WO1999011927A1 - Electric current production and recuperation of water in the atmosphere using solar and wind energy - Google Patents
Electric current production and recuperation of water in the atmosphere using solar and wind energy Download PDFInfo
- Publication number
- WO1999011927A1 WO1999011927A1 PCT/DE1998/001910 DE9801910W WO9911927A1 WO 1999011927 A1 WO1999011927 A1 WO 1999011927A1 DE 9801910 W DE9801910 W DE 9801910W WO 9911927 A1 WO9911927 A1 WO 9911927A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- water
- atmosphere
- wind
- solar
- water recovery
- Prior art date
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 82
- 238000000034 method Methods 0.000 claims abstract description 13
- 238000011084 recovery Methods 0.000 claims description 28
- 238000001816 cooling Methods 0.000 claims description 10
- 230000005611 electricity Effects 0.000 claims description 10
- 239000003595 mist Substances 0.000 claims description 5
- 230000035939 shock Effects 0.000 claims description 4
- 238000010248 power generation Methods 0.000 claims description 3
- 239000011435 rock Substances 0.000 claims description 2
- 230000001588 bifunctional effect Effects 0.000 abstract description 10
- 230000003993 interaction Effects 0.000 abstract description 5
- 239000002803 fossil fuel Substances 0.000 abstract description 3
- 238000009434 installation Methods 0.000 abstract 5
- 238000000605 extraction Methods 0.000 abstract 1
- 230000001105 regulatory effect Effects 0.000 abstract 1
- 238000006467 substitution reaction Methods 0.000 abstract 1
- 238000003973 irrigation Methods 0.000 description 6
- 230000002262 irrigation Effects 0.000 description 6
- 239000003651 drinking water Substances 0.000 description 4
- 235000020188 drinking water Nutrition 0.000 description 4
- 238000004146 energy storage Methods 0.000 description 4
- 230000006870 function Effects 0.000 description 3
- 238000007791 dehumidification Methods 0.000 description 2
- 239000003673 groundwater Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000010612 desalination reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000003760 hair shine Effects 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 239000011150 reinforced concrete Substances 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D5/00—Condensation of vapours; Recovering volatile solvents by condensation
- B01D5/0027—Condensation of vapours; Recovering volatile solvents by condensation by direct contact between vapours or gases and the cooling medium
-
- E—FIXED CONSTRUCTIONS
- E03—WATER SUPPLY; SEWERAGE
- E03B—INSTALLATIONS OR METHODS FOR OBTAINING, COLLECTING, OR DISTRIBUTING WATER
- E03B3/00—Methods or installations for obtaining or collecting drinking water or tap water
- E03B3/28—Methods or installations for obtaining or collecting drinking water or tap water from humid air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K21/00—Steam engine plants not otherwise provided for
- F01K21/04—Steam engine plants not otherwise provided for using mixtures of steam and gas; Plants generating or heating steam by bringing water or steam into direct contact with hot gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03G—SPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
- F03G6/00—Devices for producing mechanical power from solar energy
- F03G6/02—Devices for producing mechanical power from solar energy using a single state working fluid
- F03G6/04—Devices for producing mechanical power from solar energy using a single state working fluid gaseous
- F03G6/045—Devices for producing mechanical power from solar energy using a single state working fluid gaseous by producing an updraft of heated gas or a downdraft of cooled gas, e.g. air driving an engine
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03G—SPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
- F03G6/00—Devices for producing mechanical power from solar energy
- F03G6/071—Devices for producing mechanical power from solar energy with energy storage devices
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/40—Solar thermal energy, e.g. solar towers
- Y02E10/46—Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/10—Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working
Definitions
- a method is proposed with a system that is composed of several units.
- An alternative combination of solar energy, wind power and water vapor is used to generate electricity.
- With a water recovery system large quantities of water are extracted from the atmosphere.
- a system consisting of the following units is required for such a process:
- the generator assembly with a cylindrical base body (1), a radius or dome-shaped cover cap! (2) and the attached cylindrical shaft (3).
- the evaporator (s) (6) are installed in the interior of the cylindrical base body (1).
- Solar collectors (7) for steam generation are mounted on the radius or dome-shaped cover dome (2).
- the impeller-driven and the generators (4, Fig. 3) equipped with continuously variable transmissions for power generation are installed inside the mounted cylindrical shaft (3).
- the geometric figure can also be designed rectangular or square.
- the water thus obtained is used for drinking water supply, land irrigation and for steam generation for the generators (4).
- the water recovery system (14) can also be connected to existing energy networks.
- the high-pressure multi-cell buffer store (10) in which the water vapor obtained with the solar collectors (7) is stored for driving the generators (4) for day and night operation of the system. 4.
- a computer-aided, manually and remotely controllable electronic control (11), which monitors and executes all functions and control processes inside and outside of the system. Operating failures or malfunctions in the system are reported directly to the central control center.
- the invention has for its object to create a bifunctional solar wind power plant with the combination and interaction of various units and the use of solar energy, wind power and water vapor - with the 24 hours a day - free, environmentally friendly, regardless of fossil energy sources and underground Water reservoirs and electrical power are generated regardless of location and water is recovered from the atmosphere, according to the preamble of claim 1.
- the invention has for its object to operate a bifunctional solar wind power plant with the combination and interaction of various units and the use of solar energy, wind power and water vapor.
- the generator assembly With the combination and interaction of the generator assembly, the water recovery system, the high-pressure multi-chamber buffer storage, the energy storage of the electronic control and the use of solar energy, wind power and water vapor, this task is accomplished.
- the plant should be designed so that it can be operated without burning fossil energy sources and without using underground water reservoirs. Likewise, it should in particular regardless of location in arid countries and areas such. For example: karst landscapes, desert regions or mountains in which there is little or no precipitation and whose groundwater level has dropped significantly and in which the electricity and water supply is very difficult, costly or sometimes even impossible.
- the invention is based on the main idea of using a bifunctional solar wind power plant to generate electricity in a very targeted, efficient and free manner over several years and to recover water from the atmosphere.
- the most important energy suppliers for the operation of this bifunctional solar wind power plant are the sun, which shines for eight to ten hours almost daily in the southern hemisphere and the high relative humidity.
- Water vapor is generated with solar collectors that are mounted around the radius or dome-shaped cover dome.
- a wind / air / water vapor mixture drives the generators for electrical power generation.
- Part of the electricity is supplied to the water recovery system, which is used to recover water from the atmosphere.
- the bifunctional solar wind power plant and the water recovery system can be operated every 24 hours.
- the water for the cold water mist nozzles (22) is cooled by the refrigerator (35) and in the tank (36).
- the cooling registers (23) in the water recovery chambers (20) are supplied by the large refrigeration system (37).
- the recovered water is collected in the tank (38) and passed on.
- the cooling systems can also be installed externally or underground.
- FIG. 1 is a perspective view of the bifunctional solar wind power plant with the associated units; the generator assembly, the water recovery system, the high-pressure multi-cell buffer storage, the energy storage and the electronic control.
- Fig. 2 is a perspective view of the generator assembly
- Fig. 3 is a perspective, partially sectioned view of the generator assembly with the evaporator.
- Fig. 4 shows the water recovery system, a device for dehumidification and water recovery from the atmosphere.
- Fig. 5 shows the electronic control
- Fig. 6 shows the high-pressure multi-cell buffer memory
- 6a shows the energy store for the emergency power supply
- Fig. 7 shows the use of the system in a mountain or mountain range.
- Fig. 8 shows the use of the system on a rock wall with partial air flow through the mountain or mountains.
- Fig. 9 use in a cooling tower
- Fig. 12 shows the use of a medium-sized system in apartment buildings. Description of the embodiments
- the bifunctional solar wind power plant according to the invention in combination with the water recovery system consists of the following units:
- the generator assembly according to the invention Fig. 2 and Fig. 3 consists of a cylindrical base body (1), with several wind / air inlet openings (8) and the adjustable and closable wind deflectors (9) behind it, the evaporators (6) in Inside, a radius or dome-shaped cover dome (2) on which solar collectors (7) are mounted, the attached cylindrical shaft (3), in which the impeller-driven generators (4) equipped with infinitely variable gears are located and the wind measuring station (12) on the upper edge of the shaft (3).
- the dimensions of the generator assembly depend on the desired kWh output or the size of the generators.
- the water recovery and irrigation system (14) recovers the water required for steam generation from the atmosphere.
- the solar collectors (7) water vapor is generated, which is pumped into one or more high-pressure multi-cell buffer stores (10). From there, the water vapor is metered to the evaporators (6) inside the generator assembly led. In connection with the inflowing wind or the air inside the generator assembly, the water vapor creates strong thermals with which the impellers of the generators (4) in the cylindrical shaft (3) are driven to generate electricity.
- the wind / air is supplied through wind / air inlet openings (8).
- closable and adjustable wind deflectors (9) are attached behind the wind / air inlet openings (8) and are opened or closed by the electronic control (11).
- the wind deflectors (9) are always closed on the windward side (leeward side). This prevents the incoming wind or air from escaping on the leeward side.
- the wind measuring station (12) is located on the upper edge of the cylindrical shaft (3). Wind direction and speed are recorded and forwarded to the electronic control (11). If sufficient water has been recovered for steam generation, the system can be operated at full load.
- the electricity generated by the generators (4) not only supplies the water recovery system (14) with a large proportion of the energy but also the surrounding settlements.
- the water recovered from the atmosphere by the water recovery system (14) is only partially required for steam generation and is mostly used for drinking water supply and land irrigation. This process thus enables free electricity generation and water recovery from the atmosphere.
- fossil fuels oil or gas
- underground water reservoirs such as rivers, lakes or wells are required.
- the water recovery system (14) shown in Fig. 4 is operated with part of the electrical power generated by the generators for water recovery from the atmosphere.
- Several high-performance high-performance blowers (21) convey large masses of outside air laden with high humidity into the interior of the dehumidification and water recovery chambers (20).
- Cold water mist nozzles (22) and the cooling registers (23) remove the relative humidity from the air using a shock process.
- This shock technology specially developed for this purpose, is made possible with large-volume cooling elements (20), cold water mist nozzles (22) and high-performance blowers (21).
- the task of the water recovery system (14) is to secure the drinking water supply, land irrigation and water for steam generation. Depending on its size, the system can recover up to 10,000 liters / h of water from the atmosphere.
- Fig. 5 shows the freely programmable electronic control (11), all functions, control and regulation processes inside and outside of the solar wind power plant computer-aided, manually and remotely controllable, electronically monitored and executed.
- Basic values for the operation of the plant are: the required energy output in kWh and the amount of water required in m 3 / h, which must be recovered from the atmosphere for steam generation and land irrigation.
- some wind deflectors (9) are opened and some are closed.
- the air volume flow in the cylindrical shaft (3) is increased until the generators (4) have reached their nominal output.
- the amount of water recovered is measured. If it is too low, some high-performance fans (20) are switched on or their speed is increased.
- Fig. 6 shows the high-pressure multi-line buffer memory (10) in which the steam generated is pumped at high pressure.
- Each buffer store can be equipped with 10, 20 or more gas bottle-shaped containers (25). The advantage of these chambers is that there is always a sufficient vapor reserve. If necessary, the steam is removed from two chambers (25) simultaneously. The steam filling or withdrawal is controlled by the electronic control and takes place via control valves.
- Fig. 6a shows the energy storage for the emergency power supply.
- FIG. 7 shows the solar wind power plant in use in a mountain or mountain range.
- the base body (1) with the radius or dome-shaped cover dome (2) was housed in a cavern-like extension.
- a flat surface was leveled near the top of the mountain.
- One, two or more vertical bores that are switched off connect the plateau to the cavern-like expansion in which the base body (1) is housed with the radius or dome-shaped cover dome (2).
- One or more generators (4) are installed on the plateau.
- a strong, upward escaping air volume flow sets in with these height differences, which reaches speeds of up to 80 kM / h and more at the upper plateau outlet.
- the water vapor / air mixture creates a very strong thrust.
- generators of up to 1,000 kWh or more could be used.
- the cavern-like extension can also be used to drive a cross tunnel at an angle between 20 ° and 45 ° to the vertical bores.
- the solar wind power plant according to the invention is not restricted to the exemplary embodiments and geometric representations shown and described. Rather, they also include all professional training within the scope of the inventive idea.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Energy (AREA)
- Sustainable Development (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Environmental & Geological Engineering (AREA)
- Health & Medical Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Public Health (AREA)
- Water Supply & Treatment (AREA)
- Wind Motors (AREA)
Abstract
Description
ERZEUGUNG VON ELEKTRISCHEM STROM UND WASSERRÜCKGEWINNUNG AUS DER ATMOSPHÄRE MIT SOLAR-UND WINDENERGIEGENERATION OF ELECTRIC ELECTRICITY AND WATER RECOVERY FROM THE ATMOSPHERE WITH SOLAR AND WIND ENERGY
Es wird ein Verfahren mit einer Anlage vorgeschlagen, die sich aus mehreren Aggregaten zusammensetzt. Zur Erzeugung von elektrischem Strom wird eine alternative Kombination von Solarenergie, Windkraft und Wasserdampf eingesetzt. Mit einer Wasserrückgewinnungsanlage werden große Mengen Wasser aus der Atmosphäre gewonnen. Für ein solches Verfahren ist eine aus folgenden Aggregaten bestehende Anlage erforderlich:A method is proposed with a system that is composed of several units. An alternative combination of solar energy, wind power and water vapor is used to generate electricity. With a water recovery system, large quantities of water are extracted from the atmosphere. A system consisting of the following units is required for such a process:
1. Der Generatorenbaugruppe, mit einem zylinderformigen Basiskörper (1), einer radius- oder kalottenförmigen Abdeckkuppe! (2) und dem aufgesetzten zylinderformigen Schaft (3). An der äußeren Mantelfläche des zylinderformigen Basiskörpers (1 ) befinden sich mehrere Wind-/Lufteinlaßöffnungen (8) mit den dahinter liegenden verstell- und verschließbaren Windschotten (9). Im Inneren des zylinderformigen Basiskörpers (1 ) sind der oder die Verdampfer (6) installiert. Auf der radius- oder kalottenförmigen Abdeckkuppel (2) sind Solarkollektoren (7) für die Dampferzeugung montiert. Im Inneren des aufgesetzten zylinderformigen Schaftes (3) sind die flügelradangetriebenen und die mit stufenlos regelbaren Getrieben ausgerüsteten Generatoren (4, Fig. 3) zur Stromerzeugung eingebaut. Die geometrische Figur kann auch rechteckig oder quadratisch ausgelegt sein.1. The generator assembly, with a cylindrical base body (1), a radius or dome-shaped cover cap! (2) and the attached cylindrical shaft (3). On the outer circumferential surface of the cylindrical base body (1) there are several wind / air inlet openings (8) with the adjustable and lockable wind deflectors (9) located behind them. The evaporator (s) (6) are installed in the interior of the cylindrical base body (1). Solar collectors (7) for steam generation are mounted on the radius or dome-shaped cover dome (2). Inside the mounted cylindrical shaft (3), the impeller-driven and the generators (4, Fig. 3) equipped with continuously variable transmissions for power generation are installed. The geometric figure can also be designed rectangular or square.
2. Der Wasserrückgewinnungsanlage, (14), mit der das, in der hohen relativen Luftfeuchtigkeit in großen Mengen enthaltene Wasser aus der Atmosphäre gewonnen wird. Das so gewonnene Wasser dient zur Trinkwasserversorgung, Landbewässerung und zur Dampferzeugung für die Generatoren (4). Die Wasserrückgewinnungsanlage (14) kann auch an bestehende Energienetze angeschlossen werden.2. The water recovery system (14), with which the water, which is contained in large quantities in the high relative humidity, is extracted from the atmosphere. The water thus obtained is used for drinking water supply, land irrigation and for steam generation for the generators (4). The water recovery system (14) can also be connected to existing energy networks.
3. Dem Hochdruck-Mehrzellen-Pufferspeicher (10), in dem der mit den Solarkollektoren (7) gewonnene Wasserdampf für den Antrieb der Generatoren (4) für den Tag- und Nachtbetrieb der Anlage gespeichert wird. 4. Dem Energiespeicher (10a) mit den Batterien und dem Transformator, der als Notstromversorgung den Betrieb der Anlage bei eventuellen Spannungsschwankungen sichert.3. The high-pressure multi-cell buffer store (10) in which the water vapor obtained with the solar collectors (7) is stored for driving the generators (4) for day and night operation of the system. 4. The energy store (10a) with the batteries and the transformer, which, as an emergency power supply, ensures the operation of the system in the event of any voltage fluctuations.
5. Einer rechnergestützten, manuell und fernsteuerbaren, elektronischen Regelung (11 ), die alle Funktionen und Steuervorgänge im Inneren und Äußeren der Anlage überwacht und ausführt. Betriebsausfälle oder Fehlfunktionen in der Anlage werden direkt an die zentrale Leitstelle gemeldet.5. A computer-aided, manually and remotely controllable electronic control (11), which monitors and executes all functions and control processes inside and outside of the system. Operating failures or malfunctions in the system are reported directly to the central control center.
Die FunktionThe function
Nur durch die Kombination und das Zusammenwirken der vorgenannten Aggregate entsteht ein bifunktionales Solares-Wind-Kraftwerk und ein Verfahren - mit dem 24 Stunden täglich umweltfreundlich, unabhängig von fossilen Energiequellen und unterirdischer Wasserreservoirs wie z. B.: Flüsse, Seen oder Brunnen, ortsungebunden - elektrischer Strom erzeugt und Wasser in ausreichender Menge aus der Atmosphäre gewonnen wird. Dieses bifunktionale Solare-Wind-Kraftwerk ist insbesondere für wasserarme Länder und Gebiete wie z. B.: Karstlandschaften, Wüstenregionen oder Gebirge, in denen wenig oder kein Niederschlag fällt und deren Grundwasserspiegel stark gesunken, konzipiert.Only through the combination and interaction of the aforementioned units does a bifunctional solar wind power plant and a process arise - with which 24 hours a day environmentally friendly, independent of fossil energy sources and underground water reservoirs such as For example: rivers, lakes or wells, regardless of location - electrical power is generated and water is extracted from the atmosphere in sufficient quantities. This bifunctional solar wind power plant is particularly suitable for arid countries and areas such as E.g .: karst landscapes, desert regions or mountains in which little or no precipitation falls and whose groundwater level has dropped significantly.
Beschreibungdescription
Der Erfindung liegt die Aufgabe zugrunde, mit der Kombination und dem Zusammenwirken verschiedener Aggregate und dem Einsatz von Solarenergie, Windkraft und Wasserdampf ein bifunktionales Solares-Wind-Kraftwerk zu schaffen - mit dem 24 Stunden täglich - kostenlos, umweltfreundlich, unabhängig von fossilen Energiequellen und unterirdischen Wasserreservoirs und ortsunabhängig elektrischer Strom erzeugt und Wasser aus der Atmosphäre zurückgewonnen wird, nach dem Oberbegriff des Anspruchs 1. Stand der TechnikThe invention has for its object to create a bifunctional solar wind power plant with the combination and interaction of various units and the use of solar energy, wind power and water vapor - with the 24 hours a day - free, environmentally friendly, regardless of fossil energy sources and underground Water reservoirs and electrical power are generated regardless of location and water is recovered from the atmosphere, according to the preamble of claim 1. State of the art
Noch heute wird neben Kernkraftwerken ein großer Teil der Stromversorgung von Kraftwerken, in denen fossile Brennstoffe, wie z. B. Kohle, Öl und Gas, verwendet werden, geliefert. Es ist bekannt, daß die Windenergie mit den verschiedensten Konstruktionen von Windkraftwerken genutzt wird. Am bekanntesten sind Windkraftwerke, bei denen der Generator auf einem Turm (Stahlkonstruktion oder Stahlbeton) montiert ist und von einem Propeller angetrieben wird, wobei der Kosten- /Nutzungseffekt bis heute noch nicht eindeutig ermittelt ist. Desgleichen gibt es einige Entwicklungen, mit denen kleinere Wassermengen aus der Atmosphäre gewonnen werden. Eine Anlage, mit der voraus berechenbar große Wassermengen wie z.B.: 1.000 l/h, 5.000 l/h oder mehr aus der Atmosphäre gewonnen werden, ist nicht bekannt.In addition to nuclear power plants, a large part of the power supply of power plants in which fossil fuels, such as. B. coal, oil and gas used. It is known that wind energy is used in a wide variety of constructions of wind power plants. The best known are wind power plants in which the generator is mounted on a tower (steel structure or reinforced concrete) and is driven by a propeller, although the cost / usage effect has not yet been clearly determined. Likewise, there are some developments with which smaller amounts of water can be extracted from the atmosphere. A system with which predictably large amounts of water, e.g. 1,000 l / h, 5,000 l / h or more, are obtained from the atmosphere is not known.
Aufgabe und Vorteile der ErfindungObject and advantages of the invention
Der Erfindung liegt die Aufgabe zugrunde, mit der Kombination und dem Zusammenwirken verschiedener Aggregate und dem Einsatz von Solarenergie, Windkraft und Wasserdampf ein bifunktionales Solares-Wind-Kraftwerk zu betreiben. Mit der Kombination und dem Zusammenwirken der Generatorbaugruppe, der Wasserrückgewinnungsanlage, dem Hochdruck-Mehrkammer-Pufferspeicher, dem Energiespeicher der elektronischen Regelung und dem Einsatz von Solarenergie, Windkraft und Wasserdampf wird diese Aufgabe erfüllt.The invention has for its object to operate a bifunctional solar wind power plant with the combination and interaction of various units and the use of solar energy, wind power and water vapor. With the combination and interaction of the generator assembly, the water recovery system, the high-pressure multi-chamber buffer storage, the energy storage of the electronic control and the use of solar energy, wind power and water vapor, this task is accomplished.
Dabei soll die Anlage so konzipiert sein, daß sie ohne Verbrennung fossiler Energiequellen und ohne Inanspruchnahme unterirdischer Wasserreservoirs betrieben werden kann. Desgleichen soll sie insbesondere ortsunabhängig in wasserarmen Ländern und Gebieten, wie z. B.: Karstlandschaften, Wüstenregionen oder Gebirgen, in denen kaum oder gar keine Niederschläge fallen und deren Grundwasserspiegel weit abgesunken ist und in denen die Strom- und Wasserversorgung sehr schwierig, kostenaufwendig oder teilweise sogar unmöglich ist, eingesetzt werden. Der Erfindung liegt der Kerngedanke zugrunde, mit einem bifunktionalen Solaren-Wind- Kraftwerk sehr gezielt, effizient und über mehrere Jahre hinaus kostenlos Strom zu erzeugen und Wasser aus der Atmosphäre zurückzugewinnen. Die wichtigsten Energielieferanten, für den Betrieb dieses bifunktionalen Solaren-Wind- Kraftwerkes, sind die Sonne, die in der südlichen Hemisphäre nahezu täglich acht bis zehn Stunden scheint und die hohe relative Luftfeuchtigkeit.The plant should be designed so that it can be operated without burning fossil energy sources and without using underground water reservoirs. Likewise, it should in particular regardless of location in arid countries and areas such. For example: karst landscapes, desert regions or mountains in which there is little or no precipitation and whose groundwater level has dropped significantly and in which the electricity and water supply is very difficult, costly or sometimes even impossible. The invention is based on the main idea of using a bifunctional solar wind power plant to generate electricity in a very targeted, efficient and free manner over several years and to recover water from the atmosphere. The most important energy suppliers for the operation of this bifunctional solar wind power plant are the sun, which shines for eight to ten hours almost daily in the southern hemisphere and the high relative humidity.
Mit Solarkollektoren, die um die radius- oder kalottenförmige Abdeckkuppel montiert sind, wird Wasserdampf erzeugt. Ein Wind-/Luft Wasserdampfgemisch treibt die Generatoren zur elektrischen Stromerzeugung an. Mit einem Teil des Stroms wird die Wasserrückgewinnungsanlage, mit der Wasser aus der Atmosphäre zurückgewonnen wird, versorgt.Water vapor is generated with solar collectors that are mounted around the radius or dome-shaped cover dome. A wind / air / water vapor mixture drives the generators for electrical power generation. Part of the electricity is supplied to the water recovery system, which is used to recover water from the atmosphere.
Mit einem oder mehreren Hochleistungs-Gebläsen (21) werden große feuchte Luftmassen in die Wasserrückgewinnungsanlage geblasen und über ein spezielles Kühlsystem bestehend aus der Wasserrückgewinnungskammer (20), den Hochleistungsgebläsen (21 ), den Kaltwassernebeldüsen (22) und den Kühlregistern (23) mit einem Kälteschock entfeuchtet und somit wird Wasser aus der Atmosphäre zurückgewonnen.Large, moist air masses are blown into the water recovery system with one or more high-performance blowers (21) and with a special cooling system consisting of the water recovery chamber (20), the high-performance blowers (21), the cold water mist nozzles (22) and the cooling registers (23) Cold shock dehumidifies and thus water is recovered from the atmosphere.
Mit den zurückgewonnenen Wassermengen wird die Trinkwasserversorgung, die Landbewässerung und der Wasserbedarf für die Dampferzeugung, gesichert. Ein weiterer Vorteil dieses Verfahrens besteht darin, daß das bifunktionale Solare-Wind- Kraftwerk und die Wasserrückgewinnungsanlage im 24-Stundentakt betrieben werden können. Das Wasser für die Kaltwassernebeldüsen (22) wird von der Kältemaschine (35) und im Tank (36) gekühlt. Die Kühlregister (23) in den Wasserrückgewinnungskammern (20) werden von der Großkälteanlage (37) versorgt. Das zurückgewonnene Wasser wird im Tank (38) gesammelt und weitergeleitet. Die Kühlanlagen können auch extern oder unterirdisch installiert sein. Weitere Vorteile und Einzelheiten der Erfindung ergeben sich aus den Zeichnungen und sind in den nachfolgend beschriebenen Ausführungsbeispielen näher erläutert.With the recovered water quantities, the drinking water supply, the land irrigation and the water requirement for steam generation are secured. Another advantage of this method is that the bifunctional solar wind power plant and the water recovery system can be operated every 24 hours. The water for the cold water mist nozzles (22) is cooled by the refrigerator (35) and in the tank (36). The cooling registers (23) in the water recovery chambers (20) are supplied by the large refrigeration system (37). The recovered water is collected in the tank (38) and passed on. The cooling systems can also be installed externally or underground. Further advantages and details of the invention emerge from the drawings and are explained in more detail in the exemplary embodiments described below.
Es zeigen:Show it:
Fig. 1 eine perspektivische Darstellung des bifunktionalen Solaren-Wind-Kraft- werkes mit den dazugehörenden Aggregaten; der Generatorbaugruppe, der Wasserrückgewinnungsanlage, dem Hochdruck-Mehrzellen-Pufferspeicher, dem Energiespeicher und der elektronischen Regelung.1 is a perspective view of the bifunctional solar wind power plant with the associated units; the generator assembly, the water recovery system, the high-pressure multi-cell buffer storage, the energy storage and the electronic control.
Fig. 2 eine perspektivische Ansicht der GeneratorbaugruppeFig. 2 is a perspective view of the generator assembly
Fig. 3 eine perspektivische, teilweise geschnittene Ansicht der Generatorbaugruppe mit dem Verdampfer.Fig. 3 is a perspective, partially sectioned view of the generator assembly with the evaporator.
Fig. 4 die Wasserrückgewinnungsanlage, eine Vorrichtung zur Luftentfeuchtung und Wasserrückgewinnung aus der Atmosphäre.Fig. 4 shows the water recovery system, a device for dehumidification and water recovery from the atmosphere.
Fig. 5 die elektronische RegelungFig. 5 shows the electronic control
Fig. 6 den Hochdruck-Mehrzellen-PufferspeicherFig. 6 shows the high-pressure multi-cell buffer memory
Fig. 6a den Energiespeicher für die Notstromversorgung6a shows the energy store for the emergency power supply
Fig. 7 den Einsatz der Anlage in einem Berg oder Gebirge.Fig. 7 shows the use of the system in a mountain or mountain range.
Fig.7b einen Hochleistungsgenerator, der von mehreren Luftschächten versorgt wird.7b shows a high-performance generator that is supplied by several air shafts.
Fig. 8 den Einsatz der Anlage an einer Felswand mit teilweiser Luftführung durch den Berg oder Gebirge.Fig. 8 shows the use of the system on a rock wall with partial air flow through the mountain or mountains.
Fig. 9 den Einsatz in einem KühlturmFig. 9 use in a cooling tower
Fig. 10 den Einsatz an HochhäusernFig. 10 use in high-rise buildings
Fig. 11 den Einsatz einer Kleinanlage in Wohnhäusern11 shows the use of a small system in residential buildings
Fig. 12 den Einsatz einer Anlage mittlerer Größe in Mehrfamilienhäusern. Beschreibung der AusführungsbeispieleFig. 12 shows the use of a medium-sized system in apartment buildings. Description of the embodiments
Gemäß der perspektivischen Gesamtansicht in Fig. 1 besteht das erfindungsgemäße bifunktionale Solare-Wind-Kraftwerk im Verbund mit der Wasserrückgewinnungsanlage aus folgenden Aggregaten:According to the overall perspective view in FIG. 1, the bifunctional solar wind power plant according to the invention in combination with the water recovery system consists of the following units:
1. Der Generatorenbaugruppe Fig. 2 und Fig. 3; 2. der Wasserrückgewinnungsanlage Fig. 4; 3. und einer rechnergestützten, manuell und fernsteuerbaren, elektronischen Regelung Fig. 5; 4.. dem Hochdruck-Mehrzellen-Pufferspeicher1. The generator assembly Fig. 2 and Fig. 3; 2. the water recovery system Fig. 4; 3. and a computer-aided, manually and remotely controllable, electronic control Fig. 5; 4 .. the high-pressure multi-cell buffer storage
Fig. 6 und 5. dem Energiespeicher für die Notstromversorgung Fig. 6a.6 and 5. the energy storage for the emergency power supply Fig. 6a.
2. Die erfindungsgemäße Generatorenbaugruppe Fig. 2 und Fig. 3, besteht aus einem zylinderformigen Basiskörper (1 ), mit mehreren Wind-/Lufteinlaßöffnungen (8) und den dahinter liegenden verstell- und verschließbaren Windschotten (9), den Verdampfern (6) im Inneren, einer radius oder kalottenförmigen Abdeckkuppel (2), auf der Solarkollektoren (7) montiert sind, dem aufgesetzten zylinderformigen Schaft (3), in dem sich die flügelradangetriebenen und mit stufenlos regelbaren Getrieben ausgerüsteten Generatoren (4) befinden und der Windmeßstation (12) am oberen Schaftrand (3). Die Abmessungen der Generatorenbaugruppe sind abhängig von der gewünschten kWh-Leistung bzw. von der Größe der Generatoren.2. The generator assembly according to the invention Fig. 2 and Fig. 3, consists of a cylindrical base body (1), with several wind / air inlet openings (8) and the adjustable and closable wind deflectors (9) behind it, the evaporators (6) in Inside, a radius or dome-shaped cover dome (2) on which solar collectors (7) are mounted, the attached cylindrical shaft (3), in which the impeller-driven generators (4) equipped with infinitely variable gears are located and the wind measuring station (12) on the upper edge of the shaft (3). The dimensions of the generator assembly depend on the desired kWh output or the size of the generators.
2. Für den Start des Solaren-Wind-Kraftwerkes wird von Generatoren nur so viel Strom benötigt, daß die Wasserrückgewinnungs- und Bewässerungsanlage (14), das für die Dampferzeugung benötigte Wasser aus der Atmosphäre zurückgewinnt. Mit den Solarkollektoren (7) wird Wasserdampf erzeugt, der in einen oder mehreren Hochdruck-Mehrzellen-Pufferspeicher (10) gepumpt wird. Von dort wird der Wasserdampf dosiert zu den Verdampfern (6) in das Innere der Generatoren- baugruppe geführt. Der Wasserdampf erzeugt in Verbindung mit dem einströmenden Wind oder der Luft im Inneren der Generatorenbaugruppe eine starke Thermik, mit der die Flügelräder der Generatoren (4) im zylinderformigen Schaft (3) zur Stromerzeugung angetrieben werden. Die Wind-/Luftzufuhr erfolgt durch Wind-/Lufteinlaßöffnungen (8). Um den Wind-/Luftstrom regulieren zu können, sind hinter den Wind- /Lufteinlaßöffnungen (8) verschließ-/ und verstellbare Windschotten (9) angebracht, die von der elektronischen Regelung (11 ) geöffnet oder geschlossen werden. Die Windschotten (9) sind an der windabgewandten Seite (Leeseite) immer geschlossen. Somit wird verhindert, daß der einströmende Wind oder die Luft an der Leeseite wieder entweicht. Am oberen Rand des zylinderformigen Schaftes (3) befindet sich die Windmeßstation (12). Windrichtung und -geschwindigkeit werden erfaßt und an die elektronische Regelung (11 ) weitergeleitet. Wurde ausreichend Wasser für die Dampferzeugung zurückgewonnen, kann die Anlage im Vollastbetrieb gefahren werden.2. To start the solar wind power plant, generators only need so much electricity that the water recovery and irrigation system (14) recovers the water required for steam generation from the atmosphere. With the solar collectors (7), water vapor is generated, which is pumped into one or more high-pressure multi-cell buffer stores (10). From there, the water vapor is metered to the evaporators (6) inside the generator assembly led. In connection with the inflowing wind or the air inside the generator assembly, the water vapor creates strong thermals with which the impellers of the generators (4) in the cylindrical shaft (3) are driven to generate electricity. The wind / air is supplied through wind / air inlet openings (8). In order to be able to regulate the wind / air flow, closable and adjustable wind deflectors (9) are attached behind the wind / air inlet openings (8) and are opened or closed by the electronic control (11). The wind deflectors (9) are always closed on the windward side (leeward side). This prevents the incoming wind or air from escaping on the leeward side. The wind measuring station (12) is located on the upper edge of the cylindrical shaft (3). Wind direction and speed are recorded and forwarded to the electronic control (11). If sufficient water has been recovered for steam generation, the system can be operated at full load.
Der mit den Generatoren (4) erzeugte Strom versorgt neben der Wasserrückgewinnungsanlage (14) mit einem großen Anteil der Energie auch die umliegenden Siedlungen. Das von der Wasserrückgewinnungsanlage (14) aus der Atmosphäre zurückgewonnene Wasser wird nur teilweise zur Dampferzeugung benötigt und zum größten Teil zur Trinkwasserversorgung und Landbewässerung genutzt. Dieses Verfahren ermöglicht somit die kostenlose Stromerzeugung und Wasserrückgewinnung aus der Atmosphäre. Für den Betrieb des Solaren-Wind-Kraftwerkes werden weder fossile Brennstoffe (Öl oder Gas) noch unterirdische Wasserreservoirs wie z. B.: Flüsse, Seen oder Brunnen benötigt.The electricity generated by the generators (4) not only supplies the water recovery system (14) with a large proportion of the energy but also the surrounding settlements. The water recovered from the atmosphere by the water recovery system (14) is only partially required for steam generation and is mostly used for drinking water supply and land irrigation. This process thus enables free electricity generation and water recovery from the atmosphere. For the operation of the solar wind power plant neither fossil fuels (oil or gas) nor underground water reservoirs such. For example: rivers, lakes or wells are required.
3. Die in Fig. 4 gezeigte Wasserrückgewinnungsanlage (14) wird mit einem Teil des von den Generatoren erzeugten elektrischen Strom zur Wasserrückgewinnung aus der Atmosphäre, betrieben. Mehrere leistungsstarke Hochleistungsgebläse (21 ) befördern große Massen, mit hoher Feuchtigkeit beladener Außenluft in das Innere der Luftentfeuchtungs- und Wasserrückgewinnungskammern (20). Mit Kaltwassernebeldüsen (22) und den Kühlregistern (23) wird der Luft die relative Feuchtigkeit mit einem Schockverfahren entzogen. Diese speziell hierfür entwickelte Schocktechnik wird mit großvolumigen Kühlelementen (20), Kaltwassernebeldüsen (22) und Hochleistungs-Gebläsen (21) ermöglicht. Aufgabe der Wasserrückgewinnungsanlage (14) ist es, die Trinkwasserversorgung, Landbewässerung und Wasser für die Dampferzeugung zu sichern. Die Anlage kann, je nach Größe, bis zu 10.000 Liter/h Wasser aus der Atmosphäre zurückgewinnen.3. The water recovery system (14) shown in Fig. 4 is operated with part of the electrical power generated by the generators for water recovery from the atmosphere. Several high-performance high-performance blowers (21) convey large masses of outside air laden with high humidity into the interior of the dehumidification and water recovery chambers (20). With Cold water mist nozzles (22) and the cooling registers (23) remove the relative humidity from the air using a shock process. This shock technology, specially developed for this purpose, is made possible with large-volume cooling elements (20), cold water mist nozzles (22) and high-performance blowers (21). The task of the water recovery system (14) is to secure the drinking water supply, land irrigation and water for steam generation. Depending on its size, the system can recover up to 10,000 liters / h of water from the atmosphere.
Bisher lagen die Energiekosten für einen Kubikmeter zurückgewonnenen Wassers weit über dem Wettbewerb mit Meerwasserentsalzungsanlagen. Mit einer eigenen Energieversorgung mit dem Solaren-Wind-Kraftwerk fallen keine Energiekosten an.So far, the energy costs for one cubic meter of recovered water have been far above the competition with seawater desalination plants. With your own energy supply with the solar wind power plant, there are no energy costs.
4. Die Fig. 5 zeigt die freiprogrammierbare elektronische Regelung (11), die alle Funktionen, Steuer- und Regelvorgänge im Inneren und Äußeren des Solaren-Wind- Kraftwerkes rechnergestützt, manuell und fernsteuerbar, elektronisch überwacht und ausführt. Basiswerte für den Betrieb der Anlage sind: die geforderte Energieleistung in kWh und die benötigte Wassermenge in m3/h, die zur Dampferzeugung und Landbewässerung aus der Atmosphäre zurückgewonnen werden muß. Nach den ermittelten Daten der Windmeßstation (Windrichtung und -geschwindigkeit) werden einige Windschotten (9) geöffnet und einige geschlossen. Der Luftvolumenstrom im zylinderformigen Schaft (3) wird solange erhöht, bis die Generatoren (4) ihre Nennleistung erreicht haben. Desgleichen wird die zurückgewonnene Wassermenge gemessen. Ist sie zu niedrig, werden einige Hochleistungsgebläse (20) zugeschaltet oder deren Drehzahl erhöht. Alle ermittelten Daten, auch Störungen werden protokolliert und über Funk an die Einsatzzentrale weitergeleitet, die ebenfalls in der Lage ist, ferngesteuert in den Betriebsablauf einzugreifen. 5. Die Fig. 6 zeigt den Hochdruck-Mehrzeilen-Pufferspeicher (10), in dem mit hohem Druck der erzeugte Dampf gepumpt wird. Jeder Pufferspeicher kann mit 10, 20 oder mehr gasflaschenförmigen Behältern (25) ausgerüstet sein. Der Vorteil dieser Kammern besteht darin, daß immer eine ausreichende Dampfreserve vorhanden ist. Im Bedarfsfall wird der Dampf von zwei Kammern (25) gleichzeitig entnommen. Die Dampfbefüllung oder -entnähme wird von der elektronischen Regelung gesteuert und erfolgt über Steuerventile.4. Fig. 5 shows the freely programmable electronic control (11), all functions, control and regulation processes inside and outside of the solar wind power plant computer-aided, manually and remotely controllable, electronically monitored and executed. Basic values for the operation of the plant are: the required energy output in kWh and the amount of water required in m 3 / h, which must be recovered from the atmosphere for steam generation and land irrigation. According to the data determined by the wind measuring station (wind direction and speed), some wind deflectors (9) are opened and some are closed. The air volume flow in the cylindrical shaft (3) is increased until the generators (4) have reached their nominal output. Likewise, the amount of water recovered is measured. If it is too low, some high-performance fans (20) are switched on or their speed is increased. All determined data, including faults, are logged and forwarded to the operations center via radio, which is also able to intervene remotely in the operational process. 5. Fig. 6 shows the high-pressure multi-line buffer memory (10) in which the steam generated is pumped at high pressure. Each buffer store can be equipped with 10, 20 or more gas bottle-shaped containers (25). The advantage of these chambers is that there is always a sufficient vapor reserve. If necessary, the steam is removed from two chambers (25) simultaneously. The steam filling or withdrawal is controlled by the electronic control and takes place via control valves.
6. Die Fig. 6a zeigt den Energiespeicher, für die Notstromversorgung.6. Fig. 6a shows the energy storage for the emergency power supply.
7. Die Fig. 7 zeigt das Solare-Wind-Kraftwerk im Einsatz in einem Berg oder Gebirge. Am Fuß des Berges wurde in einem kavernenähnlichen Ausbau der Basisköper (1 ) mit der radius- oder kalottenförmigen Abdeckkuppel (2) untergebracht. In der Nähe der Bergspitze wurde eine ebene Fläche planiert. Ein, zwei oder mehrere senkrechte ausgeschaltete Bohrungen verbinden das Plateau mit dem kavernenähnlichen Ausbau, in dem der Basisköper (1 ) mit der radius- oder kalottenförmigen Abdeckkuppel (2) untergebracht ist. Auf dem Plateau sind, ein oder mehrere Generatoren (4) installiert. Bekanntlich setzt bei diesen Höhenunterschieden ein starker, nach oben entweichender Luftvolumenstrom ein, der am oberen Plateauausgang Geschwindigkeiten bis zu 80 kM/h und mehr erreicht. Mit dem Wasserdampf/Luftgemisch entsteht eine sehr starke Schubkraft. Bei noch größeren Höhenunterschieden von mehr als 300 m könnte man Generatoren bis 1.000 kWh oder mehr einsetzen. Es können auch mehrere Solare-Wind-Kraftwerke in nächster Umgebung stehen.7. FIG. 7 shows the solar wind power plant in use in a mountain or mountain range. At the foot of the mountain, the base body (1) with the radius or dome-shaped cover dome (2) was housed in a cavern-like extension. A flat surface was leveled near the top of the mountain. One, two or more vertical bores that are switched off connect the plateau to the cavern-like expansion in which the base body (1) is housed with the radius or dome-shaped cover dome (2). One or more generators (4) are installed on the plateau. As is known, a strong, upward escaping air volume flow sets in with these height differences, which reaches speeds of up to 80 kM / h and more at the upper plateau outlet. The water vapor / air mixture creates a very strong thrust. With even greater differences in height of more than 300 m, generators of up to 1,000 kWh or more could be used. There can also be several solar wind power plants in the immediate vicinity.
Sind aus technischen Gründen größere Bohrungsdurchmesser (z. B.; 10 m0) für große und leistungsstarke Generatoren nicht möglich, so sind mehrere Bohrungen nebeneinander einzubringen. Auf dem Plateau wird dann um die Bohrungen ein kugel- oder konusförmiger Basiskörper eingesetzt auf dem der Generator montiert wird. Falls es die geologischen Verhältnisse erfordern, kann von dem kavernenähnlichen Ausbau auch ein Querstollen im Winkel zwischen 20° und 45° zu den senkrechten Bohrungen getrieben werden.If, for technical reasons, larger bore diameters (e.g. 10 m 0 ) are not possible for large and powerful generators, several holes must be drilled side by side. On the plateau, a spherical or conical base body on which the generator is mounted. If the geological conditions require it, the cavern-like extension can also be used to drive a cross tunnel at an angle between 20 ° and 45 ° to the vertical bores.
Das erfindungsgemäße Solare-Wind-Kraftwerk ist nicht auf die dargestellten und beschriebenen Ausführungsbeispiele und geometrischen Darstellungen beschränkt. Sie umfassen auch vielmehr alle fachmännischen Weiterbildungen im Rahmen des erfindungsgemäßen Gedankens.The solar wind power plant according to the invention is not restricted to the exemplary embodiments and geometric representations shown and described. Rather, they also include all professional training within the scope of the inventive idea.
Pumpen, Ventile und Rohrleitungen sind handelsübliche Kaufteile und werden deshalb nicht weiter beschrieben oder gezeigt. Pumps, valves and pipelines are commercially available parts and are therefore not described or shown further.
Claims
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19881574T DE19881574D2 (en) | 1997-08-28 | 1998-07-09 | Generation of electricity and water recovery from the atmosphere with solar and wind energy |
AU92519/98A AU9251998A (en) | 1997-08-28 | 1998-07-09 | Electric current production and recuperation of water in the atmosphere using solar and wind energy |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19737483.2 | 1997-08-28 | ||
DE19737483A DE19737483A1 (en) | 1997-01-07 | 1997-08-28 | Electric current generation and atmospheric water recovery method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1999011927A1 true WO1999011927A1 (en) | 1999-03-11 |
Family
ID=7840427
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/DE1998/001910 WO1999011927A1 (en) | 1997-08-28 | 1998-07-09 | Electric current production and recuperation of water in the atmosphere using solar and wind energy |
Country Status (3)
Country | Link |
---|---|
AU (1) | AU9251998A (en) |
DE (1) | DE19881574D2 (en) |
WO (1) | WO1999011927A1 (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2150352A1 (en) * | 1998-03-31 | 2000-11-16 | Y Vieyra De Abreu Jose Mena | Production of irrigation water in water deficient zones comprises freezing, and condensation of the water in the air via solar power panels |
WO2001088281A1 (en) * | 2000-05-19 | 2001-11-22 | Walter Georg Steiner | Atmosphere water recovery |
WO2003014629A1 (en) * | 2001-08-10 | 2003-02-20 | Aloys Wobben | Wind energy installation |
WO2005103581A1 (en) * | 2004-04-23 | 2005-11-03 | Msc Power (S) Pte Ltd | Structure and methods using multi-systems for electricity generation and water desalination |
WO2007025344A1 (en) * | 2005-09-01 | 2007-03-08 | Hydrotower Pty Limited | Solar atmospheric water harvester |
CN1304754C (en) * | 2004-07-19 | 2007-03-14 | 李化南 | Multipower wind and water energy machine |
FR2893959A1 (en) * | 2005-11-29 | 2007-06-01 | Marc Hugues Parent | Wind machine for producing water, has electric power storing and recovering device and electric power generation unit connected together to dehumidifying unit and regulating device to allow dehumidifying unit to operate continuously |
AT504692B1 (en) * | 2006-12-21 | 2009-07-15 | Penz Alois | APPARATUS FOR USING INFLATION AND METHOD FOR OPERATING SUCH AN INVESTMENT |
WO2009127636A3 (en) * | 2008-04-15 | 2010-11-11 | Heinrich Koller | Solar chimney |
US20120038160A1 (en) * | 2010-08-15 | 2012-02-16 | Lin Wen Chang | Compound power generating system |
WO2012079555A1 (en) * | 2010-12-17 | 2012-06-21 | Lueftl Thomas | Gas-pressure-thermal solar updraft power plant |
CN114264008A (en) * | 2021-12-27 | 2022-04-01 | 深圳市壹锐网络科技有限公司 | Solar energy and wind power combined multi-source new energy power generation air humidifying equipment |
FR3136513A1 (en) * | 2022-06-14 | 2023-12-15 | Technique Lb | DEVICE FOR PRODUCING ENERGY FROM FUMES AND COMBUSTION GASES |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114089793B (en) * | 2021-11-18 | 2023-12-22 | 中国水利水电科学研究院 | Water regulation method utilizing spontaneous wind power and lake regulation |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3936652A (en) * | 1974-03-18 | 1976-02-03 | Levine Steven K | Power system |
US4036916A (en) * | 1975-06-05 | 1977-07-19 | Agsten Carl F | Wind driven electric power generator |
US4433552A (en) * | 1982-05-20 | 1984-02-28 | Smith Raymond H | Apparatus and method for recovering atmospheric moisture |
US4452046A (en) * | 1980-07-24 | 1984-06-05 | Zapata Martinez Valentin | System for the obtaining of energy by fluid flows resembling a natural cyclone or anti-cyclone |
US4497177A (en) * | 1979-07-02 | 1985-02-05 | Anderson Max F | Wind generating means |
EP0344094A1 (en) * | 1988-05-26 | 1989-11-29 | MANNESMANN Aktiengesellschaft | Flash tank for hot fluids under pressure |
US5394016A (en) * | 1993-04-22 | 1995-02-28 | Hickey; John J. | Solar and wind energy generating system for a high rise building |
DE4417631A1 (en) * | 1994-05-19 | 1995-11-23 | Inst Luft Und Kaeltetechnik Gm | Air conditioning installation for buildings utilising solar energy |
DE19506001A1 (en) * | 1995-02-21 | 1996-08-22 | Herbert Fehrensen | Electric power generator using natural wind power and thermals under house roof |
US5608268A (en) * | 1993-03-11 | 1997-03-04 | Senanayake; Daya R. | Solar chimney arrangement with a liquid filled non-evaporative area used to pre-heat a liquid filled evaporative area |
-
1998
- 1998-07-09 WO PCT/DE1998/001910 patent/WO1999011927A1/en active Application Filing
- 1998-07-09 AU AU92519/98A patent/AU9251998A/en not_active Abandoned
- 1998-07-09 DE DE19881574T patent/DE19881574D2/en not_active Expired - Fee Related
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3936652A (en) * | 1974-03-18 | 1976-02-03 | Levine Steven K | Power system |
US4036916A (en) * | 1975-06-05 | 1977-07-19 | Agsten Carl F | Wind driven electric power generator |
US4497177A (en) * | 1979-07-02 | 1985-02-05 | Anderson Max F | Wind generating means |
US4452046A (en) * | 1980-07-24 | 1984-06-05 | Zapata Martinez Valentin | System for the obtaining of energy by fluid flows resembling a natural cyclone or anti-cyclone |
US4433552A (en) * | 1982-05-20 | 1984-02-28 | Smith Raymond H | Apparatus and method for recovering atmospheric moisture |
EP0344094A1 (en) * | 1988-05-26 | 1989-11-29 | MANNESMANN Aktiengesellschaft | Flash tank for hot fluids under pressure |
US5608268A (en) * | 1993-03-11 | 1997-03-04 | Senanayake; Daya R. | Solar chimney arrangement with a liquid filled non-evaporative area used to pre-heat a liquid filled evaporative area |
US5394016A (en) * | 1993-04-22 | 1995-02-28 | Hickey; John J. | Solar and wind energy generating system for a high rise building |
DE4417631A1 (en) * | 1994-05-19 | 1995-11-23 | Inst Luft Und Kaeltetechnik Gm | Air conditioning installation for buildings utilising solar energy |
DE19506001A1 (en) * | 1995-02-21 | 1996-08-22 | Herbert Fehrensen | Electric power generator using natural wind power and thermals under house roof |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2150352A1 (en) * | 1998-03-31 | 2000-11-16 | Y Vieyra De Abreu Jose Mena | Production of irrigation water in water deficient zones comprises freezing, and condensation of the water in the air via solar power panels |
WO2001088281A1 (en) * | 2000-05-19 | 2001-11-22 | Walter Georg Steiner | Atmosphere water recovery |
US6799430B2 (en) * | 2000-05-19 | 2004-10-05 | Donna J. McClellan | Atmosphere water recovery |
US7874165B2 (en) | 2001-08-10 | 2011-01-25 | Aloys Wobben | Wind power installation |
WO2003014629A1 (en) * | 2001-08-10 | 2003-02-20 | Aloys Wobben | Wind energy installation |
US7886546B2 (en) | 2001-08-10 | 2011-02-15 | Aloys Wobben | Wind power installation |
WO2005103581A1 (en) * | 2004-04-23 | 2005-11-03 | Msc Power (S) Pte Ltd | Structure and methods using multi-systems for electricity generation and water desalination |
US7552589B2 (en) | 2004-04-23 | 2009-06-30 | Msc Power (S) Pte Ltd. | Structure and methods using multi-systems for electricity generation and water desalination |
CN1304754C (en) * | 2004-07-19 | 2007-03-14 | 李化南 | Multipower wind and water energy machine |
WO2007025344A1 (en) * | 2005-09-01 | 2007-03-08 | Hydrotower Pty Limited | Solar atmospheric water harvester |
AU2006319085B2 (en) * | 2005-11-29 | 2012-04-12 | Marc Hugues Parent | Machine for producing water from wind energy |
WO2007063208A1 (en) * | 2005-11-29 | 2007-06-07 | Marc Hugues Parent | Machine for producing water from wind energy |
FR2893959A1 (en) * | 2005-11-29 | 2007-06-01 | Marc Hugues Parent | Wind machine for producing water, has electric power storing and recovering device and electric power generation unit connected together to dehumidifying unit and regulating device to allow dehumidifying unit to operate continuously |
US8820107B2 (en) | 2005-11-29 | 2014-09-02 | Marc Hugues Parent | Machine for producing water for wind energy |
AT504692B1 (en) * | 2006-12-21 | 2009-07-15 | Penz Alois | APPARATUS FOR USING INFLATION AND METHOD FOR OPERATING SUCH AN INVESTMENT |
WO2009127636A3 (en) * | 2008-04-15 | 2010-11-11 | Heinrich Koller | Solar chimney |
US20120038160A1 (en) * | 2010-08-15 | 2012-02-16 | Lin Wen Chang | Compound power generating system |
WO2012079555A1 (en) * | 2010-12-17 | 2012-06-21 | Lueftl Thomas | Gas-pressure-thermal solar updraft power plant |
CN114264008A (en) * | 2021-12-27 | 2022-04-01 | 深圳市壹锐网络科技有限公司 | Solar energy and wind power combined multi-source new energy power generation air humidifying equipment |
CN114264008B (en) * | 2021-12-27 | 2022-12-23 | 深圳市壹锐网络科技有限公司 | Solar energy and wind power combined multi-source new energy power generation air humidifying equipment |
FR3136513A1 (en) * | 2022-06-14 | 2023-12-15 | Technique Lb | DEVICE FOR PRODUCING ENERGY FROM FUMES AND COMBUSTION GASES |
Also Published As
Publication number | Publication date |
---|---|
AU9251998A (en) | 1999-03-22 |
DE19881574D2 (en) | 2000-07-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE10245078B4 (en) | Wind turbine | |
WO1999011927A1 (en) | Electric current production and recuperation of water in the atmosphere using solar and wind energy | |
DE112013002285B4 (en) | Off-shore pumped storage power plant | |
DE102011118206A1 (en) | pumped storage power plant | |
WO2013064276A2 (en) | Units and methods for energy storage | |
EP3049667A1 (en) | Method and system for combined pump water pressure-compressed air energy storage at constant turbine water pressure | |
DE10055973A1 (en) | Process for regulating and smoothing the power output of an offshore power station e.g. wind farm comprises converting stored hydrogen and oxygen or air enriched with oxygen into electrical | |
DE102011106040A1 (en) | pumped storage power plant | |
WO2010054844A2 (en) | Method for operating a wind turbine and wind turbine | |
DE102013015082A1 (en) | Archimedean storage park | |
WO2001088281A1 (en) | Atmosphere water recovery | |
DE102014104675B3 (en) | Wind energy plant with additional energy generating device | |
DE102009005360B4 (en) | Artificial landscape and method of constructing an artificial landscape | |
DE102018127869A1 (en) | Apparatus for obtaining electrical energy and corresponding method | |
DE102011118486B4 (en) | Compressed air storage power plant | |
DE102012011739A1 (en) | Hydraulic power storage device i.e. pumped-storage power plant, for use in mining industry to store and convert potential water energy into electrical power, has flowpath arranged within turbine, and connecting upper and lower storage units | |
DE102010054277A1 (en) | Pumped-storage hydropower plant i.e. offshore power plant, for generating electric current, has pump storage station including upper and lower reservoirs, where upper reservoir is formed as high-level tank at region of power supply unit | |
DE3000684C2 (en) | Receiving station for environmental energy | |
DE102019007317A1 (en) | Pressure power plant | |
DE19737483A1 (en) | Electric current generation and atmospheric water recovery method | |
DE20019079U1 (en) | Crane river power plant | |
EP4232703A1 (en) | System for storing and recovering energy | |
DE102016000491A1 (en) | Power plant for generating electricity with various liquids | |
EP3798435A1 (en) | Power station unit for a hybrid power station | |
DE202014003951U1 (en) | Energy supply device for heat pumps and / or air conditioners |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE HU IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG US UZ VN |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
NENP | Non-entry into the national phase |
Ref country code: KR |
|
REF | Corresponds to |
Ref document number: 19881574 Country of ref document: DE Date of ref document: 20000727 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 19881574 Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase | ||
NENP | Non-entry into the national phase |
Ref country code: CA |