイミダゾールイ匕合物、 トリフエ二ノレホスフィン、 トリプチノレホスフ ィン等の有機ホスフィン化合物等が挙げられる。
界面活性剤としては、 ポリエチレングリコール脂肪酸エステル、 ソル ビタン脂肪酸エステル、 脂肪酸モノグリセリ ド等が挙げられる。
シラン力ップリング剤としては、 γ —ダリシドキシプロピルトリメ ト キシシラン等のエポキシシランや、 Ν—フエ二ルー γ —アミノプロピルト リメ トキシシラン等のアミノシラン等が挙げられる。
着色剤としては、 カーボンブラック、 酸化チタン等が挙げられる。 低応力化剤としては、 シリコーンゲル、 シリコーンゴム、 シリコーン オイル等が挙げられる。
難燃剤としては、 例えば、 三酸化アンチモン、 ハロゲン化合物、 リン 化合物等が挙げられる。
これらの硬化促進剤、 シランカップリング剤、 離型剤、 着色剤、 低応 力化剤、 界面活性剤、 及び難燃剤としては夫々一つまたはそれ以上が用い られる。
エポキシ樹脂封止材料の製造に際しては、 上記の樹脂成分と無機充填 材が例えばヘンシェルミキサーのようなミキサーで混合され、 加熟しなが ら混練されて樹脂成分を軟化させてからシート状、 棒状やその他の半硬化 体として押し出される。 この混練及び押し出しは、 例えば、 熱ロール、 二 軸二一ダーゃ押し出し機を用いて行われる。 混練は、 樹脂成分の硬化が大 きく進まない程度で、 樹脂成分と無機充填材との馴染みが十分になる程度 の時間行われる。 その後、 硬化体を粉砕して 5 . 0 mm以下の粒径の粉砕 物を得る。 5 . 0 mmを超えるものが含まれる場合には、 篩い分け等を行 なって除去する。 この粉砕は、 例えば、 ロータリーカッター、 ローラーミ ルゃハンマーミルを用いて行われる。 このようにして粉砕された粉砕物は 0 . 1 mm以上の径を有する粒体と、 0 . 1 mm未満の径を有する微細粉 この粉砕物は造粒されて微細粉を捕捉する樹脂被覆を夫々有する最終 のエポキシ榭脂封止粒状体とされる。 粉砕物に熱等と攪拌とが組み合せて 加えられて微細粉の捕捉を伴う造粒が行われる。 即ち攪拌しながら熱等を 加えることで粒体表面の樹脂成分が溶融して溶融相が形成され、 これが微 細粉を捕捉する。
造粒方法 A
上記の造粒を行なう一つの方法は、 図 1に示すミキサーを使用する。 このミキサーは、 上部開口の容器 1 0、 モータ 1 2によって容器內で回転 する攪拌翼 1 1とで構成される。攪拌翼 1 1を高速で回転することにより、 容器 1 0内の粉砕物粒体 Gが強烈に攪拌されて互いに衝突して摩擦熱を発 生し、 この摩擦熱で粒体表面に存在する封止組成中の最も融点が低い樹脂 成分を溶融させる。 温度即ち摩擦熱量はモータ速度を選択することで調整 して最低の溶融点を有する樹脂成分を溶融させることができる。 溶融相を 持った粒体は互いに衝突を行なうことで溶融相同士の界面でくつ付いて凝 集する。 この凝集物粒体が所定の大きさの径になると、 回転する攪拌翼 1 1によってせん断されて小さな径に戻される。 この凝集とせん断とが繰り 返されて適当な大きさの粒体が得られ、 この間に微細粉が溶融相に捕捉さ れる機会が大きくなる。 この後、 攪拌翼 1 1の回転速度を低下させて樹脂 成分の溶融を停止させるも粒体の攪拌を続け、 溶融相を冷却させて粒体表 面にできる樹脂層に微細粉を拘束させる。 この攪拌によって安息角が所定 の範囲 2 0 ° 〜 4 0 ° の粒状体が得られる。 この方法では、 攪拌翼の回転 速度を低下させる時、 離型剤を追加することが望ましく、 これによつて、 粒体の表面に離型剤の層や離型剤が樹脂に溶融や混合した組み合わせ層が 形成される。 このように粒体表面に離型剤を追加することで封止過程を容 易に行なうことができる。 この方法でのミキサーとしては、 ヘンシェルミ キサ一、 ュニノくーサノレミキサー、 リボンブレンダーゃスーノ 一ミキサーが 用いられる。
造粒方法 B
別の造粒方法としては上のミキサーにヒーターを追加して使用するこ とがある。 このヒーターは図 1の容器の壁内に設けられて、 粉砕された粒 体表面に存在する封止組成中の最も融点が低レ、樹脂成分を溶融させる温度 まで加熱する。 攪拌翼 1 1による攪拌は加熱中を通じて行われ、 樹脂成分 の溶融相の界面を介して粒体の凝集が行われると同時に回転する攪拌翼に よるせん断により径が大きくなるのが防止される。 この凝集中に、 微細粉 が溶融相に捕捉される。 攪拌中に、 凝集された粒体は攪拌翼のせん断作用 によって均一な径の粒体に分割される。 また、 この攪拌によって安息角が 所定の範囲 2 0 ° 〜 4 0 ° の粒状体が得られる。 この方法においても、 離 型剤を追加して粒体の表面に、 離型剤の層や樹脂成分と離型剤との組み合 わせ層を形成することが望ましい。
造粒方法 C
更なる造粒方法としては、図 2に示すような、流動層容器を使用する。 この流動層容器は、 容器 2 0、 ブロワ一 2 1、 及びヒーター 2 2とで構成 される。粉砕された粒体 Gは容器 2 0内のスクリーン 2 3の上に収められ、 ブロワ一 2 1から供給される上昇空気流中に懸濁して流動床を形成する。 排気口の近傍にはフィルタ一 2 4が設けられて粒体の回収がなされる。 先 ず、 ヒーターを稼動させて空気によって懸濁 ·攪拌されている粒体を加熱 して粒体表面にある封止組成物中で最も低い溶融点の樹脂成分を溶融させ る。 このような溶融相を有する粒体は流動床中で互いに衝突して溶融相の 界面を介して適当な大きさに凝集される、 この間に微細粉が溶融相に捕捉 される。 流動床中において粒体が始終移動しているため、 凝集した粒体の 分割が常に行なわれ、 粒体が過度に大きな塊とならず、 適当な大きさに造 粒される。 この後、 ヒーター温度を低下させて流動床中で凝集した粒体を 固化させ、 その結果得形成される樹脂層に微細粉が捕捉された一様な径の 粒体を得る。 溶融相に捕捉できなかった微細粉は流動床の上方に流されて フィルター 2 4で回収される。 この攪拌によって安息角が所定の範囲 2 0 ° 〜4 0 ° の粒状体が得られる。
この方法においても、 ヒーター温度が低下した時に、 離型剤を追加し て粒体の表面に離型剤の層や樹脂成分と離型剤の組み合わせ層を形成する ことが望ましい。
この方法に用いられる流動層容器としては、 遠心空気流やスパイラル 空気流を用いた装置が利用できる。 造粒方法 D
別の造粒方法としては、 図 1 のミキサーを使用して、 粉砕物を攪拌し ながら、 粉砕物の集合物に溶剤を添加する。 この溶剤の添加によって、 粒 体の表面での封止組成物中の樹脂成分を溶解させてこの表面を湿潤化し、 粉砕物の攪拌中に微細粉を吸着すると共に粒体を凝集させる。 この凝集物 粒体が所定の大きさの径になると、 回転する攪拌翼 1 1によってせん断さ れて小さな径に戻される。 この凝集とせん断とが繰り返されて適当な大き さの粒体が得られ、 この間に微細粉が湿潤された粒体表面に捕捉される機 会が大きくなる。 この後、 攪拌を続けながら冷風または温風を供給して粒 体表面を乾燥して、 微細粉が表面に捕捉された粒体を得る。 この攪拌によ つて安息角が所定の範囲 2 0 ° 〜4 0 ° の粒状体が得られる。 溶剤は一度 に添加してもよくまた粒体の攪拌中に数回に亘つて添加してもよい。 この 溶剤としては、 メタノール、 キシレン、 トルエン、 へキサン、 メチルーェ チノレケトン、 ェチノレアセテート、 シクロへキサン、 イソプロパノーノレ、 ベ ンゼン、 メチルアセトン、 無水エタノールが使用される。 造粒方法 E
他の造粒方法としては、 図 1 のミキサーを使用して、 粉砕物を攪拌し ながら、 湿潤化剤を粉砕物に添加する。 この湿潤化剤としては、 エポキシ 樹脂、 硬化剤、 離型剤、 界面活性剤からなる群から選択された少なくとも 一つである。 この湿潤化剤は液体として粒体表面を覆ってこれを湿潤化し、 粒体の攪拌中に湿潤化された表面に微細粉を吸着させと共に粒体を凝集さ せる。 この後、 攪拌を続けながら冷風または温風を供給して粒体表面を覆 つた湿潤化剤を固化して、 微細粉が表面に捕捉された粒体を得る。 この攪 拌によって安息角が所定の範囲 2 0 ° 〜4 0 ° の粒状体が得られる。 湿潤 化剤は一度に添加してもよくまた粒体の攪拌中に数回に亘つて添加しても よい。 湿潤化剤として室温で固体のものは、 粒体に添加される前に加熱さ れて液状化される。 このように室温で固体の湿潤化剤を用いれば、 粒体を 強制的に冷却せずとも所望の粒体を得ることができる。 湿潤化剤としては 封止過程を容易とする離型剤が望ましい。 また、 湿潤化剤は 0 . 1〜5重 量部を粉砕物 1 0 0重量部に対して添加されることが造粒性能と乾燥性能 とのバランスを取る上で望ましい。 造粒方法 F
更に他の実施例は混練押出し機を用いて、 エポキシ封止組成物を混練 してこれをダイ出口から棒状に押出して溶融状態でカツトした後、 丸めな がら冷却して固化し、 直径が 0 . 5 mm〜5 . 0 mmの粒状体をえる。 上の造粒方法 A〜Eに基づいて粉砕された粒体を凝集 ·造粒する前に、 前処理を行なって粒体表面に微細粉を捕捉 ·拘束する効率を高めることが 望ましい。 以下の処理はこの目的のために有用であると認められた。 造粒前処理
攪拌中の粉砕された粒体の集合物に水を添加して、 粒体の表面を湿潤 化して粒体を凝集させる共に微細粉を吸着する。 この粒体はその後攪拌さ れながら乾燥されて水分が除去される。 この処理により、 微細粉が湿潤化 された粒体表面に付着する。 このような凝集は上述のミキサーや流動層容 器を用いて行われ、 この処理後は上の A〜Eの方法の一つによって造粒され る。 尚、 水以外に、 エポキシ封止組成物の樹脂成分を溶解すること無い液 体、 例えば、 エポキシ樹脂組成物に配合されたものと同種または異種のェ ポキシ樹脂、 硬化剤、 離型剤、 界面活性剤などが使用できる。 以下の実施例は本発明を例示するものであり、 請求の範囲に制限を加える ものではない。 実施例 1
本実施例は上記造粒方法 Aに基づいてエポキシ樹脂封止材料を製造す る。
以下の成分を夫々記載の配合割合で混ぜ合わせてエポキシ樹脂封止組 成物を調製した。
エポキシ樹脂:
オルソクレゾールノポラック型エポキシ樹脂 [住友化学工業社製、 商品 名 ESCN195XL] 3重量部
ビフエニル型エポキシ樹脂 [油化シェルエポキシ社製、 商品名 YX40 00H] 3重量部
硬化剤:
フエノール樹脂 [荒川化学工業社製、 商品名タマノール 752] 5重量 部
無機充填材:
溶融シリ力 [龍森社製、 商品名 R O 8 ] 80重量部
離型剤:
ステアリン酸 [大日本化学社製、 商品名 W02] 0. 3重量部
天然カルナバ [大日化学社製、 商品名 F— 1—100] 0. 3重量部 カツプリング剤:
y—グリシドキシプロビルトリメ トキシシラン [東レダウコ一二ングシ リコーン社製、 商品名 SH6040] 1重量部
硬化促進剤:
2—フエ二ルイミダゾ一ル 1重量部
着色剤:
カーボンブラック 0. 2重量部
難燃剤:
三酸化アンチモン 5重量部。 上記配合のエポキシ樹脂組成物を二軸混練機に投入して、 温度 85°C で 5分間混練し、 冷却後カッターミルで粉砕して 5. Omm径以下で融点 が 63°Cの粒状粉砕物を得た。 この粉砕物には 0. 1から 5. 0mmの径 の粒体が 90重量。/。、 0. 1mm以下の径の微細粉が 10重量%含まれる。
5 OKgの粉砕物をヘンシヱルミキサー [三井鉱山社製] に投入して 上述の造粒方法 Aに基づいて粒状体を造粒する。 攪拌翼 1 1を 1500 r pmで 10分間回転させて粒体を攪拌して粒体間に発生する摩擦熱で粒体 表面の樹脂成分を溶解させ、 溶解相に微細粉を捕捉する。 次いで、 攪拌翼 の回転速度を 400 r pmに低下させて実質的な摩擦熱を加えないように して粒体の攪拌を 20分間攪拌させて、 微細粉を捕捉した樹脂層を表面に 有するェポキシ樹脂封止粒状体を得た。 実施例 2
本実施例は前処理を加えた上記造粒方法 Aに基づいてエポキシ樹脂封 止材料を製造する。
実施例 1 で調整した 5 OKgの粉碎物をヘンシェルミキサー [三井鉱 山社製] に投入し、 攪拌翼 1 1を 400 r pmで回転させながら 2Kgの 純水を粒体に噴霧して 2 0分間攪拌を続けて粒体表面を湿潤化させた。 次 いで、 攪拌翼 1 1を 1 5 0 0 r p mで 1 0分間回転させ、 攪拌による摩擦 熱で粒体表面の樹脂成分を溶融させて溶融相に微細粉を捕捉する。 引き続 いて、 攪拌翼 1 1の回転速度を 4 0 0 r p mに落とすと共に、 ミキサーに 空気を送風して粒体を 2 0分間攪拌させて乾燥させ、 微細粉を捕捉した榭 脂層を表面に有するエポキシ樹脂封止粒状体を得た。 実施例 3
本実施例は上記造粒方法 C に基づいてエポキシ樹脂封止材料を製造す る。
実施例 1で調製したエポキシ樹脂組成物の粉砕物 5 0 K gを図 2で代 表的に示すような流動層容器 [大川原製作所社製] に投入し、 室温の空気 を容器の下部から上方に向けて供給することで粒体の流動層を形成した。 次いで、 トルエンを 0 . 5 K g添加して、 攪拌中を 1 0分間行なって、 粒 体表面のエポキシ樹脂組成の樹脂成分を溶解してここに溶解相を形成た。 その後、 空気の温度を 4 0 °Cに上昇させて 6 0分間の攪拌を行なって、 溶 融相を乾燥させて、 微細粉を捕捉した樹脂層を表面に有するエポキシ樹脂 封止粒状体を得た。 実施例 4
本実施例は上記造粒方法 Eに基づいてエポキシ樹脂封止材料を製造す る。
実施例 1で調製したエポキシ樹脂組成物の粉砕物 5 0 K gをリボンブ レンダ一に投入し、 ブレンダ——の攪拌翼を 2 0 0 r p mで回転させなが らエポキシ樹脂組成物に離型剤として配合した離型剤と同様のステアリン 酸を 0 . 5 K gの 7 0 °Cに加熱して添加した。 この攪拌中にステアリン酸 により粒体表面を湿潤化してここに微細粉が捕捉されて粒体が造粒され、 ステアリン酸が冷却されて、 表面に微細粉が捕捉されたエポキシ樹脂封止 粒状体を得た。 実施例 5
本実施例は上記造粒方法 Fに基づいてエポキシ樹脂封止材料を製造す る。
実施例 1と同様のエポキシ樹脂封止組成物を混練押出し機に投入して 混練した。 次いで加熱した、 直径 1 . 5 mmのダイ出口を通過させて溶融 させつつ棒状に押出し、 カッティングした後、 傾斜面を転がしながら冷却 して丸い形状としてエポキシ樹脂封止粒状体を得た。 比較例 1
実施例 1で調製したエポキシ樹脂組成物の粉砕物 比較例 2
実施例 1で調製したエポキシ樹脂組成物の粉砕物を、 0 . 3 mm以下 の粒径の粒体を通す篩を用いて分級し、 この篩を通過しなかった粒体を比 較例 2の試料とした。 比較例 3
実施例 1で調製したエポキシ樹脂組成物の粉砕物を、 圧縮率 9 2 %で 重さが 1 . 2 gで直径が 7 . 4 mmの円筒状のタブレットに圧縮成形した。 比較例 4
実施例 1で得られた粒状体を再度ユニバーサルミキサ、 より 4 0 0 r p mで 1 0分間で粉砕した。 実施例及び比較例の評価
実施例 1〜 5の粒状体及び比較例 1〜 4の粒体ゃタブレットについて. 以下の表 1, 2に示すような下記特性について評価した。
Figure imgf000018_0001
表 2
計量エラー (g ) 計量エラー (g )
5 c cの容器を使用 1 0 c cの容器を使用 実施例 1 0.15 0.15
実施例 2 0.05 0.05
実施例 3 0.10 0.10
実施例 4 0.2 0.2
実施例 5 0.2 0.3 比較例 1 2.0 3.0 比較例 2 0.5 1.0
比較例 3
比較例 4 0.5 1.0 粒度分布はロータップ振動機に備え付けた一連の篩を用いて決定した。 これらの篩を 3 0分間に亘つて振動させながら 2 0 0 gの試料を篩に通し て分級して各篩に残る粒状体や粒体の重量を計測した。 このように計測し た重量を分級前の試料の重量を基準にして粒径が 0 . l mm〜5 . 0 mm の粒体と粒径が 0 . 1 mm未満の微細粉の重量比を算出した。
f hヽ
^ = tan-' —
50j
安息角は、 長さ 5 0 mmで上部開口径が 5 0 mmのガラス製円筒形漏 斗で 7 mm長の直径が 7 mmの出口管を有するものを用いて決定した。 こ の漏斗を 3 0 m m厚で 1 0 0 mm径のガラス製円板上に出口管の下端が円 板から高さ 1 0 0 mmとなるように鉛直にかつ円板と同軸上に配置した。 J I Sの K 6 9 1 1に定められた採取方式に基づいて、 3 0 0 gの粒状体 や粒体を漏斗に通して円板上に静かに注いでこの上に傾斜を持った粒状体 や粒体の塊を形成した。 漏斗が粒状体で閉塞した場合は、 2 mm径の銅棒 を用いて漏斗から粒状体や粒体を押し出した。 この傾斜した塊の高さ(h)か ら以下の式で定めた安息角 (Θ) を求めた。 安息角 (Θ) の測定は各試料に ついて 7 回行われ、 最大と最小を除く 5 つの中間値の平均値を評価のため に選択した。
粉塵量はピエゾーバランス粉塵計を用いて粉塵量が 0 . 1 m g Zm 3未 満に維持されたクリーンルーム内で 2 0 0 gの試料を 0 . 5 mの高さから 自由落下させた時の粉塵濃度を決定した。
二次粉塵比率はロータップ振動機に取り付けた 2リッターの合成樹脂 ボトルを使用して求めた。 5 0 0 gの試料をボトルに収め、 夫々 3 0分、 6 0分間振動させ、 振動を与える前の試料重量に対する 0 . 1 mm径未満 の粉塵の重量比率を 3 0分及び 6 0分振動後の試料について求めた。
計量安定性、 すなわち、 トランスファー成形機でのモールドキヤビ ティに至る経路での目詰まりの起こし難さの指標として計量ェラ一を測定 した。 5 c cと 1 0 c cの計量容器を用いて粒状体や粒体を計量した。 こ の計量エラーは粒状体や粒体を各容器に取り込んでは成形機中の材料移送 経路を経由して取り出すことを 1 0 0 0サイクル繰り返して得られ、 容器 から取り出された粒状体や粒体の重さの最大と最小との差として規定され た。
上の表から明らかなように、 本発明の実施例のいずれも、 0 . 1 mm 径以下の微細粉の含有量が極めて少なくて、 低い安息角 (Θ) 及び、 低い計 量エラー (高い計量安定性) を示して優れた流動性を発揮し、 容器すなわ ちトランスファ一成形機での材料移送経路に粒状体が付着して残るのを防 止できることが判明した。 すなわち、 実施例 1〜 5の粒状体は各計量容器 に関して 0 . 0 5〜0 . 2といった低い計量エラ一 (高い計量安定性) を 示し、 トランスファ一成形機での経路に粒状体が付着して残る程度が非常 に低く、 計量エラーが 0 . 5〜2 . 0と高い比較例 1, 2, 4の粒体と対 照的である。 このように、 本発明の実施例で得られた粒状体は、 流動性が 高くてモールドキヤビティへの材料移送経路に目詰まりを起こすことがな いことが確認される。 また、 粉塵量及び二次粉塵比率とも低い値に押さえ られ、 モールドキヤビティに送られる材料移送経路で振動が加えられても 微細粉が飛び散ることがなく、 目詰まりを起こすことが防止できると共に クリーンな作業環境を実現できることが確認される。

Claims

請求の範囲
1. 半導体チップをモールドするためのエポキシ樹脂封止材料であって、 このエポキシ樹脂封止材は無機充填材、 エポキシ樹脂、 硬化剤、 離型 剤の成分を有し、 0. l mm〜5. 0 mmの粒径を有する粒状体が全体の 99 w t %以上で、 0. 1 mm未満の粒径を有する粒状体が全体の 1 w t % 以下なり、 このエポキシ樹脂封止材料の安息角が 20。 〜40。 であるこ とを特徴とする。
2. 請求項 1のエポキシ樹脂封止材料において、
上記 0. lmn!〜 5. 0 mmの粒径を有する粒状体の表面に形成され た樹脂層に 0. 1 mm未満の粒径を有する微細粉の粒状体が捕捉された。
3. 請求項 1のェポキシ樹脂封止材料を製造するための方法であって、 エポキシ樹脂、 硬化剤、 無機充填材及び離型剤を含有するエポキシ封 止糸且成物を混練して B—ステージ状態の半硬化物を得;
この半硬化物を粉砕して直径が 5 m m以下の粉砕物を得る、 この粉砕 物は粒径が 0. 1 mmから 5. 0 mmの粒体と粒径が 0. 1 mm未満の微 細粉からなる;
上記粒体を動かしながら、 粒体の表面にあるエポキシ封止組成物の樹 脂成分を溶融させて上記微細粉を樹脂成分の溶融相内に捕捉し;
上記溶融相を固化させて粒状の上記ェポキシ樹脂封止材料を得る。
4. 請求項 3の方法において、
上記の粉砕された粒体を攪拌しながら加熱して上記粒体表面において 上記封止組成物の樹脂成分を溶融させる。
5 . 請求項 4の方法において、
上記の粉砕された粒体に液状物を添加して上記粒体の表面を湿潤化し て、 樹脂成分を溶融させる前に、 上記微細粉をこの表面に吸着させる。
6 . 請求項 5の方法において、
上記液状物は、 水、 エポキシ樹脂、 硬化剤、 離型剤及び界面活性剤の 群から選択された一つである。
PCT/JP1997/002774 1997-08-07 1997-08-07 Epoxy resin sealing material for molding semiconductor chip and method for manufacturing the same WO1999008321A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP10531352A JP3135926B2 (ja) 1997-08-07 1997-08-07 半導体チップをモールドするためのエポキシ樹脂封止材料及びその製造方法
US09/147,799 US6120716A (en) 1997-08-07 1997-08-07 Epoxy resin sealing material for molding semiconductor chip and method for manufacturing the same
PCT/JP1997/002774 WO1999008321A1 (en) 1997-08-07 1997-08-07 Epoxy resin sealing material for molding semiconductor chip and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1997/002774 WO1999008321A1 (en) 1997-08-07 1997-08-07 Epoxy resin sealing material for molding semiconductor chip and method for manufacturing the same

Publications (1)

Publication Number Publication Date
WO1999008321A1 true WO1999008321A1 (en) 1999-02-18

Family

ID=14180943

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/002774 WO1999008321A1 (en) 1997-08-07 1997-08-07 Epoxy resin sealing material for molding semiconductor chip and method for manufacturing the same

Country Status (3)

Country Link
US (1) US6120716A (ja)
JP (1) JP3135926B2 (ja)
WO (1) WO1999008321A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7169552B1 (en) 1999-04-09 2007-01-30 Keygene N.V. Detection of polymorphisms in AFLP fragments using primer extension techniques
JP2008081591A (ja) * 2006-09-27 2008-04-10 Hitachi Chem Co Ltd エポキシ樹脂組成物及び電子部品装置
JP2010062404A (ja) * 2008-09-05 2010-03-18 Toshiba Corp 半導体装置の製造方法
JP2011009394A (ja) * 2009-06-25 2011-01-13 Nitto Denko Corp 光半導体封止用樹脂タブレットの製法およびそれによって得られる光半導体封止用樹脂タブレット、並びにそれを用いた光半導体装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3371894B2 (ja) * 1999-09-17 2003-01-27 ソニーケミカル株式会社 接続材料
DE10208644A1 (de) * 2002-02-28 2003-09-11 Bakelite Ag Verfahren zur Herstellung und Verarbeitung von Epoxidharz-Formmassen
US20040124433A1 (en) * 2002-07-19 2004-07-01 Kelly Stephen G. Process for fabricating, and light emitting device resulting from, a homogenously mixed powder/pelletized compound
EP1649322A4 (en) 2003-07-17 2007-09-19 Honeywell Int Inc PLANARIZATION FILMS FOR ADVANCED MICRO-ELECTRONIC APPLICATIONS AND EQUIPMENT AND METHOD FOR THE PRODUCTION THEREOF
SG172036A1 (en) 2008-12-10 2011-07-28 Sumitomo Bakelite Co Resin composition for encapsulating semiconductor, method for producing semiconductor device and semiconductor device
KR20110104507A (ko) * 2008-12-10 2011-09-22 스미토모 베이클리트 컴퍼니 리미티드 과립상의 반도체 봉지용 에폭시 수지 조성물 및 그것을 이용한 반도체 장치 및 반도체 장치의 제조 방법
CN112873603A (zh) * 2020-12-29 2021-06-01 江苏科化新材料科技有限公司 一种高性价比环氧组合物的制备方法
JP6989044B1 (ja) * 2021-03-31 2022-01-05 住友ベークライト株式会社 封止構造体の製造方法およびタブレット

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63179920A (ja) * 1987-01-21 1988-07-23 Toshiba Corp 樹脂封止型半導体装置
JPH02189958A (ja) * 1989-01-18 1990-07-25 Nitto Denko Corp 光半導体装置およびそれに用いる光半導体封止用エポキシ樹脂組成物
JPH033258A (ja) * 1989-05-30 1991-01-09 Nitto Denko Corp 光半導体装置およびその製法ならびにそれに用いる光半導体封止用樹脂組成物

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4137188A (en) * 1975-11-07 1979-01-30 Shigeru Uetake Magnetic toner for electrophotography

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63179920A (ja) * 1987-01-21 1988-07-23 Toshiba Corp 樹脂封止型半導体装置
JPH02189958A (ja) * 1989-01-18 1990-07-25 Nitto Denko Corp 光半導体装置およびそれに用いる光半導体封止用エポキシ樹脂組成物
JPH033258A (ja) * 1989-05-30 1991-01-09 Nitto Denko Corp 光半導体装置およびその製法ならびにそれに用いる光半導体封止用樹脂組成物

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7169552B1 (en) 1999-04-09 2007-01-30 Keygene N.V. Detection of polymorphisms in AFLP fragments using primer extension techniques
JP2008081591A (ja) * 2006-09-27 2008-04-10 Hitachi Chem Co Ltd エポキシ樹脂組成物及び電子部品装置
JP2010062404A (ja) * 2008-09-05 2010-03-18 Toshiba Corp 半導体装置の製造方法
US8859341B2 (en) 2008-09-05 2014-10-14 Kabushiki Kaisha Toshiba Manufacturing method of semiconductor device
JP2011009394A (ja) * 2009-06-25 2011-01-13 Nitto Denko Corp 光半導体封止用樹脂タブレットの製法およびそれによって得られる光半導体封止用樹脂タブレット、並びにそれを用いた光半導体装置

Also Published As

Publication number Publication date
US6120716A (en) 2000-09-19
JP3135926B2 (ja) 2001-02-19

Similar Documents

Publication Publication Date Title
JP3135926B2 (ja) 半導体チップをモールドするためのエポキシ樹脂封止材料及びその製造方法
CN102712105B (zh) 搅拌/混合装置及半导体封装用树脂组合物的制造方法
SG172031A1 (en) Granulated epoxy resin composition for semiconductor encapsulation, semiconductor device using same, and method for manufacturing semiconductor device
CN101743198B (zh) 二氧化硅粉末、其制造方法以及使用该二氧化硅粉末的组合物
JP3800277B2 (ja) 半導体封止用エポキシ樹脂組成物及び半導体装置
CN102015531B (zh) 无定形二氧化硅质粉末、其制造方法以及用途
CN102066254B (zh) 无定形二氧化硅粉末、其制造方法、树脂组合物及半导体密封材料
JP5410095B2 (ja) 非晶質シリカ質粉末、その製造方法及び半導体封止材
JP2021161005A (ja) 粒子材料、その製造方法、フィラー材料及び熱伝導物質
JP2008050592A (ja) 粉体一体化樹脂粒子及びその造粒方法、並びに粒子含有成形体及び粒子含有シート材並びにこれらの成形方法
JP4155719B2 (ja) 球状無機質粉末及びその用途
JP3134791B2 (ja) 粒状半導体封止材料、及びその製造方法、及びその材料を用いた半導体装置
CN1147929C (zh) 封装半导体芯片的环氧树脂包封料及其制造方法
JP5277569B2 (ja) 半導体封止用エポキシ樹脂組成物及びそれを用いた半導体装置
JP2016194051A (ja) 半導体封止用エポキシ樹脂粒状体の製造方法、および半導体装置の製造方法
JP4973325B2 (ja) 半導体封止用エポキシ樹脂組成物の製造方法及び半導体装置の製造方法
KR100319338B1 (ko) 반도체 칩 성형용 에폭시 수지 밀봉 재료 및 그 제조 방법
JP3695686B2 (ja) 熱硬化性樹脂組成物の造粒装置
JPH07252377A (ja) 高熱伝導性樹脂組成物
JP3134782B2 (ja) 粒状半導体封止材料、及びその製造方法、及びその材料を用いた半導体装置
JP2008303368A (ja) 半導体封止用エポキシ樹脂組成物及びそれを用いた半導体装置
TW399084B (en) Epoxy resin encapsulating material for molding in a semiconductor chip and method of preparing the same
JP3132404B2 (ja) 粒状半導体封止材料の製造方法
JPH0716946B2 (ja) エポキシ樹脂成形材料の製造方法
JP2021138864A (ja) 封止用樹脂組成物および電子装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 97198319.4

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR SG US

WWE Wipo information: entry into national phase

Ref document number: 09147799

Country of ref document: US

WR Later publication of a revised version of an international search report
WWE Wipo information: entry into national phase

Ref document number: 1019997002869

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1019997002869

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1019997002869

Country of ref document: KR