WO1999036689A1 - REGENERATION D'ACCUMULATEURS DE NOx DE MOTEURS A MELANGE PAUVRE - Google Patents
REGENERATION D'ACCUMULATEURS DE NOx DE MOTEURS A MELANGE PAUVRE Download PDFInfo
- Publication number
- WO1999036689A1 WO1999036689A1 PCT/EP1998/008290 EP9808290W WO9936689A1 WO 1999036689 A1 WO1999036689 A1 WO 1999036689A1 EP 9808290 W EP9808290 W EP 9808290W WO 9936689 A1 WO9936689 A1 WO 9936689A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- exhaust gas
- lean
- rich
- regeneration
- value
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/008—Controlling each cylinder individually
- F02D41/0082—Controlling each cylinder individually per groups or banks
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL-COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/0807—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
- F01N3/0828—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
- F01N3/0842—Nitrogen oxides
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL-COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/0807—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
- F01N3/0871—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents using means for controlling, e.g. purging, the absorbents or adsorbents
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/021—Introducing corrections for particular conditions exterior to the engine
- F02D41/0235—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
- F02D41/027—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
- F02D41/0275—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a NOx trap or adsorbent
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B1/00—Engines characterised by fuel-air mixture compression
- F02B1/02—Engines characterised by fuel-air mixture compression with positive ignition
- F02B1/04—Engines characterised by fuel-air mixture compression with positive ignition with fuel-air mixture admission into cylinder
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1401—Introducing closed-loop corrections characterised by the control or regulation method
- F02D41/1408—Dithering techniques
Definitions
- the invention relates to a method for regeneration of a NOx storage catalytic converter in lean-burn internal combustion engines.
- An internal combustion engine can be operated lean if it is used at least for a subset of all conceivable speed-load combinations (in particular 1.5 x idle speed to 0.25 x nominal speed, 0.05 to 0.15 x Pme, max) Lambda> 1, 1 and particularly advantageously Lambda> 1, 3 can be operated over periods of> 10 seconds and particularly advantageously> 30 seconds.
- the air-fuel ratio in the exhaust gas from lambda-controlled gasoline engines is usually monitored by one or more lambda sensors arranged in the exhaust line before and / or after the catalytic converter (s).
- slightly rich and slightly lean exhaust gas is thus generated in the engine and pushed out into the exhaust system.
- all cylinders do not run without a deviation from one another or without a deviation from the desired lambda signal. Since the gas columns are mixed on the way through the exhaust gas aftertreatment, with stoichiometric control the catalyst does not have sharply separated exhaust gas qualities, but clouds with rich and lean exhaust gas.
- each volume element of the NOx storage catalytic converter alternates with time and place depending on the stoichiometric or lean exhaust gas with a relatively high oxygen concentration in the exhaust gas rich and lean exhaust gas.
- the ⁇ value advantageously oscillates in the direction of the time axis around an average value ⁇ m , the average value ⁇ m being greater than or equal to one, in particular> 1.05.
- the oscillation of the ⁇ value around the mean value ⁇ m can be a sinusoidal oscillation or, for example, a triangular oscillation, such as a sawtooth.
- the amplitude of the oscillation is advantageously changed.
- the frequency of the vibration can also be made variable. In other words, it can Amplitude or frequency modulation of the ⁇ function take place. In the corresponding application, amplitude and frequency modulation can be combined.
- the average ⁇ value can advantageously be generated by cylinder-selective control of the internal combustion engine. That is, some of the cylinders are operated with a rich ⁇ value, while the other part of the cylinders are operated with a lean ⁇ value.
- the individual ⁇ values of both the rich cylinder and those of the lean cylinder can differ from one another and from one another and are adapted to the respective requirement. Furthermore, the ⁇ value of the individual cylinder can be changed from cycle to cycle.
- control of the lean exhaust gas can advantageously be generated by a change in the leaning rate or by a change in the dead times of the change in the injection quantity.
- control frequencies of the ⁇ vibration are currently in the order of 0.1 to 20 Hz and are ultimately a function of the response times of the ⁇ probes used. With the development of probes with faster reaction times, it will be possible to increase the control frequency, whereby very high control frequencies can have a negative effect on the regeneration times with an average lean exhaust gas due to the decreasing "cloud formation".
- FIGS. 1-5 each schematically show a storage catalytic converter in the upper part and the corresponding ⁇ function in the lower part;
- 7 shows a frequency modulation of the ⁇ signal
- 8 shows waveforms of the ⁇ signal in the form of a left-hand and right-hand saw tooth
- Fig. 9 shows the course of the ⁇ signal when the lean regulation
- Fig. 12 shows the adjustment of ⁇ > 1 by cylinder-selective
- FIGS. 1-5 graphically show the underlying mechanisms of lean regeneration of NOx stores.
- An exhaust system 1 which has a NOx storage catalytic converter 2, is shown in the respective upper part of FIGS. 1-5.
- An idealized catalytic converter element 3 is considered in the storage catalytic converter, the flow through the catalytic converter element 3 being shown with the different exhaust gas qualities.
- the corresponding ⁇ values are plotted against time t in the lower part of FIGS. 1-5.
- the origin of the time axis is located at ⁇ value one.
- the ⁇ values greater than one (lean exhaust gas) are shown above and the ⁇ values less than one (rich exhaust gas) are shown below.
- the mean value ⁇ m is shown as a dashed line.
- FIG. 1 shows an exclusively rich exhaust gas 4, represented by the hatching of the entire exhaust system 1. With this rich regeneration, the shortest regeneration times are possible thanks to time and location-resolved almost 100% rich flow. Because of the complete flow through the storage catalytic converter 2 with rich exhaust gas 4, any catalytic converter element 3 is always flowed through with rich exhaust gas 4 in both temporal and spatial resolution. In the lower part of Fig. 1 is the time course of ⁇ am Catalyst element 4 shown. Due to the control frequency of the ⁇ probe, the ⁇ value oscillates around an average value ⁇ m , the amplitude of the ⁇ oscillation always being in the rich range, ie ⁇ ⁇ 1. In other words, as is shown schematically in the upper part of FIG. 1, the catalytic element 3 is always flowed through with rich exhaust gas, the exhaust gas being periodically more or less rich.
- FIG. 2 shows the situation in an exhaust system 1 with a NOx storage catalytic converter, through which rich exhaust gas 4 and lean exhaust gas 5 flow.
- This is shown schematically by rich exhaust gas clouds 4 (hatched areas) which are surrounded by lean exhaust gas clouds 5 (shown as white areas).
- any catalytic converter element 3 is flowed through in a temporally and spatially resolving manner, alternately with rich exhaust gas 4 and lean exhaust gas 5. That is, there are already small, lean fractions in the exhaust gas, so that time and location-resolved flow through all catalyst zones is not always rich. Shown in the lower part of FIG.
- the time components of rich and lean exhaust gas 4, 5 are thus approximately the same, which leads to approximately the same areas I of regeneration and areas II of no regeneration in the lower part of FIG. 3.
- the NOx storage is also regenerated here, however, the regeneration duration continues to increase.
- Fig. 4 shows the situation with globally leaner exhaust gas, shown schematically by the fact that the number of clouds of rich exhaust gas 4 is less than the lean exhaust gas 5.
- the time and location components of the rich exhaust gas 4 continue to decrease and the regeneration duration increases increasingly .
- this means that the amplitudes of ⁇ are largely above the value 1 and only a small part of the values of ⁇ are below the value 1.
- the middle one Value ⁇ m is above 1.
- the regeneration areas I are smaller than the areas II in which no regeneration takes place. However, the NOx storage is still regenerated here.
- Fig. 5 shows the situation with very lean exhaust gas 5.
- a net storage discharge is only possible if the NOx mass flow converted by the time and place-resolved regeneration is greater than the lean NOx storage.
- the course of ⁇ and the mean value ⁇ m are now completely above 1, ie there is only area II without regeneration.
- FIG. 7 shows an optimization of the regeneration speed in NOx stores with oxygen storage capability by changing the control frequency, represented by a ⁇ oscillation in which the control frequency is varied.
- the control frequency is reduced, with ⁇ fluctuating around an average value ⁇ m .
- the frequency of the change between rich and lean flow influences the regeneration time.
- a decreasing wobble frequency also causes a decrease in the regeneration times.
- Regeneration areas I, non-regeneration areas II, and areas III can be seen in the areas defined by the oscillation of ⁇ , regeneration also not taking place in areas III below the stoichiometric ⁇ value, since stored O2 is consumed in the case of an oxygen-storing NOx store .
- there is therefore a decrease in the control frequency an increase in the usable amount of reducing agent and a Increase in the rate of regeneration.
- the control frequencies are currently in the order of 0.1 to 20 Hz.
- Fig. 8 shows the variation of the pollutant reduction properties by a shape of ⁇ . It has been shown that shaping the fat-lean jumps influences the regeneration behavior.
- the left graph in FIG. 8 shows a rapid enrichment and subsequent slow leaning. In the illustration, this results in the sawtooth curve falling rapidly after fat, also referred to as right-hand sawtooth, which shortens the NOx regeneration by starting the NOx conversion quickly, but there is a risk of HC and CO breakdowns.
- the sawtooth shown on the right represents a rapid leaning and then slow enrichment (left-sided sawtooth).
- the corresponding exhaust gas quality is generated controlled by a step response or broadband lambda probe.
- FIG. 9 shows the control of a lean exhaust gas by changing the dead times of the injection quantity change in the case of a step response probe.
- the setting of the globally lean exhaust gas takes place through different dead times between the detection of lean exhaust gas and the command to enrich the mixture and the detection of rich exhaust gas and the command to lean the mixture.
- T1 means the dead time until the detection of "lambda lean”
- T2 the dead time until the readjustment of the injection after rich
- T3 the dead time until the detection of "lambda rich”
- T4 the dead time until the readjustment of the injection after skinny.
- FIG. 10 shows a control of a lean exhaust gas with a step response probe by changing the leaning rate, that is to say by means of different rates of change during enriching and leaning, whereby the ancestor of FIG. 8 is realized.
- the meaning of the reference symbols T1, T2, T3 and T4 corresponds to that of FIG. 9.
- the two arrows in the right part of FIG. 10 for ⁇ m > 1 indicate a faster and stronger emaciation with lean exhaust gas.
- the target signal of the average lambda ⁇ m is set to the desired value (lambda> 1) and the time components of rich exhaust gas are monitored via frequency and amplitude.
- FIG. 11 shows the regulation of ⁇ m > 1 by influencing the cylinder-selective injection quantity in broadband lambda sensors, the mean value ⁇ m being represented by the dashed line.
- n-cylinder engine 1 to (n-1) cylinders here cylinders 1, 2, 3 and 4
- the lambda signal continues to be used for global regulation to ⁇ m > 1.
- lambda is regulated by regulating at least one lean-running cylinder. 11 is divided into areas A, B and C, which have the following meanings:
- FIG. 12 shows a cylinder-selective injection quantity influencing for the generation of a lean exhaust gas with a step response probe.
- the thick line means the ⁇ of the individual cylinders
- the dashed line an average ⁇ over a cycle
- the double solid line means the average ⁇ m over several cycles.
- the cylinders running bold and / or stoichiometrically are also controlled and the cylinders running lean are regulated.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Exhaust Gas After Treatment (AREA)
Abstract
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP98965852A EP1049861B1 (fr) | 1998-01-19 | 1998-12-17 | REGENERATION D'ACCUMULATEURS DE NOx DE MOTEURS A MELANGE PAUVRE |
DE59806001T DE59806001D1 (de) | 1998-01-19 | 1998-12-17 | MAGER-REGENERATION VON NOx-SPEICHERN |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19801815.0 | 1998-01-19 | ||
DE19801815A DE19801815A1 (de) | 1998-01-19 | 1998-01-19 | Mager-Regeneration von NOx-Speichern |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1999036689A1 true WO1999036689A1 (fr) | 1999-07-22 |
Family
ID=7855033
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP1998/008290 WO1999036689A1 (fr) | 1998-01-19 | 1998-12-17 | REGENERATION D'ACCUMULATEURS DE NOx DE MOTEURS A MELANGE PAUVRE |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP1049861B1 (fr) |
DE (2) | DE19801815A1 (fr) |
WO (1) | WO1999036689A1 (fr) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2856741A1 (fr) * | 2003-06-30 | 2004-12-31 | Renault Sa | Procede et dispositif d'estimation d'une masse d'oxydes d'azote stockee dans un dispositif de piegeage catalytique de vehicule automobile |
DE102006015509B3 (de) * | 2006-03-31 | 2007-08-23 | Avg Gmbh | Nachrüstmodel für Fahrzeuge mit geregeltem Katalysator |
US8170774B2 (en) | 2006-03-30 | 2012-05-01 | Eldor Corporation S.P.A. | Method and devices for the control of the air-fuel ratio of an internal combustion engine |
KR101308213B1 (ko) * | 2008-08-01 | 2013-09-13 | 에미텍 게젤샤프트 퓌어 에미시온스테크놀로기 엠베하 | 람다 제어에 의한 배기-가스 시스템 작동 방법 |
Families Citing this family (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19920515C2 (de) * | 1999-05-05 | 2003-03-20 | Daimler Chrysler Ag | Abgasreinigungsanlage mit Stickoxidadsorber und Desulfatisierungsverfahren hierfür |
DE19922962C2 (de) * | 1999-05-19 | 2003-02-27 | Daimler Chrysler Ag | Verfahren zur periodischen Desulfatisierung eines Stickoxid- oder Schwefeloxid-Speichers einer Abgasreinigungsanlage |
DE19923498A1 (de) * | 1999-05-21 | 2000-11-23 | Volkswagen Ag | Verfahren zur Steuerung einer Regeneration eines NOx-Speicherkatalysators |
DE19936200A1 (de) * | 1999-07-31 | 2001-02-08 | Bosch Gmbh Robert | Verfahren zum Betreiben einer Brennkraftmaschine |
DE19942270A1 (de) * | 1999-09-04 | 2001-03-15 | Bosch Gmbh Robert | Verfahren zum Betreiben einer Brennkraftmaschine |
DE19953601C2 (de) | 1999-11-08 | 2002-07-11 | Siemens Ag | Verfahren zum Überprüfen eines Abgaskatalysators einer Brennkraftmaschine |
DE19963938A1 (de) * | 1999-12-31 | 2001-07-12 | Bosch Gmbh Robert | Verfahren zum Betreiben eines Dreiwegekatalysators einer Brennkraftmaschine |
DE10005474C2 (de) * | 2000-02-08 | 2003-04-17 | Bayerische Motoren Werke Ag | Verfahren und Vorrichtung zur Desulfatisierung eines NOx-Speicherkatalysators mit einem NOx-Sensor |
DE10005473C2 (de) * | 2000-02-08 | 2002-01-17 | Bayerische Motoren Werke Ag | Verfahren und Vorrichtung zur Desulfatisierung eines Stickoxidspeicherkatalysators |
DE50112018D1 (de) * | 2000-04-07 | 2007-03-29 | Volkswagen Ag | Mehrflutige Abgasanlage und Verfahren zur Regelung eines Luft-Kraftstoff-Verhältnisses eines Mehrzylinderverbrennungsmotors |
DE10025076B4 (de) * | 2000-05-20 | 2008-04-30 | Bayerische Motoren Werke Ag | Vorrichtung zur Steuerung/Regelung der Regeneration eines NOx-Speicherkatalysators im Abgasstrang einer Brennkraftmaschine |
DE10026379A1 (de) * | 2000-05-27 | 2001-12-13 | Volkswagen Ag | Verfahren und Vorrichtung zur Durchführung einer Regeneration eines NOx-Speicherkatalysators |
DE10040517A1 (de) * | 2000-08-18 | 2002-02-28 | Bayerische Motoren Werke Ag | Verfahren zur Gemischbildung für eine Brennkraftmaschine mit einem Katalysator im Abgasstrang |
DE10139992B4 (de) * | 2001-08-16 | 2006-04-27 | Daimlerchrysler Ag | Verfahren zur Regelung der Gemischzusammensetzung für einen Ottomotor mit NOx-Speicherkatalysator während einer Regenerationsphase |
DE10153901B4 (de) * | 2001-10-12 | 2011-07-14 | Volkswagen AG, 38440 | Verfahren und Vorrichtung zur Entschwefelung eines einem Dieselmotor nachgeschalteten NOx-Speicherkatalysators |
FR2830772B1 (fr) * | 2001-10-12 | 2004-12-24 | Volkswagen Ag | Procedes et dispositif de desulfuration d'un catalyseur a accumulation de nox, implante en aval d'un moteur diesel |
JP3800080B2 (ja) * | 2001-11-30 | 2006-07-19 | トヨタ自動車株式会社 | 内燃機関の排気浄化装置 |
DE10220337B4 (de) | 2002-05-07 | 2006-04-20 | Siemens Ag | Verfahren zum Betreiben einer mit einem Dreiwegekatalysator ausgerüsteten Brennkraftmaschine |
EP1386656B1 (fr) * | 2002-07-31 | 2009-01-21 | Umicore AG & Co. KG | Procédé permettant la régénération d'un catalyseur d'accumulation des oxydes d'azote |
US7146799B2 (en) * | 2003-03-27 | 2006-12-12 | Ford Global Technologies, Llc | Computer controlled engine air-fuel ratio adjustment |
US6854264B2 (en) * | 2003-03-27 | 2005-02-15 | Ford Global Technologies, Llc | Computer controlled engine adjustment based on an exhaust flow |
DE10321311B4 (de) * | 2003-05-08 | 2013-09-12 | Volkswagen Ag | Verfahren zum Aufheizen eines Katalysators und Kraftmaschine mit Steuereinheit |
DE10341930A1 (de) * | 2003-09-11 | 2005-04-21 | Audi Ag | Verfahren zur Aufheizung eines in einer Abgasanlage einer Diesel-Brennkraftmaschine eines Fahrzeuges, insbesondere eines Kraftfahrzeuges, angeordneten Katalysators und/oder Partikelfilters auf Desulfatisierungs- und/oder Entrußungstemperatur sowie Katalysator, insbesondere Stickoxid-Speicherkatalysators für Abgasanlagen von Brennkraftmaschinen |
FR2876735B1 (fr) * | 2004-10-15 | 2007-01-12 | Inst Francais Du Petrole | PROCEDE POUR PURGER UN PIEGE A NOx AVEC CONTROLE DE LA RICHESSE DES GAZ D'ECHAPPEMENT |
JP4792042B2 (ja) | 2004-12-24 | 2011-10-12 | ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト | 窒素酸化物吸蔵触媒の再生法 |
US9863348B2 (en) * | 2009-09-29 | 2018-01-09 | Ford Global Technologies, Llc | Method for controlling fuel of a spark ignited engine while regenerating a particulate filter |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0546318A1 (fr) * | 1991-12-10 | 1993-06-16 | Robert Bosch Gmbh | Méthode et dispositif pour la détermination du rendement de conversion d'un catalyseur |
DE4211116A1 (de) * | 1992-04-03 | 1993-10-07 | Bosch Gmbh Robert | Verfahren und Vorrichtung zur Katalysatorzustandserkennung |
JPH08232646A (ja) * | 1995-02-22 | 1996-09-10 | Toyota Motor Corp | 内燃機関の排気浄化装置 |
US5577382A (en) * | 1994-06-30 | 1996-11-26 | Toyota Jidosha Kabushiki Kaisha | Exhaust purification device of internal combustion engine |
US5622047A (en) * | 1992-07-03 | 1997-04-22 | Nippondenso Co., Ltd. | Method and apparatus for detecting saturation gas amount absorbed by catalytic converter |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62223427A (ja) * | 1986-03-20 | 1987-10-01 | Nissan Motor Co Ltd | 空燃比制御装置 |
JP2765136B2 (ja) * | 1989-12-14 | 1998-06-11 | 株式会社デンソー | エンジン用空燃比制御装置 |
JP2989929B2 (ja) * | 1991-05-13 | 1999-12-13 | 株式会社デンソー | 内燃機関の空燃比制御装置 |
DE4311890C2 (de) * | 1993-04-10 | 1995-05-18 | Comuna Metall Vorrichtungs Und | Stationär betriebene Brennkraftmaschine mit Abgasreinigung |
JP3624429B2 (ja) * | 1994-02-28 | 2005-03-02 | 株式会社日立製作所 | 内燃機関の制御装置 |
DE19511548A1 (de) * | 1995-03-29 | 1996-06-13 | Daimler Benz Ag | Verfahren und Vorrichtung zur Stickoxidreduzierung im Abgas einer Brennkraftmaschine |
JPH09119310A (ja) * | 1995-10-26 | 1997-05-06 | Denso Corp | 内燃機関の排ガス浄化装置 |
DE19607151C1 (de) * | 1996-02-26 | 1997-07-10 | Siemens Ag | Verfahren zur Regeneration eines NOx-Speicherkatalysators |
-
1998
- 1998-01-19 DE DE19801815A patent/DE19801815A1/de not_active Withdrawn
- 1998-12-17 DE DE59806001T patent/DE59806001D1/de not_active Expired - Lifetime
- 1998-12-17 WO PCT/EP1998/008290 patent/WO1999036689A1/fr active IP Right Grant
- 1998-12-17 EP EP98965852A patent/EP1049861B1/fr not_active Expired - Lifetime
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0546318A1 (fr) * | 1991-12-10 | 1993-06-16 | Robert Bosch Gmbh | Méthode et dispositif pour la détermination du rendement de conversion d'un catalyseur |
DE4211116A1 (de) * | 1992-04-03 | 1993-10-07 | Bosch Gmbh Robert | Verfahren und Vorrichtung zur Katalysatorzustandserkennung |
US5622047A (en) * | 1992-07-03 | 1997-04-22 | Nippondenso Co., Ltd. | Method and apparatus for detecting saturation gas amount absorbed by catalytic converter |
US5577382A (en) * | 1994-06-30 | 1996-11-26 | Toyota Jidosha Kabushiki Kaisha | Exhaust purification device of internal combustion engine |
JPH08232646A (ja) * | 1995-02-22 | 1996-09-10 | Toyota Motor Corp | 内燃機関の排気浄化装置 |
Non-Patent Citations (1)
Title |
---|
PATENT ABSTRACTS OF JAPAN vol. 097, no. 001 31 January 1997 (1997-01-31) * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2856741A1 (fr) * | 2003-06-30 | 2004-12-31 | Renault Sa | Procede et dispositif d'estimation d'une masse d'oxydes d'azote stockee dans un dispositif de piegeage catalytique de vehicule automobile |
WO2005003529A1 (fr) * | 2003-06-30 | 2005-01-13 | Renault S.A.S | Procede et dispositif d’estimation d’une masse d’oxydes d’azote stockee dans un dispositif de piegeage catalytique de vehicule automobile |
US7219008B2 (en) | 2003-06-30 | 2007-05-15 | Renault S.A.S. | Method and device for estimating a nitrogen oxide mass stored in a catalytic trapping device of a motor vehicle |
US8170774B2 (en) | 2006-03-30 | 2012-05-01 | Eldor Corporation S.P.A. | Method and devices for the control of the air-fuel ratio of an internal combustion engine |
DE102006015509B3 (de) * | 2006-03-31 | 2007-08-23 | Avg Gmbh | Nachrüstmodel für Fahrzeuge mit geregeltem Katalysator |
KR101308213B1 (ko) * | 2008-08-01 | 2013-09-13 | 에미텍 게젤샤프트 퓌어 에미시온스테크놀로기 엠베하 | 람다 제어에 의한 배기-가스 시스템 작동 방법 |
Also Published As
Publication number | Publication date |
---|---|
DE19801815A1 (de) | 1999-07-22 |
DE59806001D1 (de) | 2002-11-21 |
EP1049861A1 (fr) | 2000-11-08 |
EP1049861B1 (fr) | 2002-10-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1049861B1 (fr) | REGENERATION D'ACCUMULATEURS DE NOx DE MOTEURS A MELANGE PAUVRE | |
DE19837074C2 (de) | Rückkopplungsregelung zur Entschwefelung einer NOx-Falle | |
DE10020639B4 (de) | Verfahren und Vorrichtung zur Regelung der Temperatur einer Schadstoffbegrenzungsvorrichtung im Abgasstrom eines Verbrennungsmotors | |
EP0154710B1 (fr) | Dispositif pour la commande des paramètres de fontionnement d'un moteur à C.I. | |
DE10103772C2 (de) | Verfahren zum Betreiben eines Dreiweg-Katalysators, welcher eine Sauerstoff speichernde Komponente enthält | |
DE3039436C2 (fr) | ||
DE10205817A1 (de) | Verfahren und Vorrichtung zur Regelung des Kraftstoff-/Luftverhältnisses eines Verbrennungsprozesses | |
EP0151768A2 (fr) | Système de dosage du mélange air-carburant pour un moteur à combustion | |
DE10007048A1 (de) | Vorrichtung und Verfahren zur Ermittlung einer Regenerationsnotwendigkeit eines NO¶x¶-Speicherkatalysators | |
DE19816799B4 (de) | System zur Regelung des Luft-Kraftstoff-Verhältnisses für Verbrennungsmotoren | |
EP1117916B1 (fr) | PROCEDE DE REGENERATION D'UN CATALYSEUR A ACCUMULATION DE NOx D'UN MOTEUR A COMBUSTION INTERNE | |
EP1102921B1 (fr) | PROCEDE DE DESULFATATION D'UN CATALYSEUR ACCUMULATEUR DE NO x? EN FONCTION DE LA TEMPERATURE ET DE LA VALEUR LAMBDA | |
DE10064665A1 (de) | Verfahren zum Steuern einer Brennkraftmaschine | |
EP1179124B1 (fr) | Procede de desulfuration | |
DE10349855B4 (de) | Verfahren und Vorrichtung zur Entschwefelung eines Katalysators | |
DE10153901B4 (de) | Verfahren und Vorrichtung zur Entschwefelung eines einem Dieselmotor nachgeschalteten NOx-Speicherkatalysators | |
DE102021102456B3 (de) | Verfahren zum Betreiben einer Antriebseinrichtung sowie entsprechende Antriebseinrichtung | |
DE10018062B4 (de) | Mehrzylindermotor für Kraftfahrzeuge mit einer mehrflutigen Abgasreinigungsanlage und Verfahren zur Steuerung eines Betriebs des Mehrzylindermotors | |
WO2006027303A1 (fr) | Procede de reglage de melange d'un moteur a combustion interne a plusieurs cylindres et a allumage commande pourvu de catalyseurs specifiques cylindres et un catalyseur principal commun monte en aval des catalyseurs | |
WO2004059151A1 (fr) | Procede et dispositif pour reguler la relation carburant/air dans un moteur a combustion interne | |
DE102009010887B3 (de) | Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine | |
DE3841684C1 (en) | Method for optimising the control of the fuel-air ratio in an internal combustion engine | |
DE10310672B4 (de) | Verfahren und Vorrichtung zur Einstellung eines Kraftstoff-/Luftverhältnisses für eine Brennkraftmaschine | |
EP1200715B1 (fr) | Procede de reglage de la regeneration d'un catalyseur a accumulation place dans un canal de gaz d'echappement d'un moteur a combustion interne | |
DE102011087300A1 (de) | Verfahren zum Betreiben einer Verbrennungskraftmaschine sowie zur Ausführung des Verfahrens eingerichtetes Steuergerät |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): JP US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 1998965852 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1998965852 Country of ref document: EP |
|
WWG | Wipo information: grant in national office |
Ref document number: 1998965852 Country of ref document: EP |