[go: up one dir, main page]

WO1999036689A1 - REGENERATION D'ACCUMULATEURS DE NOx DE MOTEURS A MELANGE PAUVRE - Google Patents

REGENERATION D'ACCUMULATEURS DE NOx DE MOTEURS A MELANGE PAUVRE Download PDF

Info

Publication number
WO1999036689A1
WO1999036689A1 PCT/EP1998/008290 EP9808290W WO9936689A1 WO 1999036689 A1 WO1999036689 A1 WO 1999036689A1 EP 9808290 W EP9808290 W EP 9808290W WO 9936689 A1 WO9936689 A1 WO 9936689A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
lean
rich
regeneration
value
Prior art date
Application number
PCT/EP1998/008290
Other languages
German (de)
English (en)
Inventor
Ekkehard Pott
Original Assignee
Volkswagen Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Volkswagen Aktiengesellschaft filed Critical Volkswagen Aktiengesellschaft
Priority to EP98965852A priority Critical patent/EP1049861B1/fr
Priority to DE59806001T priority patent/DE59806001D1/de
Publication of WO1999036689A1 publication Critical patent/WO1999036689A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • F02D41/0082Controlling each cylinder individually per groups or banks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL-COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL-COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0871Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents using means for controlling, e.g. purging, the absorbents or adsorbents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/0275Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a NOx trap or adsorbent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/02Engines characterised by fuel-air mixture compression with positive ignition
    • F02B1/04Engines characterised by fuel-air mixture compression with positive ignition with fuel-air mixture admission into cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D41/1408Dithering techniques

Definitions

  • the invention relates to a method for regeneration of a NOx storage catalytic converter in lean-burn internal combustion engines.
  • An internal combustion engine can be operated lean if it is used at least for a subset of all conceivable speed-load combinations (in particular 1.5 x idle speed to 0.25 x nominal speed, 0.05 to 0.15 x Pme, max) Lambda> 1, 1 and particularly advantageously Lambda> 1, 3 can be operated over periods of> 10 seconds and particularly advantageously> 30 seconds.
  • the air-fuel ratio in the exhaust gas from lambda-controlled gasoline engines is usually monitored by one or more lambda sensors arranged in the exhaust line before and / or after the catalytic converter (s).
  • slightly rich and slightly lean exhaust gas is thus generated in the engine and pushed out into the exhaust system.
  • all cylinders do not run without a deviation from one another or without a deviation from the desired lambda signal. Since the gas columns are mixed on the way through the exhaust gas aftertreatment, with stoichiometric control the catalyst does not have sharply separated exhaust gas qualities, but clouds with rich and lean exhaust gas.
  • each volume element of the NOx storage catalytic converter alternates with time and place depending on the stoichiometric or lean exhaust gas with a relatively high oxygen concentration in the exhaust gas rich and lean exhaust gas.
  • the ⁇ value advantageously oscillates in the direction of the time axis around an average value ⁇ m , the average value ⁇ m being greater than or equal to one, in particular> 1.05.
  • the oscillation of the ⁇ value around the mean value ⁇ m can be a sinusoidal oscillation or, for example, a triangular oscillation, such as a sawtooth.
  • the amplitude of the oscillation is advantageously changed.
  • the frequency of the vibration can also be made variable. In other words, it can Amplitude or frequency modulation of the ⁇ function take place. In the corresponding application, amplitude and frequency modulation can be combined.
  • the average ⁇ value can advantageously be generated by cylinder-selective control of the internal combustion engine. That is, some of the cylinders are operated with a rich ⁇ value, while the other part of the cylinders are operated with a lean ⁇ value.
  • the individual ⁇ values of both the rich cylinder and those of the lean cylinder can differ from one another and from one another and are adapted to the respective requirement. Furthermore, the ⁇ value of the individual cylinder can be changed from cycle to cycle.
  • control of the lean exhaust gas can advantageously be generated by a change in the leaning rate or by a change in the dead times of the change in the injection quantity.
  • control frequencies of the ⁇ vibration are currently in the order of 0.1 to 20 Hz and are ultimately a function of the response times of the ⁇ probes used. With the development of probes with faster reaction times, it will be possible to increase the control frequency, whereby very high control frequencies can have a negative effect on the regeneration times with an average lean exhaust gas due to the decreasing "cloud formation".
  • FIGS. 1-5 each schematically show a storage catalytic converter in the upper part and the corresponding ⁇ function in the lower part;
  • 7 shows a frequency modulation of the ⁇ signal
  • 8 shows waveforms of the ⁇ signal in the form of a left-hand and right-hand saw tooth
  • Fig. 9 shows the course of the ⁇ signal when the lean regulation
  • Fig. 12 shows the adjustment of ⁇ > 1 by cylinder-selective
  • FIGS. 1-5 graphically show the underlying mechanisms of lean regeneration of NOx stores.
  • An exhaust system 1 which has a NOx storage catalytic converter 2, is shown in the respective upper part of FIGS. 1-5.
  • An idealized catalytic converter element 3 is considered in the storage catalytic converter, the flow through the catalytic converter element 3 being shown with the different exhaust gas qualities.
  • the corresponding ⁇ values are plotted against time t in the lower part of FIGS. 1-5.
  • the origin of the time axis is located at ⁇ value one.
  • the ⁇ values greater than one (lean exhaust gas) are shown above and the ⁇ values less than one (rich exhaust gas) are shown below.
  • the mean value ⁇ m is shown as a dashed line.
  • FIG. 1 shows an exclusively rich exhaust gas 4, represented by the hatching of the entire exhaust system 1. With this rich regeneration, the shortest regeneration times are possible thanks to time and location-resolved almost 100% rich flow. Because of the complete flow through the storage catalytic converter 2 with rich exhaust gas 4, any catalytic converter element 3 is always flowed through with rich exhaust gas 4 in both temporal and spatial resolution. In the lower part of Fig. 1 is the time course of ⁇ am Catalyst element 4 shown. Due to the control frequency of the ⁇ probe, the ⁇ value oscillates around an average value ⁇ m , the amplitude of the ⁇ oscillation always being in the rich range, ie ⁇ ⁇ 1. In other words, as is shown schematically in the upper part of FIG. 1, the catalytic element 3 is always flowed through with rich exhaust gas, the exhaust gas being periodically more or less rich.
  • FIG. 2 shows the situation in an exhaust system 1 with a NOx storage catalytic converter, through which rich exhaust gas 4 and lean exhaust gas 5 flow.
  • This is shown schematically by rich exhaust gas clouds 4 (hatched areas) which are surrounded by lean exhaust gas clouds 5 (shown as white areas).
  • any catalytic converter element 3 is flowed through in a temporally and spatially resolving manner, alternately with rich exhaust gas 4 and lean exhaust gas 5. That is, there are already small, lean fractions in the exhaust gas, so that time and location-resolved flow through all catalyst zones is not always rich. Shown in the lower part of FIG.
  • the time components of rich and lean exhaust gas 4, 5 are thus approximately the same, which leads to approximately the same areas I of regeneration and areas II of no regeneration in the lower part of FIG. 3.
  • the NOx storage is also regenerated here, however, the regeneration duration continues to increase.
  • Fig. 4 shows the situation with globally leaner exhaust gas, shown schematically by the fact that the number of clouds of rich exhaust gas 4 is less than the lean exhaust gas 5.
  • the time and location components of the rich exhaust gas 4 continue to decrease and the regeneration duration increases increasingly .
  • this means that the amplitudes of ⁇ are largely above the value 1 and only a small part of the values of ⁇ are below the value 1.
  • the middle one Value ⁇ m is above 1.
  • the regeneration areas I are smaller than the areas II in which no regeneration takes place. However, the NOx storage is still regenerated here.
  • Fig. 5 shows the situation with very lean exhaust gas 5.
  • a net storage discharge is only possible if the NOx mass flow converted by the time and place-resolved regeneration is greater than the lean NOx storage.
  • the course of ⁇ and the mean value ⁇ m are now completely above 1, ie there is only area II without regeneration.
  • FIG. 7 shows an optimization of the regeneration speed in NOx stores with oxygen storage capability by changing the control frequency, represented by a ⁇ oscillation in which the control frequency is varied.
  • the control frequency is reduced, with ⁇ fluctuating around an average value ⁇ m .
  • the frequency of the change between rich and lean flow influences the regeneration time.
  • a decreasing wobble frequency also causes a decrease in the regeneration times.
  • Regeneration areas I, non-regeneration areas II, and areas III can be seen in the areas defined by the oscillation of ⁇ , regeneration also not taking place in areas III below the stoichiometric ⁇ value, since stored O2 is consumed in the case of an oxygen-storing NOx store .
  • there is therefore a decrease in the control frequency an increase in the usable amount of reducing agent and a Increase in the rate of regeneration.
  • the control frequencies are currently in the order of 0.1 to 20 Hz.
  • Fig. 8 shows the variation of the pollutant reduction properties by a shape of ⁇ . It has been shown that shaping the fat-lean jumps influences the regeneration behavior.
  • the left graph in FIG. 8 shows a rapid enrichment and subsequent slow leaning. In the illustration, this results in the sawtooth curve falling rapidly after fat, also referred to as right-hand sawtooth, which shortens the NOx regeneration by starting the NOx conversion quickly, but there is a risk of HC and CO breakdowns.
  • the sawtooth shown on the right represents a rapid leaning and then slow enrichment (left-sided sawtooth).
  • the corresponding exhaust gas quality is generated controlled by a step response or broadband lambda probe.
  • FIG. 9 shows the control of a lean exhaust gas by changing the dead times of the injection quantity change in the case of a step response probe.
  • the setting of the globally lean exhaust gas takes place through different dead times between the detection of lean exhaust gas and the command to enrich the mixture and the detection of rich exhaust gas and the command to lean the mixture.
  • T1 means the dead time until the detection of "lambda lean”
  • T2 the dead time until the readjustment of the injection after rich
  • T3 the dead time until the detection of "lambda rich”
  • T4 the dead time until the readjustment of the injection after skinny.
  • FIG. 10 shows a control of a lean exhaust gas with a step response probe by changing the leaning rate, that is to say by means of different rates of change during enriching and leaning, whereby the ancestor of FIG. 8 is realized.
  • the meaning of the reference symbols T1, T2, T3 and T4 corresponds to that of FIG. 9.
  • the two arrows in the right part of FIG. 10 for ⁇ m > 1 indicate a faster and stronger emaciation with lean exhaust gas.
  • the target signal of the average lambda ⁇ m is set to the desired value (lambda> 1) and the time components of rich exhaust gas are monitored via frequency and amplitude.
  • FIG. 11 shows the regulation of ⁇ m > 1 by influencing the cylinder-selective injection quantity in broadband lambda sensors, the mean value ⁇ m being represented by the dashed line.
  • n-cylinder engine 1 to (n-1) cylinders here cylinders 1, 2, 3 and 4
  • the lambda signal continues to be used for global regulation to ⁇ m > 1.
  • lambda is regulated by regulating at least one lean-running cylinder. 11 is divided into areas A, B and C, which have the following meanings:
  • FIG. 12 shows a cylinder-selective injection quantity influencing for the generation of a lean exhaust gas with a step response probe.
  • the thick line means the ⁇ of the individual cylinders
  • the dashed line an average ⁇ over a cycle
  • the double solid line means the average ⁇ m over several cycles.
  • the cylinders running bold and / or stoichiometrically are also controlled and the cylinders running lean are regulated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

L'invention concerne un procédé permettant de purifier les gaz d'échappement d'un moteur à combustion interne à mélange pauvre, à régulation lambda, comportant un catalyseur à accumulation de NOx (2) et une sonde lambda. Selon ce procédé, en présence de gaz d'échappement (5) d'ordre stoechiométrique ou pauvre, dont la concentration en oxygène est relativement élevée, chaque élément de volume (3) du catalyseur à accumulation de NOx est soumis en alternance à l'action de gaz d'échappement de type riche (4) et pauvre (5), de manière dépendante du temps ou de la position. A cet effet, la valeur μ oscille en direction de l'axe des temps d'une valeur moyenne μ-m qui est supérieure ou égale à un.
PCT/EP1998/008290 1998-01-19 1998-12-17 REGENERATION D'ACCUMULATEURS DE NOx DE MOTEURS A MELANGE PAUVRE WO1999036689A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP98965852A EP1049861B1 (fr) 1998-01-19 1998-12-17 REGENERATION D'ACCUMULATEURS DE NOx DE MOTEURS A MELANGE PAUVRE
DE59806001T DE59806001D1 (de) 1998-01-19 1998-12-17 MAGER-REGENERATION VON NOx-SPEICHERN

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19801815.0 1998-01-19
DE19801815A DE19801815A1 (de) 1998-01-19 1998-01-19 Mager-Regeneration von NOx-Speichern

Publications (1)

Publication Number Publication Date
WO1999036689A1 true WO1999036689A1 (fr) 1999-07-22

Family

ID=7855033

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1998/008290 WO1999036689A1 (fr) 1998-01-19 1998-12-17 REGENERATION D'ACCUMULATEURS DE NOx DE MOTEURS A MELANGE PAUVRE

Country Status (3)

Country Link
EP (1) EP1049861B1 (fr)
DE (2) DE19801815A1 (fr)
WO (1) WO1999036689A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2856741A1 (fr) * 2003-06-30 2004-12-31 Renault Sa Procede et dispositif d'estimation d'une masse d'oxydes d'azote stockee dans un dispositif de piegeage catalytique de vehicule automobile
DE102006015509B3 (de) * 2006-03-31 2007-08-23 Avg Gmbh Nachrüstmodel für Fahrzeuge mit geregeltem Katalysator
US8170774B2 (en) 2006-03-30 2012-05-01 Eldor Corporation S.P.A. Method and devices for the control of the air-fuel ratio of an internal combustion engine
KR101308213B1 (ko) * 2008-08-01 2013-09-13 에미텍 게젤샤프트 퓌어 에미시온스테크놀로기 엠베하 람다 제어에 의한 배기-가스 시스템 작동 방법

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19920515C2 (de) * 1999-05-05 2003-03-20 Daimler Chrysler Ag Abgasreinigungsanlage mit Stickoxidadsorber und Desulfatisierungsverfahren hierfür
DE19922962C2 (de) * 1999-05-19 2003-02-27 Daimler Chrysler Ag Verfahren zur periodischen Desulfatisierung eines Stickoxid- oder Schwefeloxid-Speichers einer Abgasreinigungsanlage
DE19923498A1 (de) * 1999-05-21 2000-11-23 Volkswagen Ag Verfahren zur Steuerung einer Regeneration eines NOx-Speicherkatalysators
DE19936200A1 (de) * 1999-07-31 2001-02-08 Bosch Gmbh Robert Verfahren zum Betreiben einer Brennkraftmaschine
DE19942270A1 (de) * 1999-09-04 2001-03-15 Bosch Gmbh Robert Verfahren zum Betreiben einer Brennkraftmaschine
DE19953601C2 (de) 1999-11-08 2002-07-11 Siemens Ag Verfahren zum Überprüfen eines Abgaskatalysators einer Brennkraftmaschine
DE19963938A1 (de) * 1999-12-31 2001-07-12 Bosch Gmbh Robert Verfahren zum Betreiben eines Dreiwegekatalysators einer Brennkraftmaschine
DE10005474C2 (de) * 2000-02-08 2003-04-17 Bayerische Motoren Werke Ag Verfahren und Vorrichtung zur Desulfatisierung eines NOx-Speicherkatalysators mit einem NOx-Sensor
DE10005473C2 (de) * 2000-02-08 2002-01-17 Bayerische Motoren Werke Ag Verfahren und Vorrichtung zur Desulfatisierung eines Stickoxidspeicherkatalysators
DE50112018D1 (de) * 2000-04-07 2007-03-29 Volkswagen Ag Mehrflutige Abgasanlage und Verfahren zur Regelung eines Luft-Kraftstoff-Verhältnisses eines Mehrzylinderverbrennungsmotors
DE10025076B4 (de) * 2000-05-20 2008-04-30 Bayerische Motoren Werke Ag Vorrichtung zur Steuerung/Regelung der Regeneration eines NOx-Speicherkatalysators im Abgasstrang einer Brennkraftmaschine
DE10026379A1 (de) * 2000-05-27 2001-12-13 Volkswagen Ag Verfahren und Vorrichtung zur Durchführung einer Regeneration eines NOx-Speicherkatalysators
DE10040517A1 (de) * 2000-08-18 2002-02-28 Bayerische Motoren Werke Ag Verfahren zur Gemischbildung für eine Brennkraftmaschine mit einem Katalysator im Abgasstrang
DE10139992B4 (de) * 2001-08-16 2006-04-27 Daimlerchrysler Ag Verfahren zur Regelung der Gemischzusammensetzung für einen Ottomotor mit NOx-Speicherkatalysator während einer Regenerationsphase
DE10153901B4 (de) * 2001-10-12 2011-07-14 Volkswagen AG, 38440 Verfahren und Vorrichtung zur Entschwefelung eines einem Dieselmotor nachgeschalteten NOx-Speicherkatalysators
FR2830772B1 (fr) * 2001-10-12 2004-12-24 Volkswagen Ag Procedes et dispositif de desulfuration d'un catalyseur a accumulation de nox, implante en aval d'un moteur diesel
JP3800080B2 (ja) * 2001-11-30 2006-07-19 トヨタ自動車株式会社 内燃機関の排気浄化装置
DE10220337B4 (de) 2002-05-07 2006-04-20 Siemens Ag Verfahren zum Betreiben einer mit einem Dreiwegekatalysator ausgerüsteten Brennkraftmaschine
EP1386656B1 (fr) * 2002-07-31 2009-01-21 Umicore AG & Co. KG Procédé permettant la régénération d'un catalyseur d'accumulation des oxydes d'azote
US7146799B2 (en) * 2003-03-27 2006-12-12 Ford Global Technologies, Llc Computer controlled engine air-fuel ratio adjustment
US6854264B2 (en) * 2003-03-27 2005-02-15 Ford Global Technologies, Llc Computer controlled engine adjustment based on an exhaust flow
DE10321311B4 (de) * 2003-05-08 2013-09-12 Volkswagen Ag Verfahren zum Aufheizen eines Katalysators und Kraftmaschine mit Steuereinheit
DE10341930A1 (de) * 2003-09-11 2005-04-21 Audi Ag Verfahren zur Aufheizung eines in einer Abgasanlage einer Diesel-Brennkraftmaschine eines Fahrzeuges, insbesondere eines Kraftfahrzeuges, angeordneten Katalysators und/oder Partikelfilters auf Desulfatisierungs- und/oder Entrußungstemperatur sowie Katalysator, insbesondere Stickoxid-Speicherkatalysators für Abgasanlagen von Brennkraftmaschinen
FR2876735B1 (fr) * 2004-10-15 2007-01-12 Inst Francais Du Petrole PROCEDE POUR PURGER UN PIEGE A NOx AVEC CONTROLE DE LA RICHESSE DES GAZ D'ECHAPPEMENT
JP4792042B2 (ja) 2004-12-24 2011-10-12 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト 窒素酸化物吸蔵触媒の再生法
US9863348B2 (en) * 2009-09-29 2018-01-09 Ford Global Technologies, Llc Method for controlling fuel of a spark ignited engine while regenerating a particulate filter

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0546318A1 (fr) * 1991-12-10 1993-06-16 Robert Bosch Gmbh Méthode et dispositif pour la détermination du rendement de conversion d'un catalyseur
DE4211116A1 (de) * 1992-04-03 1993-10-07 Bosch Gmbh Robert Verfahren und Vorrichtung zur Katalysatorzustandserkennung
JPH08232646A (ja) * 1995-02-22 1996-09-10 Toyota Motor Corp 内燃機関の排気浄化装置
US5577382A (en) * 1994-06-30 1996-11-26 Toyota Jidosha Kabushiki Kaisha Exhaust purification device of internal combustion engine
US5622047A (en) * 1992-07-03 1997-04-22 Nippondenso Co., Ltd. Method and apparatus for detecting saturation gas amount absorbed by catalytic converter

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62223427A (ja) * 1986-03-20 1987-10-01 Nissan Motor Co Ltd 空燃比制御装置
JP2765136B2 (ja) * 1989-12-14 1998-06-11 株式会社デンソー エンジン用空燃比制御装置
JP2989929B2 (ja) * 1991-05-13 1999-12-13 株式会社デンソー 内燃機関の空燃比制御装置
DE4311890C2 (de) * 1993-04-10 1995-05-18 Comuna Metall Vorrichtungs Und Stationär betriebene Brennkraftmaschine mit Abgasreinigung
JP3624429B2 (ja) * 1994-02-28 2005-03-02 株式会社日立製作所 内燃機関の制御装置
DE19511548A1 (de) * 1995-03-29 1996-06-13 Daimler Benz Ag Verfahren und Vorrichtung zur Stickoxidreduzierung im Abgas einer Brennkraftmaschine
JPH09119310A (ja) * 1995-10-26 1997-05-06 Denso Corp 内燃機関の排ガス浄化装置
DE19607151C1 (de) * 1996-02-26 1997-07-10 Siemens Ag Verfahren zur Regeneration eines NOx-Speicherkatalysators

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0546318A1 (fr) * 1991-12-10 1993-06-16 Robert Bosch Gmbh Méthode et dispositif pour la détermination du rendement de conversion d'un catalyseur
DE4211116A1 (de) * 1992-04-03 1993-10-07 Bosch Gmbh Robert Verfahren und Vorrichtung zur Katalysatorzustandserkennung
US5622047A (en) * 1992-07-03 1997-04-22 Nippondenso Co., Ltd. Method and apparatus for detecting saturation gas amount absorbed by catalytic converter
US5577382A (en) * 1994-06-30 1996-11-26 Toyota Jidosha Kabushiki Kaisha Exhaust purification device of internal combustion engine
JPH08232646A (ja) * 1995-02-22 1996-09-10 Toyota Motor Corp 内燃機関の排気浄化装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 097, no. 001 31 January 1997 (1997-01-31) *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2856741A1 (fr) * 2003-06-30 2004-12-31 Renault Sa Procede et dispositif d'estimation d'une masse d'oxydes d'azote stockee dans un dispositif de piegeage catalytique de vehicule automobile
WO2005003529A1 (fr) * 2003-06-30 2005-01-13 Renault S.A.S Procede et dispositif d’estimation d’une masse d’oxydes d’azote stockee dans un dispositif de piegeage catalytique de vehicule automobile
US7219008B2 (en) 2003-06-30 2007-05-15 Renault S.A.S. Method and device for estimating a nitrogen oxide mass stored in a catalytic trapping device of a motor vehicle
US8170774B2 (en) 2006-03-30 2012-05-01 Eldor Corporation S.P.A. Method and devices for the control of the air-fuel ratio of an internal combustion engine
DE102006015509B3 (de) * 2006-03-31 2007-08-23 Avg Gmbh Nachrüstmodel für Fahrzeuge mit geregeltem Katalysator
KR101308213B1 (ko) * 2008-08-01 2013-09-13 에미텍 게젤샤프트 퓌어 에미시온스테크놀로기 엠베하 람다 제어에 의한 배기-가스 시스템 작동 방법

Also Published As

Publication number Publication date
DE19801815A1 (de) 1999-07-22
DE59806001D1 (de) 2002-11-21
EP1049861A1 (fr) 2000-11-08
EP1049861B1 (fr) 2002-10-16

Similar Documents

Publication Publication Date Title
EP1049861B1 (fr) REGENERATION D'ACCUMULATEURS DE NOx DE MOTEURS A MELANGE PAUVRE
DE19837074C2 (de) Rückkopplungsregelung zur Entschwefelung einer NOx-Falle
DE10020639B4 (de) Verfahren und Vorrichtung zur Regelung der Temperatur einer Schadstoffbegrenzungsvorrichtung im Abgasstrom eines Verbrennungsmotors
EP0154710B1 (fr) Dispositif pour la commande des paramètres de fontionnement d'un moteur à C.I.
DE10103772C2 (de) Verfahren zum Betreiben eines Dreiweg-Katalysators, welcher eine Sauerstoff speichernde Komponente enthält
DE3039436C2 (fr)
DE10205817A1 (de) Verfahren und Vorrichtung zur Regelung des Kraftstoff-/Luftverhältnisses eines Verbrennungsprozesses
EP0151768A2 (fr) Système de dosage du mélange air-carburant pour un moteur à combustion
DE10007048A1 (de) Vorrichtung und Verfahren zur Ermittlung einer Regenerationsnotwendigkeit eines NO¶x¶-Speicherkatalysators
DE19816799B4 (de) System zur Regelung des Luft-Kraftstoff-Verhältnisses für Verbrennungsmotoren
EP1117916B1 (fr) PROCEDE DE REGENERATION D'UN CATALYSEUR A ACCUMULATION DE NOx D'UN MOTEUR A COMBUSTION INTERNE
EP1102921B1 (fr) PROCEDE DE DESULFATATION D'UN CATALYSEUR ACCUMULATEUR DE NO x? EN FONCTION DE LA TEMPERATURE ET DE LA VALEUR LAMBDA
DE10064665A1 (de) Verfahren zum Steuern einer Brennkraftmaschine
EP1179124B1 (fr) Procede de desulfuration
DE10349855B4 (de) Verfahren und Vorrichtung zur Entschwefelung eines Katalysators
DE10153901B4 (de) Verfahren und Vorrichtung zur Entschwefelung eines einem Dieselmotor nachgeschalteten NOx-Speicherkatalysators
DE102021102456B3 (de) Verfahren zum Betreiben einer Antriebseinrichtung sowie entsprechende Antriebseinrichtung
DE10018062B4 (de) Mehrzylindermotor für Kraftfahrzeuge mit einer mehrflutigen Abgasreinigungsanlage und Verfahren zur Steuerung eines Betriebs des Mehrzylindermotors
WO2006027303A1 (fr) Procede de reglage de melange d'un moteur a combustion interne a plusieurs cylindres et a allumage commande pourvu de catalyseurs specifiques cylindres et un catalyseur principal commun monte en aval des catalyseurs
WO2004059151A1 (fr) Procede et dispositif pour reguler la relation carburant/air dans un moteur a combustion interne
DE102009010887B3 (de) Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE3841684C1 (en) Method for optimising the control of the fuel-air ratio in an internal combustion engine
DE10310672B4 (de) Verfahren und Vorrichtung zur Einstellung eines Kraftstoff-/Luftverhältnisses für eine Brennkraftmaschine
EP1200715B1 (fr) Procede de reglage de la regeneration d'un catalyseur a accumulation place dans un canal de gaz d'echappement d'un moteur a combustion interne
DE102011087300A1 (de) Verfahren zum Betreiben einer Verbrennungskraftmaschine sowie zur Ausführung des Verfahrens eingerichtetes Steuergerät

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1998965852

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1998965852

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1998965852

Country of ref document: EP