[go: up one dir, main page]

WO2000039365A1 - Multi-pole ion exchange membrane electrolytic bath - Google Patents

Multi-pole ion exchange membrane electrolytic bath Download PDF

Info

Publication number
WO2000039365A1
WO2000039365A1 PCT/JP1999/007283 JP9907283W WO0039365A1 WO 2000039365 A1 WO2000039365 A1 WO 2000039365A1 JP 9907283 W JP9907283 W JP 9907283W WO 0039365 A1 WO0039365 A1 WO 0039365A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
cathode
anode
exchange membrane
flexible
Prior art date
Application number
PCT/JP1999/007283
Other languages
English (en)
French (fr)
Inventor
Tatsuhito Kimura
Hajime Ishizaka
Kiyoshi Hachiya
Original Assignee
Asahi Glass Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Company, Limited filed Critical Asahi Glass Company, Limited
Priority to AT99961371T priority Critical patent/ATE264929T1/de
Priority to EP99961371A priority patent/EP1067216B1/en
Priority to DE69916595T priority patent/DE69916595T2/de
Priority to US09/622,990 priority patent/US6495006B1/en
Publication of WO2000039365A1 publication Critical patent/WO2000039365A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/036Bipolar electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/13Single electrolytic cells with circulation of an electrolyte
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • C25B9/73Assemblies comprising two or more cells of the filter-press type
    • C25B9/75Assemblies comprising two or more cells of the filter-press type having bipolar electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • C25B9/73Assemblies comprising two or more cells of the filter-press type
    • C25B9/77Assemblies comprising two or more cells of the filter-press type having diaphragms

Definitions

  • the present invention relates to a bipolar ion exchange membrane electrolytic cell that can be suitably used for producing an aqueous solution of an aluminum hydroxide.
  • a filler-type electrolytic cell used for producing an aqueous solution of aluminum hydroxide
  • a filler-type electrolytic cell is often used.
  • a large number of chamber frames composed of an anode chamber frame and a cathode chamber frame and ion exchange membranes are alternately arranged.
  • the chamber frames are tightened from both sides with a hydraulic press or the like.
  • the types of electrolyzers are divided into two types: monopolar electrolyzers (monopolar cells) connected in parallel and bipolar electrodes (bipolar cells) connected in series, depending on the electrical connection method. Separated.
  • the chamber frame for the bipolar electrolyzer (collectively called the anode chamber frame and the cathode chamber frame) has the anode chamber 15 and the cathode chamber 25 back to back.
  • the anode chamber frame 10 constituting the anode chamber 15 is composed of an anode plate 30 and an anode back plate 40 which is arranged substantially parallel to the anode plate 30.
  • a mesh or porous plate is used as the anode plate.
  • a conductive mesh plate made of titanium, zirconium, tantalum or the like is used as a substrate, and a precious metal oxide such as titanium oxide / ruthenium oxide or iridium oxide is coated thereon. It is.
  • anode support members 50a are arranged at predetermined intervals.
  • the anode support member 50a is made of, for example, a plate-like member, and is shown in FIGS. A plurality of holes (not shown) are provided so that the electrolyte can flow in the left and right directions in FIG.
  • the structure of the cathode compartment frame 20 forming the cathode compartment 25 is the same as that of the anode compartment frame 10, and is usually a mesh or porous cathode plate 60, a cathode back plate 70 and a cathode support member 80. a.
  • Corrosion-resistant conductive cathode support members 80a such as nickel alloys and stainless steels, are arranged at predetermined intervals.
  • the anode back plate 40 and the cathode back plate 70 are integrally connected to form a partition wall 9.
  • a conductive intermediate member such as a cladding material may be interposed between the anode back plate 40 and the cathode back plate 70 constituting the partition wall 9 to increase conductivity.
  • the peripheral portions of the anode back plate 40 and the cathode back plate 70 constituting the partition are bent and fixed to the tubular body 7 by welding or the like.
  • 11 is an ion exchange membrane
  • 12 is a gasket.
  • the cathode plate is made of an alkali-resistant material, for example, a conductive mesh plate such as nickel or stainless steel, and a cathode active material such as nickel nickel or platinum group. Is preferred
  • an almost saturated saline solution is usually used as the anolyte
  • the anode chamber is usually used as an anode chamber. It is supplied to the anode chamber from the anode electrolyte supply port 3 provided near the lower part of the cell.
  • chlorine gas is generated on the anode plate by electrolysis, and the anode gas is discharged from the anode electrolyte outlet 4 usually provided near the upper part of the anode chamber together with the saline solution as the electrolyte. It is discharged outside the room frame.
  • cathode electrolyte supply port 5 which is generally installed at the lower side of the cathode chamber. I do.
  • hydrogen gas and caustic soda are generated and discharged out of the cathode chamber through a cathode electrolyte outlet 6 provided near the upper part of the cathode chamber.
  • the role of the ion exchange membrane used for the electrolysis of this salt is to allow sodium ions to pass from the anode compartment to the cathode compartment, and to block the movement of hydroxyl ions generated on the cathode compartment to the anode compartment. It is to be.
  • the anode plate 3 0 is by Ri fixed in welding to the anode support member 5 0 a like anode chamber.
  • the cathode plate 60 is also fixed to the cathode support member 80a or the like in the cathode chamber by welding or the like so that the anode plate 30 and the cathode plate 60 are at a predetermined distance via the ion exchange membrane. Fastened via gasket 12.
  • the distance between the anode plate and the cathode plate is a factor that greatly affects the electrolysis voltage of the electrolytic cell.
  • the membrane itself is flexible, Since the position is not completely fixed in the electrode, the electrode plate and the membrane sometimes come into contact with each other. In this case, since many minute irregularities and projections are present on the surface of the electrode plate, when the film moves so as to rub the electrode surface while these irregularities and projections are strongly pressed against the film, The membrane may be pushed out.
  • Japanese Patent Application Laid-Open No. 57-108828 proposes a technique in which a large number of conductive spring members are attached between a partition plate and a plate on the anode and Z or cathode side to make the plate movable. Is disclosed.
  • JP In Hei 11-5 5392 the partition plate and the electrode plate are electrically connected by the clamp panel mechanism, and the electrode plate is movable by the elasticity of the clamp spring mechanism. Is disclosed.
  • the present invention solves such a problem, and provides a bipolar ion-exchange electrolytic cell in which the distance between the electrodes can be reduced as much as possible by a simple and inexpensive movable mechanism having a low electric resistance so that the electrolytic voltage can be greatly reduced. It is intended to be
  • An anode chamber frame in which an anode plate and an anode back plate are arranged substantially in parallel with an interval, and a conductive anode support member is arranged at a predetermined interval between the anode plate and the anode back plate. And a cathode plate and a cathode back plate are arranged substantially in parallel at an interval, and the cathode plate.
  • a cathode chamber frame in which conductive cathode support members are arranged at predetermined intervals between the cathode back plate and the cathode back plate; and the back plates are joined back to back to form a room frame body.
  • At least the cathode support member is supported by a power supply rib base portion fixed to the cathode back plate and rising toward the cathode plate, and a power supply rib base portion adjacent thereto, and is supported by the cathode plate. Consisting of a flexible body that stretches until it reaches
  • An anode chamber frame in which an anode plate and an anode back plate are arranged substantially in parallel with an interval, and a conductive anode support member is arranged at a predetermined interval between the anode plate and the anode back plate.
  • a cathode having a cathode plate and a cathode back plate disposed substantially parallel to each other at an interval, and a conductive cathode support member disposed at a predetermined interval between the cathode plate and the cathode back plate.
  • a bipolar ion-exchange membrane electrolytic cell comprising a plurality of chamber frames, the back plates of which are joined back to back to form a chamber frame, and a plurality of the chamber frames are arranged with a cation exchange membrane interposed therebetween.
  • At least the anode support member is supported by a power supply rib base portion fixed to the anode back plate and rising toward the anode plate, and a power supply rib base portion adjacent thereto; Consisting of a flexible body that stretches until it reaches
  • Figure 1 Front view of the chamber frame of the bipolar ion-exchange membrane electrolytic cell for carrying out the present invention viewed from the cathode chamber frame
  • Fig. 2 A cross-sectional view of the chamber frame taken along line A-A in Fig. 1, together with the ion exchange membrane and gasket. This is a conventional example without a movable mechanism in the cathode chamber.
  • Fig. 3 Schematic diagram of a partial cross section of a chamber frame showing a typical embodiment of the present invention.
  • Fig. 4 Chamber with a conductive plate-like metal chip and a non-conductive spacer attached. Schematic diagram of a partial cross section of the frame
  • FIG. 5 Schematic diagram of a partial cross section of a chamber frame showing another embodiment of the present invention
  • Fig. 6 Schematic diagram of a partial cross section of a chamber frame showing another embodiment of the present invention
  • the electrolytic cell to which the present invention can be applied may be a monopolar type or a bipolar type.
  • it is a bipolar type ion exchange membrane electrolytic cell.
  • an anode back plate which are disposed substantially parallel to each other with an interval, and an anode chamber frame in which a conductive anode support member is disposed at a predetermined interval between the anode plate and the anode back plate; and a cathode.
  • a cathode chamber frame in which a plate and a cathode back plate are arranged at intervals and substantially in parallel, and a conductive cathode support member is arranged at a predetermined interval between the cathode plate and the cathode back plate.
  • This is a bipolar ion exchange membrane electrolyzer in which the back plates are joined back to back to form a chamber frame, and a plurality of these are arranged with a positive ion exchange membrane interposed therebetween.
  • At least the above-mentioned cathode support member is fixed to the cathode back plate 90 and is provided with the power supply rib base portion 101 rising toward the cathode plate 95, and the power supply rib base portion 101 adjacent thereto. And a flexible body 103 extended until reaching the cathode plate. 102 is compatible with the power supply rib base. This is a joint portion formed by welding of a flexible body, and this is also a support portion that is supported by the power supply rib base portion of the flexible body.
  • the cathode support member is supported by the power supply rib base portion fixed to the cathode back plate and rising toward the cathode plate, and the base portion adjacent thereto, and is extended until reaching the cathode plate.
  • a flexible body that performs the above-mentioned operations.
  • the base portion height (A 3) of the fixed power supply rib base portion is constant, the base distance can be basically maintained at a constant value. Only the movable body (the interval A5 between the cathode plate 95 and the fixed feeding rib base 101) supported by the part is slightly displaced in accordance with the fluctuation of the external force. The distance can be varied in the minimum necessary range without damaging the membrane to protect the cation exchange membrane from damage.
  • the flexible body has a force extending up and down to near the upper and lower ends of the electrolytic surface. It is preferable that an appropriate gap such as an opening or a notch is provided at the upper and lower ends.
  • At least one protrusion 109 is formed in the approximate center. It is made of a flexible plate-like metal 103, and the apex p of this protruding portion is the joining portion 105.
  • the flexible plate-like metal 103 preferably has a plate thickness of 0.1 to 1.0 mm, a width A1 of 4 to 25 cm, and a protrusion of the plate-like metal.
  • the distance between the portion other than 109 and the cathode plate (in other words, the height of the protruding portion) A2 is 3 to 30 mm.
  • the flexible plate-like metal is selected from, for example, plate-like mild steel, stainless steel, nickel and nickel alloys, copper and copper alloys, etc., which are processed into the above-mentioned shape and used.
  • the cathode support member 80 a corresponds to the power supply rib base 101 in the drawing, and a flexible plate-like metal is supported by the adjacent power supply rib bases. It is mounted between 80 al and 80 a 2, 80 a 2 and 80 a 3, 80 a 3 and 80 a 4, respectively.
  • the flexible copper metal is mounted substantially over the entire cathode chamber.
  • the cathode plate 60 in the figure is electrically and mechanically connected to the flexible plate-like metal, and the cathode plate is almost uniformly oriented in the direction of the anode plate (on the paper surface) over the entire electrolytic surface in the figure. (The back side).
  • the pressing causes the flexible plate-shaped metal to move in the direction of the anode plate (on the back side of the paper) and move to the cathode plate. Is displaced to relieve the pressure, and the membrane is not damaged.
  • the membrane can be strengthened between the cathode plate and the conventional fixed anode plate opposed to each other via the positive ion exchange membrane. It will not pinch and damage the membrane.
  • the entire cathode plate can be uniformly approached to the cation exchange membrane, so that the distance between the electrodes can be reduced, The electrolysis voltage can be greatly reduced.
  • the distance between the cathode plate and the cation-exchange membrane is 0.1 to 2.0 mm, preferably 0.1 to 1.0 mm.
  • the distance between the cathode plate and the cation exchange membrane can be set even in an extremely small range by changing the thickness of the gasket 12 mounted on the peripheral group of the chamber frame. It can be adjusted more by changing the height A 2 of the protruding portion 109 of the sheet metal.
  • the material of the flexible plate-like metal used in the present invention can be selected according to the formula (1).
  • 3 is the displacement amount when the protruding portion receives a pressure P such as pressing, and more precisely, within the elastic limit. If the amount of deformation is a predetermined metal material and a flexible metal having a certain shape, the assumed pressure can be defined, and the displacement with respect to the assumed pressure can be calculated. As a matter of course, the larger the value of the constant K, for example, the more flexible and the more flexible the material, the more easily it is displaced by receiving a slight pressure P.
  • the displacement of the cathode plate is preferably 10 mm or less, it is preferable that (1) the metal material be adjusted so that the displacement of the flexible rectangular metal is 0 to 10 mm. Selection of type, (2) selection of shape such as plate thickness, width A1 and height A2 of protrusion, and (3) factors such as assumed value of pressure applied to protrusion (that is, allowable pressure). Various changes are made according to equation (1); the optimum value can be determined.
  • the value of K is preferably in the range of 0.2 to 200, and more preferably in the range of 4 to 40.
  • a non-conductive spacer is arranged between the cathode plate and the ion exchange membrane so that even when the distance between the cathode plate and the membrane is very small, the two do not come into direct contact with each other.
  • FIG. 4 shows this state, in which 201 indicates a spacer formed of a non-conductive material.
  • the sparger is a force that can be used basically if it is non-conductive, preferably a non-conductive resin or rubber (that is, an elastic body or an elastomer). .
  • a resin a force that is not particularly limited?
  • examples thereof include polypropylene and polytetrafluoroethylene (PTF ⁇ ), and examples of the rubber include butyl rubber and ethylene-propylene-gen rubber (EPDM).
  • the resin or rubber may be a porous body or a foam. These are used in an appropriate form such as a plate, a sheet, a film, a fiber, and a sphere.
  • the spacer 201 in these forms is basically disposed between the cathode plate and the cation exchange membrane, and more specifically, the protrusion apex of the flexible plate-like metal.
  • the force most preferably arranged above ⁇ , respectively, may be arranged between protrusions.
  • the spacers arranged in this way are the ones of the cathode support plates 80 al, 80 a 2, 80 a 3 ′ It will be located above or between each. It is desirable that the spacers are arranged at appropriate intervals in the vertical direction of the room frame and provided linearly.
  • the spacer may be formed of a resin or the like having a hardness of D40 to D80 (D scale test method of ASTMD224) or a film. It may be made of rubber or the like that is softer than the hardness.
  • a spacer such as rubber, is particularly used to prevent deformation of the film due to clipping. That is, for example, through a non-conductive spacer, the cathode plate When the membrane is pressed against the cation exchange membrane, the two do not come into direct contact due to the presence of the spacer. As a result, creep deformation occurs, and the polymer inside the film is chemically degraded at the deformed portion, and eventually, a pinhole may be formed in the film.
  • the thickness of the stirrer be 0.1 to 1.0 mm.
  • the gap between the ion exchange membrane and the cathode plate is maintained during operation by the thickness of the spacer.
  • the distance between the membrane and the cathode plate is maintained at intervals slightly smaller than the thickness of the stirrer during operation.
  • connection between the joining portion 105 of the protruding portion apex p and the cathode plate 95 is inserted and fixed between them, that is, the inserted plate-shaped metal chip 20. 5 is what is done.
  • the plate-shaped metal chip 205 is made of soft stainless steel, nickel, copper, or the like, and is fixed to the junction at the apex of the protruding portion and the cathode plate by welding or the like to protect the junction. .
  • the cathode plate and the apex of the protruding portion of the flexible plate-shaped metal are directly joined by welding or the like, the work of separating the plate-shaped metal from the flexible plate-shaped metal during the work of separating the cathode plate from the flexible plate-shaped metal.
  • the apex (tip) is a part where the mechanical strength is particularly weak in terms of shape, so even a small amount of force can easily break or break from this part. Susceptible to mechanical damage.
  • the thickness of the plate-like metal tip is preferably 0.5 to 3.0 mm.
  • a length of 3 to 15 mm is arranged in the vertical direction of the chamber frame, and considering the current distribution on the cathode plate, the height of the vertical direction of the chamber frame is 1 to 2 or more. Preferably.
  • FIG. 5 shows another embodiment of the present invention. That is, this is a case where the power supply rib base portion 101 ′ and the flexible body 103 ′ are formed integrally by molding or the like.
  • the power supply rib base portion 101 ′ and the flexible plate-like metal 103 ′ are formed integrally by molding or the like into a convex cross section, and the flexible plate
  • the metal 103 ' is electrically connected to the cathode back plate (partition plate) 90 by welding or the like so as to form a closed space with the cathode back plate 90.
  • the flexible plate-like metal 103 ' is electrically and mechanically connected to the cathode plate 95 with the vertex p' of the substantially central protrusion 109 'as the joint 105'. It has the same mobility as the plate-like metal 103 shown in FIG. 3 and can move the cathode plate 95 at the protrusion 109 ′ without damaging the cation exchange membrane. Can be brought close enough.
  • the part is formed to have a larger cross-sectional area to secure the fixing function in order to increase the rigidity, and the part corresponding to the flexible plate-like metal is made thinner. However, it is preferable that flexibility can be maintained.
  • the thickness and width A 1 ′ of the flexible plate-like metal and the distance between the cathode plate and the plate-like metal (height of the protruding portion) A 2 ′ are the thickness of the flexible metal plate 103 in FIG. It can be handled in the same way as the values of the width A 1 and the distance A 2 between the cathode plate and the sheet metal.
  • the sheet metal 103 'can simultaneously have a function of a downcomer for promoting circulation of the electrolyte in the chamber frame. That is, an opening and a notch are provided in the upper and lower portions of the chamber frame of the plate-shaped metal 103 ′ for flowing the electrolytic solution, respectively, and are formed between the plate-shaped metal 103 ′ and the partition plate 90.
  • the closed space Vd is a descending flow path in which a descending flow of the liquid occurs, while the space Vu between the sheet metal 103 'and the cathode plate 95 is an ascending flow path of the liquid and gas. The two communicate with each other through the opening and the notch to form a continuous circulation channel.
  • the corresponding anode-side anode support member (power supply rib) 110 ′ has a M-shaped cross section, and the M-type power supply rib 110 ′ has an anode back plate (partition plate). 9 and is electrically fixed by welding or the like so as to form a closed space.
  • the M-shaped power supply rib 110 ′ is fixed to the anode 97 at the shoulders 113 ′ on both sides thereof by welding or the like to form an anode chamber.
  • FIG. 6 shows still another embodiment of the present invention.
  • the power supply rib 120 on the cathode side has an M-shaped cross section.
  • the M-type power supply rib is electrically fixed to the partition wall 90 by welding or the like so as to form a closed space with the partition plate 90.
  • the flexible plate-like metal 103 is supported by adjacent power supply ribs. In this case, the opposite shoulders 123 of adjacent ⁇ -shaped power supply ribs are fixed by welding or the like.
  • the flexible plate-shaped metal 103 has a vertex ⁇ of the protruding portion 109 at the substantially central portion as a joint 105, and is electrically and mechanically connected to the cathode plate 95 through this.
  • the embodiment described is the same as that described with reference to FIGS.
  • the thickness and width A l of the sheet metal and the distance between the cathode plate and the sheet metal (height of the protrusion) A 2 are the thickness and width of the flexible sheet metal 103 shown in FIG. Al, the distance between the cathode plate and the sheet metal can be handled in the same way as the numerical value of A2.
  • the width A4 of the M-type feeding rib is preferably about 50 to 70 mm.
  • the cathode-side power supply rib 120 is disposed via the positive ion exchange membrane 100 so as to face the cathode-side power supply rib 120. As described with reference to FIG.
  • anode back plate Partition plate
  • the M-type feeding rib 130 is provided on both sides thereof
  • the shoulders 133 are fixed to the anode 97 by welding or the like to form an anode chamber.
  • the cathode support member is supported by the power supply rib base portion fixed to the cathode back plate and rising toward the cathode plate, and the power supply rib base portion adjacent to the power supply rib base portion, and is extended until reaching the cathode plate.
  • the anode supporting member is fixed to the anode back plate and rises toward the anode plate, and the feed rib adjacent thereto is easily understood.
  • it may be made of a flexible body that is supported by the base portion and extends until it reaches the anode plate.
  • the cathode support member on which the flexible body is to be formed may be replaced with the anode support member, and the cathode plate to which the flexible body is to be joined may be replaced with the anode plate, so that detailed description is omitted. I do.
  • the ability to specifically describe the present invention with reference to examples is not limited to the technical scope of the present invention.
  • the anode and the cathode each height 1 2 0 0 mm, breadth 2 4 0 0 mm, the effective electrolysis area has a 2.8 to 8 m 2 size, the anode Perume Re' click electrode ( DSE (1.5 mm thick expandable mesh) manufactured by Nissan Co., Ltd., and a 1.2 mm thick nickel expandable mesh for the cathode.
  • DSE 1.5 mm thick expandable mesh
  • a substrate coated with an activated Raney-nickel alloy was used as the substrate.
  • a titanium plate was used for the anode back plate, and a nickel plate was used for the cathode back plate. These back plates were attached by welding to form a partition plate.
  • a titanium plate with a thickness of 2.0 mm and a width of 35 mm is used for the power supply rib on the anode side, and 18 power supply ribs are welded to the back plate and the anode at equal intervals in the height direction of the chamber frame To form an anode compartment.
  • a nickel plate with a thickness of 1.0 mm and a width of 30 mm was used, and 18 power supply ribs were fixed to the back plate at equal intervals in the height direction of the chamber frame.
  • a thickness of 0.5 mm and a width A1 force? Nickel processed so that 14 O mm, the height A 2 of the protrusion 109 is 10 mm, and the distance A 5 between the cathode plate 95 and the fixed power supply rib base 101 is 4 mm A plate was used. Both ends of the plate-shaped metal were attached to the cathode feeding rib by welding, and the apex p of the protruding portion was also attached to the cathode plate by welding as the joint 105 to form a cathode chamber frame.
  • such a chamber frame composed of the anode chamber and the cathode chamber and the ion exchange membrane are alternately arranged with the gasket 12 interposed between them.
  • the bipolar ion-exchange membrane electrolyzer was assembled by tightening so that the distance was 1 mm and the displacement of the flexible plate metal was 2 mm at the maximum.
  • Flemion F893 (registered trademark of Asahi Glass Co., Ltd.) was used for the ion exchange membrane.
  • a saline solution of 300 gZl is supplied from the lower part of the chamber frame to the anode chamber so that the salt concentration at the outlet is 2 l O gZl, and the cathodic chamber has a concentration of 32% caustic soda aqueous solution at the outlet.
  • % Of the diluted caustic soda aqueous solution was supplied from the lower part of the chamber frame.
  • Electrolysis temperature 9 0 ° C was carried out electrolytic test at a current density 6 k AZm 2. As a result, the electrolysis voltage was 3.25 V. (Example 2)
  • the anode and cathode each have a height of 1200 mm, a width of 240 mm, and an effective electrolysis area of 2.88 m 2.
  • Activated Raney-Nickel alloy is applied to a 1.2 mm-thick nickel expanded mesh for the cathode.
  • a titanium plate was used for the anode back plate, and a nickel plate was used for the cathode back plate.
  • These back plates were attached by welding to form a partition plate.
  • a nickel flexible plate-like metal 103 'having a protruding part at the center is welded to the cathode back plate 90 in the height direction of the chamber frame. I attached.
  • the thickness of the sheet metal 103 ' is 0.5 mm, the width A1' is 160 mm, the distance A2 between the cathode plate 95 and the sheet metal 103, the force 10 mm, the back Twelve plates with a height of 40 mm from the plate 90 to the apex p of the protrusion were arranged on the electrolytic surface at equal intervals.
  • the apex of the protruding portion 109 'of the plate-like metal 103' was fixed to the cathode plate by welding as a joint 105 '.
  • a spacer 201 ′ having a size of 5 mm, a width of 10 mm, and a length of 150 mm was arranged.
  • a titanium power supply rib 110 ′ formed into an M shape was attached to the anode back plate 99 by welding, as shown in FIG. This M type
  • Electrolytic rib 1 1 0 ' is 2.0 mm thick, 160 mm wide, from anode back plate 99
  • An M-type feeding rib having a height up to the tip of the shoulder 1 13 ′ of 35 mm was used, and the anode plate 97 was fixed by welding at the tip of the shoulder.
  • a chamber frame composed of such an anode chamber and a cathode chamber and a cation exchange membrane are alternately arranged with a gasket 12 interposed therebetween.
  • the bipolar ion-exchange membrane electrolyzer was assembled by tightening so that the displacement of the metals was 2 mm at the maximum.
  • the distance between the membrane and the cathode plate was maintained at 0.5 mm by a PTFE sensor.
  • Flemion F893 (registered trademark of Asahi Glass Co., Ltd.) was used as the cation exchange membrane.
  • a saline solution of 300 g / l is supplied from the lower part of the chamber frame to the anode chamber so that the salt concentration at the outlet is 21 Og / 1, and the caustic soda solution concentration at the outlet is 3 in the cathode chamber.
  • c electrolysis temperature 9 a dilute caustic soda aqueous solution at 2% by weight was fed from Shitsuwaku lower 0 ° C, it was carried out electrolytic test at a current density 6 k AZM 2. As a result, the electrolysis voltage was 3.16 V and the current efficiency was 96.3%. After 150 days of operation and the electrolytic cell was disassembled, no abnormalities were observed.
  • the structure of the anode plate, the cathode plate and the partition wall used was the same as in Example 1.
  • a molded nickel-made M-type feeding rib 120 was attached to the back plate by welding in the height direction of the chamber frame.
  • the M-type feed rib 120 uses a plate thickness of 1.0 mm, a width A4 of 60 mm, and a distance A3 of 30 mm from the back plate to the tip of the shoulder 123. Were arranged at equal intervals.
  • both ends of the flexible plate-shaped metal 103 were fixed by welding to the tips of the opposing shoulders 123 of the adjacent M-type feeding rib.
  • Example 2 As the flexible plate-like metal 103, the same one as used in Example 1 was used, and the apex P of the protruding part 109 was used as the bonding part 105 and welded to the cathode plate. Fixed and connected. In the same manner as in Example 2, a spacer 201 was disposed between the film and the cathode plate. The spacer used was the same as that used in Example 2.
  • the M-shaped power supply rib 130 made of titanium is fixed to the back plate 99 by welding in the height direction of the chamber frame so as to face the power supply rib 120 of the negative electrode. did.
  • the M-type feeding rib 13 0 has a thickness of 2.0 mm, a width of 60 mm, and a distance of 35 mm from the back plate to the tip of the shoulder 13 3.
  • the anode plate 97 was welded and fixed at the tip of 3.
  • the chamber frame composed of such an anode chamber and a cathode chamber and the ion exchange membrane are alternately arranged with the gasket 12 interposed therebetween, and the displacement of the flexible plate-shaped metal is fixed with iron fasteners from both sides.
  • the anode chamber is supplied with 300 gZl of saline solution from the lower part of the chamber frame so that the sodium salt concentration at the outlet is 2 l O gZl, and the cathode chamber is provided with a sodium hydroxide aqueous solution concentration of 3 at the outlet.
  • a dilute caustic soda aqueous solution was supplied from the lower part of the chamber frame so as to be 2% by weight.
  • Electrolysis temperature 9 0 ° C was carried out electrolytic test at a current density 6 k AZm 2. As a result, the electrolysis voltage was 3.16 V and the current efficiency was 96.3%. After 150 days of operation and the electrolytic cell was disassembled, no abnormalities were observed.
  • An electrolytic cell was constructed in the same manner as in Example 1, except that the cathode plate was directly attached to the cathode rib by welding without using a flexible plate-like metal, and the distance between the membrane and the cathode plate was set to 2.5 mm. .
  • the electrolysis voltage was 3.39 V and the current efficiency was 96.2%.
  • the cathode support member in the cathode chamber is composed of a power supply rib base portion and a flexible plate-like metal supported by the power supply rib base portion. The distance between the electrode and the cathode has been reduced, and the electrolysis voltage has been significantly reduced while avoiding the risk of membrane damage.
  • stable operation can be performed even at a high electrolytic current density of 4 kAZm 2 or more, and the method can be effectively applied to the production of an alkali hydroxide aqueous solution.
  • a bipolar ion-exchange membrane electrolytic cell that achieves high current efficiency and low electrolysis voltage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

明細書
複極型ィォン交換膜電解槽
技術分野
本発明は、 水酸化アル力 リ水溶液等の製造に好適に使用できる複極型ィ オン交換膜電解槽に関する。 背景技術
従来、 水酸化アル力 リ水溶液の製造用等に用いられるィオ ン交換膜電解 槽には、 フ ィ ル夕一プレス型の電解槽が多く用いられている。 これは、 陽 極室枠と陰極室枠からなる室枠体とィォン交換膜とを交互に多数配置して. 両側から油圧プレス等で締め付けてなる ものである。 電解槽の形式は、 電 気的な接続方法の相違によ り、 並列接続形式の単極型電解槽 (モノポーラ —セル) と直列接続形式の複極型電解槽 (バイポーラ一セル) とに大別さ れる。
複極型電解槽用の室枠体 (陽極室枠と陰極室枠との総称) は、 図 1およ び図 2 に示したよ う に、 陽極室 1 5 と陰極室 2 5 とを背中あわせに配置し てなり、 陽極室 1 5 を構成する陽極室枠 1 0は、 陽極板 3 0 と、 これと間 隔をおいてほぼ平行に配置された陽極背板 4 0 とからなる。 通常、 陽極板 と しては、 メ ッシュ状または多孔性のものが用いられる。例えば、チタン、 ジルコニウム、 タ ン タ ル等の導電性メ ッ シュ状板を基板と し、 これに酸化 チタンゃ酸化ルテニゥムも しく は酸化ィ リジゥム等の貴金属の酸化物をコ —ティ ングするものである。
陽極扳 3 0 と陽極背板 4 0の間には、 両者を電気的に接続し、 かつ、 そ の間隔を保持するために、 チタンも し く はチタン合金などの耐蝕性のある 導電性の陽極支持部材 (リブと も呼ばれる) 5 0 aが所定の間隔で配置さ れている。 陽極支持部材 5 0 aは、 例えば板状の部材からなり、 図 1およ び図 2の左右方向に電解液が流通できるよう に複数の孔 (図示せず) が設 けられている。
陰極室 2 5 を形成する陰極室枠 2 0の構造も陽極室枠 1 0 と同じで、 通 常メ ッシュ状または多孔性の陰極板 6 0、 陰極背板 7 0および陰極支持部 材 8 0 aからなつている。
同様にして、 陰極板 6 0 と陰極背板 7 0の間には、 例えば図 1 に示すよ う に、 両者を電気的に接続し、 かつ、 その間隔を保持するために、 鉄、 二 ッケル、 ニッケル合金、 ステンレス鋼などの耐蝕性のある導電性の陰極支 持部材 8 0 aが所定の間隔で配置されている。
なお、 陽極背板 4 0 と陰極背板 7 0 は一体に結合されて隔壁 9 を構成し ている。 隔壁 9 を構成する陽極背板 4 0 と陰極背板 7 0 との間には導電性 を高めるためにクラッ ド材等の導電性の中間部材 (図示せず) を挟んでも よい。 隔壁を構成する陽極背板 4 0 と陰極背板 7 0の周辺部は折り 曲げら れて、 筒状体 7に溶接等によ り固定されている。 なお、 1 1 はイオン交換 膜、 1 2はガスケッ トである。 陰極板は耐アルカ リ性の材質、 例えば、 二 ッケル、 ステンレス等の導電性のメ ッ シュ状板等を基板と し、 これにラネ 一ニッケルや白金族系などの陰極活物質をコ一ティ ングしたものが好ま し い
このよ うな複極型電解槽をハロゲン化アル力 リ、 例えば食塩の電気分解 に用いて水酸化アル力 リ を製造する場合には、 陽極液と してほとんど飽和 した食塩水溶液を、 通常陽極室の下部近く に設けられた陽極電解液供給口 3から陽極室に供給する。 陽極室内部では、 電気分解によ り、 陽極板上で 塩素ガスが発生し、 電解液たる食塩水溶液とと もに、 通常陽極室の上部近 く に設けられた陽極電解液排出口 4から陽極室枠の外へ排出される。
一方、 陰極室には、 一般に陰極室の下辺部に設置され'た陰極電解液供給 口 5から、 陰極液と して、 水または希釈苛性ソーダ水溶液を陰極室に供給 する。 陰極室内では、 水素ガスおよび苛性ソーダが生成し、 陰極室の上部 近く に設けられた陰極電解液排出口 6から陰極室の外へ排出される。
この食塩の電気分解に用いられるィォン交換膜の役目は、 陽極室側から ナ ト リ ウムイオンを陰極室側へ通過せしめ、 かつ、 陰極側で発生した水酸 ィォンの陽極室側への移動を遮断することである。
通常陽極板 3 0は、 陽極室内の陽極支持部材 5 0 a等に溶接等によ り固 定されている。 同様に陰極板 6 0 も、 陰極室内の陰極支持部材 8 0 a等に 溶接等によ り固定され、 ィォン交換膜を介して陽極板 3 0 と陰極板 6 0が 所定の距離になるよう にガスケッ ト 1 2 を介して締め付けられている。 一 般的に、 陽極板と陰極板との間の距離 (極間距離) は電解槽の電解電圧に 大き く影響を及ぼす因子である。 当然のことながら、 極間距離を短くする ほど電解電圧は低下し、 電力を節約できる力 s'、 一方、 陽極と陰極を、 あま り接近させすぎると、 膜自体が柔軟なものであり、 液中でその位置が完全 に固定されている ものではないから、 極板と膜とが時と して接触するに到 る。 この場合、 極板の表面には多数の微少な凹凸や突起が存在しているの で、 これら凹凸や突起が膜に強く押しつけられた状態で膜が極板表面を擦 るように動く と、 膜が押し切られる可能性がある。
このよう にして、 膜のかなりの部分が破損され損傷を受けると、 ついに は電解槽の正常な運転ができなく なる事態に陥ってしまう。 従って、 従来 は、 多少電解電圧を犠牲にしても、 膜に損傷を与える恐れがない程度まで 極間距離を広げて安全サイ ドで運転せざるを得なかったのである。
このよ うな微小な凹凸や突起を持っている陽極板や陰極板を、 ィオン交 換膜に出来るだけ接近させても膜に損傷を与えないよう にする試みは過去 にいくつか提案されている。 例えば、 特開昭 5 7— 1 0 8 2 7 8号では、 陽極側および Zまたは陰極側の隔壁板と極板の間に、 導電性のバネ材を多 数取り付けて、 極板を可動ならしめる技術が開示されている。 また、 特開 平 1 一 5 5 3 9 2号では、 隔壁板と極板とをク ラ ンプパネの機構によ り電 気的接合をはかるとと もに、 該クランプバネ機構の弾性によ り極板を可動 に構成する技術が開示されている。
これらは、 極板と膜が接触しても、 その押し圧を低減できる技術である 力 、 いずれもパネによる可動機構を採用しているため、 ( 1 ) バネ材部分の 電気抵抗が増加したり、 ( 2 )あるいはそのパネ機構の構造の複雑さ故に製 作費用の増加を招く という問題があった。 ( 3 ) そして更に大きな問題は、 電極と隔壁との間隙を、 弾性を有するバネ材のみで保持する可動機構を採 用しているため、 極板を可動とすることは可能であっても、 その機構上必 然的に、 電解面全体にわたり均一に保持しなければならない極間距離を、 維持できないことである。 このために可動機構によ り一見極間距離を小さ くすることが可能であっても、 実際には、 定常運転時における極間距離の 均一性を保持できないため、 総合的にみれば、 効果的に電解電圧を低減で きるものではなかった。 発明の開示
本発明は、 かかる問題を解決し、 電気抵抗が低く簡単でかつ安価な可動 機構によ り極間距離をできるだけ小さ く して電解電圧を大幅に低減できる 複極型イオン交換電解槽を提供することを目的と している。
また、 本発明は極板とイ オン交換膜との間隔が 0 . 1 〜 1 . 0 m mと し ても膜の損傷の危険性のない複極型ィォン交換電解槽を提供することを目 的とする。
本発明によ り、 第 1 に、 以下の発明が提供される。
陽極板と陽極背板とを間隔をおいてほぼ平行に配置し、 該陽極板と該陽 極背板との間に、 導電性の陽極支持部材を所定の間隔で配置してなる陽極 室枠と、 陰極板と陰極背板とを間隔をおいてほぼ平行に配置し、 該陰極板 と該陰極背板との間に、 導電性の陰極支持部材を所定の間隔で配置してな る陰極室枠とを、 その背板どう しを背中合わせに結合して室枠体と し、 こ れを陽ィォン交換膜を挟んで複数個配置してなる複極型ィォン交換膜電解 槽において、
( a ) 少なく と も前記陰極支持部材は、 前記陰極背板に固定され前記陰極 板に向かって立ち上がる給電リブ基体部と、 それに隣り合う給電リブ基体 部とによ り支持され、 前記陰極板に達するまで延伸する可撓体からなり、
( b ) 前記可撓体と前記陰極板とは可撓体の接合部を介して電気的に接続 されており、
( c ) 前記接合部を通じて前記陰極板から給電リブ基体部への給電が行わ れる と と もに、 前記可撓体の作用によ り前記陰極板を変位可能に支持する ようにしたことを特徴とする複極型ィォン交換膜電解槽。
本発明によ り、 第 2に、 以下の発明が提供される。
陽極板と陽極背板とを間隔をおいてほぼ平行に配置し、 該陽極板と該陽 極背板との間に、 導電性の陽極支持部材を所定の間隔で配置してなる陽極 室枠と、 陰極板と陰極背板とを間隔をおいてほぼ平行に配置し、 該陰極板 と該陰極背板との間に、 導電性の陰極支持部材を所定の間隔で配置してな る陰極室枠とを、 その背板どう しを背中合わせに結合して室枠体と し、 こ れを陽イオン交換膜を挟んで複数個配置してなる複極型イオン交換膜電解 槽において、
( a ) 少なく と も前記陽極支持部材は、 前記陽極背板に固定され前記陽極 板に向かって立ち上がる給電リブ基体部と、 それに隣り合う給電リブ基体 部とによ り支持され、 前記陽極板に達するまで延伸する可撓体からなり、
( b ) 前記可撓体と前記陽極板とは可撓体の接合部を介して電気的に接続 されており、
( c ) 前記接合部を通じて前記給電リブ基体部から陽極板への給電が行わ れると と もに、 前記可撓体の作用によ り前記陽極板を変位可能に支持する ようにしたことを特徴とする複極型ィオン交換膜電解槽。 図面の簡単な説明
図 1 : 本発明を実施するための複極型ィォン交換膜電解槽の室枠を陰極室 枠から見た正面図
図 2 : 図 1 の A— A線による室枠体の横断面をィォン交換膜およびガスケ ッ ト と共に示す図で、 陰極室内に可動機構を有さない従来の例であ る。
図 3 : 本発明の代表的な実施の形態を示す室枠体の部分横断面の模式図 図 4 : 導電性の板状金属チップと非導電性のスぺ一サを取り付けた場合を 示す室枠体の部分横断面の模式図
図 5 : 本発明の他の実施の形態を示す室枠体の部分横断面の模式図 図 6 : 本発明の他の実施の形態を示す室枠体の部分横断面の模式図 符号の説明
1 室枠下部
2 室枠上部
3 陽極電解液供給口
4 陽極電解液排出口
5 陰極電解液供給口
6 陰極電解液排出口
7 筒状体
9 複極電解槽用隔壁
1 0 陽極室枠
1 1 ' ィオン交換膜
1 2 ガスケッ ト 陰極室枠 陽極板
陽極背板
a 陽極支持部材 (リブ)
陰極板
陰極背板
a 陰極支持部材 (リブ)
陰極背板または隔壁板
陰極板
陽極
陽極背板または隔壁板
0 陽イオン交換膜
1、 1 0 1 ' 給電リブ基体部
2 給電リブ基体部と可撓体の接合部 (支持部) 3、 1 0 3 ' 可撓体または可撓性板状金属 5、 1 0 5 ' 可撓体上の接合部
9、 1 0 9 ' 可撓性板状金属の突出部
0 ' 陽極側の陽極支持部材 (M型給電リブ)3 ' M型給電リブの肩部
0 陰極側の M型給電リブ
3 陰極側の M型給電リブの肩部
0 陽極側め M型給電リブ
3 陽極側の M型リブの肩部
1 非導電性の材料で形成されたスぺーサ 2 0 5 板状金属チップ
p、 p ' 突出部の頂点
A 1、 A 1 ' 可撓性板状金属の幅
A 2 A 2 ' 板状金属の突出部以外の部分と陰極板の間隔 (突出部の 高さ)
A 3 A 3 ' 給電リブ基体部の高さ
A 4 M型リブの幅
A 5 陰極板と固定された給電リブ基体部との間隔
V d 板状金属と隔壁板との間に形成される閉空間
V u 板状金属と陰極板との間の空間 発明を実施するための最良の形態
以下、 図面を参照しながら本発明について詳細に説明する。
本発明が適用できる電解槽は単極型でも複極型でも よいが、 好ま しく は 複極型ィォン交換膜電解槽であって、基本的には図 2に示したのと同様に、 陽極板と陽極背板とを間隔をおいてほぼ平行に配置し、 該陽極板と該陽極 背板との間に、 導電性の陽極支持部材を所定の間隔で配置してなる陽極室 枠と、 陰極板と陰極背板とを間隔をおいてほぼ平行に配置し、 該陰極板と 該陰極背板との間に、 導電性の陰極支持部材を所定の間隔で配置してなる 陰極室枠とを、 その背板どう しを背中合わせに結合して室枠体と し、 これ を陽ィォン交換膜を挟んで複数個配置してなる複極型ィォン交換膜電解槽 である。 そして、 基本的な実施の形態は、 図 3に示したように、
( a ) 少なく と も上記陰極支持部材が、 陰極背板 9 0に固定され前記陰極 板 9 5 に向かって立ち上がる給電リブ基体部 1 0 1 と、 それに隣り合う給 電リブ基体部 1 0 1 とによ り支持され、 前記陰極板に達するまで延伸する 可撓体 1 0 3からなる ものである。 また、 1 0 2は、 給電リブ基体部と可 撓体の溶接等による接合部であって、 これは、 可撓体の給電リブ基体部に よる支持が行われる支持部でもある。
そして、 ( b ) 陰極板まで延伸した前記可撓体と陰極板とは、可撓体の接 合部 1 0 5 を介して電気的に接続されている。 ( c )この接合部 1 0 5 を通 して前記陰極板 9 5から前記給電リブ基体部 1 0 1へ電流が流れ、 また、 上記接合部は力が伝えられる機械的な接続点でもあるため、 陰極室内のガ スの発生などによ り、 前記陰極板に外力が印加された場合、 接合部 1 0 5 を起点と して、 前記可撓体 1 0 3力'、 例えば陰極板に対して垂直方向に動 いて前記陰極板を変位させ、 陽ィォン交換膜を損傷から保護する ものであ る。 なお、 可撓体 1 0 3が動く場合、 支持部 1 0 2、 1 0 2が変位の支点 となる。
本発明においてはこのよう に、 陰極支持部材を、 陰極背板に固定され陰 極板に向かって立ち上がる給電リブ基体部と、 それに隣り合う基体部とに よ り支持され、 陰極板に達するまで延伸する可撓体とから構成したことを 特徴とする。
すなわちこの構成によれば、固定された給電リブ基体部の基体部高さ( A 3 ) は一定であるため、 これによ り極間距離を基本的に一定値に保持しつ つ、 この基体部に支持された可揍体 (陰極板 9 5 と固定された給電リブ基 体部 1 0 1 との間隔 A 5 ) のみを、 外力の変動に応じて僅かに変位させる ことによ り、 極間距離を膜を損傷させない必要最小限の範囲で変化させ、 陽イオン交換膜を損傷から保護しうる。
可撓体はその上下方向と も電解面の上下端近く まで伸びている力 その 上下端においては開口や切り欠き等の適当な隙間が設けられていることが 好ま しい。
本発明のよ り具体的な可撓体の実施の形態と しては、 図 3に示したよ う に、 可撓体 1 0 3力?、 そのほぼ中央に少なく と も一つの突出部 1 0 9 を形 成した、 可撓性板状金属 1 0 3からなり、 この突出部の頂点 p を前記接合 部 1 0 5 とするものである。
可撓性板状金属 1 0 3 は、好ま しく は 0. 1 〜 1. 0 mmの板厚を有し、 その幅 A 1が 4〜 2 5 c mのものであり、 板状金属の突出部 1 0 9以外の 部分と陰極板との間隔 (言い換えれば突出部の高さ) A 2が 3〜 3 0 mm のものである。 可撓性板状金属と しては、 例えば板状の軟鋼、 ステン レス 鋼、 ニッケルおよびニッケル合金、 銅および銅合金等から選択され、 これ を上記形状になるように加工して使用する。
このよ うな可撓体と しての可撓性板状金属が、 複極型ィォン交換膜電解 槽の室枠を陰極室枠からみた正面図を示す図 1の陰極室内に装着されてい る状況をみるに、 本発明においては、 図の陰極支持部材 8 0 aカ 給電リ ブ基体部 1 0 1 に相当し、 可撓性板状金属が、 隣り合う給電リブ基体部に それぞれ支持されてなるものであるから、 8 0 a l と 8 0 a 2、 8 0 a 2 と 8 0 a 3、 8 0 a 3 と 8 0 a 4、 の間のそれぞれに装着されて いる。 すなわち実質的に陰極室内全体のほぼ全体にわたり、 可撓性扳状金 属が装着されていることになる。 図の陰極板 6 0は、 この可撓性板状金属 と電気的および機械的に接続されており、 陰極板は、 図の電解面全体にわ たり、 ほぼ均一に陽極板の方向 (紙面の裏側) に可動できるよう になって いる。 すなわち、 紙面手前に存在する陽イ オン交換膜に陰極板が接触した 場合は、 その押圧によ り、 可撓性板状金属が (紙面の裏側の) 陽極板の方 向に動いて陰極板を変位させて該押圧を緩和させ、 膜は損傷を受けること がない。 また、 可撓性金属に、 充分弾力性を持たせることによ り、 陰極板 と、 陽ィォン交換膜を介して対向している従来の固定化されている陽極板 との間で膜を強く挟み付けて、 膜を損傷させることもなく なる。
このよ う にして、 本発明の電解槽においては、 陰極板全面を、 陽イオン 交換膜に均一に接近させることが可能となるので、 極間距離を短縮でき、 電解電圧を大幅に低減することができる。
本発明の好ま しい実施の態様においては、 以上のごと く して、 陰極板と 陽イ オン交換膜との間隔を 0. 1 〜 2. 0 mm、 好ましく は 0. 1 〜 1 . 0 mmという極めて小さな範囲においてさえも設定することが可能となる, 本発明において陰極板と陽イオ ン交換膜との間隔は、 室枠周縁郡に装着 されているガスケッ ト 1 2の厚みを変更することによ り調節すること も可 能である し、 また、 板状金属の突出部 1 0 9の高さ A 2 を変更することに よつても調節可能である。
本発明において使用する可撓性板状金属の材質は、 式 ( 1 ) によ り選択 することが可能である。
δ (mm) = K X P ( k gZ c m2) ( 1 )
〔式中 <? : 可撓性板状金属の変位量 (mm)
K : 金属材質および形状によって定まる定数
P : 可撓性板状金属の突出部にかかる圧力 ( k gZ c m2)〕 ここで 3は、 突出部が押圧等の圧力 Pを受けたと きの変位量、 よ り正確 には弾性限界内での変形量であつて、 所定の金属材料および一定の形状の 可撓性金属であれば、 想定圧力を規定して、 それに対する変位量が算出で きることになる。 当然のことながら定数 Kの値が大きレゝものほど、 例えば よ り柔軟で可撓性の高いものほど、 僅かの圧力 Pを受けただけで容易に変 位する。
本発明においては、 陰極板の変位量は 1 0 mm以下であることが好ま し いので、 可撓性扳状金属の変位量が 0〜 1 0 mmになるよ うに、 ( 1 ) 金属 材料の種類の選択、 ( 2 ) 板厚、幅 A 1 および突出部の高さ A 2等の形状の 選択、 ( 3 ) 突出部へ印加される圧力の想定値 (すなわち許容圧力) 等の因 子をいろいろ変えて式 ( 1 ) によってシユミ レ一シヨ ンし; 最適な値を決 定することができる。 本発明において、 Kの値は 0 . 2 〜 2 0 0の範囲にあることが好ま しく、 4 〜 4 0の範囲にあることがさらに好ま しい。
本発明においては、 陰極板と陽ィォン交換膜との間に非導電性のスぺー サを配置し、 陰極板と膜との間隔が非常に小さい場合であっても、 両者が 直接接触しないよう にすることができる。 図 4 は、 この状態を示したもの であって、 2 0 1 は非導電性の材料で形成されたスぺーサを示す。
スぺ一ザと しては、 非導電性のものであれば基本的に使用することがで きる力'、 好ま しく は非導電性の樹脂やゴム (すなわち弾性体またはエラス トマ一) である。 このよう な樹脂と しては特に限定する ものではない力?、 例えばポリプロピレン、 ポリテ ト ラフルォロエチレン ( P T F Ε ) 等が挙 げられ、 また、 ゴムと しては、 ブチルゴム、 エチレン一プロピレンージェ ンゴム (E P D M ) 等が挙げられる。 樹脂やゴムは多孔体や発泡体であつ てもよい。 これらは板状、 シー ト状、 フィ ルム状、 繊維状、 球形等の適当 な形態で用いられる。 これらの形態のスぺ一サ 2 0 1 は、 基本的には陰極 板と陽イオン交換膜との間に配置する ものであり、 よ り詳細には、 可撓性 板状金属の突出部頂点 (先端) ρの上方にそれぞれ配置するのが最も好ま しい力 、突出部と突出部の間にそれぞれ配置しても よレ、。いずれの場合も、 このよ う にして配置されたスぺ一サは図 1 においては、 給電リブ基体部に 相当する陰極支持板 8 0 a l 、 8 0 a 2 , 8 0 a 3 · ' · のそれぞれの上 方か、 またはその間に設けられることになる。 なお、 スぺ一サは、 室枠の 上下方向に適当な間隔をもつて配置し、 線状に設けるのが望ましい。
スぺ—サは、 その硬度が、 硬度 D 4 0 〜 D 8 0 ( A S T M D 2 2 4 0 の Dスケ一ル試験方法) を有する樹脂等で形成されたものであっても よい し、 あるいは膜の硬度よ り も柔らかいゴム等で形成されていてもよい。 ここで特にゴム等のスぺ一サを用いるのは膜のク リ一プによる変形の防 止のためである。 すなわち、 たとえば非導電性のスぺーサを介して陰極板 を陽ィオン交換膜に押しつける場合、 両者はスぺーサの存在によ り直接接 触しないものの、 その押しつけ圧があま り強い状態で長期間運転が行われ ると、 膜そのものが該押しつけ圧のためにクリープ変形を起こ し、 該変形 部分で膜内部のポリマ一が化学的な劣化を生じ、 ついには膜にピンホール が形成されてしまう ことがあり うる。
この場合、 膜の硬度よ り柔らかい非導電性のゴムやエラス トマ一のスぺ —サを用いると、 たとえ上記のごとき押しつけ圧が生じても、 スぺーサ自 身がク ッシ ョ ン材と して作用し、 適宜変形するために、 押しつけ圧が容易 に緩和され、 膜のクリ一プ変形が効果的に防止できるのである。
スぺ一ザの厚みは 0 . 1 〜 1 . 0 m mであることが望ま しい。 なお、 硬 度 D 4 0 〜 D 8 0のスぺ一サを装着した場合、 その厚み分だけ運転中も ィ オン交換膜と陰極板の間隔が維持されるのに対して、 膜の硬度よ り柔らか い弾性体からなるスぺ一ザであれば運転中は、 スぺ一ザの厚みよ り も若干 薄い間隔で膜と陰極板との距離が維持されることになる。
また、 本発明においては、 好ま しく は、 突出部頂点 pの接合部 1 0 5 と 陰極板 9 5 との接続が、 両者間に挿入して固着、 すなわち挿着された板状 金属チップ 2 0 5 を介して行われるものである。
この板状金属チップ 2 0 5は、 軟質ステンレス鋼、 二ッケル、 銅等から なり突出部頂点の接合部および陰極板に溶接等の手段で固着され、 その接 合部を保護しているのである。
すなわち、 電解槽を長期間運転する と陰極性能が低下するので、 数年毎 に、 陰極板を電解槽から取り外し、 新しい陰極板を取り付ける必要性が生 じる。 も し、 陰極板と可撓性板状金属の突出部頂点が直接溶接等によ り接 合されていると、 陰極板を可撓性板状金属から切り離す作業の際、 板状金 属の頂点 (先端部) は、 形状的にも特に機械的な強度が弱い部分であるか ら、 少しの力であっても容易にこの部分から折れたり割れたりする等の機 械的な損傷を受けやすい。 その場合は、 可撓性板状金属そのものを取り替 えなければならない事態が生じる。 板状金属チップを突出部頂点の接合部 と陰極板との間に揷着するこ とによ り 、 陰極板を可撓性板状金属から切り 離す際に加える力は、 直接板状金属チップに集中し、 板状金属の頂点には 加わらないことになるので、 可撓性板状金属の突出部頂点が損傷を受ける ことは殆ど無くなるのである。
板状金属チップの厚みは 0. 5〜 3. 0 mmが好ま しい。 また、 幅につ いては、 3〜 1 5 mmのものを室枠上下方向に配置し、 かつ、 陰極板上の 電流分布を考慮すると、 室枠上下方向の高さの 1ノ 2以上の長さであるこ とが好ましい。
図 5 は本発明の別の実施の形態を示している。 すなわち、 給電リブ基体 部 1 0 1 ' と可撓体 1 0 3 ' 、 成形加工等で一体に形成されている場合 である。
よ り具体的には、 給電リブ基体部 1 0 1 ' と可撓性板状金属 1 0 3 ' が 断面凸字状に成形加工等で一体に形成されており、 かつ、 この可撓性板状 金属 1 0 3 ' は陰極背板(隔壁板) 9 0 との問で閉空間を形成するよ う に、 これに溶接等で電気的に接合されている。
この可撓性板状金属 1 0 3 ' は、 ほぼ中央の突出部 1 0 9 ' の頂点 p ' を接合部 1 0 5 ' と して陰極板 9 5 に電気的 · 機械的に接続されており、 図 3 に示した板状金属 1 0 3 と同様の可動性を有し、 突出部 1 0 9 ' にお いて陰極板 9 5 を、 陽イオン交換膜を損傷させるこ とな く 、 これに充分近 接させることができる。
このよ う に一体に形成する場合は、 好ま しく は、 給電リブ基体部に相当 する
部'分は、 よ り剛性を高くするため、 よ り厚い断面積を有するよう に形成し て固定機能を確保し、 可撓性板状金属に相当する部分はその板厚みを薄く し、 可撓性を保持しうるようにすることが好ましい。
この可撓性板状金属の厚み、 幅 A 1 '、 陰極板と板状金属との間隔 (突出 部の高さ) A 2 ' は、 図 3の可撓性扳状金属 1 0 3の厚み、 幅 A 1、 陰極 板と板状金属との間隔 A 2の数値と同様にして扱うことが可能である。
この実施の形態においては、 板状金属 1 0 3 ' は室枠内の電解液の循環 を促進させるためのダウンカマーの機能を同時に持たせることができる。 すなわち板状金属 1 0 3 ' の室枠上部と下部にそれぞれ電解液の流通用の 開口部や切り欠きを設けて、 板状金属 1 0 3 ' と隔壁板 9 0 との間に形成 される閉空間 V dは液の下降流が生じる下降流路と し、 一方、 板状金属 1 0 3 'と陰極板 9 5 との間の空間 V u は液とガスの上昇流路となっており、 両者は上記開口や切り欠き部を通って連通し、 連続的な循環流路を形成す るのである。
一方、 ここで対応する陽極側の陽極支持部材 (給電リブ) 1 1 0 ' は、 断面 M型の形状であって、 該 M型給電リブ 1 1 0 ' は、 陽極背板 (隔壁板) 9 9 との間で閉空間を形成するよ う に、 これに溶接等で電気的に固着され ている。 なお、 M型給電リブ 1 1 0 ' は、 その両側の肩部 1 1 3 ' におい て陽極 9 7に溶接等で固定され、 陽極室を構成している。
図 6は本発明のさらに別の実施の形態を示している。 陰極側の給電リブ 1 2 0は断面 M型の形状のものを用い、 この M型給電リブは隔壁板 9 0 と の間で閉空間を形成するよう に、これに溶接等で電気的に固着されている。 可撓性板状金属 1 0 3は、 隣り合う給電リブに支持されるのである力 この場合は、 隣り合う Μ型給電リブの対向する肩部 1 2 3 において溶接等 で固定されている。 なお可揍性板状金属 1 0 3が、 そのほぼ中央部の突出 部 1 0 9の頂点 ρ を接合部 1 0 5 と し、 これを介して陰極板 9 5 に電気 的 · 機械的に接続されている態様は、 図 3 〜 4 について '述べたところと同 棣である。 さらに、 この板状金属の厚み、 幅 A l 、 陰極板と板状金属との間隔 (突 出部の高さ) A 2 は、 図 3の可撓性板状金属 1 0 3の厚み、 幅 A l、 陰極 板と板状金属との間隔 A 2の数値と同様に扱う ことが可能である。 なお、 M型給電リブの幅 A 4は、 5 0 〜 7 0 m m程度であることが好ましい。 一方、 陽極側は、 同じく M型の給電リブ 1 3 0力?、 陽イ オン交換膜 1 0 0を介して、 陰極側の給電リ ブ 1 2 0 と対向するよ うに配設されており、 すでに図 5について述べたと同様に、 該 M型給電リブ 1 3 0は、 陽極背板 (隔壁板) 9 9 との間で閉空間を形成するよう に、 これに溶接等で電気的 に固着されており、 また、 M型給電リブ 1 3 0は、 その両側の肩部 1 3 3 において、 陽極 9 7に溶接等で固定され、 陽極室を構成している。
以上の説明は、 すべて、 陰極支持部材が、 陰極背板に固定され陰極板に 向かって立ち上がる給電リブ基体部と、 それに隣り合う給電リブ基体部と によ り支持され、 陰極板に達するまで延伸する可撓体からなる場合につい て述べたが、 容易に理解されるよ う に、 陽極支持部材が、 陽極背板に固定 され陽極板に向かって立ち上がる給電リブ基体部と、 それに隣り合う給電 リブ基体部とによ り支持され、 陽極板に達するまで延伸する可撓体からな るよ う にしても よいことは勿論である。その場合は、以上の説明において、 可撓体を形成すべき陰極支持部材を陽極支持部材と、 可撓体が接合すべき 陰極板を陽極板と読替えて理解すればよいので、 詳しい説明は省略する。 以下、 実施例をあげて本発明を具体的に説明する力 ί、 本発明の技術的範 囲がこれに限定されるものではない。
〔実施例 1〕
陽極および陰極は、 それぞれの高さが 1 2 0 0 m m , 横幅が 2 4 0 0 m m、 有効電解面積が 2 . 8 8 m 2 の大きさを持っており、 陽極にはペルメ レッ ク電極 (株) 製の D S E (板厚み 1 . 5 m mのエキスパン ド'メ ッ シュ) を用い、 陰極には扳厚み 1 . 2 m mのニッケル製エキスパン ドメ ッ シュを 基板と し、 これに活性化されたラネ一ニッケル合金をコーティ ングしたも のを用いた。 陽極背板にはチタン製のプレー トを使用して、 陰極背板には ニッケル製のプレー トを使用した。 これらの背板どう しを溶接で取り付け 隔壁板を構成した。
陽極側の給電リブには、厚み 2. 0 m m、幅 3 5 m mのチタ ン板を用い、 給電リブは室枠の高さ方向に、 等間隔で 1 8本を、 背板および陽極に溶接 で固定し、 陽極室を構成した。 また陰極例の給電リブには、 厚み 1 . 0 m m、 幅 3 0 mmのニッケル板を用い、 給電リブは室枠の高さ方向に等間隔 で 1 8本を背板に溶接で固定した。
そして図 3 に示したように、 中央部に突出部を持つ可撓性板状金属 1 0 3 と して板厚み 0. 5 mmで幅 A 1力? 1 4 O mm、 突出部 1 0 9の高さ A 2が 1 0 mm、 陰極板 9 5 と固定された給電リブ基体部 1 0 1 との間隔 A 5が 4 m mになるよう に加工したニッケル板を用いた。 この板状金属の両 端を、 陰極給電リブに溶接で取り付け、 また突出部の頂点 p を接合部 1 0 5 と して陰極板に同じく溶接で取り付けて陰極室枠を構成した。
このよ うな陽極室および陰極室からなる室枠体と陽ィォン交換膜を図 2 に示すよう にガスケッ ト 1 2 を挟んで交互に並べ、 両側から鉄製の縮め具 で、 膜と陰極板との距離が 1 mm、 可撓性板状金属の変位量が最大 2 mm になるよう に締め付けて複極型ィォン交換膜電解槽を組み立てた。 なお、 イオン交換膜には、 フレミオン F 8 9 3 (旭硝子株式会社登録商標) を使 用した。
陽極室には出口の食塩濃度が 2 l O gZ l になるよう に 3 0 0 gZ l の 食塩水が室枠下部から供給され、 陰極室には出口の苛性ソ―ダ水溶液濃度 が 3 2重量%になるよ うに希釈苛性ソ一ダ水溶液を室枠下部から供給した。 電解温度 9 0 °C、 電流密度 6 k AZm2 で電解試験を実施した。 その結 果電解電圧は 3. 2 5 Vを示した。 〔実施例 2〕
陽極および陰極は、 それぞれの高さが 1 2 0 0 mm, 横幅が 2 4 0 0 m m、 有効電解面積が 2. 8 8 m2 の大きさを持っており、 陽極にはペルメ レッ ク電極 (株) 製の D S E (板厚み 1 . 5 m mのエキスパン ドメ ッ シュ) を用レヽ陰極には板厚み 1. 2 m mのニッケル製エキスパン ドメ ッシュに、 活性化されたラネ一ニッケル合金をコ一ティ ングしたものを用いた。 陽極 背板にはチタン製のプレー ト を使用し、 陰極背板にはニッケル製のプレー トを使用した。 これらの背板どう しを溶接で取り付け隔壁板を構成した。 図 5 に示されるよう に、 陰極室側には、 中央部に突出部をもつニッケル 製の可撓性板状金属 1 0 3 ' を室枠高さ方向に陰極背板 9 0に溶接で取り 付けた。 板状金属 1 0 3 ' の板厚みは 0. 5 m m、 幅 A 1 ' は 1 6 0 m m、 陰極板 9 5 と板状金属 1 0 3, との間隔 A 2, 力 1 0 m m、 背板 9 0から 突出部の頂点 p, までの高さが 4 0 m mのものを等間隔で電解面に 1 2本 配置した。 陰極板は、 板状金属 1 0 3 ' の突出部 1 0 9 ' の頂点を接合部 1 0 5 ' と してこれに溶接で取り付けて固定した。
陽ィォン交換膜 1 0 0 と陰極板 9 5 との間で、この突出部の頂点 p ' (す なわち接合部 1 0 5 ') に相当する位置に、 P T F E樹脂で成形された厚み 0. 5 mm、 幅 1 0 mm、 長さ 1 1 5 0 mmのスぺ一サ 2 0 1 ' を配置し た。
一方、 陽極室側には図 5 に示されるよう に、 M型状に成形加工されたチ タ ン製の給電リブ 1 1 0 ' を陽極背板 9 9に溶接で取り付けた。 この M型
7F口電リブ 1 1 0 ' は板厚み 2. 0 mm、 幅 1 6 0 mm、 陽極背板 9 9から
M型給電リブの肩部 1 1 3 ' の先端までの高さが 3 5 mmのものを用い、 この肩部の先端で陽極板 9 7を溶接して固定した。
このよ うな陽極室および陰極室からなる室枠体と陽イオン交換膜をガス ケッ ト 1 2 を挟んで交互に並べ、 両側から鉄製の締め具で、 可撓性板状金 属の変位量が最大 2 mmになるよ う に締め付けて複極型ィォン交換膜電解 槽を組み立てた。なお、膜と陰極板の間隔は P T F E製スぺ一サによ り 0. 5 m mに維持されるよう にした。 陽イオン交換膜にはフレミ オン F 8 9 3 (旭硝子株式会社登録商標) を使用した。
陽極室には出口の食塩濃度が 2 1 O g/ 1 になるよう に 3 0 0 g/ l の 食塩水が室枠下部から供給され、 陰極室には出口の苛性ソ―ダ水溶液濃度 が 3 2重量%になるよう に希薄苛性ソーダ水溶液を室枠下部から供給した c 電解温度 9 0 °C、 電流密度 6 k AZm2 で電解試験を実施した。 その結 果、 電解電圧は 3. 1 6 V、 電流効率 9 6. 3 %を示した。 1 5 0 日間運 転を行い、 電解槽を解体したところ、 異常は認められなかった。
〔実施例 3〕
陽極板、 陰極板および隔壁構造は実施例 1 と同様のものを用いた。 陰極 室内には図 6 に示されるよう に、 成形加工された二ッケル製の M型給電リ ブ 1 2 0 を室枠高さ方向に溶接で背板に取り付けた。 M型給電リブ 1 2 0 は板厚み 1 . 0 mm、 幅 A 4が 6 0 mm, 背板から肩部 1 2 3の先端まで の距離 A 3が 3 0 mmのものを使用し、電解面に等間隔で 1 2本配置した。 一方可撓性板状金属 1 0 3の両端を、 隣り合う M型給電リ ブの、 対向する 肩部 1 2 3の先端とそれぞれ溶接で固定した。 可撓性板状金属 1 0 3 と し ては実施例 1 で使用したものと同様のものを使用し、 突出部 1 0 9の頂点 Pを接合部 1 0 5 と して、 陰極板に溶接によ り固定 ·接続した。 また実施 例 2 と同様にして、 膜と陰極板の間に、 スぺ一サ 2 0 1 を配置した。 用い たスぺーサは実施例 2で使用したものと同様のものである。
また陽極室内には、 成形加工されたチタン製の M型給電リブ 1 3 0 を陰 極の給電リブ 1 2 0 と対向するよ う に室枠高さ方向に溶接で背板 9 9 に固 定した。 M型給電リブ 1 3 0は板厚み 2. 0 m m、 幅が 6 0 m m、 背板か ら肩部 1 3 3の先端までの距離が 3 5 mmのものを使用し、 この肩部 1 3 3の先端で陽極板 9 7を溶接 · 固定した。
このよ う な陽極室および陰極室からなる室枠体と陽ィォン交換膜をガス ケッ ト 1 2を挟んで交互に並べ、 両側から鉄製の締め具で、 可撓性板状金 属の変位量が最大 3 mmになるよ う に締め付けて複極型ィオン交換膜電解 槽を組み立てた。 なお、 膜と陰極板の間隔は、 実施例 2 と同様に、 P T F E製スぺーサによ り 0. 5 mmに維持されるよう にした。
陽極室には出口の食塩濃度が 2 l O gZ l になるよう に、 3 0 0 gZ l の食塩水が室枠下部から供給され、 陰極室には出口の苛性ソ一ダ水溶液濃 度が 3 2重量%になるよう に希薄苛性ソーダ水溶液を室枠下部から供給し た。
電解温度 9 0 °C、 電流密度 6 k AZm2 で電解試験を実施した。 その結 果電解電圧は 3. 1 6 V、 電流効率は 9 6. 3 %を示した。 1 5 0 日間運 転を行い、 電解槽を解体したところ、 異常は認められなかった。
〔比較例 1〕
可撓性板状金属を使用せず、 陰極リ ブに直接陰極板を溶接で取り付け、 膜と陰極板の間隔を 2. 5 mmにした以外は実施例 1 と同様にして電解槽 を構成した。 この電解槽を使用して実施例 1 と同様の条件で食塩電解を実 施した結果、 電解電圧は 3. 3 9 V、 電流効率は 9 6. 2 %であった。 産業上の利用可能性
本発明は、 陰極室内の陰極支持部材を、 給電リブ基体部と、 これに支持 された可撓性板状金属等によ り構成することによ り 、 安全で簡便な方法に よ り 、 陽極と陰極との極間距離の短縮を実現したものであり、 膜の損傷の 危険性を回避しつつ、 電解電圧の大幅な低減を可能と したものである。
本発明によれ'ば、 4 k AZm2 以上という高い電解電流密度でも安定し た運転ができ、 水酸化アルカ リ水溶液の製造等に効果的に適用できる、 高 い電流効率と低い電解電圧を達成した複極型ィオン交換膜電解槽を提供さ れる

Claims

請求の範囲
1 . 陽極板と陽極背板と を間隔をおいてほぼ平行に配置し、 該陽極扳 と該陽極背板との間に、 導電性の陽極支持部材を所定の間隔で配置してな る陽極室枠と、 陰極板と陰極背板とを間隔をおいてほぼ平行に配置し、 該 陰極板と該陰極背板との間に、 導電性の陰極支持部材を所定の間隔で配置 してなる陰極室枠とを、 その背板どう しを背中合わせに結合して室枠体と し、 これを陽ィォン交換膜を挟んで複数個配置してなる複極型ィォン交換 膜電解槽において、
( a ) 少なく と も前記陰極支持部材は、 前記陰極背板に固定され前記陰極 板に向かって立ち上がる給電リブ基体部と、 それに隣り合う給電リブ基体 部とによ り支持され、 前記陰極板に達するまで延伸する可撓体からなり、
( b ) 前記可撓体と前記陰極板とは可撓体の接合部を介して電気的に接続 されており、
( c ) 前記接合部を通じて前記陰極板から給電リブ基体部への給電が行わ れるとと もに、 前記可撓体の作用によ り前記陰極板を変位可能に支持する ようにしたことを特徴とする複極型ィォン交換膜電解槽。
2 . 可撓体が可撓性板状金属からなり、 そのほぼ中央に少なく と も一 つの突出部を形成し、 この突出部の頂点を前記接合部とする請求項 1記載 の複極型ィォン交換膜電解槽。
3 . 可撓性板状金属が厚み 0 . 1 〜 1 . 0 m m、 幅が 4 〜 2 5 c mの ものであり、 板状金属の突出部以外の部分と陰極板との間隔が 3 〜 3 0 m mである請求項 2記載の複極型ィォン交換膜電解槽。
4 . 突出部頂点の接合部と陰極板との接続が、 両者間に揷着された板 状金属チップを介して行われる請求項 2 または 3記載の複極型ィォン交換 膜電解槽。
5. 陰極板の変位量が 1 0 mm以下である請求項 2〜 4の何れかに記 載の複極型ィオン交換膜電解槽。
6. 可撓性板状金属の弾性力が式 ( 1 ) で表され、 Kが 0. 2〜 2 0 0の範囲にある請求項 2〜 5の何れかに記載の複極型ィォン交換膜電解槽 c δ (mm) = K X P ( k g / c m2 ) ( 1 )
〔式中 <? : 可撓性板状金属の変位量 (mm)
K : 金属材質および形状によって定まる定数
P : 可撓性板状金属の突出部にかかる圧力 ( k gZ c m2)〕
7. 陰極板と陽ィォン交換膜との間に非導電性のスぺ一サを配置し、 前記陰極板と陽ィオン交換膜が直接接触しないよう にした請求項 2〜 6の いずれかに記載の複極型イオン交換膜電解槽。
8. スぺーザが硬度 D 4 0〜 D 8 0 (A S TM D 2 2 4 0の Dスケ —ル試験方法) を有する請求項 7記載の複極型ィオン交換膜電解槽。
9. 陰極板と陽イオン交換膜との間隔が 0. 1〜 1. 0 mmである請 求項 1〜 8の何れかに記載の複極型ィォン交換膜電解槽。
1 0. 陽極板と陽極背板とを間隔をおいてほぼ平行に配置し、 該陽極 板と該陽極背板との間に、 導電性の陽極支持部材を所定の間隔で配置して なる陽極室枠と、 陰極板と陰極背板とを間隔をおいてほぼ平行に配置し、 該陰極板と該陰極背板との間に、 導電性の陰極支持部材を所定の間隔で配 置してなる陰極室枠とを、 その背板どう しを背中合わせに結合して室枠体 と し、 これを陽ィォン交換膜を挟んで複数個配置してなる複極型ィオン交 換膜電解槽において、
( a ) 少なく と も前記陽極支持部材は、 前記陽極背板に固定され前記陽極 板に向かって立ち上がる給電リブ基体部と、 それに隣り合う給電リブ基体 部と'によ り支持され、 前記陽極板に達するまで延伸する可撓体からなり、
( b ) 前記可撓体と前記陽極板とは可撓体の接合部を介して電気的に接続 されており、
( c ) 前記接合部を通じて前記給電リ ブ基体部から陽極板への給電が行わ れる と と もに、 前記可撓体の作用によ り前記陽極板を変位可能に支持する ようにしたことを特徴とする複極型ィォン交換膜電解槽。
PCT/JP1999/007283 1998-12-25 1999-12-24 Multi-pole ion exchange membrane electrolytic bath WO2000039365A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AT99961371T ATE264929T1 (de) 1998-12-25 1999-12-24 Bipolare ionenaustauschermembran-elektrolysezelle
EP99961371A EP1067216B1 (en) 1998-12-25 1999-12-24 Bipolar type ion exchange membrane electrolytic cell
DE69916595T DE69916595T2 (de) 1998-12-25 1999-12-24 Elektrolysezelle mit einer Ionenaustauschmembran vom bipolaren Typ
US09/622,990 US6495006B1 (en) 1998-12-25 1999-12-24 Bipolar ion exchange membrane electrolytic cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP10/376482 1998-12-25
JP10376482A JP2000192276A (ja) 1998-12-25 1998-12-25 複極型イオン交換膜電解槽

Publications (1)

Publication Number Publication Date
WO2000039365A1 true WO2000039365A1 (en) 2000-07-06

Family

ID=18507212

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/007283 WO2000039365A1 (en) 1998-12-25 1999-12-24 Multi-pole ion exchange membrane electrolytic bath

Country Status (8)

Country Link
US (1) US6495006B1 (ja)
EP (1) EP1067216B1 (ja)
JP (1) JP2000192276A (ja)
CN (1) CN1166819C (ja)
AT (1) ATE264929T1 (ja)
DE (1) DE69916595T2 (ja)
ID (1) ID25785A (ja)
WO (1) WO2000039365A1 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO20030763L (no) 2002-02-20 2003-08-21 Chlorine Eng Corp Ltd Ionebyttemembranelektrolysator
JP3807676B2 (ja) * 2002-02-20 2006-08-09 クロリンエンジニアズ株式会社 イオン交換膜電解槽
TWI255865B (en) * 2002-11-27 2006-06-01 Asahi Kasei Chemicals Corp Bipolar, zero-gap type electrolytic cell
DE10347703A1 (de) * 2003-10-14 2005-05-12 Bayer Materialscience Ag Konstruktionseinheit für bipolare Elektrolyseure
DE102005003527A1 (de) * 2005-01-25 2006-07-27 Uhdenora S.P.A. Elektrolysezelle mit erweiterter aktiver Membranfläche
CA2664642C (en) * 2006-09-29 2015-02-17 Uhdenora S.P.A. Electrolysis cell with an electrode having multiple curved sections
US9194048B2 (en) * 2010-03-23 2015-11-24 Honda Motor Co., Ltd. Electrochemical device
JP5945154B2 (ja) 2012-04-27 2016-07-05 ティッセンクルップ・ウーデ・クロリンエンジニアズ株式会社 イオン交換膜電解槽
CN103114299A (zh) * 2013-02-08 2013-05-22 大连交通大学 由硼砂制取硼酸的电解装置及方法
DE102018209520A1 (de) * 2018-06-14 2019-12-19 Thyssenkrupp Uhde Chlorine Engineers Gmbh Elektrolysezelle
CN109267087B (zh) * 2018-09-30 2024-01-09 福建浩达智能科技股份有限公司 一种复极式离子膜电解槽
CN109355675A (zh) * 2018-12-17 2019-02-19 青岛双瑞海洋环境工程股份有限公司 适用于含氯离子液体的电解槽
JP7202759B2 (ja) * 2019-03-18 2023-01-12 旭化成株式会社 弾性マット及び電解槽
DE102020206448A1 (de) * 2020-05-25 2021-11-25 Siemens Aktiengesellschaft Vorrichtung zum Befestigen einer Elektrode
DE102020206449A1 (de) * 2020-05-25 2021-11-25 Siemens Aktiengesellschaft Verfahren zum Befestigen einer Elektrode
US11390956B1 (en) * 2021-06-01 2022-07-19 Verdagy, Inc. Anode and/or cathode pan assemblies in an electrochemical cell, and methods to use and manufacture thereof
CN114438517A (zh) * 2022-02-17 2022-05-06 蓝星(北京)化工机械有限公司 电解装置及复极框结构

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57200578A (en) * 1981-06-02 1982-12-08 Asahi Glass Co Ltd Electrolytic cell
JPH01316482A (ja) * 1988-05-05 1989-12-21 Metallges Ag 電解装置
JPH08100286A (ja) * 1994-09-30 1996-04-16 Asahi Glass Co Ltd 複極型イオン交換膜電解槽
JPH08100287A (ja) * 1994-09-30 1996-04-16 Asahi Glass Co Ltd 複極型イオン交換膜電解槽

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3873437A (en) * 1972-11-09 1975-03-25 Diamond Shamrock Corp Electrode assembly for multipolar electrolytic cells
US3872437A (en) 1972-12-12 1975-03-18 Robertshaw Controls Co Supervisory control system
GB1581348A (en) * 1976-08-04 1980-12-10 Ici Ltd Bipolar unit for electrolytic cell
IT1163737B (it) * 1979-11-29 1987-04-08 Oronzio De Nora Impianti Elettrolizzatore bipolare comprendente mezzi per generare la ricircolazione interna dell'elettrolita e procedimento di elettrolisi
FI72150C (fi) * 1980-11-15 1987-04-13 Asahi Glass Co Ltd Alkalimetallkloridelektrolyscell.
DE3132947A1 (de) * 1981-08-20 1983-03-03 Uhde Gmbh, 4600 Dortmund Elektrolysezelle
US4923582A (en) * 1982-12-27 1990-05-08 Eltech Systems Corporation Monopolar, bipolar and/or hybrid memberane cell
JPS59133384A (ja) * 1983-01-19 1984-07-31 Toyo Soda Mfg Co Ltd 電解槽
US4561959A (en) * 1983-12-09 1985-12-31 The Dow Chemical Company Flat-plate electrolytic cell
JP3110551B2 (ja) * 1992-04-30 2000-11-20 クロリンエンジニアズ株式会社 電解槽
JPH11106977A (ja) 1997-09-30 1999-04-20 Asahi Glass Co Ltd 複極型イオン交換膜電解槽

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57200578A (en) * 1981-06-02 1982-12-08 Asahi Glass Co Ltd Electrolytic cell
JPH01316482A (ja) * 1988-05-05 1989-12-21 Metallges Ag 電解装置
JPH08100286A (ja) * 1994-09-30 1996-04-16 Asahi Glass Co Ltd 複極型イオン交換膜電解槽
JPH08100287A (ja) * 1994-09-30 1996-04-16 Asahi Glass Co Ltd 複極型イオン交換膜電解槽

Also Published As

Publication number Publication date
CN1292043A (zh) 2001-04-18
EP1067216A1 (en) 2001-01-10
JP2000192276A (ja) 2000-07-11
US6495006B1 (en) 2002-12-17
ATE264929T1 (de) 2004-05-15
DE69916595T2 (de) 2005-04-28
DE69916595D1 (de) 2004-05-27
CN1166819C (zh) 2004-09-15
EP1067216A4 (en) 2002-08-14
ID25785A (id) 2000-11-02
EP1067216B1 (en) 2004-04-21

Similar Documents

Publication Publication Date Title
CN111433391B (zh) 碱性水电解用膜-电极-垫片复合体
US4663003A (en) Electrolysis cell
WO2000039365A1 (en) Multi-pole ion exchange membrane electrolytic bath
KR101643202B1 (ko) 전기 분해 공정을 위한 기본 셀 및 관련 모듈형 전기 분해 장치
KR890003860B1 (ko) 멀티 셀 전해조
US6841047B2 (en) Electrolysis cell, in particular for the electrochemical preparation of chlorine
NZ202496A (en) Electrolytic cell electrode:foraminate grid bonded to pips on conductive sheet
CA1212354A (en) Electrolytic cell of the filter press type
AU777533B2 (en) Electrode structure
CA1189022A (en) Electrode with support member and elongated members parallel thereto
EP0159138B1 (en) Electrode and electrolytic cell
EP0443430B1 (en) Monopolar ion exchange membrane electrolytic cell assembly
US7363110B2 (en) Gasket with curved configuration at peripheral edge
US4519888A (en) Electrolytic cell
KR860001501B1 (ko) 전극소자 및 그 제조방법
EP0118973B1 (en) Electrolytic cell
JPH0324287A (ja) フィルタプレス型の電解装置用フレームユニットとフィルタプレス型の電解装置
JP3212318B2 (ja) 単極型イオン交換膜電解槽
JP3069370B2 (ja) 電解槽
JP2023062408A (ja) 電解槽

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99803267.0

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN ID IN US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: IN/PCT/2000/244/KOL

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 09622990

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1999961371

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1999961371

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1999961371

Country of ref document: EP