WO1999038684A1 - Film multicouches thermoretrecissable - Google Patents
Film multicouches thermoretrecissable Download PDFInfo
- Publication number
- WO1999038684A1 WO1999038684A1 PCT/JP1999/000301 JP9900301W WO9938684A1 WO 1999038684 A1 WO1999038684 A1 WO 1999038684A1 JP 9900301 W JP9900301 W JP 9900301W WO 9938684 A1 WO9938684 A1 WO 9938684A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- heat
- multilayer film
- shrinkable multilayer
- resin
- Prior art date
Links
- OEPOKWHJYJXUGD-UHFFFAOYSA-N 2-(3-phenylmethoxyphenyl)-1,3-thiazole-4-carbaldehyde Chemical compound O=CC1=CSC(C=2C=C(OCC=3C=CC=CC=3)C=CC=2)=N1 OEPOKWHJYJXUGD-UHFFFAOYSA-N 0.000 claims abstract description 17
- 229920001897 terpolymer Polymers 0.000 claims abstract description 7
- 229920005989 resin Polymers 0.000 claims description 60
- 239000011347 resin Substances 0.000 claims description 60
- 229920001577 copolymer Polymers 0.000 claims description 33
- 230000004888 barrier function Effects 0.000 claims description 18
- 239000007789 gas Substances 0.000 claims description 15
- 238000002844 melting Methods 0.000 claims description 11
- 230000008018 melting Effects 0.000 claims description 11
- 230000035699 permeability Effects 0.000 claims description 10
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 6
- 229910052760 oxygen Inorganic materials 0.000 claims description 6
- 239000001301 oxygen Substances 0.000 claims description 6
- 229920000098 polyolefin Polymers 0.000 claims description 6
- 230000003287 optical effect Effects 0.000 abstract description 21
- 230000006866 deterioration Effects 0.000 abstract description 11
- 230000001105 regulatory effect Effects 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 209
- 239000005038 ethylene vinyl acetate Substances 0.000 description 26
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 26
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 25
- 239000005033 polyvinylidene chloride Substances 0.000 description 25
- 239000012790 adhesive layer Substances 0.000 description 19
- 239000005977 Ethylene Substances 0.000 description 16
- -1 polypropylene Polymers 0.000 description 16
- 239000002344 surface layer Substances 0.000 description 16
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 15
- 239000004708 Very-low-density polyethylene Substances 0.000 description 13
- 229920001866 very low density polyethylene Polymers 0.000 description 13
- 101100389815 Caenorhabditis elegans eva-1 gene Proteins 0.000 description 12
- 239000000178 monomer Substances 0.000 description 9
- 239000004698 Polyethylene Substances 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 7
- 125000004432 carbon atom Chemical group C* 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 7
- 229910001882 dioxygen Inorganic materials 0.000 description 7
- 238000010894 electron beam technology Methods 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 239000004014 plasticizer Substances 0.000 description 7
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 7
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 6
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 6
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 6
- 239000000654 additive Substances 0.000 description 6
- 239000003054 catalyst Substances 0.000 description 6
- 235000014113 dietary fatty acids Nutrition 0.000 description 6
- 238000001125 extrusion Methods 0.000 description 6
- 239000000194 fatty acid Substances 0.000 description 6
- 229930195729 fatty acid Natural products 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 230000002087 whitening effect Effects 0.000 description 6
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 239000000314 lubricant Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 238000004806 packaging method and process Methods 0.000 description 5
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 4
- 150000007933 aliphatic carboxylic acids Chemical class 0.000 description 4
- 239000002216 antistatic agent Substances 0.000 description 4
- 125000003118 aryl group Chemical group 0.000 description 4
- 229920000092 linear low density polyethylene Polymers 0.000 description 4
- 239000004707 linear low-density polyethylene Substances 0.000 description 4
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 4
- 239000011976 maleic acid Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 229920001225 polyester resin Polymers 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 239000003381 stabilizer Substances 0.000 description 4
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- JHWNWJKBPDFINM-UHFFFAOYSA-N Laurolactam Chemical compound O=C1CCCCCCCCCCCN1 JHWNWJKBPDFINM-UHFFFAOYSA-N 0.000 description 3
- 239000004677 Nylon Substances 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 3
- BAPJBEWLBFYGME-UHFFFAOYSA-N acrylic acid methyl ester Natural products COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 3
- 125000001931 aliphatic group Chemical group 0.000 description 3
- 229920003231 aliphatic polyamide Polymers 0.000 description 3
- 125000000217 alkyl group Chemical group 0.000 description 3
- 239000004760 aramid Substances 0.000 description 3
- 229920003235 aromatic polyamide Polymers 0.000 description 3
- 238000005452 bending Methods 0.000 description 3
- 150000001735 carboxylic acids Chemical class 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000001530 fumaric acid Substances 0.000 description 3
- 239000011229 interlayer Substances 0.000 description 3
- 229920000554 ionomer Polymers 0.000 description 3
- 229920001778 nylon Polymers 0.000 description 3
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 3
- 239000004645 polyester resin Substances 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 229920005992 thermoplastic resin Polymers 0.000 description 3
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 2
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 2
- 239000004953 Aliphatic polyamide Substances 0.000 description 2
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- SOGAXMICEFXMKE-UHFFFAOYSA-N Butylmethacrylate Chemical compound CCCCOC(=O)C(C)=C SOGAXMICEFXMKE-UHFFFAOYSA-N 0.000 description 2
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 2
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 2
- 239000004594 Masterbatch (MB) Substances 0.000 description 2
- 229920002292 Nylon 6 Polymers 0.000 description 2
- 229920000305 Nylon 6,10 Polymers 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 150000001336 alkenes Chemical class 0.000 description 2
- 125000005250 alkyl acrylate group Chemical group 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 235000011187 glycerol Nutrition 0.000 description 2
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical compound NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 description 2
- PBOSTUDLECTMNL-UHFFFAOYSA-N lauryl acrylate Chemical compound CCCCCCCCCCCCOC(=O)C=C PBOSTUDLECTMNL-UHFFFAOYSA-N 0.000 description 2
- 239000002346 layers by function Substances 0.000 description 2
- 229920005679 linear ultra low density polyethylene Polymers 0.000 description 2
- 239000000944 linseed oil Substances 0.000 description 2
- 235000021388 linseed oil Nutrition 0.000 description 2
- 229920001684 low density polyethylene Polymers 0.000 description 2
- 239000004702 low-density polyethylene Substances 0.000 description 2
- 235000013372 meat Nutrition 0.000 description 2
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 2
- 239000002736 nonionic surfactant Substances 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920013716 polyethylene resin Polymers 0.000 description 2
- 239000002861 polymer material Substances 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 235000020991 processed meat Nutrition 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 235000020995 raw meat Nutrition 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- 239000004711 α-olefin Substances 0.000 description 2
- LDVVTQMJQSCDMK-UHFFFAOYSA-N 1,3-dihydroxypropan-2-yl formate Chemical compound OCC(CO)OC=O LDVVTQMJQSCDMK-UHFFFAOYSA-N 0.000 description 1
- VBICKXHEKHSIBG-UHFFFAOYSA-N 1-monostearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)CO VBICKXHEKHSIBG-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- GOXQRTZXKQZDDN-UHFFFAOYSA-N 2-Ethylhexyl acrylate Chemical compound CCCCC(CC)COC(=O)C=C GOXQRTZXKQZDDN-UHFFFAOYSA-N 0.000 description 1
- WDQMWEYDKDCEHT-UHFFFAOYSA-N 2-ethylhexyl 2-methylprop-2-enoate Chemical compound CCCCC(CC)COC(=O)C(C)=C WDQMWEYDKDCEHT-UHFFFAOYSA-N 0.000 description 1
- JTHZUSWLNCPZLX-UHFFFAOYSA-N 6-fluoro-3-methyl-2h-indazole Chemical compound FC1=CC=C2C(C)=NNC2=C1 JTHZUSWLNCPZLX-UHFFFAOYSA-N 0.000 description 1
- 229920002126 Acrylic acid copolymer Polymers 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- GVNWZKBFMFUVNX-UHFFFAOYSA-N Adipamide Chemical compound NC(=O)CCCCC(N)=O GVNWZKBFMFUVNX-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- MQIUGAXCHLFZKX-UHFFFAOYSA-N Di-n-octyl phthalate Natural products CCCCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCCC MQIUGAXCHLFZKX-UHFFFAOYSA-N 0.000 description 1
- ORAWFNKFUWGRJG-UHFFFAOYSA-N Docosanamide Chemical compound CCCCCCCCCCCCCCCCCCCCCC(N)=O ORAWFNKFUWGRJG-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- 229920003298 Nucrel® Polymers 0.000 description 1
- 229920000299 Nylon 12 Polymers 0.000 description 1
- 229920002302 Nylon 6,6 Polymers 0.000 description 1
- 229920000572 Nylon 6/12 Polymers 0.000 description 1
- 229920000577 Nylon 6/66 Polymers 0.000 description 1
- 229920000034 Plastomer Polymers 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 229920001214 Polysorbate 60 Polymers 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 125000000218 acetic acid group Chemical group C(C)(=O)* 0.000 description 1
- 150000008065 acid anhydrides Chemical class 0.000 description 1
- 125000005907 alkyl ester group Chemical group 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 239000002280 amphoteric surfactant Substances 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 239000003945 anionic surfactant Substances 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 1
- BJQHLKABXJIVAM-UHFFFAOYSA-N bis(2-ethylhexyl) phthalate Chemical compound CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC BJQHLKABXJIVAM-UHFFFAOYSA-N 0.000 description 1
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003093 cationic surfactant Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- YACLQRRMGMJLJV-UHFFFAOYSA-N chloroprene Chemical compound ClC(=C)C=C YACLQRRMGMJLJV-UHFFFAOYSA-N 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 150000004985 diamines Chemical class 0.000 description 1
- GMSCBRSQMRDRCD-UHFFFAOYSA-N dodecyl 2-methylprop-2-enoate Chemical compound CCCCCCCCCCCCOC(=O)C(C)=C GMSCBRSQMRDRCD-UHFFFAOYSA-N 0.000 description 1
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 210000005069 ears Anatomy 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 239000003337 fertilizer Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 239000005003 food packaging material Substances 0.000 description 1
- VOZRXNHHFUQHIL-UHFFFAOYSA-N glycidyl methacrylate Chemical compound CC(=C)C(=O)OCC1CO1 VOZRXNHHFUQHIL-UHFFFAOYSA-N 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 150000007529 inorganic bases Chemical class 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 229920004889 linear high-density polyethylene Polymers 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 229920001179 medium density polyethylene Polymers 0.000 description 1
- 239000004701 medium-density polyethylene Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229920003145 methacrylic acid copolymer Polymers 0.000 description 1
- 229940117841 methacrylic acid copolymer Drugs 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- HMZGPNHSPWNGEP-UHFFFAOYSA-N octadecyl 2-methylprop-2-enoate Chemical compound CCCCCCCCCCCCCCCCCCOC(=O)C(C)=C HMZGPNHSPWNGEP-UHFFFAOYSA-N 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- IIGMITQLXAGZTL-UHFFFAOYSA-N octyl octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCCCCCCCC IIGMITQLXAGZTL-UHFFFAOYSA-N 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 235000019198 oils Nutrition 0.000 description 1
- FATBGEAMYMYZAF-KTKRTIGZSA-N oleamide Chemical compound CCCCCCCC\C=C/CCCCCCCC(N)=O FATBGEAMYMYZAF-KTKRTIGZSA-N 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- RPQRDASANLAFCM-UHFFFAOYSA-N oxiran-2-ylmethyl prop-2-enoate Chemical compound C=CC(=O)OCC1CO1 RPQRDASANLAFCM-UHFFFAOYSA-N 0.000 description 1
- 125000001820 oxy group Chemical class [*:1]O[*:2] 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 239000005022 packaging material Substances 0.000 description 1
- QQVIHTHCMHWDBS-UHFFFAOYSA-N perisophthalic acid Natural products OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- OGQDIIKRQRZXJH-UHFFFAOYSA-N protriptyline hydrochloride Chemical group [Cl-].C1=CC2=CC=CC=C2C(CCC[NH2+]C)C2=CC=CC=C21 OGQDIIKRQRZXJH-UHFFFAOYSA-N 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000007142 ring opening reaction Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 235000013580 sausages Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000003549 soybean oil Substances 0.000 description 1
- 235000012424 soybean oil Nutrition 0.000 description 1
- 229920006302 stretch film Polymers 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- MHSKRLJMQQNJNC-UHFFFAOYSA-N terephthalamide Chemical compound NC(=O)C1=CC=C(C(N)=O)C=C1 MHSKRLJMQQNJNC-UHFFFAOYSA-N 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- DJZKNOVUNYPPEE-UHFFFAOYSA-N tetradecane-1,4,11,14-tetracarboxamide Chemical compound NC(=O)CCCC(C(N)=O)CCCCCCC(C(N)=O)CCCC(N)=O DJZKNOVUNYPPEE-UHFFFAOYSA-N 0.000 description 1
- 239000006097 ultraviolet radiation absorber Substances 0.000 description 1
- 238000009461 vacuum packaging Methods 0.000 description 1
- 229920001567 vinyl ester resin Polymers 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/06—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B27/08—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/30—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
- B32B27/304—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl halide (co)polymers, e.g. PVC, PVDC, PVF, PVDF
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/32—Layered products comprising a layer of synthetic resin comprising polyolefins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/02—Physical, chemical or physicochemical properties
- B32B7/027—Thermal properties
- B32B7/028—Heat-shrinkability
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/724—Permeability to gases, adsorption
- B32B2307/7242—Non-permeable
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2327/00—Polyvinylhalogenides
- B32B2327/06—PVC, i.e. polyvinylchloride
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2439/00—Containers; Receptacles
- B32B2439/70—Food packaging
Definitions
- the present invention relates to a heat-shrinkable multilayer film comprising at least three layers. More specifically, the present invention relates to a heat-shrinkable multilayer film having improved optical properties after heat-shrinkage in a heat-shrinkable multilayer film including a third layer having a heat shrinkability substantially smaller than that of the entire multilayer film.
- the heat-shrinkable multilayer film is used for the purpose of closely adhering to the contents and making the contents look beautiful. For example, put the contents in a bag of a heat-shrinkable multilayer film, perform vacuum packaging, and then pass it through a hot water shower or hot oven, or immerse it in hot water. It is used after contraction.
- the optical properties of the film after shrinkage such as transparency and gloss
- the deterioration of the optical properties after the shrinkage is not preferable in the field where high optical properties are required.
- the ears of the bag after shrinking that is, the excess portion of the bag
- the stored film tends to whiten.
- Japanese Patent Application Laid-Open No. 8-187814 discloses a first layer containing an ethylenic Z-olefin copolymer having a main DSC peak below 105 ° C.
- a multilayer film that is compatible is disclosed.
- the deterioration of the optical characteristics as described above due to the shrinkage of the heat-shrinkable multilayer film is caused by the large difference in the heat-shrinkage rates of the respective layers constituting the heat-shrinkable multilayer film.
- the third layer as a functional layer that causes deterioration of the optical properties of the shrinked multilayer film due to its small heat-shrinkability includes a vinylidene chloride copolymer.
- a gas barrier resin layer is typical.
- An object of the present invention is to provide a heat-shrinkable multilayer film that suppresses deterioration of optical properties of a film after heat-shrinkage.
- the present inventors have found that even a heat-shrinkable multilayer film including a third layer having essentially small heat-shrinkability with respect to the entire multilayer film, It has been found that by improving the heat shrinkage or the composition of the layer, the deterioration of the optical properties after the heat shrinkage can be effectively suppressed.
- a heat-shrinkable multilayer film comprising at least three layers laminated in the order of a first layer, a second layer, and a third layer;
- the heat shrinkage at 80 ° C of the layer is less than the heat shrinkage of the entire multilayer film at 80 ° C, but is more than 5% and not more than 20%.
- a shrinkable multilayer film is provided.
- a heat-shrinkable multilayer film composed of at least three layers laminated in the order of a first layer, a second layer and a third layer.
- a heat-shrinkable multilayer film, wherein the third layer having a heat shrinkage smaller than that of the entire heat-shrinkable multilayer film is made of a vinylidene chloride-based terpolymer. .
- the heat-shrinkable multilayer film referred to in the present invention is a packaging material mainly composed of a thermoplastic resin. These are used by filling the contents into bags, such as bags and descendantss, which have been made by a bag making machine, or by using automatic packaging machines to pack the contents into trays.
- the first layer is mainly a surface layer.
- the second layer is located between the first layer and the third layer and directly adhered to the third layer.
- the second layer has a function of bonding to the third layer. However, as long as it has an adhesive function with the third layer, it can have a dog-like thickness than a normal adhesive layer.
- the third layer is a functional layer mainly disposed as an intermediate layer, a layer made of a resin that imparts gas barrier properties, a layer made of a resin having excellent low-temperature strength and heat resistance, and a resin that captures all layers.
- the present invention is effective especially in the case of a gas barrier resin layer.
- the third layer which can cause optical degradation due to heat shrinkage, is often isolable in some way (ie, does not show strong adhesion to adjacent layers), and therefore can be measured solely by thermal shrinkage Is often possible.
- the third layer can be formed not only of a single layer but also of a plurality of layers as long as it can be isolated from other layers integrally.
- the heat-shrinkable multilayer film of the present invention generally further includes, outside the third layer, a fourth layer constituting a surface layer opposite to the first layer, if necessary. 1st layer and 2nd layer, update
- any intermediate layer including an adhesive layer can be included between the third layer and the fourth layer.
- a polyolefin polymerized using a meta-mouth catalyst for example, a linear high-density polyethylene (hereinafter “SSC- LHD PE), linear medium-density polyethylene (hereinafter abbreviated as “SSC—LMD PE”), linear low-density polyethylene (abbreviated as “SSC—LLDP E”), linear ultra-low-density polyethylene (Hereinafter abbreviated as “SSC—VLDP EJ”, also called “Plastomer”), conventional ethylene / ⁇ -refined copolymers (such as LLD ⁇ and VLD ⁇ ), ethylene / vinyl acetate copolymer
- EVA ethylene'methacrylic acid copolymer
- EAA ethylene'methacrylic acid copolymer
- ethylene Methacrylic acid / unsaturated aliphatic carboxylic acid ester copolymer, low density polyethylene (LDPE), ionomer (10) resin, ethylene.
- a thermoplastic resin selected from the group consisting of aliphatic resin, aromatic resin and aromatic resin can be used. As long as the transparency after shrinkage of the film is not impaired, a blended material containing at least one of these may be used.
- SSC LLDPE
- SSC VLDPE
- LLDPE LLDPE
- VLD PE, EVA, EMAA, ethylene 'methacrylic acid / unsaturated aliphatic carboxylic acid ester copolymer, 10 resin, etc. are used for the surface layer including the seal layer.
- Particularly effective among SSC-based polyolefins are constrained geometric catalysts. It is a type of meta-mouth catalyst developed by Dow Chemical Company.
- the ethylene / ⁇ -olefin copolymer obtained by using the constrained geometry catalyst is 100000
- the number of long chain branches per carbon is from about 0.01 to about 3, preferably from about 0.01 to about 1, and preferably from about 0.05 to about 1 is a substantially linear polyethylene resin.
- ethylene / ⁇ -olefin copolymer a long chain branch of about 6 carbon atoms or more is selectively introduced into the molecular structure, so that the polymer has excellent physical properties and good molding processing. Is imparted.
- One specific example is sold by Dow Chemical under the name of “affinity one” or “elite”, with the one-off fin being one octen.
- Another example of a polyethylene resin obtained by using a meta-mouth catalyst is EXACT of EXXON.
- the metallocene-catalyzed polyolefin has a weight average molecular weight (Mw) to number average molecular weight (Mn) ratio (Mw / Mn) (polydispersity) of less than 3, preferably 1.5 to 2.8, and more preferably 1. 9 to 2.2.
- Preferred resins that make up the intermediate layer include copolymers of ethylene with at least one monomer containing an oxygen atom in the molecule.
- Specific examples include EVA, ethylene alkyl acrylates having 1 to 4 carbon atoms (e.g., EMA, EEA), ethylene 'methacrylic acid. Unsaturated aliphatic carboxylic acid ester copolymer, EMAA, 10 and the like. These resins may be used as the second layer.
- a meta-opened catalyst-based polyethylene having a density of less than 0.900 g / cm 3 is preferred because it has good stretch orientation and a multilayer film having a large heat shrinkage can be obtained.
- the resin having a gas barrier property is a resin used as an oxygen gas barrier layer, which is a known aromatic resin such as E VOH; polymethaxylene ylene adipamide (hereinafter abbreviated as “nylon MXD 6J”).
- Aromatic polyamide containing diamine polyhexamethylene isophthala which is a copolymer of disophtalic acid, terephthalic acid and hexamethylene diamine
- Aromatic polyamides having an aromatic carboxylic acid such as mid-Z terephthalamide (hereinafter abbreviated as “nylon 61 / 6T”); vinylidene chloride-based copolymer (PVDC);
- PVDC vinylidene chloride-based copolymer
- conductive resins PVDC is preferred because of its low humidity dependency of oxygen gas barrier, PVDC is preferably 70 to 97% by weight of vinylidene chloride, and more preferably 80 to 95% by weight.
- copolymer comprising preferably 3 to 30% by weight, more preferably 5 to 20% by weight of a copolymerizable monomer.
- monomers copolymerizable with vinylidene chloride include: For example, alkyl acrylates such as vinyl chloride, methyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, lauryl acrylate, stearyl acrylate, etc.
- the alkyl group has 1 to 18 carbon atoms
- Methacrylic acid alkyl esters such as methyl methacrylate, butyl methacrylate, 2-ethylhexyl methacrylate, lauryl methacrylate, and stearyl methacrylate (alkyl groups having 1 to 18 carbon atoms); acrylonitrile, methacrylonitrile Aromatic vinyls such as styrene; vinyl esters of aliphatic carboxylic acids having 1 to 18 carbon atoms such as vinyl acetate; alkyl vinyl ethers having 1 to 18 carbon atoms; acrylic acid, methacrylic acid; Vinyl-polymerizable unsaturated carboxylic acids such as maleic acid, fumaric acid, and itaconic acid; alkyl esters of vinyl-polymerizable unsaturated carboxylic acids such as maleic acid, fumaric acid, and itaconic acid (including partial esters; 1 to 18); glycidyl acrylate,
- Vinyl polymer monomer containing a oxy group gen compounds such as butadiene and isoprene or chlorinated gen compounds such as chloroprene; at least two molecules per molecule such as divinylbenzene and ethylene glycol di (meth) acrylate
- gen compounds such as butadiene and isoprene or chlorinated gen compounds such as chloroprene
- at least two molecules per molecule such as divinylbenzene and ethylene glycol di (meth) acrylate
- the copolymerizable monomer may be at least one kind.
- Copolymers containing vinyl chloride are preferred.
- a (tertiary) copolymer obtained by adding a (meth) alkyl acrylate (alkyl group having 1 to 18 carbon atoms) and a copolymer is preferred.
- Vinylidene chloride-based terpolymers are preferred because their rigidity tends to be low and whitening after shrinkage is unlikely to occur.
- a vinylidene chloride-based binary copolymer is preferably used as a resin constituting the third layer.
- a vinylidene chloride terpolymer may be mixed with a binary copolymer or a composite with a binary copolymer as required, as a resin constituting the third layer. Used as a layer.
- PVDC may be blended with a known stabilizer—a polymer plasticizer represented by a polyester type or the like or a polyolefin resin represented by an ethylene-vinyl acetate copolymer or the like.
- PVDC may contain various commonly used additives such as a plasticizer, a stabilizer, an ultraviolet absorber, a lubricant, an antistatic agent and a pigment, if necessary.
- additives include, for example, plasticizers such as octyl phthalate, acetyl triptyl citrate, dibutyl sebaguet, octyl sebaguet, acetylated monoglyceride, or a mixture of a saturated aliphatic dicarboxylic acid and a polyhydric alcohol.
- plasticizers such as octyl phthalate, acetyl triptyl citrate, dibutyl sebaguet, octyl sebaguet, acetylated monoglyceride, or a mixture of a saturated aliphatic dicarboxylic acid and a polyhydric alcohol.
- Polyester plasticizers Epoxidized soybean oil, epoxidized linseed oil, epoxidized octyl stearate, epoxy-based stabilizers such as epoxy group-containing resins; magnesium hydroxide, magnesium oxide, potassium hydroxide, etc.
- Stabilizers of inorganic bases polyethylene oxide wax, Raffin wax, polyethylene wax, mont evening Lubricants such as fatty acid esters such as glycerin monoester, fatty acid esters such as glycerin monoester, and fatty acids such as mono- and bisamides; Nonionic surfactants such as sorbitan fatty acid ester, polyglycerin fatty acid ester, and polyoxyethylene sorbitan fatty acid ester Agents; UV-absorbing agents such as 2- (2'-hydroxy3 ', 5'-di-tert-butylphenyl) -5-chlorobenzoicazole.
- the amount of each of the plasticizer and the stabilizer is preferably 10 parts by weight or less, more preferably 6 parts by weight or less, based on 100 parts by weight of PVDC.
- these additives are blended in a powder form before extrusion, but may be blended in a slurry state after the polymerization of the vinylidene chloride-based monomer is completed. It may be added to the monomer and polymerized.
- the low-molecular plasticizer migrates to the adjacent layer over time, resulting in a decrease in the heat resistance of the second layer and an increase in the rigidity of the PVC layer. Almost promotes the deterioration of the optical characteristics of the film. Therefore, it is preferable to add a small amount of the low-molecular plasticizer within a range in which extrusion processing is possible.
- Oxygen permeability coefficient of the PVDC layer is preferably 4. 0 x 1 0- 13 cm 3 . Cm
- the heat shrinkable multilayer film of the present invention preferably has a heat shrinkage ratio at 80 ° C of 3 or more as a whole.
- the heat-shrinkage ratio of the third layer at 80 ° C. exceeds 5%, preferably 7%. Above, it is set to 20% or less. Further, when the thermal shrinkage at 8 0 ° C of the heat-shrinkable multilayer film is 50% or more, third heat shrinkage of the layer is preferably 7% or more, more preferably 1 1 0/0 or more When it is above, the deterioration of the optical properties after shrinkage of the heat shrinkable multilayer film can be more effectively suppressed. When the third layer is a PVCC layer, it is difficult to carry out stretching orientation so that the heat shrinkage exceeds 20%.
- the heat shrinkage at 80 ° C of the third layer is the heat shrinkage at 80 ° C of the entire third layer adjacent to the second layer. Means rate.
- the third layer is composed of ternary PVDC.
- the optical properties after the heat shrinkage are deteriorated without giving the heat shrinkage to the third layer. Can also be prevented.
- thermoplastic resins such as polypropylene resin, polyester resin, aliphatic resin, and aromatic resin can be used.
- polyester-based resin examples include a copolymerized polyester resin containing isophtalic acid as a comonomer and having a value of 0.7 to 0.8 at 1 ⁇ .
- Aliphatic nylons include nylon-6 (polyamide), nylon-66 (polyhexamethylenehexamide), nylon-610 (polyhexamethylenesebacamide) and nylon-12 ( Ring-opening polymer of lauryl lactam), Nylon-6Z66 (copolymer of ⁇ -prolactam and hexamethylene adipamide), Nylon-6-610 ( ⁇ -proprolactam and hexamethylenesebacami) Copolymers of nylon and nylon-612 ( ⁇ -co-prolactam and lauryl lactam).
- nylon-6 / 6/66 and nylon-16Z12 are formed. It is preferable in terms of formability.
- Aliphatic polyamides can be used alone or in combination of two or more. Also, a blend with an aromatic polyamide mainly composed of these aliphatic polyamides may be used.
- Adhesive layer resins include EVA, EEA, EAA, acid-modified polyolefins (mono- or copolymers of olefins and unsaturated carboxylic acids such as maleic acid and fumaric acid, acid anhydrides and esters, or metal salts)
- acid-modified polyolefins such as acid-modified VLDPE and acid-modified LLDPE can be used.
- Preferable examples include maleic acid or the like, or an olefin-based resin modified with an anhydride thereof; an I0 resin; an EVA; These resins are mainly used for forming the second layer.
- the interlayer adhesion between the second layer and the third layer by a T-type peel test in accordance with JISK-6854 is preferably 5 g / 15 mm or more. Is 7 g / 15 mm or more, more preferably 10 15 mm or more.
- the melting point of the resin constituting the second layer is at least 10 ° C. higher than the heat shrinkage temperature of the heat shrinkable multilayer film from the viewpoint of maintaining transparency after heat shrinkage.
- the heat shrink temperature means a temperature at which the heat shrinkable multilayer film is heat shrunk.
- the surface layers as the first layer and the fourth layer may be seal layers.
- the following resin configurations can be exemplified.
- VLDPE layer First layer (VLDP E layer) Intermediate EMAA layer Second layer (adhesive layer) / third layer (PVDC layer) / adhesive layer / intermediate EVA layer Z fourth layer (VLDPE layer)
- a lubricant and an antistatic agent can be added to any of the layers.
- Preferred examples of the lubricant include behenic acid amide, oleic acid amide, erlic acid amide, silica and the like in the form of a master batch.
- the preferable addition amount is 1 to 10% by weight in the case of a master batch containing 20% by weight of a lubricant.
- a surfactant is preferably used.
- Surfactants include anionic surfactants, cationic surfactants, nonionic surfactants, amphoteric surfactants, and mixtures thereof. Can be used.
- the antistatic agent is preferably added in an amount of 0.05 to 2% by weight, more preferably 0.1 to 1% by weight, based on the resin of the layer to be added.
- the heat shrinkage of the heat shrinkable multilayer film of the present invention is preferably at least 35% at a heat shrinkage temperature of 80 ° C. It is more preferably at least 40%, most preferably at least 50%.
- the heat-shrinkable multilayer film having such a heat-shrinkage ratio is tightly adhered to most contents after the heat-shrinkage, so that the contents can be beautifully packaged. These multilayer films having a large heat shrinkage can be obtained by coextrusion.
- the third layer is a PVDC layer
- the multi-layer unstretched parison may be used, for example, at 10 to 35 ° C for 3 hours or more, preferably 24 hours.
- the heat shrinkage of the third layer is easily developed. This tendency is remarkable when PVDC is a binary copolymer.
- the upper limit is a heat shrinkage of about 20%.
- the melting point of the resin constituting the second layer is preferably at least 10 ° C, more preferably 15 ° C, higher than the heat shrink temperature of the heat shrinkable multilayer film.
- the heat shrink temperature of the multilayer film is 8 0 a C before and after
- the melting point of the resin of the second layer as measured by shows difference scanning calorimeter of preferably 9 0 ° C or higher, more preferably It is preferable that the temperature be 95 ° C. or higher in order to effectively suppress deterioration of the optical characteristics of the multilayer film after shrinkage.
- the resin of the second layer shows a plurality of peaks as measured by a differential scanning calorimeter, the main peak is taken to be the melting point of the resin of the second layer.
- the upper limit of the melting point of the resin of the second layer used in co-extrusion is restricted by the relationship with the interlayer adhesion to the third layer.
- the thickness of the heat shrinkable multilayer film of the present invention preferably ranges from 5 to 150 / m, more preferably from 10 to 120 / zm. If the thickness is less than 5 / m, sufficient mechanical strength cannot be obtained. On the other hand, when it exceeds 150 / m, whitening tends to occur after heat shrinkage.
- the thickness of the third layer is preferably between 1 and 50 ⁇ m.
- the third layer is made of a gas barrier resin
- the oxygen gas barrier property is inferior, and if it exceeds 50 m, extrusion of the multilayer film becomes difficult.
- the thickness of the first and fourth layers constituting the surface layer is preferably in the range of 1 to 60 / m.
- the surface layer is a seal layer, it preferably has a thickness of 10 yt / m or more.
- the thickness of the second layer as the adhesive layer is preferably about 0.5 to 5 zm.
- the heat-shrinkable multilayer film of the present invention is formed by first co-extrusion of parison using a plurality of extruders, and biaxially stretching the film by a known method using a tenter method and a filtration method.
- the stretching ratio is preferably about 2 to 4 times in both the vertical and horizontal directions.
- the material may be irradiated before or after stretching by a known method. Irradiation results in further improvements in stretchability, heat resistance, mechanical strength, etc. as compared to non-irradiated ones. Irradiation has the effect of improving stretch film forming properties and heat resistance due to its moderate crosslinking effect.
- known radiations such as ⁇ rays, 3 rays, electron rays, 7 rays, and X rays can be used.
- an electron beam is preferable, and an electron beam is particularly advantageous in terms of handling properties and high processing ability in producing a molded product.
- the above-mentioned radiation irradiation conditions may be appropriately set according to the intended use.
- the acceleration voltage is in the range of 150 to 500 kiloelectron volts
- the irradiation dose is preferably in the range of 100 to 200 kilogray (hereinafter abbreviated as “kGy”), and the dose rate is 0.05 to 5 in the case of a-ray.
- kGy kilogray
- a range of 3 kGyZ hours is preferred.
- the heat-shrinkable multilayer film of the present invention can be used as a food packaging material, and is particularly suitable for packaging food such as raw meat, ham, sausage or various kinds of meat. It can be used in a suitable form such as a bag or a tube according to the intended packaging.
- Samples marked at 10 cm from the starting point in the machine direction (longitudinal direction) and the direction perpendicular to the machine direction (horizontal direction) in film forming of polymer materials are adjusted to 80 After being immersed in hot water for 10 seconds, it was taken out and immediately cooled with normal-temperature water. Thereafter, the length from the starting point to the marked point was measured, a value obtained by subtracting this measurement value from 10 cm was obtained, and the ratio of the original length to this value was expressed as a percentage. One sample was tested five times, and the average value was used to indicate the heat shrinkage.
- the haze (haze%) of the sample was measured according to JIS 177-105.
- a cloudiness meter NDH- ⁇ 80 manufactured by Nippon Denshoku Industries Co., Ltd. was used as a measuring device. The smaller the haze value, the better the transparency, and the larger the haze value, the worse the transparency.
- an oxygen permeability measuring device 0 XTRAN-100 manufactured by Modern Contro 1 s was used as the measuring device. The measurement conditions were a temperature of 30 ° C and a relative humidity of 100%.
- the oxygen permeability coefficient (cm 3 -cm / cm 2 'sec.cmHg) was calculated by substituting 15 X (oxygen gas permeability) X (thickness of gas barrier resin layer).
- the bending of the PVCC layer was performed by cutting the multilayer film after heat shrinkage to a width of 0.5 mm, and observing the cut surface with an optical microscope at a magnification of 40 times.
- the cross-section of the heat-shrinkable multilayer film of the sample is used as a trigger for peeling, and from that point, the third layer and the other layers are peeled off slowly to obtain the third layer.
- the heat shrinkage of the separated third layer is measured according to the method for measuring the heat shrinkage.
- EMAA-IBA Ethylene 'methacrylic acid' unsaturated aliphatic sulfonic acid ester copolymer
- DBS dibutyl debagate
- GMS Rikemar S-100 manufactured by RIKEN Vitamin Co., Ltd. was used (hereinafter abbreviated as "GMS").
- Each PVDC was prepared by adding a predetermined amount of the above additive to prepare a compound.
- Table 1 shows the composition of the compound.
- PVDC 1 3 B 100 2.3 0.9 1.0
- Vinylidene chloride / vinyl chloride lauryl acrylate terpolymer (PVDC-1), ionomer (10), ethylene / ethyl acrylate copolymer (EEA-1), ethylene vinyl acetate copolymer (EVA -1), (EVA-2) and linear ultra-low density polyethylene (SSC-VLD PE) are extruded separately by six co-extruders, and each molten polymer is introduced into a co-extruded annular die and the outer layer In the inner layer, (SSC—VLDPE) / (EVA-2) / (EEA-1) / (PVDC-1) / (EEA-1) / (EVA-1) (I0) And coextruded as seven layers.
- the parison resin temperature at the outlet of the die was 200 ° C.
- the parison was cooled by a cold water shower ring at 8 to 20 ° C. to form a flat cylindrical body having a flat width of 138 mm and a thickness of 558 / zm.
- the flat cylindrical body was irradiated with an electron beam in an electron beam irradiator with an accelerating voltage of 300 keV to give an irradiation dose of 80 kGy.
- the film was biaxially stretched by 3.1 times in the longitudinal direction and 3.0 times in the lateral direction by the inflation method while being cooled by wind at 0 ° C.
- the obtained biaxially stretched film had a folding width of 4 16 mm and a thickness of 60 im.
- the multilayer film was stored for 4 weeks in a constant temperature room at 23 ° C.
- Example 2 As in Example 1, except that the temperature of the constant temperature chamber was changed to 30 ° C.
- a biaxially stretched film was manufactured.
- a biaxially stretched film was produced in the same manner as in Example 1, except that the temperature in the constant temperature chamber was changed to 35 ° C.
- a biaxially stretched film was produced in the same manner as in Example 4, except that the temperature in the constant temperature chamber was changed to 30 ° C.
- a biaxially stretched film was produced in the same manner as in Example 4, except that the temperature in the constant temperature chamber was changed to 35 ° C.
- PVDC-3 (10), (EVA-1), (EVA-2), (EVA-1) and (SSC-VLD PE) are extruded separately by six extruders, and each weight melted is extruded.
- the united product is introduced into the co-extrusion ring die, and the inner layer is placed on the inner layer rather than the outer layer.
- SSC — VLD PE / (EVA-2) / (EVA-3) / (PVDC-3)
- the layers were melt-laminated in a die in the order of / (I 0) and co-extruded as seven layers.
- the parison resin temperature at the die exit was 200 ° C.
- the parison was cooled by a cold water shower ring at 8 to 20 ° C.
- the flat cylindrical body was irradiated with an electron beam in an electron beam irradiation apparatus at an acceleration voltage of 300 keV to give an irradiation dose of 80 kGy to produce a parison.
- the film was simultaneously biaxially stretched 3.0 times in the transverse direction.
- the folding width of the obtained biaxially stretched film was 16 mm, and the thickness was 60 ⁇ m.
- the film was stored in a constant temperature room at 23 ° C for 4 weeks.
- Example 7 As in Example 7, except that the temperature of the constant temperature chamber was changed to 30 ° C.
- Example 1 was repeated except that (EVA-2) was changed to (EMAA-IBA), (10) was changed to (SSC-VLDP E), and the temperature of the constant temperature chamber was changed to 30 ° C.
- EVA-2 was changed to (EMAA-IBA)
- (10) was changed to (SSC-VLDP E)
- the temperature of the constant temperature chamber was changed to 30 ° C.
- a biaxially stretched film was produced in the same manner as described above.
- a biaxially stretched film was produced in the same manner as in Example 1 except that (PVDC-1) was changed to (PVD C-4) and the temperature of the constant temperature chamber was changed to 30 ° C.
- a biaxially stretched film was prepared in the same manner as in Example 7, except that the obtained parison was immediately passed through an 82 ° C hot water bath to be infused, and the temperature of the constant temperature chamber was changed to 30 ° C. Manufactured.
- Table 2 shows the layer constitutions of the multilayer films produced in the examples and comparative examples.
- the heat-shrinkable multilayer films were all stored in a constant-temperature room at a predetermined temperature for 4 weeks while being wound in a roll shape at a length of 50 Om.
- the performance of the film was evaluated using the intermediate portion of the film wound into a roll. The evaluation results are shown in Table 3 below. ⁇ 71
- Examples 1, 7, and 8 are examples according to the first embodiment of the present invention in which the heat shrinkage of the third layer is controlled using a PVDC binary or terpolymer.
- Examples 1 to 6 and 9 are examples of the second embodiment of the present invention using a PVDC terpolymer.
- the optical characteristics associated with the bending of the third layer were used. Is prevented from deteriorating.
- a heat-shrinkable multilayer film including a third layer having a small heat-shrinkability deterioration of optical characteristics such as whitening after heat shrinkage and a decrease in transparency is prevented.
- a heat-shrinkable multilayer film suitable for beautiful packaging of contents such as meat and processed meat is provided.
Landscapes
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Laminated Bodies (AREA)
- Wrappers (AREA)
Description
Claims
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU19838/99A AU744079B2 (en) | 1998-01-29 | 1999-01-26 | Heat-shrinkable multilayered film |
EP99900679A EP1052088A4 (en) | 1998-01-29 | 1999-01-26 | HEAT SHRINKABLE MULTILAYER FILM |
JP2000529954A JP4246388B2 (ja) | 1998-01-29 | 1999-01-26 | 熱収縮性多層フィルム |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10/32030 | 1998-01-29 | ||
JP3203098 | 1998-01-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1999038684A1 true WO1999038684A1 (fr) | 1999-08-05 |
Family
ID=12347482
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP1999/000301 WO1999038684A1 (fr) | 1998-01-29 | 1999-01-26 | Film multicouches thermoretrecissable |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP1052088A4 (ja) |
JP (1) | JP4246388B2 (ja) |
CN (1) | CN1225354C (ja) |
AU (1) | AU744079B2 (ja) |
WO (1) | WO1999038684A1 (ja) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7959995B2 (en) | 2006-04-05 | 2011-06-14 | Kureha Corporation | Deep drawing heat shrinkable multilayer film and method of manufacturing the same |
CN100460202C (zh) * | 2006-05-15 | 2009-02-11 | 高学文 | Pvdc-聚烯烃共挤出热成型高阻隔复合包装材料 |
CN103042791B (zh) * | 2012-12-21 | 2015-04-08 | 江阴升辉包装材料有限公司 | 一种多层共挤抗凝血高阻隔热收缩薄膜及其制备方法 |
CN105437687A (zh) * | 2014-08-26 | 2016-03-30 | 丹东全德高科技包装有限公司 | Pe/tie/pa/tie/pe/eva/pvdc/eva/pe9层共挤深拉伸膜 |
CN105365314A (zh) * | 2014-08-26 | 2016-03-02 | 丹东全德高科技包装有限公司 | Pe/tie/pa/tie/pa/tie/pe/eva/pvdc/eva/pe 11层共挤深拉伸膜 |
CN105437686A (zh) * | 2014-08-26 | 2016-03-30 | 丹东全德高科技包装有限公司 | Pa/tie/pe/eva/pvdc/eva/pe7层共挤深拉伸膜 |
JP6810546B2 (ja) * | 2016-07-20 | 2021-01-06 | 株式会社クレハ | 熱収縮性多層フィルム |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0324953A (ja) * | 1989-06-23 | 1991-02-01 | Kureha Chem Ind Co Ltd | 共押出熱収縮性積層フィルム |
JPH0330947A (ja) * | 1989-06-28 | 1991-02-08 | Kureha Chem Ind Co Ltd | 熱収縮性積層フイルム |
JPH05222259A (ja) * | 1990-08-22 | 1993-08-31 | Kureha Chem Ind Co Ltd | 樹脂組成物及び該組成物からなる熱収縮性フィルム |
JPH08239493A (ja) * | 1990-08-22 | 1996-09-17 | Kureha Chem Ind Co Ltd | 熱収縮性フィルム |
JPH0999526A (ja) * | 1995-07-31 | 1997-04-15 | Kureha Chem Ind Co Ltd | 多層フィルム、それからなる包装容器および包装製品 |
JPH09286086A (ja) * | 1996-04-24 | 1997-11-04 | Asahi Chem Ind Co Ltd | 熱収縮性多層バリヤーフィルム |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61130041A (ja) * | 1984-11-28 | 1986-06-17 | ポリプラスチックス株式会社 | 寸法安定性の良好な成形品の製造方法 |
JPS6414023A (en) * | 1987-07-08 | 1989-01-18 | Tonen Sekiyukagaku Kk | Manufacture of composite film permeable to gas |
DE3736236A1 (de) * | 1987-10-27 | 1989-05-11 | Nordenia Verpackung | Folie, insbesondere zur herstellung eines sackes, beutels oder dergleichen verpackung |
CA1321865C (en) * | 1988-01-27 | 1993-09-07 | H. Wayne Swofford | Substantially wrinkle-free, high modulus of elasticity, non-planar film and process for its manufacture |
US5270390A (en) * | 1990-08-22 | 1993-12-14 | Kureha Kagaku Kogyo Kabushiki Kaisha | Resin composition and heat shrinkable film comprising the same composition layer |
JPH1044324A (ja) * | 1996-08-08 | 1998-02-17 | Fuji Heavy Ind Ltd | 樹脂製外装品及び樹脂製外装品の製造方法 |
-
1999
- 1999-01-26 WO PCT/JP1999/000301 patent/WO1999038684A1/ja not_active Application Discontinuation
- 1999-01-26 JP JP2000529954A patent/JP4246388B2/ja not_active Expired - Fee Related
- 1999-01-26 CN CNB998034304A patent/CN1225354C/zh not_active Expired - Fee Related
- 1999-01-26 EP EP99900679A patent/EP1052088A4/en not_active Withdrawn
- 1999-01-26 AU AU19838/99A patent/AU744079B2/en not_active Ceased
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0324953A (ja) * | 1989-06-23 | 1991-02-01 | Kureha Chem Ind Co Ltd | 共押出熱収縮性積層フィルム |
JPH0330947A (ja) * | 1989-06-28 | 1991-02-08 | Kureha Chem Ind Co Ltd | 熱収縮性積層フイルム |
JPH05222259A (ja) * | 1990-08-22 | 1993-08-31 | Kureha Chem Ind Co Ltd | 樹脂組成物及び該組成物からなる熱収縮性フィルム |
JPH08239493A (ja) * | 1990-08-22 | 1996-09-17 | Kureha Chem Ind Co Ltd | 熱収縮性フィルム |
JPH0999526A (ja) * | 1995-07-31 | 1997-04-15 | Kureha Chem Ind Co Ltd | 多層フィルム、それからなる包装容器および包装製品 |
JPH09286086A (ja) * | 1996-04-24 | 1997-11-04 | Asahi Chem Ind Co Ltd | 熱収縮性多層バリヤーフィルム |
Also Published As
Publication number | Publication date |
---|---|
CN1225354C (zh) | 2005-11-02 |
JP4246388B2 (ja) | 2009-04-02 |
EP1052088A1 (en) | 2000-11-15 |
AU744079B2 (en) | 2002-02-14 |
EP1052088A4 (en) | 2003-07-23 |
AU1983899A (en) | 1999-08-16 |
CN1291940A (zh) | 2001-04-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5270390A (en) | Resin composition and heat shrinkable film comprising the same composition layer | |
EP0277839B1 (en) | Heat-shrinkable laminated film and process for producing the same | |
EP1651438B1 (en) | Multilayer oriented high-modulus film | |
JP4099313B2 (ja) | 積層包装材料及びその製造方法 | |
EP2521651B1 (en) | Heat-shrinkable multi-layer film for deep-draw forming, and process for production thereof | |
EP1842664B1 (en) | Deep drawing heat shrinkable multilayer film and method of manufacturing the same | |
US5232767A (en) | Heat-shrinkable laminate film | |
US5035955A (en) | Heat-shrinkable laminated film | |
KR960006794B1 (ko) | 압출 비닐리덴클로리드 코폴리머유연패키징필름 | |
WO1999038684A1 (fr) | Film multicouches thermoretrecissable | |
JP2774956B2 (ja) | 熱収縮性フィルム | |
JP3541999B2 (ja) | 熱可塑性多層フィルム | |
JP2024105272A (ja) | 普遍的な熱可塑性接着剤を組み込んだ多層フィルム | |
JPH0330947A (ja) | 熱収縮性積層フイルム | |
JP3919042B2 (ja) | 熱収縮性の熱可塑性多層フイルム | |
JP2014533612A (ja) | 熱収縮性多層フィルム及びその製造方法 | |
JP2825190B2 (ja) | 熱収縮性多層フィルム | |
JP3136197B2 (ja) | 高温殺菌処理用多層二軸延伸フィルム | |
JP4449690B2 (ja) | ポリアミドフィルム | |
JP2542296B2 (ja) | 樹脂組成物 | |
JP4266391B2 (ja) | 多層構造体 | |
AU2004261401B2 (en) | Multilayer oriented high-modulus film | |
JP2020082678A (ja) | 多層延伸フィルム及びその製造方法 | |
NZ230860A (en) | Extrudable vinylidene chloride polymer composition comprising a small amount of silicon polymer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 99803430.4 Country of ref document: CN |
|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AU CN JP KR US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 1999900679 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 09601243 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 19838/99 Country of ref document: AU |
|
WWP | Wipo information: published in national office |
Ref document number: 1999900679 Country of ref document: EP |
|
WWG | Wipo information: grant in national office |
Ref document number: 19838/99 Country of ref document: AU |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 1999900679 Country of ref document: EP |