WO1999011927A1 - Production de courant electrique et recuperation d'eau dans l'atmosphere par energie solaire et eolienne - Google Patents
Production de courant electrique et recuperation d'eau dans l'atmosphere par energie solaire et eolienne Download PDFInfo
- Publication number
- WO1999011927A1 WO1999011927A1 PCT/DE1998/001910 DE9801910W WO9911927A1 WO 1999011927 A1 WO1999011927 A1 WO 1999011927A1 DE 9801910 W DE9801910 W DE 9801910W WO 9911927 A1 WO9911927 A1 WO 9911927A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- water
- atmosphere
- wind
- solar
- water recovery
- Prior art date
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 82
- 238000000034 method Methods 0.000 claims abstract description 13
- 238000011084 recovery Methods 0.000 claims description 28
- 238000001816 cooling Methods 0.000 claims description 10
- 230000005611 electricity Effects 0.000 claims description 10
- 239000003595 mist Substances 0.000 claims description 5
- 230000035939 shock Effects 0.000 claims description 4
- 238000010248 power generation Methods 0.000 claims description 3
- 239000011435 rock Substances 0.000 claims description 2
- 230000001588 bifunctional effect Effects 0.000 abstract description 10
- 230000003993 interaction Effects 0.000 abstract description 5
- 239000002803 fossil fuel Substances 0.000 abstract description 3
- 238000009434 installation Methods 0.000 abstract 5
- 238000000605 extraction Methods 0.000 abstract 1
- 230000001105 regulatory effect Effects 0.000 abstract 1
- 238000006467 substitution reaction Methods 0.000 abstract 1
- 238000003973 irrigation Methods 0.000 description 6
- 230000002262 irrigation Effects 0.000 description 6
- 239000003651 drinking water Substances 0.000 description 4
- 235000020188 drinking water Nutrition 0.000 description 4
- 238000004146 energy storage Methods 0.000 description 4
- 230000006870 function Effects 0.000 description 3
- 238000007791 dehumidification Methods 0.000 description 2
- 239000003673 groundwater Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000010612 desalination reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000003760 hair shine Effects 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 239000011150 reinforced concrete Substances 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D5/00—Condensation of vapours; Recovering volatile solvents by condensation
- B01D5/0027—Condensation of vapours; Recovering volatile solvents by condensation by direct contact between vapours or gases and the cooling medium
-
- E—FIXED CONSTRUCTIONS
- E03—WATER SUPPLY; SEWERAGE
- E03B—INSTALLATIONS OR METHODS FOR OBTAINING, COLLECTING, OR DISTRIBUTING WATER
- E03B3/00—Methods or installations for obtaining or collecting drinking water or tap water
- E03B3/28—Methods or installations for obtaining or collecting drinking water or tap water from humid air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K21/00—Steam engine plants not otherwise provided for
- F01K21/04—Steam engine plants not otherwise provided for using mixtures of steam and gas; Plants generating or heating steam by bringing water or steam into direct contact with hot gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03G—SPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
- F03G6/00—Devices for producing mechanical power from solar energy
- F03G6/02—Devices for producing mechanical power from solar energy using a single state working fluid
- F03G6/04—Devices for producing mechanical power from solar energy using a single state working fluid gaseous
- F03G6/045—Devices for producing mechanical power from solar energy using a single state working fluid gaseous by producing an updraft of heated gas or a downdraft of cooled gas, e.g. air driving an engine
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03G—SPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
- F03G6/00—Devices for producing mechanical power from solar energy
- F03G6/071—Devices for producing mechanical power from solar energy with energy storage devices
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/40—Solar thermal energy, e.g. solar towers
- Y02E10/46—Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/10—Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working
Definitions
- a method is proposed with a system that is composed of several units.
- An alternative combination of solar energy, wind power and water vapor is used to generate electricity.
- With a water recovery system large quantities of water are extracted from the atmosphere.
- a system consisting of the following units is required for such a process:
- the generator assembly with a cylindrical base body (1), a radius or dome-shaped cover cap! (2) and the attached cylindrical shaft (3).
- the evaporator (s) (6) are installed in the interior of the cylindrical base body (1).
- Solar collectors (7) for steam generation are mounted on the radius or dome-shaped cover dome (2).
- the impeller-driven and the generators (4, Fig. 3) equipped with continuously variable transmissions for power generation are installed inside the mounted cylindrical shaft (3).
- the geometric figure can also be designed rectangular or square.
- the water thus obtained is used for drinking water supply, land irrigation and for steam generation for the generators (4).
- the water recovery system (14) can also be connected to existing energy networks.
- the high-pressure multi-cell buffer store (10) in which the water vapor obtained with the solar collectors (7) is stored for driving the generators (4) for day and night operation of the system. 4.
- a computer-aided, manually and remotely controllable electronic control (11), which monitors and executes all functions and control processes inside and outside of the system. Operating failures or malfunctions in the system are reported directly to the central control center.
- the invention has for its object to create a bifunctional solar wind power plant with the combination and interaction of various units and the use of solar energy, wind power and water vapor - with the 24 hours a day - free, environmentally friendly, regardless of fossil energy sources and underground Water reservoirs and electrical power are generated regardless of location and water is recovered from the atmosphere, according to the preamble of claim 1.
- the invention has for its object to operate a bifunctional solar wind power plant with the combination and interaction of various units and the use of solar energy, wind power and water vapor.
- the generator assembly With the combination and interaction of the generator assembly, the water recovery system, the high-pressure multi-chamber buffer storage, the energy storage of the electronic control and the use of solar energy, wind power and water vapor, this task is accomplished.
- the plant should be designed so that it can be operated without burning fossil energy sources and without using underground water reservoirs. Likewise, it should in particular regardless of location in arid countries and areas such. For example: karst landscapes, desert regions or mountains in which there is little or no precipitation and whose groundwater level has dropped significantly and in which the electricity and water supply is very difficult, costly or sometimes even impossible.
- the invention is based on the main idea of using a bifunctional solar wind power plant to generate electricity in a very targeted, efficient and free manner over several years and to recover water from the atmosphere.
- the most important energy suppliers for the operation of this bifunctional solar wind power plant are the sun, which shines for eight to ten hours almost daily in the southern hemisphere and the high relative humidity.
- Water vapor is generated with solar collectors that are mounted around the radius or dome-shaped cover dome.
- a wind / air / water vapor mixture drives the generators for electrical power generation.
- Part of the electricity is supplied to the water recovery system, which is used to recover water from the atmosphere.
- the bifunctional solar wind power plant and the water recovery system can be operated every 24 hours.
- the water for the cold water mist nozzles (22) is cooled by the refrigerator (35) and in the tank (36).
- the cooling registers (23) in the water recovery chambers (20) are supplied by the large refrigeration system (37).
- the recovered water is collected in the tank (38) and passed on.
- the cooling systems can also be installed externally or underground.
- FIG. 1 is a perspective view of the bifunctional solar wind power plant with the associated units; the generator assembly, the water recovery system, the high-pressure multi-cell buffer storage, the energy storage and the electronic control.
- Fig. 2 is a perspective view of the generator assembly
- Fig. 3 is a perspective, partially sectioned view of the generator assembly with the evaporator.
- Fig. 4 shows the water recovery system, a device for dehumidification and water recovery from the atmosphere.
- Fig. 5 shows the electronic control
- Fig. 6 shows the high-pressure multi-cell buffer memory
- 6a shows the energy store for the emergency power supply
- Fig. 7 shows the use of the system in a mountain or mountain range.
- Fig. 8 shows the use of the system on a rock wall with partial air flow through the mountain or mountains.
- Fig. 9 use in a cooling tower
- Fig. 12 shows the use of a medium-sized system in apartment buildings. Description of the embodiments
- the bifunctional solar wind power plant according to the invention in combination with the water recovery system consists of the following units:
- the generator assembly according to the invention Fig. 2 and Fig. 3 consists of a cylindrical base body (1), with several wind / air inlet openings (8) and the adjustable and closable wind deflectors (9) behind it, the evaporators (6) in Inside, a radius or dome-shaped cover dome (2) on which solar collectors (7) are mounted, the attached cylindrical shaft (3), in which the impeller-driven generators (4) equipped with infinitely variable gears are located and the wind measuring station (12) on the upper edge of the shaft (3).
- the dimensions of the generator assembly depend on the desired kWh output or the size of the generators.
- the water recovery and irrigation system (14) recovers the water required for steam generation from the atmosphere.
- the solar collectors (7) water vapor is generated, which is pumped into one or more high-pressure multi-cell buffer stores (10). From there, the water vapor is metered to the evaporators (6) inside the generator assembly led. In connection with the inflowing wind or the air inside the generator assembly, the water vapor creates strong thermals with which the impellers of the generators (4) in the cylindrical shaft (3) are driven to generate electricity.
- the wind / air is supplied through wind / air inlet openings (8).
- closable and adjustable wind deflectors (9) are attached behind the wind / air inlet openings (8) and are opened or closed by the electronic control (11).
- the wind deflectors (9) are always closed on the windward side (leeward side). This prevents the incoming wind or air from escaping on the leeward side.
- the wind measuring station (12) is located on the upper edge of the cylindrical shaft (3). Wind direction and speed are recorded and forwarded to the electronic control (11). If sufficient water has been recovered for steam generation, the system can be operated at full load.
- the electricity generated by the generators (4) not only supplies the water recovery system (14) with a large proportion of the energy but also the surrounding settlements.
- the water recovered from the atmosphere by the water recovery system (14) is only partially required for steam generation and is mostly used for drinking water supply and land irrigation. This process thus enables free electricity generation and water recovery from the atmosphere.
- fossil fuels oil or gas
- underground water reservoirs such as rivers, lakes or wells are required.
- the water recovery system (14) shown in Fig. 4 is operated with part of the electrical power generated by the generators for water recovery from the atmosphere.
- Several high-performance high-performance blowers (21) convey large masses of outside air laden with high humidity into the interior of the dehumidification and water recovery chambers (20).
- Cold water mist nozzles (22) and the cooling registers (23) remove the relative humidity from the air using a shock process.
- This shock technology specially developed for this purpose, is made possible with large-volume cooling elements (20), cold water mist nozzles (22) and high-performance blowers (21).
- the task of the water recovery system (14) is to secure the drinking water supply, land irrigation and water for steam generation. Depending on its size, the system can recover up to 10,000 liters / h of water from the atmosphere.
- Fig. 5 shows the freely programmable electronic control (11), all functions, control and regulation processes inside and outside of the solar wind power plant computer-aided, manually and remotely controllable, electronically monitored and executed.
- Basic values for the operation of the plant are: the required energy output in kWh and the amount of water required in m 3 / h, which must be recovered from the atmosphere for steam generation and land irrigation.
- some wind deflectors (9) are opened and some are closed.
- the air volume flow in the cylindrical shaft (3) is increased until the generators (4) have reached their nominal output.
- the amount of water recovered is measured. If it is too low, some high-performance fans (20) are switched on or their speed is increased.
- Fig. 6 shows the high-pressure multi-line buffer memory (10) in which the steam generated is pumped at high pressure.
- Each buffer store can be equipped with 10, 20 or more gas bottle-shaped containers (25). The advantage of these chambers is that there is always a sufficient vapor reserve. If necessary, the steam is removed from two chambers (25) simultaneously. The steam filling or withdrawal is controlled by the electronic control and takes place via control valves.
- Fig. 6a shows the energy storage for the emergency power supply.
- FIG. 7 shows the solar wind power plant in use in a mountain or mountain range.
- the base body (1) with the radius or dome-shaped cover dome (2) was housed in a cavern-like extension.
- a flat surface was leveled near the top of the mountain.
- One, two or more vertical bores that are switched off connect the plateau to the cavern-like expansion in which the base body (1) is housed with the radius or dome-shaped cover dome (2).
- One or more generators (4) are installed on the plateau.
- a strong, upward escaping air volume flow sets in with these height differences, which reaches speeds of up to 80 kM / h and more at the upper plateau outlet.
- the water vapor / air mixture creates a very strong thrust.
- generators of up to 1,000 kWh or more could be used.
- the cavern-like extension can also be used to drive a cross tunnel at an angle between 20 ° and 45 ° to the vertical bores.
- the solar wind power plant according to the invention is not restricted to the exemplary embodiments and geometric representations shown and described. Rather, they also include all professional training within the scope of the inventive idea.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Energy (AREA)
- Sustainable Development (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Environmental & Geological Engineering (AREA)
- Health & Medical Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Public Health (AREA)
- Water Supply & Treatment (AREA)
- Wind Motors (AREA)
Abstract
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| AU92519/98A AU9251998A (en) | 1997-08-28 | 1998-07-09 | Electric current production and recuperation of water in the atmosphere using solar and wind energy |
| DE19881574T DE19881574D2 (de) | 1997-08-28 | 1998-07-09 | Erzeugung von elektrischem Strom und Wasserrückgewinnung aus der Atmosphäre mit Solar und Windenergie |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE19737483A DE19737483A1 (de) | 1997-01-07 | 1997-08-28 | Verfahren mit einer Anlage zur Erzeugung von elektrischem Strom und Wasserrückgewinnung aus der Atmosphäre mit alternativer Solar- und Windenergie |
| DE19737483.2 | 1997-08-28 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO1999011927A1 true WO1999011927A1 (fr) | 1999-03-11 |
Family
ID=7840427
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/DE1998/001910 WO1999011927A1 (fr) | 1997-08-28 | 1998-07-09 | Production de courant electrique et recuperation d'eau dans l'atmosphere par energie solaire et eolienne |
Country Status (3)
| Country | Link |
|---|---|
| AU (1) | AU9251998A (fr) |
| DE (1) | DE19881574D2 (fr) |
| WO (1) | WO1999011927A1 (fr) |
Cited By (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| ES2150352A1 (es) * | 1998-03-31 | 2000-11-16 | Y Vieyra De Abreu Jose Mena | Metodo para la obtencion de agua de riego en zonas de insufieciencia hidrica. |
| WO2001088281A1 (fr) * | 2000-05-19 | 2001-11-22 | Walter Georg Steiner | Recuperation d'eau de l'atmosphere |
| WO2003014629A1 (fr) * | 2001-08-10 | 2003-02-20 | Aloys Wobben | Installation d'energie eolienne |
| WO2005103581A1 (fr) * | 2004-04-23 | 2005-11-03 | Msc Power (S) Pte Ltd | Structure en forme de pyramide pour la production d'electricite et procedes correspondants |
| WO2007025344A1 (fr) * | 2005-09-01 | 2007-03-08 | Hydrotower Pty Limited | Dispositif de récupération d’eau atmosphérique solaire |
| CN1304754C (zh) * | 2004-07-19 | 2007-03-14 | 李化南 | 多能风水能机 |
| FR2893959A1 (fr) * | 2005-11-29 | 2007-06-01 | Marc Hugues Parent | Machine de production d'eau a partir d'energie eolienne |
| AT504692B1 (de) * | 2006-12-21 | 2009-07-15 | Penz Alois | Anlage zur nutzung von aufwind und verfahren zum betreiben einer solchen anlage |
| WO2009127636A3 (fr) * | 2008-04-15 | 2010-11-11 | Heinrich Koller | Centrale à courant ascendant |
| US20120038160A1 (en) * | 2010-08-15 | 2012-02-16 | Lin Wen Chang | Compound power generating system |
| WO2012079555A1 (fr) * | 2010-12-17 | 2012-06-21 | Lueftl Thomas | Tour solaire à ascendance thermique |
| CN114264008A (zh) * | 2021-12-27 | 2022-04-01 | 深圳市壹锐网络科技有限公司 | 一种太阳能和风力结合的多源新能源发电空气增湿设备 |
| FR3136513A1 (fr) * | 2022-06-14 | 2023-12-15 | Technique Lb | Dispositif de production d’energie a partir de fumees et gaz de combustion |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN114089793B (zh) * | 2021-11-18 | 2023-12-22 | 中国水利水电科学研究院 | 一种利用自发风电与湖泊调蓄的调水方法 |
Citations (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3936652A (en) * | 1974-03-18 | 1976-02-03 | Levine Steven K | Power system |
| US4036916A (en) * | 1975-06-05 | 1977-07-19 | Agsten Carl F | Wind driven electric power generator |
| US4433552A (en) * | 1982-05-20 | 1984-02-28 | Smith Raymond H | Apparatus and method for recovering atmospheric moisture |
| US4452046A (en) * | 1980-07-24 | 1984-06-05 | Zapata Martinez Valentin | System for the obtaining of energy by fluid flows resembling a natural cyclone or anti-cyclone |
| US4497177A (en) * | 1979-07-02 | 1985-02-05 | Anderson Max F | Wind generating means |
| EP0344094A1 (fr) * | 1988-05-26 | 1989-11-29 | MANNESMANN Aktiengesellschaft | Réservoir de détente pour fluides chauds sous pression |
| US5394016A (en) * | 1993-04-22 | 1995-02-28 | Hickey; John J. | Solar and wind energy generating system for a high rise building |
| DE4417631A1 (de) * | 1994-05-19 | 1995-11-23 | Inst Luft Und Kaeltetechnik Gm | Anlage zur Klimatisierung in Gebäuderäumen |
| DE19506001A1 (de) * | 1995-02-21 | 1996-08-22 | Herbert Fehrensen | Verfahren zur Herstellung elektrischer Energie durch Ausnutzung von natürlichen Windbewegungen und Thermik unter schrägen Hausdächern |
| US5608268A (en) * | 1993-03-11 | 1997-03-04 | Senanayake; Daya R. | Solar chimney arrangement with a liquid filled non-evaporative area used to pre-heat a liquid filled evaporative area |
-
1998
- 1998-07-09 AU AU92519/98A patent/AU9251998A/en not_active Abandoned
- 1998-07-09 DE DE19881574T patent/DE19881574D2/de not_active Expired - Fee Related
- 1998-07-09 WO PCT/DE1998/001910 patent/WO1999011927A1/fr active Application Filing
Patent Citations (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3936652A (en) * | 1974-03-18 | 1976-02-03 | Levine Steven K | Power system |
| US4036916A (en) * | 1975-06-05 | 1977-07-19 | Agsten Carl F | Wind driven electric power generator |
| US4497177A (en) * | 1979-07-02 | 1985-02-05 | Anderson Max F | Wind generating means |
| US4452046A (en) * | 1980-07-24 | 1984-06-05 | Zapata Martinez Valentin | System for the obtaining of energy by fluid flows resembling a natural cyclone or anti-cyclone |
| US4433552A (en) * | 1982-05-20 | 1984-02-28 | Smith Raymond H | Apparatus and method for recovering atmospheric moisture |
| EP0344094A1 (fr) * | 1988-05-26 | 1989-11-29 | MANNESMANN Aktiengesellschaft | Réservoir de détente pour fluides chauds sous pression |
| US5608268A (en) * | 1993-03-11 | 1997-03-04 | Senanayake; Daya R. | Solar chimney arrangement with a liquid filled non-evaporative area used to pre-heat a liquid filled evaporative area |
| US5394016A (en) * | 1993-04-22 | 1995-02-28 | Hickey; John J. | Solar and wind energy generating system for a high rise building |
| DE4417631A1 (de) * | 1994-05-19 | 1995-11-23 | Inst Luft Und Kaeltetechnik Gm | Anlage zur Klimatisierung in Gebäuderäumen |
| DE19506001A1 (de) * | 1995-02-21 | 1996-08-22 | Herbert Fehrensen | Verfahren zur Herstellung elektrischer Energie durch Ausnutzung von natürlichen Windbewegungen und Thermik unter schrägen Hausdächern |
Cited By (21)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| ES2150352A1 (es) * | 1998-03-31 | 2000-11-16 | Y Vieyra De Abreu Jose Mena | Metodo para la obtencion de agua de riego en zonas de insufieciencia hidrica. |
| WO2001088281A1 (fr) * | 2000-05-19 | 2001-11-22 | Walter Georg Steiner | Recuperation d'eau de l'atmosphere |
| US6799430B2 (en) * | 2000-05-19 | 2004-10-05 | Donna J. McClellan | Atmosphere water recovery |
| US7874165B2 (en) | 2001-08-10 | 2011-01-25 | Aloys Wobben | Wind power installation |
| WO2003014629A1 (fr) * | 2001-08-10 | 2003-02-20 | Aloys Wobben | Installation d'energie eolienne |
| US7886546B2 (en) | 2001-08-10 | 2011-02-15 | Aloys Wobben | Wind power installation |
| WO2005103581A1 (fr) * | 2004-04-23 | 2005-11-03 | Msc Power (S) Pte Ltd | Structure en forme de pyramide pour la production d'electricite et procedes correspondants |
| US7552589B2 (en) | 2004-04-23 | 2009-06-30 | Msc Power (S) Pte Ltd. | Structure and methods using multi-systems for electricity generation and water desalination |
| CN1304754C (zh) * | 2004-07-19 | 2007-03-14 | 李化南 | 多能风水能机 |
| WO2007025344A1 (fr) * | 2005-09-01 | 2007-03-08 | Hydrotower Pty Limited | Dispositif de récupération d’eau atmosphérique solaire |
| AU2006319085B2 (en) * | 2005-11-29 | 2012-04-12 | Marc Hugues Parent | Machine for producing water from wind energy |
| WO2007063208A1 (fr) * | 2005-11-29 | 2007-06-07 | Marc Hugues Parent | Machine de la production d’eau a partir d’energie eolienne |
| FR2893959A1 (fr) * | 2005-11-29 | 2007-06-01 | Marc Hugues Parent | Machine de production d'eau a partir d'energie eolienne |
| US8820107B2 (en) | 2005-11-29 | 2014-09-02 | Marc Hugues Parent | Machine for producing water for wind energy |
| AT504692B1 (de) * | 2006-12-21 | 2009-07-15 | Penz Alois | Anlage zur nutzung von aufwind und verfahren zum betreiben einer solchen anlage |
| WO2009127636A3 (fr) * | 2008-04-15 | 2010-11-11 | Heinrich Koller | Centrale à courant ascendant |
| US20120038160A1 (en) * | 2010-08-15 | 2012-02-16 | Lin Wen Chang | Compound power generating system |
| WO2012079555A1 (fr) * | 2010-12-17 | 2012-06-21 | Lueftl Thomas | Tour solaire à ascendance thermique |
| CN114264008A (zh) * | 2021-12-27 | 2022-04-01 | 深圳市壹锐网络科技有限公司 | 一种太阳能和风力结合的多源新能源发电空气增湿设备 |
| CN114264008B (zh) * | 2021-12-27 | 2022-12-23 | 深圳市壹锐网络科技有限公司 | 一种太阳能和风力结合的多源新能源发电空气增湿设备 |
| FR3136513A1 (fr) * | 2022-06-14 | 2023-12-15 | Technique Lb | Dispositif de production d’energie a partir de fumees et gaz de combustion |
Also Published As
| Publication number | Publication date |
|---|---|
| AU9251998A (en) | 1999-03-22 |
| DE19881574D2 (de) | 2000-07-27 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| DE10245078B4 (de) | Windenergieanlage | |
| WO1999011927A1 (fr) | Production de courant electrique et recuperation d'eau dans l'atmosphere par energie solaire et eolienne | |
| DE112013002285B4 (de) | Off-Shore-Pumpspeicher-Kraftwerk | |
| DE102011118206A1 (de) | Pumpspeicherkraftwerk | |
| WO2013064276A2 (fr) | Dispositifs et procédés d'accumulation d'énergie | |
| EP3049667A1 (fr) | Procédé et installation de stockage d'énergie combiné à air comprimé et à pression d'eau pompée ayant une pression d'eau de turbine constante | |
| DE10055973A1 (de) | Verfahren und Vorrichtung zur bedarfsabhängigen Regelung der Ausgangsleistung eines küstennahen Hochsee-Kraftwerks | |
| DE102011106040A1 (de) | Pumpspeicherkraftwerk | |
| WO2010054844A2 (fr) | Procédé de fonctionnement d'un aérogénérateur et aérogénérateur | |
| DE102013015082A1 (de) | Archimedischer Speicherpark | |
| WO2001088281A1 (fr) | Recuperation d'eau de l'atmosphere | |
| DE102014104675B3 (de) | Windenergieanlage mit zusätzlicher Energieerzeugungseinrichtung | |
| DE102009005360B4 (de) | Künstliche Landschaft und Verfahren zur Errichtung einer künstlichen Landschaft | |
| DE102018127869A1 (de) | Vorrichtung zur Gewinnung von elektrischer Energie sowie entsprechendes Verfahren | |
| DE102011118486B4 (de) | Druckluft-Speicherkraftwerk | |
| DE102012011739A1 (de) | Wasserkraft-Energiespeicher | |
| DE102010054277A1 (de) | Pumpspeicherkraftwerk mit Solar- und Windkraftwerk, Grundwasserstausee und Hochbehälter | |
| DE3000684C2 (de) | Aufnahmestation für Umweltenergie | |
| DE102019007317A1 (de) | Druckkraftwerk | |
| DE19737483A1 (de) | Verfahren mit einer Anlage zur Erzeugung von elektrischem Strom und Wasserrückgewinnung aus der Atmosphäre mit alternativer Solar- und Windenergie | |
| DE20019079U1 (de) | Kran-Flusskraftwerk | |
| EP4232703A1 (fr) | Système de stockage et de récupération d'énergie | |
| DE102016000491A1 (de) | Kraftwerk zur Erzeugung von Elektrizität mit verschiedenen Flüssigkeiten | |
| EP3798435A1 (fr) | Unité de centrale électrique pour une centrale électrique hybride | |
| DE202014003951U1 (de) | Energieversorgungseinrichtung für Wärmepumpen und/oder Klimageräte |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AK | Designated states |
Kind code of ref document: A1 Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE HU IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG US UZ VN |
|
| AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
| DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
| NENP | Non-entry into the national phase |
Ref country code: KR |
|
| REF | Corresponds to |
Ref document number: 19881574 Country of ref document: DE Date of ref document: 20000727 |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 19881574 Country of ref document: DE |
|
| 122 | Ep: pct application non-entry in european phase | ||
| NENP | Non-entry into the national phase |
Ref country code: CA |