[go: up one dir, main page]

WO2001098199A1 - Microdispositif a structure multicouche et son procede de fabrication - Google Patents

Microdispositif a structure multicouche et son procede de fabrication Download PDF

Info

Publication number
WO2001098199A1
WO2001098199A1 PCT/JP2001/005242 JP0105242W WO0198199A1 WO 2001098199 A1 WO2001098199 A1 WO 2001098199A1 JP 0105242 W JP0105242 W JP 0105242W WO 0198199 A1 WO0198199 A1 WO 0198199A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin layer
active energy
defective
energy ray
defective portion
Prior art date
Application number
PCT/JP2001/005242
Other languages
English (en)
French (fr)
Inventor
Takanori Anazawa
Atsushi Teramae
Original Assignee
Kawamura Institute Of Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawamura Institute Of Chemical Research filed Critical Kawamura Institute Of Chemical Research
Priority to AU2001274558A priority Critical patent/AU2001274558A1/en
Priority to KR1020027017213A priority patent/KR100739515B1/ko
Priority to US10/297,625 priority patent/US7220334B2/en
Priority to EP01941105A priority patent/EP1295846A4/en
Priority to CA2412061A priority patent/CA2412061A1/en
Publication of WO2001098199A1 publication Critical patent/WO2001098199A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/10Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material
    • B32B3/18Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material characterised by an internal layer formed of separate pieces of material which are juxtaposed side-by-side
    • B32B3/20Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material characterised by an internal layer formed of separate pieces of material which are juxtaposed side-by-side of hollow pieces, e.g. tubes; of pieces with channels or cavities
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0093Microreactors, e.g. miniaturised or microfabricated reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502707Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the manufacture of the container or its components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • B29C64/129Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
    • B29C64/135Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00783Laminate assemblies, i.e. the reactor comprising a stack of plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00819Materials of construction
    • B01J2219/00824Ceramic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00819Materials of construction
    • B01J2219/00824Ceramic
    • B01J2219/00826Quartz
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00819Materials of construction
    • B01J2219/00837Materials of construction comprising coatings other than catalytically active coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00891Feeding or evacuation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/12Specific details about manufacturing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0864Configuration of multiple channels and/or chambers in a single devices comprising only one inlet and multiple receiving wells, e.g. for separation, splitting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0874Three dimensional network
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0887Laminated structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0406Moving fluids with specific forces or mechanical means specific forces capillary forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/06Valves, specific forms thereof
    • B01L2400/0622Valves, specific forms thereof distribution valves, valves having multiple inlets and/or outlets, e.g. metering valves, multi-way valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/06Valves, specific forms thereof
    • B01L2400/0633Valves, specific forms thereof with moving parts
    • B01L2400/0638Valves, specific forms thereof with moving parts membrane valves, flap valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0072Roughness, e.g. anti-slip
    • B29K2995/0073Roughness, e.g. anti-slip smooth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/756Microarticles, nanoarticles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor

Definitions

  • the present invention relates to a microfluidic device having a microfluidic channel therein, a microreaction device (microreactor) used in a wide field such as chemistry, biochemistry, or physical chemistry, and an integrated DNA analysis device.
  • a microreaction device used in a wide field such as chemistry, biochemistry, or physical chemistry
  • an integrated DNA analysis device Useful as microelectrophoresis devices and microchromatography devices, with microscopic cavities inside.For example, structures such as flow channels, reaction vessels, electrophoresis rams, membrane separation mechanisms, and sensors are formed in members.
  • the present invention relates to a method for producing a microphone opening device such as a microanalysis device, and a microdevice obtained by the method.
  • the present invention has a laminated structure having an active energy ray-curable resin layer, the active energy ray-curable resin layer has a resin defect portion in the layer, and a plurality of resin layers are laminated,
  • This microdevice has a thin capillary channel which penetrates each layer through each layer and communicates with each other, and further has a space to be a reaction layer, a diaphragm type valve and a valve structure.
  • the microphone mouth depeice of the present invention comprises an active energy linear curable composition containing a hydrophobic active energy ray polymerizable compound (a) and an amphiphilic polymerizable compound (b) copolymerizable therewith. It is a microphone opening device, which is composed of an oily layer and does not easily absorb biological components.
  • an active energy ray-curable resin layer is formed on a coating support, and then the active energy ray-curable resin layer having a resin defect portion formed by patterning exposure and development is semi-cured. Layered with other members by irradiation with active energy rays, adhered and cured with other members again by irradiation with active energy rays, and removed the coating support before, after, or during the irradiation of active energy rays again, microphone opening
  • the present invention relates to a device manufacturing method. d stomach a landscape technology
  • Thin grooves are formed on substrates such as silicon, quartz, glass, and polymer by etching. It is known to form a liquid channel ⁇ a gel channel for separation (for example, Earl 'Em' McCormick, etc., 'Analytical' Chemistry J, page 2626, page 69, It has been known that a cover such as a glass plate is fixed by screwing, fusing, bonding, etc. for the purpose of preventing the evaporation of liquid during operation.
  • a silicone rubber member with a groove on the surface is formed by casting.
  • a method is described in which a three-dimensionally crossing capillary channel is formed by sandwiching and bonding a silicone rubber sheet between the members.
  • a microdevice made of an active energy ray-curable resin is made to be in contact with other members while the active energy ray-hardening resin is semi-hardened, and then re-irradiated with active energy rays.
  • the problem to be solved by the present invention is a method of manufacturing a microphone opening device having a fine capillary cavity formed as a defect in a very thin layer that is easily broken, particularly a complicated flow formed in a stereoscopic manner.
  • An object of the present invention is to provide a multifunctional microphone device having a fine capillary channel, a space to be a reaction tank, a diaphragm pulp, and a valve structure.
  • the present inventors have conducted intensive studies on a method for solving the above-mentioned problem, and as a result, formed a semi-cured coating film having a defective portion on the coated support, which is composed of an active enenoregi linear curable composition,
  • the coating is laminated on another member to remove the support, and before or after removing the support, or before or after removing the support, the active energy ray is re-irradiated to cure the coating and
  • a microdevice having a cavity formed therein, in particular, a microphone opening device in which a plurality of layers were continuously laminated was easily manufactured, and the present invention was completed.
  • the present invention has at least one resin layer (X) having a defective portion including the following steps, and the resin layer is laminated with another member or another resin layer (X) to form the defective portion.
  • the present invention provides a method for manufacturing a micro device having a laminated structure, in which a cavity is formed.
  • step (vi) After step (iv) and before step (V), or after step (V), or before and after step (V), apply an active energy ray to the resin layer (X) in the semi-cured state.
  • the removal of the coating support in the step (V) is dissolution of the coating support, or the step (vi) is before the step (V), and the coating support in the step (V)
  • the method for manufacturing a micro device in which the removal of is a peeling, or after performing the steps (i), (ii), (iii), (iv), and (v), or after performing the steps (i), (ii), ( iii), (iv), (v), and (vi) or after performing steps (i), (ii), (iii) ⁇ (iv), (vi) ⁇ and (v) in this order
  • the member) in which the resin layer ⁇ is laminated) is used in place of the member (j) in the step (iv), and the step ⁇
  • steps (i) to (vi) are repeated to provide a method for manufacturing a microport device, in which a plurality of resin layers (X) are laminated.
  • a cavity is formed by stacking a plurality of resin layers (X) in such a manner that at least a part of the defective portions of the resin layers (X) overlap each other, so that the defective portions of the plurality of resin layers (X) are connected in the laminate.
  • a method for manufacturing a micro device provides a member (J) having a defective portion penetrating the member, a member having a rectangular defect portion on the surface, or a defective portion penetrating the member and a concave defect portion on the surface.
  • a method for manufacturing a microdevice wherein a cavity is formed in a laminate, in which a defective portion of a member (J) and a defective portion of a resin layer (X) are connected.
  • the present invention is selected from the above-mentioned forces (between step (i) and step (ii), between step (ii) and step (iii), and between step (iii) and step (iv)).
  • a part of the resin layer (X) is irradiated with active energy rays, and in step (iv), partial curing is performed to cure the irradiated part to such an extent that the irradiated part does not come into contact with other members.
  • step (iv) partial curing is performed to cure the irradiated part to such an extent that the irradiated part does not come into contact with other members.
  • a method for manufacturing a vise is provided.
  • the irradiation of the active energy ray in the above-mentioned step (ii) is performed in a form of forming a valve, a structure serving as a valve is provided in a part of the resin layer (X), and a part to be partially cured is provided.
  • a method for manufacturing a micro device which is a valve portion of a resin layer (X).
  • the present invention relates to the above-mentioned active energy-curable composition (X), wherein the homopolymer has a hydrophobic active energy ray-polymerizable compound (a) exhibiting a contact angle with water of 60 ° or more;
  • the present invention provides a method for producing a microdevice, which comprises an amphiphilic polymerizable compound (b) capable of copolymerizing with a microdevice.
  • the present invention provides a method of selecting a member having a defective portion penetrating the member, a member having a concave defective portion on the surface, or a member having a defective portion penetrating the member and a concave defective portion on the surface.
  • the active energy ray-hardening resin layer (X,) has a defect in a part of the layer, and the minimum width of the defect is 1 to: l OOO / zm.
  • the present invention provides a microdevice having a laminated structure in which a member ( ⁇ ′) ⁇ is laminated, and at least two or more defective portions in the member are connected to form a cavity.
  • the present invention provides one or more of the above-described members ( ⁇ ), the resin layer (X ′), and one or more members selected from the members ( ⁇ ′) provided in a direction parallel to the stacking surface of the members.
  • the present invention provides a method for contacting another member laminated adjacent to a part of one or more members selected from the above-mentioned member (J ′), resin layer ( ⁇ ′) s, and member ( ⁇ ′).
  • a micro device having a portion which is not adhered.
  • At least a part of one layer of the resin layer ( ⁇ ′) is provided with a structure serving as a valve by making a part of a peripheral part a defective part, and the other layer which is adjacently laminated is provided.
  • a microdevice in which a part in contact with a member but not adhered is a valve.
  • the present invention provides at least one member selected from a member (J ′), a resin layer (X ′), and a member ( ⁇ ′) i a member in which one side is a diaphragm, and another member in which the other side has a defective portion.
  • the cavity is formed by laminating the deficient portion, and another member laminated on the back surface of the member serving as the diaphragm is connected to the inlet or the outlet of the cavity, or both. At least one of the inflow port and the outflow port is formed on the opposite surface of the diaphragm with the member interposed therebetween, and its periphery is not in contact with the diaphragm, and the diaphragm is deformed.
  • a micro device capable of closing a flow channel by contacting at least one of the inflow port and the outflow port is provided.
  • the present invention relates to a microdepth containing an amphiphilic active energy linear polymerizable compound copolymerizable with an active energy ray polymerizable compound, a member having a defective portion penetrating the member, or a concave defect on the surface.
  • ⁇ ′ a member that has a defective portion or a defective portion penetrating through the member and a member that has a concave defective portion on the surface;
  • the active energy ray-curable resin layer (X ′) having a thickness of 1 to 100 ⁇ m is laminated with a member ( ⁇ ′ ′) having no deficiency and forming a diaphragm,
  • the member ( ⁇ ') has a portion that is in contact with, but not adhered to, another member laminated adjacently, and the portion is a diaphragm portion.
  • FIG. 1 is a schematic plan view of the coating support and the resin layer (X-1) used in Example 1 and Example 3 as viewed from a direction perpendicular to the surface.
  • FIG. 2 is a schematic plan view of the microphone opening depiice of the present invention produced in Example 1 and Example 3.
  • FIG. 3 is a schematic diagram of a partially enlarged elevation view of the microphone opening depises manufactured in Example 1 and Example 3.
  • FIG. 4 is a schematic plan view of the coating support and the resin layer (X′-4-1) used in Example 4.
  • FIG. 5 is a schematic plan view of the coating support and the resin layer (X′-4-2) used in Example 4.
  • FIG. 6 is a schematic plan view of the coating support and the resin layer (X′-4-3) used in Example 4.
  • FIG. 7 is a schematic plan view of the microdevice manufactured in Example 4.
  • FIG. 8 is a schematic diagram of a cross section of the micro device manufactured in Example 4 taken along a portion A in FIG.
  • FIG. 9 is a schematic plan view of the microdevice manufactured in Example 5.
  • FIG. 10 is a schematic view of a cross-sectional view taken along a portion A of FIG. 9 of the microphone opening device manufactured in Example 5.
  • FIG. 11 is a schematic plan view of the member (J'-8-1) manufactured in Example 8 as viewed from a direction perpendicular to the surface where the defect is formed.
  • FIG. 12 is a schematic plan view of the resin layer (X'-8-1) and the resin layer (X'-8-3) produced in Example 8.
  • FIG. 13 is a schematic plan view of the resin layer ( ⁇ ′-2-2) manufactured in Example 8.
  • FIG. 14 is a schematic plan view of the resin layer ( ⁇ ′-8-4) manufactured in Example 8.
  • FIG. 15 is a plan view of the intermediate layer (diaphragm layer) manufactured in Example 8.
  • FIG. 16 is a schematic plan view of the member ( ⁇ ′-8) manufactured in Example 8 as viewed from a direction perpendicular to the surface where the defect is formed.
  • FIG. 17 is a schematic plan view of the microphone port device manufactured in the eighth embodiment.
  • FIG. 18 is a schematic view of a cross-sectional view of a part of FIG. 17 of the microdevice manufactured in Example 8.
  • the resin layer having a defective portion of the resin is referred to as a “resin layer (X)”
  • a resin layer (X) alone, or having a flow path of the same or different shape 2
  • One or more resin layers (X) are laminated and adhered to another member, and the resin layer (X) is laminated with another member or another resin layer (X) so that the defective portion forms a cavity.
  • the present invention relates to a method for manufacturing a microphone opening device.
  • the coating support used in the production method of the present invention is formed by coating an active energy ray-curable composition (X) (hereinafter sometimes simply referred to as “yarn composition (x) J”) thereon.
  • the coating includes casting, and the coating film is cast. Things.
  • the shape of the coated support does not need to be particularly limited, and may be a shape according to the purpose of use.
  • sheet including film, ribbon, and belt
  • plate, and roll using a large roll as the coating support, coating, semi-curing, laminating, and peeling
  • the active energy ray-curable composition (X) thereon, although it may be a molded article or a mold having a complicated shape.
  • the surface to be bonded has a planar shape or a quadratic curved shape, and it is particularly preferable that the surface to be bonded be a flexible sheet.
  • the coated support may also be printed with squares, drawings, alignment symbols, and the like.
  • the material of the coated support is not particularly limited as long as the above conditions are satisfied.
  • polymer polymer
  • glass crystal such as quartz
  • ceramic semiconductor such as silicon
  • metal metal; paper; Woven fabrics and the like can be mentioned, and among them, polymers and metals are particularly preferable.
  • the polymer used for the coating support may be a homopolymer or a copolymer, and may be a thermoplastic polymer or a thermosetting polymer. From the viewpoint of productivity, the polymer used for the coating support is preferably a thermoplastic polymer or an active energy linear curable polymer.
  • polyolefin-based polymers chlorine-containing polymers, fluorine-containing polymers, polythioether-based polymers, polyetherketone-based polymers, and polyester-based polymers.
  • polybutylpyrrolidone polyethylene glycol, polybutyl alcohol, acrylic acid copolymer Water-soluble resins such as polyethylene glycol groups, etc .; lower alcohol-soluble resins containing hydroxyl groups and the like; polycarboxylic acid-soluble resins such as carboxyl group, phosphate group, and sulfone group-containing resins; amino groups
  • An acid-soluble resin such as a quaternary ammonium salt-containing resin is preferably used.
  • the coating support may be composed of a polymer blend or a polymer alloy, or may be a laminate or other composite. Further, the coated support may contain additives such as a modifier, a colorant, a filler, and a reinforcing material.
  • the coated support may also be surface treated, whether it is a polymer or other material.
  • the surface treatment is intended to prevent dissolution by the composition (X), to facilitate the peeling of the composition (X) from the cured product, and to improve the wettability of the composition (X).
  • the composition may prevent the infiltration of the composition ⁇ .
  • the surface treatment method of the coated support is arbitrary.For example, corona treatment, plasma treatment, flame treatment, acid or alkali treatment, sulfonation treatment, fluorination treatment, primer treatment with a silane coupling agent, surface graft polymerization, Coating of surfactant '1' raw material or release agent, physical treatment such as rubbing or sandblasting.
  • the coated support is wettable by the composition (X) or has a low repelling force.
  • the contact angle with the composition (X) to be used is preferably 90 ° or less, more preferably 45 ° or less, further preferably 25 ° or less, and more preferably 0 °. Is most preferred.
  • the composition to be used is determined by the surface treatment of the adhesive surface of the coating support. It is preferable to reduce the contact angle with the object (X).
  • the hardened active energy ray-curable composition ⁇ does not adhere so strongly that it cannot be peeled off by the surface treatment.
  • a surface treatment method for improving wettability for example, corona discharge treatment, plasma treatment, acid or alkali treatment, sulfonation treatment, primer treatment, and application of a surfactant are preferable.
  • a fluorine treatment and a fluorine-based silicon-based release agent and surface treatment such as introduction of a hydrophilic group or a hydrophobic group by a surface grafting method.
  • the coated support is a porous material such as paper, nonwoven fabric, or woven fabric
  • the surface is made nonporous by treatment with a fluorine compound or coating to prevent intrusion of the composition (X). Is preferably performed.
  • the wettability can be controlled by selecting a modifier to be blended with the coating support.
  • Modifiers that can be included in the coating support include, for example, hydrophobizing agents (water repellents) such as silicon oil and fluorinated hydrocarbons; and inorganic compounds such as water-soluble polymers, surfactants, and silica gel. And a hydrophilizing agent such as powder; and a plasticizer such as dioctyl phthalate.
  • hydrophobizing agents water repellents
  • inorganic compounds such as water-soluble polymers, surfactants, and silica gel.
  • a hydrophilizing agent such as powder
  • a plasticizer such as dioctyl phthalate.
  • the colorant that can be contained in the coating support include arbitrary dyes and pigments, fluorescent dyes and pigments, and ultraviolet absorbers.
  • the reinforcing material that can be contained in the coated support include inorganic powders such as clay, and organic and inorganic fibers and fabrics.
  • the active energy ray polymerizable compound (a) used in the present invention (hereinafter simply referred to as “compound
  • (a) may be abbreviated as any one such as radical polymerizable, a union polymerizable, and cationic polymerizable as long as it is polymerized and cured by an active energy ray.
  • the compound (a) is not limited to a compound that is polymerized in the absence of a polymerization initiator, and a compound that is polymerized by active energy rays only in the presence of a polymerization initiator can also be used.
  • the compound (a) is preferably an addition-polymerizable compound because of its high polymerization rate, and is preferably a compound having a polymerizable carbon-carbon double bond as an active energy ray-polymerizable functional group. Preference is given to highly reactive (meth) acrylic compounds and butyl ethers, and maleimide compounds which cure in the absence of a photopolymerization initiator.
  • the compound (a) is preferably a compound which is polymerized to form a crosslinked polymer from the viewpoint of high shape retention in a semi-cured state and high strength after curing. Therefore, a compound having two or more polymerizable carbon-carbon double bonds in one molecule (hereinafter referred to as “1 minute Having more than one polymerizable carbon-carbon double bond in the polymer "is sometimes referred to as” polyfunctional ".
  • Polyfunctional (meth) acrylic monomers that can be preferably used as compound (a) include, for example, diethylene glycol di (meth) acrylate, neopentyl glycolonores (meth) acrylate, 1,6-hexanediono register (meth) ⁇ click Relate, 2, 2 f one bis (4- (meth) ⁇ methacryloyl Ruo alkoxy poly.
  • a polymerizable oligomer (including prepolymers; the same applies hereinafter) can be used, and examples thereof include those having a weight average molecular weight of 500 to 500,000.
  • Such polymerizable oligomers include, for example, (meth) acrylates of epoxy resins, (meth) acrylates of polyether resins, (meth) acrylates of polybutadiene resins, and (meth) atari Examples thereof include polyurethane resins having a royl group.
  • maleimide-based compound (a) examples include 4,4′-methylenebis (N-phenylenoleimide), 2,3-bis (2,4,5-trimethyl-13-phenyl) maleimide, 1,2—Bismaleimid ethane, 1,6_Bismaleimid hexane, Triethyleneglycol Bismareide, N, N ′ —: m—Fenylenediimide, m—Tolylenediimide, N, N ′ — 1,4-phenylene diimide, N, ⁇ 'diphenylmethane diimide, ⁇ , ⁇ ' diphenyl ether diimide, ⁇ , ⁇ '-diphenyl sulfone diimide, 1,4-bis (maleimidethyl) 1-1,4-diazodiabicyclo [2,2,2] octane dichloride, 4,4'-1 ⁇ fsopropylidenediphenyl ⁇ -dicyanate
  • active energy ray polymerizable compound (a) can be used alone or in combination of two or more.
  • the active energy ray polymerizable compound (a) may be a mixture of a polyfunctional monomer and a monofunctional monomer for the purpose of adjusting viscosity, increasing adhesiveness or increasing tackiness in a semi-cured state. it can.
  • Monofunctional (meth) acrylic monomers include, for example, methyl methacrylate, alkyl (meth) acrylate, isobornyl (meth) acrylate, alkoxypolyethylene glycol (meth) acrylate, phenoxydialkynole (meta.) Atharylate, phenoxypolyethylene glycol (meth) acrylate, alkyl phenoxypolyethylene glycol (meth) atalylate, nonylphenoxypolypropylene glycol (meth) atalylate, hydroxyanolecyl
  • Monofunctional maleimide monomers include, for example, N-alkylmaleimides such as N-methylmaleimide, N-ethylmaleimide, N-butylmaleimide, N-dodecylmaleimide; and N-alkylmaleimides such as N-cyclohexylmaleimide.
  • N-alkylmaleimides such as N-methylmaleimide, N-ethylmaleimide, N-butylmaleimide, N-dodecylmaleimide
  • N-alkylmaleimides such as N-cyclohexylmaleimide.
  • Maleimide having an alkoxyl group such as N-methoxyphenyl maleimide; maleimide having an amino group such as N- [3- (ethylamino) propyl] maleimide; N- (1-pyrenyl) maleimide such as maleimide Cyclic aromatic maleimide; N- (dimethylamino-4-methyl-13-coumarinyl) maleimide; maleimide having a heterocyclic ring such as N- (4- ⁇ -lino-11-naphthyl) maleimide;
  • the compound (a) is preferably a hydrophobic compound (a).
  • the hydrophobic compound (a) refers to a compound whose homopolymer exhibits a contact angle with water of 60 degrees or more.
  • any of the compounds exemplified above as the compound (a) can be selected and used, but most of the exemplified compounds are the hydrophobic compounds (a).
  • the composition (X) turns into a cured resin upon irradiation with active energy rays, and contains the compound (a) as an essential component.
  • the composition (X) contains the compound (a) alone. And a mixture of plural kinds of compounds (a).
  • Other components can be added to the composition (X) as needed.
  • Other components that can be added to the composition ⁇ include the compound (a) and a raw compound, an active energy ray polymerization initiator, a polymerization retarder, a polymerization inhibitor, a thickener, and a modifier. And colorants and solvents.
  • the compound that can be added to the composition ⁇ and that is copolymerizable with the compound (a) can be an amphiphilic compound, a hydrophilic compound, a hydrophobic '1 "raw compound, and the like.
  • the hydrophilic compound copolymerizable with the compound (a) has a hydrophilic group in the molecule and gives a hydrophilic polymer.
  • Such compounds include, for example, vinyl pyrrolidone; N-substituted or unsubstituted J acrylamide; acrylic acid; polyethylene glycol group-containing (meth) acrylate; hydroxyl group-containing (meth) acrylate; Acrylates; (meth) acrylates containing a propyloxyl group; (meth) acrylates containing a phosphoric acid group; (meth) acrylates containing a sulfone group.
  • the hydrophobic compound copolymerizable with the compound (a), which can be added to the composition (X), has a hydrophobic group in the molecule and gives a hydrophobic polymer.
  • Examples of such a conjugated product include alkyl (meth) acrylate; fluorine-containing (meth) acrylate; (alkyl-substituted) siloxane group-containing (meth) acrylate.
  • amphiphilic compound copolymerizable with the compound (a) which can be added to the composition (X) [hereinafter, such a compound is referred to as an "amphiphilic compound (b)" or simply a "compound ( b) is preferably a compound having one or more polymerizable carbon-carbon unsaturated bonds in one molecule.
  • the amphiphilic compound (b) is preferably a homopolymer having a crosslinked polymer. It is not necessary for the compound to be a compound which can be a crosslinked polymer.
  • amphiphilic compound (b) is uniformly compatible with the hydrophobic compound (a).
  • “Compatible” in this case means that there is no macroscopic phase separation, and includes a state where micelles are formed and dispersed stably.
  • amphiphilic compound referred to in the present invention refers to a compound having a hydrophilic group and a hydrophobic group in a molecule and being compatible with both water and a hydrophobic solvent.
  • the term “compatible” means that no phase separation occurs macroscopically, and also includes a state in which micelles are formed and dispersed stably.
  • the solubility in the mixed solvent is preferably 25% by weight or more.
  • the amphiphilic compound (b) has a nonionic hydrophilic group, particularly a polyether-based hydrophilic group
  • the balance between hydrophilicity and hydrophobicity is determined by the glycine HLB value. It is preferably in the range of 10 to 16 and more preferably in the range of 11 to 15. Outside this range, it is difficult to obtain molded products with high hydrophilicity and water resistance, and the combinations and mixing ratios of the compounds to obtain them are extremely limited, and the performance of molded products is limited. Tends to be unstable.
  • the hydrophilic group contained in the amphiphilic compound (b) is optional, and examples thereof include a cationic group such as an amino group, a quaternary ammonium group and a phosphonium group; an anion group such as a sulfone group, a phosphoric acid group and a carbonyl group; a hydroxyl group; It may be a nonionic group such as a polyether group such as a dalicol group or an amide group; or a zwitterionic group such as an amino acid group.
  • Preferred as the water group are compounds having a polyether group, particularly preferably a polyethylene dalicol chain having a repeating number of 6 to 20.
  • hydrophobic group of the amphiphilic compound (b) examples include an alkyl group, an alkylene group, an alkylphenyl group, a long-chain alkoxy group, a fluorine-substituted alkyl group, and a siloxane group.
  • the amphiphilic "raw compound (b) preferably contains, as a hydrophobic group, an alkyl group or alkylene group having 6 to 20 carbon atoms.
  • the alkyl group or alkylene group having 6 to 20 carbon atoms is, for example, alkyl It may be contained in the form of a phenyl group, an alkylphenoxy group, an alkoxy group, a phenylalkyl group, or the like.
  • the amphiphilic compound (b) has a polyethylene glycol chain having a repetition number of 6 to 20 as a hydrophilic group, and has an alkyl group or an alkyl group having 6 to 20 carbon atoms as a hydrophobic group. It is preferable that the compound has a alkylene group.
  • Examples of the amphiphilic compound (b) that can be more preferably used include a compound represented by the general formula (1).
  • R 1 represents hydrogen, a halogen atom or a lower alkyl group
  • R 2 represents an alkylene group having 1 to 3 carbon atoms
  • n is an integer of 6 to 20
  • is a phenylene group
  • R 3 is Represents an alkyl group having 6 to 20 carbon atoms
  • R 3 is more specifically a hexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a dodecinole group, or a pentadecyl group, and is preferably a nor group or a dodecyl group.
  • the relationship between the n number and the carbon number of R 3 is preferably in the range of 10 to 16 as the Griffin HLB value, and more preferably in the range of 11 to 15. Preferred.
  • the active energy ray polymerization initiator that can be added to the composition (X) is active with respect to the active energy ray used in the present invention, and is capable of polymerizing the compound (a).
  • the active energy ray polymerization initiator is particularly effective when the active energy ray used is a light beam.
  • photopolymerization initiator examples include, for example, p-tert-butyltrichloroacetophenone, 2,2'-diethoxyacetophenone, 2-hydroxy-12-methyl-11-phenylpropane-11-one.
  • Acetophenones ketones such as benzophenone, 4,4'-bisdimethy ⁇ / aminobenzophenone, 2-chlorothioxanthone, 2-methylthioxanthone, 2-ethylthioxanthone and 2-isopropylthioxanthone;
  • Benzoin, benzoin methinooleate, benzoin isopropinoleate, benzoin Benzene ethers such as benzoin isopropyl ether; benzyl ketals such as benzyl dimethyl ketal and hydroxycyclohexyl phenyl ketone; azides such as N-azidosulfoer phenyl maleimide; No.
  • a polymerizable photopolymerization initiator such as a maleimide-based compound can be used.
  • the amount of the case of mixing using a photopolymerization initiator composition ⁇ in the case of non-polymerizable photopolymerization open initiator 0. 0 0 5-2 0 weight range 0/0 are preferred, 0. 1 range of 5 weight 0/0 are particularly preferred.
  • the photopolymerization initiator may be a polymerizable one, for example, a polyfunctional or monofunctional maleimide monomer exemplified as the active energy ray polymerizable compound (a). The amount used in this case is not limited to the above.
  • polymerization retarder examples include styrene, a-methynolestyrene, and ⁇ -phenylstyrene when the active energy linear polymerizable compound (a) is an acryloyl group-containing compound.
  • ⁇ -octinolestyrene examples include vinyl monomers having a lower polymerization rate than the active energy ray polymerizable compound ( a ) used, such as 11-pentene, 4,4-divinylbiphenyl and 2-vinylnaphthalene.
  • the polymerization inhibitor that can be added to the composition ⁇ for example, when the active energy linear polymerizable compound (a) is a polymerizable carbon-carbon double bond-containing compound, no, idroquinone, Hydroquinone derivatives such as methoxyhydroquinone; and hindant phenols such as butylhydrid xylonolene, tert-butynolephenore, diocty / lefenole, and the like.
  • the thickener that can be added to the composition (X) include a chain polymer such as polystyrene.
  • Modifiers that can be added to the composition (X) include, for example, hydrophobic compounds such as silicone oil and fluorine-substituted hydrocarbons that function as water repellents and release agents; Polybutylpyrrolidone, polyethylene glycol that functions as an inhibitor Water-soluble polymers such as glue and polyvinyl alcohol; and nonionic, anionic, and cationic surfactants that function as wetting improvers, release agents, and adsorption inhibitors.
  • Examples of the colorant that can be mixed and used in the composition (X) as needed include arbitrary dyes and pigments, fluorescent dyes, and ultraviolet absorbers.
  • the solvent that can be added to the composition (X) is arbitrary as long as it dissolves the components of the composition (X) to form a uniform solution, and is preferably a volatile solvent. New When the viscosity of the composition ⁇ is high, particularly when the composition ⁇ is to be applied thinly, it is preferable to add a solvent to the composition ⁇ . The solvent is volatilized and removed after coating or at any later stage.
  • the composition (X) is applied on a coating support to form an uncured coating film.
  • This step is referred to as “step (i)”.
  • the thickness of the coating film is arbitrary, but is preferably at least ⁇ , more preferably at least 5 ⁇ , and even more preferably at least ⁇ . If it is thinner than this, manufacturing becomes difficult.
  • the thickness of the coating film is preferably 100 ⁇ or less, more preferably 400 ⁇ or less, and still more preferably 200 ⁇ or less. If the thickness is larger than this, the effect of the present invention is reduced.
  • the thickness of the coating film slightly changes due to shrinkage during curing and the like, but generally matches the thickness of the layer to be the resin layer (X).
  • the coating site is arbitrary, and may be the entire surface or the partial surface of the coating support. Conversely, 'may also be applied to portions other than the portion to be laminated with the member (J) described later.
  • any coating method that can be applied onto the coating support can be used.
  • a method may be employed in which the composition is mixed with a solvent and then the solvent is volatilized.
  • the uncured coating material of the composition (X) is irradiated with active energy rays except for the portion that is to be a defect, and the irradiated portion of the composition (X) is semi-cured, while the composition (X) Leave the unirradiated part of the active energy straight line as an uncured part (hereinafter, this operation is referred to as “patterning exposure”).
  • Patterning exposure Light ”or simply“ exposure ”).
  • This step is referred to as a step (ii) of forming a half-coated film.
  • the irradiation angle is arbitrary and does not necessarily have to be perpendicular to the coating film surface.
  • composition (X) becomes non-flowable or hardly flowable, and is an unreacted active energy linear polymerizable functional group that can be polymerized by further irradiation with active energy rays. Is cured to the extent that remains.
  • the method of semi-curing the composition (X) can be performed by irradiating an active energy beam with a dose that is insufficient to completely cure the composition (X), or by irradiating at a temperature lower than the re-irradiation temperature described below, or It is preferable that both methods are combined.
  • the composition (X) enters the concave portion and closes the concave portion or causes a change in the cross-sectional area of the concave portion. Not preferred.
  • the shape of the pattern in the pattern Jung exposure that is, the shape of the portion to be a defect can be arbitrarily set according to the purpose of use.
  • the shape to be the defective portion When the shape to be the defective portion is linear in the plane of the coating film, it may be a straight line, a zigzag, a spiral, a horseshoe, or another shape. When used as a storage tank or a reaction tank, it may be circular or rectangular. Further, the shape to be the defective portion may be a minute through hole connecting the front and back of the coating film layer. The defective portion may or may not communicate with the outer peripheral portion of the coating film, that is, the outer peripheral portion of the microdepice.
  • the defect is to be linear when viewed from the surface of the coating film, the defect, that is, the uncured part must have a width of 1 It is preferably 1100 ⁇ .
  • the width is preferably at least 1 ⁇ m, more preferably at least 5 jum, even more preferably at least 10 ⁇ . Microphone devices with uncured portions of narrower width are difficult to manufacture.
  • the width of the uncured portion is preferably 100 ⁇ m or less, more preferably 500 m or less, even more preferably 200 m or less.
  • the width of the uncured portion is wider than this, the effect of the present invention is reduced.
  • the width / depth ratio of the groove is optional, but is preferably in the range of 0.2 to 10, more preferably in the range of 0.5 to 5.
  • the size of the uncured portion formed by exposure is not necessarily the same as the size of the non-irradiated portion of the active energy beam, and may be larger or smaller than the size of the non-irradiated portion of the active energy beam.
  • the cross-sectional shape of the uncured portion may be any shape such as a rectangle (including a rectangle with rounded corners), a trapezoid (including a trapezoid with rounded corners), and a semicircle.
  • the active energy rays that can be used in the present invention include: rays such as ultraviolet rays, visible rays, infrared rays, laser rays, and radiation; ionizing radiation such as X-rays, gamma rays, and radiation; electron rays, ion beams, beta rays, and heavy rays.
  • a particle beam such as a particle beam is exemplified.
  • ultraviolet light and visible light are preferred in terms of handleability and curing speed, and ultraviolet light is particularly preferred.
  • the low oxygen concentration atmosphere is preferably a nitrogen stream, a carbon dioxide stream, an argon stream, a vacuum or a reduced pressure atmosphere.
  • the method of irradiating the active energy ray to a part other than the part to be a defect part is arbitrary.
  • photolithography such as masking and irradiating an unnecessary part or scanning a beam of an active energy ray such as a laser.
  • the uncured composition (X) in the non-irradiated portion is removed after the exposure to make a defective portion of the resin (hereinafter, this operation may be referred to as “development”). is there) .
  • the method of removing the uncured composition (X) is optional.
  • methods such as blowing off with compressed air, absorbing with filter paper, rinsing with a non-solvent liquid stream such as water, solvent washing, volatilization, and decomposition can be used.
  • the uncured part of the composition (X) becomes a defective part by development.
  • the shape and dimensions of the formed defect are almost the same as those of the uncured portion of the composition ⁇ , but do not completely match.
  • the width of the defective portion tends to be narrower than in the case of solvent washing, and the uncured composition (X) in the non-irradiated portion is completely removed. It may not be removed and the bottom of the defect may be rounded or the bottom of the defect may not reach the surface of the coated support.
  • step (ii ′) J a part of the resin layer (X) of the microdevice manufactured by the present invention is formed in a part which is in contact with the member and is not adhered.
  • the step (ii ′) is performed between the step (i) and the step (ii)
  • the uncured coating film serving as the resin layer (X) is partially cured, and then the portion serving as the defective portion is removed. Remove and semi-harden.
  • the coating film to be the resin layer (X) is partially cured in a state where an uncured portion and a semi-cured portion are present, and then the defective portion is formed.
  • Step (i i ′) may be substantially simultaneous with steps (i), (i i) (and (i i i), or may be performed in a plurality of stages.
  • the active energy rays used in the step (ii ′) are the same as those in the step (ii) of semi-curing the coating film.
  • step (iv) and step (vl between step (iv) and step (vi), step (V) and step (vil, step (vi) between the step of laminating the member (K), and between the step (V) and the step of laminating the member (K).
  • step (iv) and step (vl between step (iv) and step (vi)
  • step (V) and step (vil step (vi) between the step of laminating the member (K), and between the step (V) and the step of laminating the member (K).
  • step (iii) a semi-cured coating film of the composition ⁇ is laminated with the member), and the semi-cured coating film is formed as a resin layer (X).
  • step (iv) The lamination of the semi-cured coating film of the composition (X) and the member (J) may be in a form depending on the use and purpose, and need not necessarily be the entire surface.
  • the shape of the member (J) does not need to be particularly limited, and may take a shape according to the purpose of use.
  • it can be in the form of sheet (including film and ribbon), plate, coating, rod, tube, and other complicated shapes, but it is easy to mold, and the composition (X) semi-hardened
  • the surface to be bonded is preferably a flat surface or a quadratic curved surface, and particularly preferably a sheet or plate.
  • the member or) described later has a specific shape in the member).
  • the material of the member (j) is not particularly limited as long as the composition ⁇ can be adhered by the production method of the present invention.
  • Examples of materials that can be used as the material for the members include polymers, crystals such as glass and quartz, semiconductors such as ceramic and silicon, and metals. Among them, easy moldability and high productivity A polymer is particularly preferred from the viewpoint of low cost and the like.
  • the member (J) may be formed on a support.
  • the material of the support is arbitrary, and may be, for example, a polymer, glass, ceramic, metal, or semiconductor.
  • the shape of the support is also arbitrary, and may be, for example, a plate-like material, a sheet-like material, a coating film, a rod-like material, paper, cloth, a nonwoven fabric, a porous material, an injection-molded product, and the like.
  • the support may be integrated with the microdevice or may be removed after formation. It is possible to form a plurality of microdepises on one member (J), and it is also possible to cut them after manufacturing to form a plurality of microdevices.
  • the polymer used for the member (J) may be a homopolymer or a copolymer, and may be a thermoplastic polymer or a thermosetting polymer. .
  • Productivity In view of the above, the polymer used for the member (J) is preferably a thermoplastic polymer or an active energy ray-curable crosslinked polymer.
  • polystyrene-based polymers such as polystyrene, poly- ⁇ -methylstyrene, polystyrene / maleic acid copolymer, polystyrene / atalylonitrile copolymer; porsulfone, polyethersulfone (Meth) atalyl polymers such as polymethyl methacrylate and polyacrylonitrile; polymaleimide polymers; bisphenol ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ polycarbonate, bisphenol F polycarbonate, bisphenol Z polycarbonate and the like.
  • Polycarbonate-based polymer such as polystyrene, poly- ⁇ -methylstyrene, polystyrene / maleic acid copolymer, polystyrene / atalylonitrile copolymer; porsulfone, polyethersulfone (Meth) atalyl polymers such as polymethyl methacrylate and polyacrylonitrile; polymaleimide poly
  • Polyolefin-based polymers such as polyethylene, polypropylene, and poly-4-methylpentene-11; chlorine-containing polymers such as vinyl chloride and vinylidene chloride; cellulosic polymers such as cellulose acetate and methylsenololose; polyurethane polymers; Polyether-based polymer; Polyimide-based polymer; Polyether-based or polyether-based polymer such as poly-1,6-dimethylphenylene oxide and polyphenylene sulfide; Polyetherketone-based polymer such as polyetheretherketone Polymers: polyester polymers such as polyethylene terephthalate and polyarylate; epoxy resins; urea resins; phenolic resins; fluorine such as polytetrafluoroethylene and PFA (copolymer of tetrafluoroethylene and perfluoroalkoxyethylene) Polymer, A silicone-based polymer such as polydimethylsiloxane; and a cured product of the active energy ray-
  • the member (J) is a cured product of an active energy ray-curable resin.
  • the member (J) may be composed of a polymer blend or a polymer alloy, or may be a laminate or other composite. Further, the member (J) may contain additives such as a modifying agent, a coloring agent, a filler, and a reinforcing material.
  • Modifiers that can be included in the member (J) include, for example, hydrophobizing agents (water repellents) such as silicone oil and fluorine-substituted hydrocarbons; water-soluble polymers, surfactants, and inorganic powders such as silica gel. And hydrophilizing agents such as. Components) Colorants that can be used include any dyes and pigments, fluorescent dyes and pigments, and ultraviolet absorbers. Examples of the reinforcing material that can be contained in the member (J) include inorganic powders such as clay and organic and inorganic fibers.
  • the member (J) is a material with low adhesiveness, such as polyolefin, fluoropolymer, polyolefin sulfide, polyetheretherketone, etc. It is preferable to give or improve the adhesiveness by using! / ,.
  • the active energy ray-curable composition is applied to the surface of the member (J), and a layer which is semi-cured by irradiation with the active energy ray is formed. This is also referred to as the member (J). From the viewpoint of adhesiveness, it is more preferable to use the same active energy ray-curable composition as the resin layer (X) to be adhered.
  • the surface of the member (J) hydrophilic in order to suppress adsorption of solutes such as proteins to the device surface.
  • the member (J) is a member having a concave portion such as a groove on the surface, a member having no concave portion on the surface, a composition having no defective portion in the layer (X) (semi) cured resin layer, or a separation membrane. Or a composite of these. Further, the member) may be removable after forming a resin layer (X) on the member. Furthermore, the member (J) is a single resin layer
  • the single resin layer (X) can be formed by the same method as the removal of the coated support in the step (V) of the present invention.
  • the resin layer (X) is transferred to the member (J) by removing the coating support from the resin layer (X) bonded to the member (J).
  • This step is referred to as “step (v) J.
  • the removal method is arbitrary, and may be peeling, dissolving, decomposing, melting, or volatilizing. However, peeling is preferable in terms of high productivity, and a flexible and thin resin is used. Dissolution is preferable in that the layer (X) can be formed without being damaged.
  • Removal by peeling includes peeling by pulling, peeling by a blade, peeling by a liquid flow such as water flow, It is optional, such as separation by a gas stream by a throat, or natural separation by immersion in water, etc. In order to facilitate the separation, it is also preferable to change the temperature conditions or to carry out in water. Also, select a combination of the material of the coating support and the composition (X), and select a combination that is adhesive in the state of the uncured coating film and the semi-cured coating film, and that has low adhesion after curing. This will be easier. Removal by peeling is a preferable method when the resin layer (X) has a relatively high rigidity such that the tensile elastic modulus is from 0 :! to 1 OGPa.
  • the step (vi) described later may be before or after the step (V). Of course, it may be applied before or after this step.
  • the removal by dissolution can be carried out by selecting a combination of the material of the coating support and the composition (X), and using a solvent that selectively dissolves the coating support. Examples of such solvents include water, acids, alkalis, lower alcohols, ketone solvents, ester solvents, ether solvents, and hydrocarbons.
  • the dissolution method is also arbitrary, and for example, a method such as immersion in a liquid, a shower, or steam cleaning can be employed.
  • the removal by dissolution is performed in the same manner as when the step (vi) described later is before this step (V) and the defective portion of the resin layer (X) is long linear, curved, or many linear. It is suitable when removal by peeling is difficult.
  • the removal by dissolution is a preferable method when the cured resin layer (X) has a relatively low rigidity such as a tensile modulus of 1 to 700 MPa.
  • Removal by decomposition is optional, such as oxidative decomposition and hydrolysis, and can be treated in the same manner as removal by dissolution described above.
  • the semi-cured resin layer (X) is re-irradiated with active energy rays before and after step (V) or after Z, that is, with the coated support laminated and Z or removed,
  • the composition (X) is further cured and adhered to the member (J).
  • This step is referred to as step (vi). Irradiation with active energy rays in this process is sufficient for the microdevice to be fabricated.
  • the composition (X) layer is cured to the extent that it has sufficient strength, and that the cured composition (X) layer and the component (J) are bonded with sufficient strength.
  • the coating support in the step (V) is due to peeling, it means that the coating support is cured to the extent that it can be peeled. Therefore, it is not always necessary to cure until the polymerizable group is completely eliminated.
  • the degree of curing is determined by irradiating the active energy ray for the third time while the coated support is cured to the extent that it can be peeled off. It is preferable that the polymerizable group remains to such an extent that it can be bonded to other members.
  • the active energy rays that can be used for curing in step (vi) those exemplified as the active energy rays that can be used for semi-curing the composition (X) can be used.
  • the active energy rays used in this step may be the same as or different from those used in step (ii). Further, irradiation conditions such as intensity, irradiation temperature, and atmospheric oxygen concentration may be different.
  • the resin layer (X) has a defective portion of the resin formed by patterning exposure and development in the layer, and the defective portion is formed by laminating the layer with the member (J). By further laminating another member (K) on the resin layer (X) and sandwiching the resin layer (X) between the member (J) and the other member (K), Spaces used as others can be configured.
  • the empty ⁇ ! May be either communicating outside the microdevice or not communicating.
  • the resin layer ( ⁇ ′) described later has a specific shape in the resin layer (X).
  • the member (J) on which the resin layer (X) is laminated is used instead of the member (J) in the step (iv) to obtain the resin layer (X).
  • a series of steps consisting of steps (i), (ii) (iii), (iv), and (v), or steps (i;), (ii) (iii), (iv) ⁇ ) , And (vi) or by repeating the steps (i), (ii), (iii), (iv), (vi) and (v), the resin layer (X) Multiple layers can be stacked.
  • step (vi) is not necessarily required to be performed, but may be required depending on the method of peeling the support.
  • the shape of the resin layer (X) of the two continuous resin layers (X) may be the same or different, and the thickness and the group constituting the resin layer (X) may be different.
  • the type of the product ⁇ may be different. In the case of repeating twice or more times, a series of steps selected from any of the above can be selected and performed each time.
  • the preferred procedure of the production method of the present invention differs depending on the method of removing the coated support in step (V). For example, when the removal of the coated support is due to dissolution, another member ( ⁇ ) is laminated on the semi-cured resin layer (X), and the resin layer is formed by the member ⁇ and another member ( ⁇ ).
  • step (X) is sandwiched, and in this state, the active energy ray irradiation in step (vi) is performed, and these are bonded.
  • a semi-cured resin layer formed on the member ⁇ ) and having the coated support removed) is used instead of the member ⁇ .
  • step (vi) If the removal of the coated support is due to peeling, perform step (vi) before step (V), and form the cured resin formed on the member (J) from which the coated support has been removed.
  • step (vi) By repeating the steps (i), (ii), (iii), (iv), (vi) and (v) using the layer (X) instead of the member (J), the resin layer It is possible to manufacture a microdepice in which a plurality of layers are laminated on (X).
  • a micro device having a plurality of resin layers (X) can be formed by forming the formed member and laminating a plurality of the members.
  • Such a form may be a member having a defective portion penetrating the member, a member having a concave defect portion on the surface, or a member selected from a member having a defective portion penetrating the member and a concave defect portion on the surface.
  • the member ( ⁇ ) may have the same material structure as the resin layer (X), the resin layer (X) may have a plurality of layers, and the member (J) may be the same as the resin layer (X). It may be the same material 'structure. It is also preferable that another member (K) is brought into close contact with the formed resin layer (X). Adhesion may be adhesion, adhesion, non-adhesion, etc., but adhesion is preferred.
  • the bonding method is optional, but the active energy ray-curable composition is used as the material for the member (K), and the material is brought into contact with the resin layer (X) in a semi-cured state, and the active energy ray is re-irradiated and bonded. The method is preferred. For example, it is also preferable to form it by the same method as that for the wood layer (X) except that no defect is formed.
  • the member ( ⁇ ′) described later is a specific shape of the member ( ⁇ ).
  • the shape and dimensions of the member ( ⁇ ) are the same as those of the member (J), a member having a cutout penetrating the member, a member having a concave cutout such as a groove on the surface, or a cutout penetrating the member
  • a member having no concave defects on its parts and surfaces a resin layer formed by the same method as the resin layer (X) of the present invention and having the same material and structure, and a composition having no defects in the layer (Semi) cured resin layer of the product (X), a separation membrane, etc., and a composite thereof.
  • a member in which the resin layer (X) is laminated on an arbitrary member can be used.
  • the resin layer (X) can be formed to a desired hardness by selecting the active energy ray polymerizable compound (a) and blending each component of the composition (X).
  • the tensile modulus of the resin layer (X) can be, for example, from 0.01 GPa to 10 GPa, preferably from 0.05 GPa to 3 GPa.
  • the micro device of the present invention can also be a micro device having a valve by providing a structure serving as a valve in the resin layer (X).
  • the structure serving as the valve is preferably in the form of a sheet in which a part of the structure is fixed because it is easy to manufacture.
  • the partially fixed sheet shape may be, for example, a tongue shape, a circle or a rectangle fixed by one or more portions.
  • a sheet-shaped valve partially fixed by exposing to a shape having a defect around the periphery except for a portion serving as a valve.
  • exposure may be performed to form a horseshoe-shaped defect.
  • the pulp can be formed by laminating the member (J), the member (K), or the luster layer (X) having the defective portion as follows.
  • the resin layer (X) to another member ⁇ resin layer for example, the above member (J), member (K) or resin layer (X) having a hole-shaped defect with an area smaller than the valve
  • the part of the resin layer (X) to be a valve is irradiated with an active energy ray to prevent the valve part from being bonded, and the part is bonded. It is preferable to proceed the curing to such an extent that it does not occur.
  • the active energy ray irradiation is preferably carried out simultaneously with step (ii) and / or between step (iii) and step (iv).
  • the resin layer (X) on which the valve is formed is preferably formed of a flexible material, and is preferably formed of a material having a lower tensile modulus than the layer sandwiching the layer and the member.
  • the preferred tensile modulus of the material used for the resin layer (X) from which the valve is formed is IMP a to l GPa, more preferably 10 to 50 OMPa, and even more preferably 50 to 30 OMPa. a. If it is lower than this range, the strength and the repeated durability tend to be poor, and if it is higher than this range, leakage tends to occur at the time of closing.
  • a member adjacent to the diaphragm that is, a resin layer (X)
  • the resin layer (X) is placed between the step ⁇ and the step (iv). It is preferable to provide a step of irradiating a portion of X) to be non-adhered with active energy, and advancing the hardness so that the portion does not adhere.
  • Examples of the microdepice that can be manufactured by such a method include a microphone opening device having a diaphragm valve mechanism, a check valve mechanism, a diaphragm opening / closing valve mechanism, a diaphragm flow control valve mechanism, and the like. .
  • the formed microdevice can be subjected to post-processing such as punching and cutting.
  • post-processing such as punching and cutting.
  • the microdevice of the present invention since the microdevice of the present invention has a very small size as a whole, it is useful to simultaneously produce a large number of members on a single resin layer for production efficiency and for accurate positioning of the details of each member. is there. In other words, multiple micro-devices can be exposed By forming on an image plate, a large number of microphone opening depises can be produced at once with good reproducibility and high dimensional stability.
  • the microdevice of the present invention is a member selected from a member having a defective portion penetrating the material, a member having a concave defect portion on the surface, or a member having a defective portion penetrating the member and a concave defect portion on the surface. And a minimum width of the defective portion is 1 to 100 m, and the active energy ray-hardening resin layer (X ′)
  • X ′ active energy ray-hardening resin layer
  • the member (J ′) is ⁇ a member having a defective portion penetrating the member, or a member having a concave defect portion on the surface, or a member having a defective portion penetrating the member and a concave defect portion on the surface ⁇ . Except for this, it is the same as the member (J) used in the production method of the present invention, and has a specific shape of the member (J).
  • the member ( ⁇ ′) also includes ⁇ a member having a defective portion penetrating the member, a member having a concave defect portion on the surface, or a member having a defective portion penetrating the member and a concave defect portion on the surface ⁇ .
  • the member ( ⁇ ) used in the manufacturing method of the present invention is the same as the member ( ⁇ ) and has a specific shape.
  • the position, shape, and size of the defect penetrating the member are arbitrary, except that the defective portion is open on a surface that can be connected to the resin layer ( ⁇ ′).
  • the shape of the defective portion penetrating the member may be, for example, a circular hole, a square hole, a slit shape, a conical shape, a pyramid shape, a barrel shape, a screw hole, or another complicated shape.
  • the defective portion of the member (CT) may be a larger hole than the defective portion of the resin layer (X ′).
  • the size and shape of the ⁇ -shaped defective portion formed on the surface of the member ⁇ ) are as described below.
  • the shape and dimensions of the cavity formed in the microphone opening device are the same.
  • the method of manufacturing the member (j ') and the member ( ⁇ ') having a defective portion is arbitrary.
  • the member (J ′) may be a resin layer having the same material and shape as the resin layer ( ⁇ ′) according to the present invention, or may be a structure in which a plurality of resin layers () according to the present invention are laminated. It is possible that the resin layer (X ') according to the present invention is a laminate in which another member is laminated. Can get.
  • the microdevice of the present invention is a laminate of a member (J ′), one or more resin layers (x ′), and a member ( ⁇ ′), and the total number of layers is 3 or more. Although it depends, it is preferably 3 to 10, more preferably 3 to 6.
  • the defective portion formed in the resin layer ( ⁇ ′) penetrates the front and back of the resin layer, Is laminated with another layer having a luster layer (X ') or a member having a through hole and a concave portion to form a cavity connecting these layers and members.
  • the resin layer ( ⁇ ′) is the same as the resin layer (X) in the production method of the present invention, except that the defect formed in the resin layer penetrates the front and back of the resin layer.
  • the member ⁇ ′), the one or more resin layers ( ⁇ ,), and each of the defective portions formed in the member ( ⁇ ′) have at least two adjacent defective portions. Contact to form a cavity. Preferably, three or more continuous defective portions are connected to each other to form a cavity.
  • Another member for example, a member having a defective portion can be laminated on the microphone opening device of the present invention.
  • two or more microdevices of the present invention can be bonded to each other so that the cavities opened on the surface are connected to each other to form a new microdevice, and there is no through hole and no concave portion. It is also possible to form a microdevice composed of a plurality of parts whose cavities are not connected to each other by laminating and bonding the members.
  • An example of such a device is a device having a diaphragm structure in which the micro device has a diaphragm pump mechanism or a diaphragm valve mechanism, and a member having no through hole and no concave portion forms a diaphragm.
  • Depise can be exemplified. It is preferable that a member having no through hole and no concave portion is formed of an active energy ray-curable resin because of high interlayer adhesion and high productivity. Further, such a member can be a porous membrane, a dialysis membrane, a gas separation membrane, or the like.
  • the shape of the cavity in the microdepice of the present invention can be arbitrarily set according to the purpose of use.
  • connecting channel, inflow / outlet, storage tank, reaction tank, liquid-liquid contact part, chroma Flow path for fluids such as flow paths for electrophoresis, electrophoresis, detectors, pulp, etc .; spaces for pressurized tanks, depressurized tanks, pressure detectors, etc .; hollow defects used as spaces to be used as sensor embedded parts It can be all or part of the part.
  • the cavity may be a part of the valve.
  • the type of pulp is arbitrary, for example, check pulp (normally closed, pulp that opens when a certain level of pressure is applied), check valve (normally open in one direction, normally closed in the opposite direction) , An on-off valve, a flow control valve, and the like.
  • the shape of the valve is arbitrary.
  • a tongue-shaped sheet or the like having a part fixed including a film, a film, a ribbon, and a plate
  • It may be an independent mass such as a sphere, a cone, or a plate trapped in a cavity.
  • the structure serving as the valve is in the form of a sheet having a part fixed thereto, because the manufacture is easy.
  • the sheet shape partially fixed may be, for example, a tongue shape, a circle or rectangle fixed by two or more portions.
  • a sheet-like valve in which a part around a part serving as a valve is formed as a defective part in a part of the resin layer ( ⁇ ′) and a part thereof is fixed can be formed.
  • a horseshoe-shaped defect provides a tongue-like valve structure.
  • a hole-shaped defective portion having an area smaller than that of the valve is laminated in accordance with the valve, and on the other side, the valve is movable.
  • a cavity larger than the valve is formed, it can function as a valve.
  • the resin layer ( ⁇ ') having a valve is preferably formed of a flexible material, and is preferably formed of a material having a lower tensile modulus than the layer or member sandwiching the resin layer.
  • the preferred tensile modulus of the material used as the resin layer ( ⁇ ') having a valve is 1 MPa to 1 GPa, more preferably 10 to 500 MPa, and still more preferably 50 to 3 OO MPa. It is. If it is lower than this range, the strength and the repeated durability tend to be inferior, and if it is higher than this range, leakage tends to occur at the time of closing. Further, the present invention provides a micro device having a diaphragm type pulp mechanism.
  • a first preferred example of the diaphragm type valve mechanism is that the resin layer (x,) is directly laminated on one side to a resin layer having a diaphragm, and on the other side to another member having a defective portion.
  • X ′) becomes a cavity by being laminated, and another member laminated on the back surface of the resin layer ( ⁇ ′) becomes a hole-shaped hole that serves as an inlet and / or outlet to the cavity. It has a defect, and at least one of the inflow port and the outflow port is formed on the opposing surface of the diaphragm with the resin layer (X ') interposed therebetween, and its periphery is not in contact with the diaphragm, and the diaphragm is deformed. It has a structure in which the flow path can be closed by contacting at least one of the inflow port and the outflow port.
  • the other is a linear defect formed in the resin layer (X ′).
  • An example of a valve having such a structure is a normally-open diaphragm type valve.
  • the structure in which the resin layer serving as the diaphragm, the resin layer (x,), and other members are bonded and laminated can be manufactured by the manufacturing method of the present invention.
  • the present invention also provides a method of selecting a member having a defective portion penetrating the member, a member having a concave defect portion on the surface, or a member having a defective portion penetrating the member and a concave defect portion on the surface.
  • the member (J ') and ⁇ has a cut portion in a part of the layer, the minimum width of ⁇ loss portion is 1 ⁇ 1 0 0 0 M m, the active energy ray-curable ⁇ layer (X')
  • the active energy ray-curable ⁇ layer (X') One or more layers and a member ( ⁇ '') that forms a diaphragm with no defects are laminated, and the member ( ⁇ '') is in contact with another A laminated structure, wherein the member (J,) and at least two or more deficient portions in the resin layer ( ⁇ ') are connected to form a cavity;
  • a micro device having the following is provided.
  • the member (J ') is composed of a laminate of the member (J '), one or more resin layers (X'), and a member having no defect () '''), and the member ( ⁇ ''') is laminated adjacently.
  • a micro device having a portion that is in contact with other members but is not in contact with the other member, wherein the portion is a diaphragm portion.
  • the member (J ') and the resin layer ( ⁇ ') are the same as the member (J ') and the resin layer ( ⁇ ') described above.
  • a defective portion which becomes a diaphragm It is the same as the microdevice composed of the member ⁇ ′), the resin layer ( ⁇ ′), and the member ( ⁇ ′) except that a member ( ⁇ ′′) having no member is used.
  • the member or) has a portion that is in contact with, but not adhered to, another member laminated on the member, and that portion becomes a diaphragm portion. That is, when the diaphragm is deformed, the non-adhered portion can become a cavity.
  • a second preferred example of the diaphragm-type valve mechanism of the present invention adopts the above structure, and further comprises an inflow port or an outflow port to a portion where the resin layer (X ′) may become the cavity, or Has a hole-shaped deficient portion serving as both of them, and at least one of the inflow port and the outflow port is formed on the facing surface of the diaphragm, and the periphery thereof is in contact with the diaphragm but is not adhered, and the diaphragm is not bonded.
  • the flow path is opened due to the deformation.
  • the hole-shaped defect formed in the predetermined position of the tree-like layer (X ') is either the inlet or the outlet, the other is the linear part of the resin layer (X') It can be formed as a connection port to the hollow portion of the flow path formed by the defective portion and the diaphragm.
  • a defective portion serving as a flow path connected to the inflow port, the outflow port, or both can be formed.
  • the structure in which the felony (J, resin layer ( ⁇ ') and member (K ") are bonded and laminated can be manufactured by the manufacturing method of the present invention.
  • a valve having such a structure a normally closed diaphragm is used. It can fist type valves and check pulp.
  • the thickness of the diaphragm is preferably 1 to 50 ⁇ , and more preferably 5 to 200 / zm.
  • the optimum value of the thickness of the diaphragm differs depending on the size of the cavity, and it is preferable that the diaphragm be thinner as the cavity area is smaller. However, if it is less than this range, it becomes difficult to manufacture.
  • the diaphragm is formed of a material having a tensile rate of 1 ", preferably in the range of 1 to 70 MPa, and more preferably in the range of 10 to 300 MPa. Depending on the diameter and the hardness of the material, smaller than this makes production difficult, It is difficult to maintain the open state, and if it exceeds this range, it will be difficult to open and close.
  • the material constituting the diaphragm has an elongation at break measured by JIS K-7127, preferably 2% or more, more preferably 5% or more.
  • the upper limit of elongation at break may naturally be limited, but since it is high, there is no inconvenience due to itself, so there is no need to set an upper limit, and it may be, for example, 400%.
  • a material having a low elongation at break of 2 to 5% in a tensile test according to JISK-7127 is hardly broken in the method of use of the present invention, and the elongation at break according to the above test is low. Even if the above distortion is given, it can be used without breaking.
  • the method of deforming the diaphragm is arbitrary, and may be, for example, pressure change such as press-in or depressurization of a fluid into a cavity formed on the opposite side of the diaphragm, mechanical compression or suction, or the like.
  • the present invention can provide a multi-layered micro device in which a cavity partially used as a flow path is formed in a plurality of layers, particularly three or more layers.
  • a cavity partially used as a flow path is formed in a plurality of layers, particularly three or more layers.
  • it is easy to form a fine valve or a thin and flexible diaphragm, and it is easy to adhere to these target positions, thereby providing a micro device having a valve mechanism.
  • a device is obtained in which the flow path is not blocked by the adhesive and the liquid does not leak between the layers or between the layers and other members.
  • the amphiphilic polymerizable compound a chemical device having excellent reproducibility without adsorption or loss of biological components can be obtained.
  • an active energy ray polymerizable compound (a) As an active energy ray polymerizable compound (a), a trifunctional ethane acrylate oligomer having an average molecular weight of about 2000 (“UNIDIC V-4263J” manufactured by Dainippon Ink and Chemicals, Inc.) 30 parts, 1, 6- Xandiol diatalylate (“KARAD HDDA” manufactured by Nippon Kayaku Co., Ltd.) 45 parts,
  • Nourphenoxypolyethylene glycol (n 17) atalylate (Daichi Kogyo Pharmaceutical Co., Ltd .: “N-177E” of t3 ⁇ 4) as amphiphilic compound (b) 25 parts, 1-hydroxy as photopolymerization initiator Hexylhexyl ketone (Irgacure-1 184, Chippa Geigy) 5 parts
  • an active energy ray-curable composition (X-1) had a tensile modulus of 56 OMPa and a contact angle with water of 12 degrees.
  • composition (X-) having the same composition as the composition (X-1) was prepared, except that the amount of the photopolymerization initiator was 2 parts and that no polymerization retarder was contained.
  • the UV-cured active energy ray-curable composition (X ⁇ ) had a tensile strength of 58 OMPa and a contact angle with water of 12 °.
  • the UV-cured active energy linear curable composition (X-2) has a tensile modulus of 61 OMPa, water Was 19 degrees.
  • composition ( ⁇ -2 ′) having the same composition as the composition (X-2) except that the composition did not contain a polymerization retarder was prepared.
  • the ultraviolet ray hardened product of the active energy ray-curable composition (X-2 ′) had a tensile modulus of 630 MPa and a contact angle with water of 19 degrees.
  • an active energy ray polymerizable compound ( a ) As an active energy ray polymerizable compound ( a ), 30 parts of trifunctional ⁇ ethane acrylate copolymer having an average molecular weight of about 2000 (“unidic V-4263” manufactured by Dainippon Ink & Chemicals, Inc.), 30 parts of co-tetradecandio -Alcohol diacrylate based on phenolic acrylate and ⁇ - pentadecanediol diacrylate (45 parts by Somar Co., Ltd.
  • nonylphenoxypolyethylene glycol ( ⁇ 17) atalylate (“ ⁇ -177 ⁇ ” manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) as a photopolymerization initiator, 1-hydroxycyclohexylphenyl ketone ( 5 parts of Ciba-Geigy's “Inoregacure 1-184”) and 0.1 part of 2,4-diphenyl-4-methyl-1-1-pentene (Kanto Chemical Co., Ltd.) as a polymerization retarder are mixed.
  • An active energy ray-curable composition (X-3) was prepared.
  • the ultraviolet ray hardened composition of the active energy ray-curable composition (III-3) had a tribasic modulus of 16 OMPa and a contact angle with water of 14 degrees.
  • a coating support (1) As a coating support (1), a 3 ⁇ ⁇ -thick biaxially stretched polypropylene film (Nimura Chemical Co., Ltd., ⁇ ⁇ ⁇ film) cut to 5 cm X 5 cm with one surface subjected to corona discharge treatment Then, the composition (X-1) was applied to the corona-treated surface using a 127 im Percoater to form a coating film (2).
  • a 3 ⁇ ⁇ -thick biaxially stretched polypropylene film (Nimura Chemical Co., Ltd., ⁇ ⁇ ⁇ film) cut to 5 cm X 5 cm with one surface subjected to corona discharge treatment Then, the composition (X-1) was applied to the corona-treated surface using a 127 im Percoater to form a coating film (2).
  • a portion other than the non-exposed portion (3) shown in Fig. 1 was irradiated with ultraviolet light for 1 second through a photomask with a non-exposed portion width of 100 ⁇ and a non-exposed portion length of 30 mm.
  • the film was exposed to light and semi-cured.
  • the uncured composition (X-1) in the non-exposed area (3) is washed and removed by exposing the semi-cured coating film to running water from a water tap, so that the coating support (1) is A semi-cured coating film (2) having a defect (3) was formed.
  • a 5 cm x 5 cm x 3 mm thick plate-shaped substrate (4) made of polystyrene ("Dick Styrene xC—520 J" manufactured by Dainippon Ink and Chemicals, Inc.) was used. Except that the composition (X-1 ') was used in place of the composition (X-1), and that no photomask was used for the exposure.
  • the semi-cured coating (2) formed on the coating support (1) is adhered to and laminated on the semi-cured coating (5) of the member (J-1), and the resin layer in a semi-cured state (X-1) Precursor (2 ′)
  • the laminate was irradiated with the same ultraviolet light used for the exposure for 5 seconds without a photomask, and the resin layer (X-1) precursor (2 ') was further cured to form a resin layer (X-1) (2' ) And bonded to the resin layer (5) of the member (J-1).
  • the coating support (1) is peeled off from the four-layer laminate, and the resin layer (X-1) (2 ') on the resin layer (5) of the member (J-1), that is, the defective portion A microdevice (D-1) having a layer of a cured product of the composition (X-1) having (3) was prepared.
  • the same ultraviolet ray as used for exposure was irradiated for 30 seconds without a photomask to form a semi-cured coating film (7) into a cured resin layer (7), and at the same time, a member (K-1) (6) and ⁇
  • the resin layer (7) is adhered to the surface of the resin layer (X-1) (2), and the defect (3) of the resin layer (X-1) (2) is formed as a cavity (3 ').
  • the active energy ray-curable composition (X) was sufficiently cured.
  • a micro device (D-1) having (3 ′) was prepared.
  • the cross section of the capillary cavity (3 ') was rectangular, with a width of 95 / zm and a height of 60 ⁇ m. 7
  • Example 2 Same as Example 1 except that the exposure pattern was shaped such that holes having a diameter of 300 m were formed at positions corresponding to both ends of the groove formed in the member (J-2). Then, a semi-cured coating film having two hole-shaped defects was formed on the coating support [steps (i), (ii), (iii)].
  • the semi-cured coating film formed on the coating support was brought into close contact with the groove-forming surface of the member (J'-2) by aligning them with each other [Step (iv)].
  • the same ultraviolet ray was irradiated for 30 seconds without a photomask to cure the semi-cured coating film to form a resin layer (X-2) [Step (vi)].
  • the coating support was peeled off from the three-layer laminate [Step (v).], And a resin layer (X-2) was formed on the surface of the member (J-2), that is, a defective portion serving as an inlet and an outlet.
  • a microdevice (D-2) having a cavity having the same shape as the cavity shown in FIGS. 2 and 3 to which a layer of a cured product of the yarn (X-1) was adhered was prepared.
  • Example 1 a method for producing the microdevice of the present invention using a maleimide resin for the composition (X) by a method of removing the microdevice by peeling off the coated support will be described.
  • the composition (X-2) was used instead of the composition (X-1) as the composition (X), and the composition ( ⁇ -2 ') was used instead of the composition (X-1')
  • a microdepice (D-3) having the same structure as in Example 1 was produced in the same manner as in Example 1 except that the exposure time was 2 seconds.
  • a description will be given of a microdepice having a resin layer ( ⁇ ′) laminated in three phases and having a three-dimensionally intersecting flow path therein, and a method of manufacturing the microdepice.
  • the member (J'-4-2) was used instead of the member (J-4-1), and the unexposed part (3 8) Force The missing part (3 8 '), except that it has two circular sections with a diameter of 300m and a spacing of 2mm, the same as the formation of the resin layer (X'-4-1). ) Is transferred onto the resin layer (X'-4-1), and the resin layer (X'-4-2) '(3 7) having a defect (38') is transferred. ') To form a member (J'-4-3).
  • the member (-4-3) was used instead of the member (J-4-1), and the shape of the non-exposed part (40) was such that the two missing parts (34 ') in Fig. 38 '), but the same as the formation of the resin layer (X'-4-1) except that it is a linear part with a width of 100 ⁇ and a length of 2 mm, which will be a defective part (40') connected via Then, the semi-cured coating film (39) having the defective portion (40) of the coating film is transferred onto the resin layer ( ⁇ '-4-2), and the resin layer ( ⁇ , ⁇ ) having the defective portion (40 ') is transferred. -4- 3) was formed.
  • a stainless steel pipe with a diameter of 1.6 mm is adhered to the inflow section (4) that connects to the defective section (33) of the resin layer (X'-4-1). 3) and outflow (44) were formed.
  • a 1.6 mm diameter hole was drilled in the base material (35) and the resin layer (36).
  • a stainless steel pipe with a diameter of 1.6 mm is bonded to form an inflow section (45) and an outflow section (46) that communicate with the defective section (34 ') of the resin layer ( ⁇ '-4-1).
  • a micro device (D-4) was prepared.
  • the dye-colored water introduced from the inflow section (45) flows out of the liquid outflow section (46) via the defective sections (34 '), (38'), (40 '), (38') s and (34 '). Separately from this, the distilled water introduced into the inlet (43) passed through the defect (33 ') and flowed out of the outlet (44) without being mixed with the dye-colored water. That is, it was confirmed that two independent flow paths crossed three-dimensionally.
  • the width of the defective portion (53 ') is approximately the same as the formation of the resin layer (X-1) in Example 1 on the surface of the member (J-5-1).
  • a resin layer (X-5 1) (52) having a thickness of 200 ⁇ was formed to obtain a member (J-5-2).
  • Material (J-5-2) was used instead of material (J-1), Composition (X-3) was used instead of composition (x-1), and exposure was photomask In the same manner as in the formation of the resin layer (X-1) in Example 1, except that the entire surface was irradiated without using the Formed on top.
  • the member (J-5-3) was used instead of the member (J-1), and the shape of the non-exposed part was such that the center part had a diameter such that the defective part (58 ') shown in Fig. 9 was formed.
  • lmm circular part An intermediate layer was formed in the same manner as in the formation of the resin layer (X-1) in Example 1, except that the pattern was a linear portion with a length of 15 mm and a width of 200 ⁇ m connected to this.
  • a resin layer (X-5-2) (57) was formed on (56) to form a member (J-5-4).
  • the member (K-1) was bonded in the same manner as the bonding of the member (K-1) in Example 1. ) was bonded to the member (J-5-4) via the bonding resin layer (60).
  • FIG. 9 is a schematic plan view of the fabricated microphone opening device
  • FIG. 10 is a cross-sectional view taken along a portion A in FIG.
  • Water is introduced at a pressure of about 10 kPa from the liquid inlet (61) and is discharged from the liquid outlet (62) released to the atmosphere.
  • the flow rate of water was almost zero. Also, the flow rate of water could be adjusted by changing the nitrogen pressure. That is, it was confirmed that the valve operated as an on-off valve and a flow control valve.
  • the microphone port device of the present invention in which the resin layer (X ′) is sandwiched between a member (J ′) and a member ( ⁇ ′) each having a groove on the surface, A method for producing according to the production method of the present invention, wherein the removal is removal by dissolution, will be described.
  • Example 2 By the same fusion replica method as in Example 2, the polystyrene plate (4) in Example 1, the resin layer (5) having no defect, and the three linear defect portions shown in FIG. A member having a recess having a shape similar to the shape of the laminated resin layer (X-1) was prepared, and a member (J'-6) was prepared.
  • the coating support was a polybutyl alcohol film and that the shape of the defective portion was the same as the shape of the two hole-shaped defective portions (38) shown in FIG.
  • a semi-cured coating film was formed in the same manner as in the steps (i), (ii) and (iii) of 2.
  • a member ( ⁇ '-6) was produced in the same manner as for member (6) except that the shape of the concave portion on the surface was the same as that shown in Fig. 6.
  • the member ( ⁇ '-6) is laminated on the resin layer ( ⁇ '-6) precursor, and is irradiated with ultraviolet rays for 40 seconds (step (vi)) to obtain the resin layer ( ⁇ '-6) precursor. At the same time as curing, the member (J'-6) and the member ( ⁇ '-6) were bonded to the resin layer (X'-6).
  • Example 2 Thereafter, in the same manner as in Example 1, an inflow portion and an outflow portion were formed by bonding a stainless steel pipe to the end of each flow path, thereby forming the microdepth (D-4) shown in FIGS. ), A microdevice (D-6) having the same flow channel structure as that of (a).
  • Example 7 the microphone opening device of the present invention in which two resin layers ( ⁇ ') are laminated on a member cr) having a groove on the surface, and the removal of the coating support is by dissolution.
  • An example of manufacturing according to the manufacturing method of the present invention will be described.
  • Example 6 In the same manner as in Example 6, a coated support of a polybutyl alcohol film was produced.
  • the member ( ⁇ ) was the same as the member (J′-6) of Example 6, and was used as the member ( ⁇ -7-1).
  • Example 6 Exactly the same as Example 6, a member exactly the same as the member (J'-6) and the resin layer (X'-6) laminate in Example 6 was produced, and the member CT-7-1) and the resin layer ( X'-7-1) A precursor laminate was used.
  • the laminate of the precursor (-'7-1) and the resin layer ( ⁇ '-7-1) precursor was newly added as a member (J'-7-2), and the shape of the defective portion was the same as that of Example 6 (
  • the resin layer (X'-7-2) is formed on the resin layer (X'-7-1) precursor by the same operation except that it has the same shape as the concave defect portion of ⁇ '-6).
  • the precursor was laminated to form a member (J, -7-2).
  • the polystyrene plate used in Example 6 was used as it was as the member ( ⁇ '-7), this was laminated on the resin layer ( ⁇ '-7-2) precursor, and irradiated with ultraviolet rays for 40 seconds in that state.
  • the resin layer (X'-7-1) precursor and the resin layer (X'-7-2) precursor are cured, and at the same time, the member (J'-7) and the resin layer (X'-7-1) are cured.
  • the resin layer (X'-7-2) and the extension member ( ⁇ '-7) were bonded.
  • a yarn (X-1) was applied thereon, and a portion other than the portion formed as the defect (74) shown in FIG. 11 was irradiated with ultraviolet light for 3 seconds using a photomask.
  • the uncured composition (x-1) in the irradiated area was removed with methanol, and the length of 1 Omm was arranged in series with a width of 100 m and a gap of 0.6 mm on the surface as a defect of the coating film.
  • the resin layer (73) on which the two concave defects (74) and (74 ') were formed was formed. Through holes (75) and (75 ') having a diameter of 3 mm were formed at both ends of the concave defect portions (74) and (74') of the laminate to form a member, -8-1).
  • the shape formed with the defect is two holes (77) and (77 ') with a diameter of 100 ⁇ and 600 / im, with a center-to-center distance of lmm, as shown in Fig. 12.
  • the resin layer (X'-8-1) having a defect of the above shape on the member (J'-8-1) by the coating support peeling method (76) This was made into a member (J, 1-8-2).
  • composition (X-3) was used as the composition (X), and the shape formed with the defect was, as shown in Figure 13, a tongue 400 mm in diameter provided with a center-to-center distance of lmm. Except for a horseshoe shape (79), (79 ′) with a width of 100 ⁇ around the part formed by the valve (80), (80 ′), the coating support ( (Not shown) A semi-cured coating film was formed thereon.
  • the resin layer ( ⁇ , -8-1) (76) Similarly, the resin layer (X'-8-4) (83) is laminated on the resin layer ( ⁇ , -8-3) (81) of the member (J'-8-4). Hi'-8-5).
  • the shape of the concave defect (88) must be a T-shape consisting of a straight line with a length of 1.5 mm and a width of 7 OO jum and a straight line with a length of 10 mm and a width of 300 / _t m.
  • the member ( ⁇ '-8) was produced in the same manner as the member ( ⁇ -8-1). That is, the member ( ⁇ '-8) is formed as a laminate of a polystyrene base material (86) and a resin layer (87) having a defective portion (88).
  • the member ( ⁇ '-8) is placed at a position opposite to the defect (84) of the lunar layer (X'-8-4) with the defect (88) of the member separated by the intermediate layer (85). Together, they were laminated on the intermediate layer (85), and were irradiated with ultraviolet rays for 30 seconds to adhere to the intermediate layer (85), thereby forming the intermediate layer (85) as a diaphragm. In addition, the other resin layers were sufficiently cured by the ultraviolet irradiation.
  • FIG. 17 is a schematic plan view of the fabricated microdevice
  • FIG. 18 is a schematic view of an elevation view.
  • the shape of the non-irradiated part of the resin layer (X-5-1) is two holes corresponding to the liquid inflow part (61) and the liquid outflow part (62).
  • the resin layer (X-5-1) After removing the uncured resin of the non-irradiated portion of Example 1 and before laminating the intermediate layer (56), a portion corresponding to the non-irradiated portion of the resin layer (X-5-1) in Example 5 was irradiated with ultraviolet rays. Then, the portion was cured, and the portion serving as the diaphragm of the intermediate layer (56), that is, the shape of the cavity (53) in Example 5 was irradiated with ultraviolet rays to cure the irradiated portion.
  • a method similar to that of Example 5 except that the layer (56) corresponds to the member (K ”) in the microdevice of the present invention, and the thickness of the cavity (53) of Example 5 is A microphone opening device similar to that prepared in Example 5 was prepared except for the above.
  • the present invention relates to a method for manufacturing a microdepice having a fine capillary-shaped cavity formed as a defect in an extremely thin layer that is easily broken, and in particular, to the production of a microphone opening device having a three-dimensionally formed complicated flow path.
  • a multifunctional microdevice having a space to be a tank, a diaphragm type valve, a valve structure, and the like can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Micromachines (AREA)
  • Laminated Bodies (AREA)
  • Electrostatic, Electromagnetic, Magneto- Strictive, And Variable-Resistance Transducers (AREA)
  • Valve Housings (AREA)

Description

明 細 書 積層構造を有するマイク口デバイス及びその製造方法 技術分野
本発明は、 内部に微小な流体流路を有するマイクロ流体デバイス、 化学、 生化 学、 又は物理化学等の広い分野で用いられる、 微小反応デバイス (マイクロ · リ アクター) や、 '集積型 D N A分析デバイス、 微小電気泳動デバイス、 微小クロマ トグラフィーデパイスとして有用な、 内部に微小な空洞を有し、 例えば部材中に 流路、 反応槽、 電気泳動力ラム、 膜分離機構、 及びセンサーなどの構造が形成さ れた微小分析デバィスなどのマイク口デパイスの製造方法、 及びそれにより得ら れるマイクロデバイスに関する。
更に詳しくは、 本発明は活性エネルギー線硬化性樹脂層を有する積層構造を有 し、 該活性エネルギー線硬化性樹脂層が層内に樹脂の欠損部を有し、 複数の樹脂 層が積層され、 該欠損部が各層を貫通して互いに連絡した、 細い毛細管状の流路 を有し、 更に反応層となるべき空間、 ダイヤフラム式バルプ及ぴ弁構造などを有 するマイクロデバイスである。
また本発明のマイク口デパイスは、 疎水性の活性エネルギー線重合性化合物 (a)と、 これと共重合しうる両親媒性の重合性化合物( b )とを含有する活性エネ ルギ一線硬化性榭脂層からなり、 生体成分が吸着しにく 、マイク口デバイスであ る。
更に本発明は、 塗工支持体上に活性エネルギー線硬化性樹脂層を作製し、 .次い でパターニング露光と現像により形成した樹脂欠損部を有する該活性エネルギー 線硬化性樹脂層を半硬化状態で他の部材と積層し、 再度活性エネルギー線照射に より他の部材と接着、 硬化させ、 再度の活性エネルギー線照射の前又は後、 もし くは途中に塗工支持体を除去する、 マイク口デバイスの製造方法に関する。 d胃a景技術
シリコン、 石英、 ガラス、 重合体などの基材に、 エッチング法により細い溝を 形成して、 液体流路ゃ分離用ゲルチャンネルとすることが知られており (例えば、 アール 'ェム 'マコーミック等、 「アナリティカル 'ケミストリー J 、 第 2 6 2 6頁、 第 6 9卷、 1 9 9 7年) 、 操作中の液体の蒸発防止などを目的として、 ガ ラス板などのカバーをネジ止め、 融着、 接着等により固定して用いることが知ら れている。
しかしながら、 ネジ止めなどによる密着では、 積層された基材間ゃ基材とカバ 一との間への液体の漏洩が生じがちであつたし、 融着ゃ接着は長時間を要し、 極 めて生産性の悪いものであった。 更にこのような素材や製法では、 連続した 3層 以上の層に流路その他の空隙部が形成された多層構造のマイク口デバイスを形成 することは困難であり、 特に、 破損しやすい薄い層が多層積層されたマイクロデ バイスを製造することは相当に困難であった。
また、 「サイエンス (S C I E N C E ) 」 詰 (第 2 8 8卷、 1 1 3頁、 2 0 0 0年) には、 注型法にて表面に溝を有するシリコンゴム製の部材を形成し、 2つ の該部材でシリコンゴムシ一トを挟んで接着することによって、 立体交差する毛 細管状の流路を形成する方法が記載されている。
しかしながら、 この 2つの流路は独立した流路であり、 各層を貫通して互いに 連絡した、 細い毛細管状の流路を形成することは出来なかった。 特に、 自立出来 ないほどに薄い層で構成された多層構造のマイク口デバイスを柔軟な素材で工業 的に製造することは不可能であり、 複雑な反応 ·分析工程を実施可能なマイク口 デバイスを作製することは出来なかった。 更に、 シリコンゴムは生化学物質の吸 着が多いため用途が限定されることや、 シリコンゴムを硬化させるのに長時間を 要し、 生産 1"生が著しく低いという欠点もあつた。
一方、 活性エネルギー線線硬化性樹脂で形成されたマイクロデバイスは、 活性 エネルギー線硬ィヒ性樹脂を半硬ィヒさせた状態で他の部材と接触させ、 その状態で 活性エネルギー線を再照射して完全に硬化させる方法によって、 接着剤を使用す ることなく接着可能であり、 極めて高い生産性で製造可能である。
し力 し、 この方法によっても、 それぞれ欠損部を有する自立出来ないほどに薄 い多数のフィルムを、 微小な欠損部の位置を合わせて積層することは、 工業的に 実施困難であった。 特に、 樹脂層の欠損部が長い線状、 曲線状、 多数の線状など である場合には、 該フィルムの取扱が更に困難となり、 このような層を貫通して 互いに連絡した毛細管状の流路を形成する方法は知られていなかった。 また、 そ れぞれ欠損部を有する自立出来ないほどに薄い活性エネルギー線硬化性樹脂から 成るフィルムを、 微小な欠損部の位置を合わせて 3層以上積層されたマイクロデ バイスは知られていなかった。 発明の開示
本発明が解決しようとする課題は、 破損しやすい非常に薄い層の欠損部として 形成された微細な毛細管状の空洞を有するマイク口デバイスの製造方法、 特に立 体的に形成された複雑な流路を有するマイク口デバイスの生産性の高い製造方法 を提供すること、 並びに、 複数の樹脂層が積層され、 微細な毛細管状の空洞が各 層を貫通して互いに連絡し、 立体交差している微細な毛細管状の流路、 反応槽と なるべき空間、 ダイヤフラム式パルプ、 及び弁構造などを有する多機能なマイク 口デバイスを提供することにある。
本発明者らは、 上記課題を解決する方法について鋭意検討した結果、 塗工支持 体上に活性エネノレギ一線硬化性組成物から成る、 欠損部を有する半硬化塗膜を形 成し、 該半硬化塗膜を他の部材に積層して支持体を除去し、 支持体を除去する前、 又は後、 もしくは支持体を除去の前後に活性エネルギー線を再照射して該塗膜を 硬化させると共に当該他の部材に接着することにより、 内部に空洞が形成された マイクロデバイス、 特に複数の層が連続して積層されたマイク口デバィスを容易 に製造できることを見出し、 本発明を完成するに至った。
即ち、 本発明は、 下記の工程を含む、 欠損部を有する樹脂層 (X)を 1層以上有 し、 該樹脂層が他の部材又は他の樹脂層 (X)と積層されて、 欠損部が空洞を形成 している、 積層構造を有するマイクロデバイスの製造方法を提供する。
(i) 塗工支持体に、 活性エネルギー線重合性化合物 (a)を含有する活性エネルギ
—線硬化性組成物 ωを塗工する、 未硬化塗膜を形成する工程 a)、
(ii) 欠損部と成すべき部分以外の未硬化塗膜に活性エネルギー線を照射し照射 部の未硬化塗膜を非流動性又は難流動性となし、 且つ未反応の活性エネルギー線 重合性官能基が残存する程度に半硬化させる、 半硬化塗膜を形成する工程 (ii)、 (i i i) 半硬化塗膜から非照射部分の未硬化の組成物 (X)を除去し、 塗膜の欠損部 を有する半硬化塗膜を得る工程 (i i i)、
(iv) 損部を有する半硬化塗膜を他の部材 (J)に積層させ樹脂層 (X)と成す工程 (iv)、
(v) 塗工支持体を樹脂層 (X)から除去することにより、 樹脂層 (X) を部材 (J) に転写する工程 (v)、 及ぴ、
(vi)工程(iv)の後であって工程 (V)の前、 又は工程 (V)の後、 又は工程 (V)の前後 に、 半硬化状態の樹脂層 (X)に活性エネルギー線を照射して樹脂層 (X)を更に硬ィ匕 させ、 樹脂層 (X)を部材 (J)に接着させる工程 (vi)。
本発明は、 工程 (V)における塗工支持体の除去が、 塗工支持体の溶解である、 又は工程 (vi )が工程 (V)の前であり、 工程 (V)における塗工支持体の除去が剥離で あるマイクロデバイスの製造方法や、 工程(i)、 (ii)、 (iii) , (iv) , 及び (v)を 行った後、 又は工程(i)、 (ii)、 (iii) , (iv) , (v) , 及び (vi)を行った後、 又は 工程(i)、 (ii)、 (iii)ヽ (iv) , (vi)ヽ 及び (v)を、 この順で行った後に、 樹脂層 ωが積層された部材 )を工程 (iv)における部材 (j)の代わりに用いて、 工程 ω
〜(v)又は工程(i)〜(vi)を繰り返すことにより、 樹脂層(X)を複数積層する、 マ ィク口デバイスの製造方法を提供する。
本発明は、 複数の樹脂層 (X)を、 その欠損部の少なくとも一部が重なり合うよ うに積層することにより、 積層体中に複数の樹脂層 (X)の欠損部が連結した空洞 を形成するマイクロデバイスの製造方法を提供する。 本発明は、 部材 (J)が該部 材を貫通する欠損部を有する部材、 又は、 表面に囬状の欠損部を有する部材、 又 は該部材を貫通する欠損部と表面に凹状の欠損部を有する部材であり、 部材 (J) の欠損部と樹脂層 (X)の欠損部の少なくと一部が重なり合うように、 部材 (J)と樹 脂層 (X)とを積層することにより、 積層体中に、 部材 (J)の欠損部ど樹脂層(X)の 欠損部が連結した空洞を形成する、 マイクロデバイスの製造方法を提供する。 本発明は、 上述の {ェ程 (i)と工程 (ii)の間、 工程 (ii)と工程 (iii)の間、 及び 工程(iii)と工程(iv)の間) 力 ら選ばれる 1つ以上の工程間において、 樹脂層(X) の一部に活性エネルギー線を照射して、 行程 (iv)で該被照射部分が他の部材と接 着しない程度にまで硬化させる部分硬化を施すことにより、 樹脂層 00に、 他の 部材または樹脂層と接触していても接着していない部分を形成する、
バイスの製造方法を提供する。
本発明は、 上述の工程 (ii)における活性エネルギー線の照射を弁を形成する形 状に行い、 樹脂層 (X)の一部に弁となる構造を設けること、 及び部分硬化を施す 部分が樹脂層 (X)の弁となる部分である、 マイクロデバイスの製造方法を提供す る。
本発明は、 上述の活性エネルギー,镍硬化性組成物 (X)が、 単独重合体が 6 0度 以上の水との接触角を示す疎水性の活性エネルギー線重合性化合物 (a)と、 これ と共重合しうる両親媒性の重合性化合物( b )を含有するものである、 マイクロデ バイスの製造方法を提供する。
更に、 本発明は、 {部材を貫通する欠損部を有する部材、 又は表面に凹状の欠 損部を有する部材、 又は部材を貫通する欠損部と表面に凹状の欠損部を有する部 材から選ばれる部材ひ')} と、 層の一部に欠損部を有し、 該欠損部の最小幅が、 1〜: l O O O /z mである、 活性エネルギー線硬ィ匕性榭脂層 (X,)の 1つ以上の層と、 {部材を貫通する欠損部を有する部材、 又は表面に凹状の欠損部を有する部材、 又は部材を貫通する欠損部と表面に凹状の欠損部を有する部材から選ばれる部材 (Κ' ) } とが積層され、 部材中の少なくとも 2つ以上の欠損部が連結して空洞を形 成している、 積層構造を有するマイクロデバイスを提供する。
本発明は、 上述の部材 (Γ ) , 樹脂層 (X' )、 及び部材 (Κ' )から選ばれる 1つ 以上の部林が、 部材の積層面に平行方向に設けられた、 1つ以上の線状の空洞を 有するマイクロデバィスゃ、 空洞の一部が流体の流路であり、 異なる榭脂層 (X' ) 内に形成された複数の流路、 又は枝分かれした流路が樹脂層 (X' )を隔てて立体交 差しているマイクロデバイスを提供する。
本発明は、 上述の部材 (J' )、 樹脂層 (Χ' ) s 及ぴ部材 (Κ' )から選ばれる 1つ 以上の部材の一部に隣接して積層された他の部材と接触しているが接着していな い部分を有する、 マイクロデバイスを提供する。
本発明は、 少なくとも樹脂層(Χ' )の 1層の一部に、 周囲部分の一部を欠損部と することにより、 弁となる構造が設けられており、 隣接して積層された他の部材 と接触しているが接着していない部分が弁であるマイクロデバイスを提供する。 本発明は、 部材 (J')、 樹脂層 (X')、 及び部材 (Κ')から選ばれる 1つ以上の部材 i 一方の側がダイヤフラムとなる部材、 他の側が欠損部を有する他の部材と直 接積層されており、 該欠損部が積層されることで空洞となり、 ダイヤフラムとな る部材の裏面に積層された他の部材が該空洞への流入口又は流出口、 又はその両 者となる各孔状の欠損部を有し、 流入口、 流出口の少なくとも一方が、 該部材を 隔ててダイヤフラムの対向面に形成されており、 その周がダイヤフラムに接して おらず、 ダイヤフラムを変形させて、 該流入口、 又は流出口の少なくとも一方の 周に接することによって流路を閉鎖しうるマイクロデバイスを提供する。
本発明は、 活性エネルギー線重合性化合物と共重合可能な両親媒性の活性エネ ルギ一線重合性化合物を含有するマイクロデパイスゃ、 {部材を貫通する欠損部 を有する部材、 又は表面に凹状の欠損部を有する部材、 又は部材を貫通する欠損 部と表面に凹状の欠損部を有する部材から選ばれる部材 α' ) } と、 層の一部に欠 損部を有し、 該欠損部の最小幅が 1〜 1 0 0 0 μ mである、 活性エネルギー線硬 化性樹脂層(X' )の 1つ以上の層と、 欠損部がなくダイヤフラムとなす部材 (Κ' ' ) とが積層され、 部材 (Κ' ' )が隣接して積層された他の部材と接触しているが接着 していない部分を有し、 該部分がダイヤフラム部分である、 部材 (J,)と樹脂層 (Χ')中の少なくとも 2つ以上の欠損部が連結して空洞を形成している、 積層構造 を有するマイク口デバイス、 及び上記の本発明の製造方法により製造されたマイ クロデバイスを提供する。 図面の簡単な説明
図 1は、 実施例 1及び実施例 3で使用した塗工支持体と樹脂層(X-1)を、 表面 に垂直な方向から見た平面図の模式図である。
図 2は、 実施例 1及び実施例 3で作製した本発明のマイク口デパイスの平面図 の模式図である。
図 3は、 実施例 1及び実施例 3で作製したマイク口デパイスの部分拡大立面図 の模式図である。
図 4は、 実施例 4で使用した塗工支持体と樹脂層 (X' - 4-1)の平面図の模式図で ある。 図 5は、 実施例 4で使用した塗工支持体と樹脂層 (X' -4-2)の平面図の模式図で ある。
図 6は、 実施例 4で使用した塗工支持体と樹脂層 (X' -4-3)の平面図の模式図で ある。
図 7は、 実施例 4で作製したマイクロデバイスの平面図の模式図である。 図 8は、 実施例 4で作製したマイクロデバイスの、 図 7の A部における断面の 模式図である。
図 9は、 実施例 5で作製したマイクロデバイスの平面図の模式図である。 図 1 0は、 実施例 5で作製したマイク口デバイスの、 図 9の A部での断面図の 模式図である。
図 1 1は、 実施例 8で作製した部材 (J' -8-1)を、 欠損部が形成された表面に垂 直な方向から見た平面図の模式図である。
図 1 2は、 実施例 8で作製した樹脂層 (X' -8-1)及び樹脂層 (X' -8-3)の平面図の 模式図である。
図 1 3は、 実施例 8で作製した樹脂層 (Χ' - 8- 2)の平面図の模式図である。 図 1 4は、 実施例 8で作製した樹脂層 (Χ' - 8-4)の平面図の模式図である。 図 1 5は、 実施例 8で作製した中間層 (ダイヤフラム層) の平面図である。 図 1 6は、 実施例 8で作製した部材 (Κ' -8)を、 欠損部が形成された表面に垂直 な方向から見た平面図の模式図である。
図 1 7は、 実施例 8で作製したマイク口デバイスの平面図の模式図である。 図 1 8は、 実施例 8で作製したマイクロデバイスの、 図 1 7の Α部での断面図 の模式図である。 発明を実施するための最良の形態
本発明の製造方法は、 樹脂の欠損部を有する樹脂層 [以下、 このような樹脂層 を 「樹脂層 (X)」 と称する] の単独、 あるいは、 同一又は異なる形状の流路を有 する 2つ以上の樹脂層 (X)が他の部材に積層 ·接着され、 樹脂層 (X)が他の部材又 は他の樹脂層 (X)と積層されることにより該欠損部が空洞を形成しているマイク 口デバイスの製造方法に関する。 本発明の製造方法で用いられる塗工支持体は、 活性エネルギー線硬化性組成物 (X) (以下、 単に 「糸且成物(x) J と略記することもある) をその上に塗工すること が可能であり、 且つ、 糸且成物(X)を硬化させた後に除去できるものである。 なお、 本発明においては、 塗工には注型を含めるものとし、 塗膜は注型物を含むものと する。
塗工支持体の形状は特に限定する必要はなく、 用途目的に応じた形状を採りう る。 例えば、 シート状 (フィルム状、 リボン状、 ベルト状を含む) 、 板状、 ロー ル状 (大きなロールを塗工支持体とし、 塗工、 半硬化、 積層、 及び剥離等の工程 を、 ロールが 1周する間に行うもの) 、 その他複雑な形状の成型物ゃ铸型等であ り得るが、 活性エネルギー線硬化性組成物 (X)をその上に塗工し易く、 また、 活 性エネルギー線を照射し易いと言う観点から、 接着すべき面が平面状または 2次 曲面状の形状であること、 特に可撓性のあるシート状であることが好ましレ、。 ま た、 生産性の面から、 ロール状であることも好ましい。
塗工支持体はまた、 升目、 図面、 位置合わせ記号などが印刷されていても良い。 塗工支持体の素材は、 上記の条件が満たされれば特に制約はなく、 例えば、 重合 体 (ポリマー) ;ガラス ;石英の如き結晶;セラミック ;シリコンの如き半導 体;金属;紙、 不織布、 織布などが挙げられるが、 これらの中でも、 重合体及ぴ 金属が特に好ましい。
塗工支持体に使用する重合体は、 単独重合体であっても、 共重合体であっても 良く、 また、 熱可塑性重合体であっても、 熱硬化性重合体であっても良い。 生産 性の面から、 塗工支持体に使用する重合体は、 熱可塑性重合体又は活性エネルギ 一線硬化性重合体であることが好ましい。
塗工支持体の除去が機械的な力による剥離によるものである場合には、 多くの 種類の活性エネルギー,镍硬化性組成物 ωに対して溶解しにくく、 その硬化物か らの剥離が容易であるものとして、 ポリオレフイン系重合体、 塩素含有重合体、 フッ素含有重合体、 ポリチォエーテル系重合体、 ポリエーテルケトン系重合体、 ポリェステル系重合体が好ましく用いられる。
塗工支持体の除去が溶解によるものである場合には、 例えば、 ポリビュルピロ リ ドン ポリエチレングリコール、 ポリビュルアルコール、 アクリル酸共重合体 などの水溶性樹脂; ポリエチレングリコール基などのポリエーテル基や水酸基等 を含有する低級アルコール可溶性樹脂;カルボキシル基、 燐酸基、 スルホン基含 有樹脂などの、 アル力リに可溶性の樹脂;アミノ基ゃ 4級アンモニゥム塩含有榭 脂などの酸に可溶性の樹脂が好ましく用いられる。
塗工支持体は、 ポリマーブレンドやポリマーァロイで構成されていても良いし、 積層体その他の複合体であっても良い。 更に、 塗工支持体は、 改質剤、 着色剤、 充填材、 強化材などの添加物を含有しても良い。
塗工支持体はまた、 重合体の場合もそれ以外の素材の場合も、 表面処理されて いて良い。 表面処理は、 組成物 (X)による溶解防止を目的としたもの、 組成物 (X) の硬化物からの剥離の容易化を目的としたもの、 組成物(X)の濡れ性向上を目的 としたもの、 組成物 ωの浸入を防止ものなどであり得る。
塗工支持体の表面処理方法は任意であり、 例えば、 コロナ処理、 プラズマ処理、 火炎処理、 酸又はアルカリ処理、 スルホン化処理、 フッ素化処理、 シランカップ リング剤等によるプライマー処理、 表面グラフト重合、 界面活'1"生剤や離型剤等の 塗布、 ラビングやサンドブラストなどの物理的処理等が挙げられる。
塗工支持体は、 活性エネルギー線硬化性組成物 (X)をその上に薄く塗工する場 合には、 組成物(X)により濡れるものであるか、 又は、 はじく力が弱いものであ ることが好ましい。 即ち、 使用する組成物 (X)との接触角が 9 0度以下であるこ とが好ましく、 4 5度以下であることが更に好ましく、 2 5度以下であることが 更に好ましく、 0度であることが最も好ましい。
塗工支持体が表面エネルギーの低い素材、 例えば、 ポリオレフイン、 フッ素系 重合体、 ポリフエ二レンサルファイド、 ポリエーテルエーテルケトン等の場合に は、 塗工支持体の接着面の表面処理により、 使用する組成物(X)との接触角を小 さくすることが好ましい。
し力 しながら、 表面処理によって、 硬ィ匕させた活性エネルギー線硬化性組成物 ωが剥離不可能なほど強固に接着することのないよう処理の程度を調節する必 要がある。 濡れ性を向上させるための表面処理方法としては、 例えば、 コロナ放 電処理、 プラズマ処理、 酸又はアルカリ処理、 スルホン化処理、 プライマー処理、 界面活性剤の塗布、 が好ましい。 一方、 塗工支持体が、 接着性が良く、 活性エネルギー線硬化性組成物 ω硬化 物の剥離が困難な素材で形成されている場合には、 フッ素処理、 フッ素系ゃシリ コン系の剥離剤の塗布、 表面グラフト法による親水基や疎水基の導入、 などの表 面処理が好ましい。 また、 塗工支持体が、 紙、 不織布、 編織布などの多孔質体で ある場合には、 組成物 (X)の侵入を防止するためにフッ素系化合物処理やコーテ イングによる表面非多孔質化を行うことが好ましい。 また濡れ性の制御は、 表面 処理の他に、 塗工支持体にプレンドする改質剤の選択によっても行うことができ る。
塗工支持体に含有させることができる改質剤としては、 例えば、 シリコンオイ ルゃフッ素置換炭化水素などの疎水化剤 (撥水剤) ;水溶性重合体、 界面活性剤、 シリカゲルなどの無機粉末、 などの親水化剤;ジォクチルフタレートなどの可塑 剤、 が挙げられる。 塗工支持体に含有させることができる着色剤としては、 任意 の染料や顔料、 蛍光性の染料や顔料、 紫外線吸収剤が挙げられる。 塗工支持体に 含有させることができる強化材としては、 例えば、 クレイなどの無機粉末、 有機 や無機の繊維や織物が挙げられる。
本発明で使用する活性エネルギー線重合性化合物 (a) [以下、 単に 「化合物
(a)」 と略称する場合もある] は、 活性エネルギー線によって重合し硬化するも のであれば、 ラジカル重合性、 ァユオン重合性、 カチオン重合性等の任意のもの であってよレ、。 化合物 (a)は、 重合開始剤の非存在下で重合するものに限らず、 重合開始剤の存在下でのみ活性エネルギー線により重合するものも使用すること ができる。
化合物(a)は、 付加重合性の化合物であることが、 重合速度が高いため好まし く、 活性エネルギー線重合性官能基として重合性の炭素一炭素二重結合を有する ものが好ましく、 中でも、 反応性の高い (メタ) アクリル系化合物やビュルエー テル類、 また光重合開始剤の不存在下でも硬化するマレイミド系化合物が好まし い。
更に、 化合物 (a)は、 半硬化の状態で形状保持性が高く、 硬化後の強度も高い 点で、 重合して架橋重合体を形成する化合物であることが好ましい。 そのために、 1分子中に 2つ以上の重合性の炭素一炭素二重結合を有する化合物 (以下 「1分 子中に 2つ以上の重合性の炭素一炭素二重結合を有する」 ことを 「多官能」 と称 することがある) であることが更に好ましい。
化合物 (a)として、 好ましく使用できる多官能 (メタ) アクリル系モノマーと しては、 例えば、 ジエチレングリコールジ (メタ) アタリレート、 ネオペンチル グリコーノレジ (メタ) アタリレート、 1 , 6—へキサンジォーノレジ (メタ) ァク リレート、 2, 2 f 一ビス (4— (メタ) ァクリロイルォキシポリ.エチレンォキ シフエニル) プロパン、 2 , 2 ' 一ビス (4一 (メタ) ァクリロイルォキシポリ プロピレンォキシフエニル) プロパン、 ヒ ドロキシジビバリン酸ネオペンチルグ リコールジ (メタ) アタリレート、 ジシク口ペンタニルジァクリ レート、 ビス (ァクロキシェチル) ヒ ドロキシェチルイソシァヌレート、 N—メチレンビ スアクリルアミ ドの如き 2官能モノマー; トリメチロールプロパントリ (メタ) アタリレート、 トリメチロールェタントリ (メタ) アタリレート、 トリス (ァク 口キシェチル) イソシァヌレート、 力プロラク トン変性トリス (ァクロキシェチ ル) イソシァヌレートの如き 3官能モノマ一;ペンタエリスリ トールテトラ (メ タ) ァクリレートの如き 4官能モノマー;ジペンタエリスリ トールへキサ (メ タ) アタリ レートの如き 6官能モノマー等が挙げられる。
また、 化合物(a)として、 重合性オリゴマー (プレボリマーを含む。 以下同 じ) を用いることもでき、 例えば、 重量平均分子量が 5 0 0〜5 0 0 0 0のもの が挙げられる。 そのような重合性オリゴマーしては、 例えば、 エポキシ樹脂の (メタ) アクリル酸エステル、 ポリエーテル樹脂の (メタ) アクリル酸エステル、 ポリブタジエン樹脂の (メタ) アクリル酸エステル、 分子末端に (メタ) アタリ ロイル基を有するポリウレタン榭脂等が挙げられる。
マレイミ ド系の化合物(a)としては、 例えば、 4, 4 ' ーメチレンビス (N— フエ二ノレマレイミ ド) 、 2 , 3—ビス (2, 4 , 5—トリメチル一 3—チェ二 ル) マレイミ ド、 1 , 2—ビスマレイミ ドエタン、 1, 6 _ビスマレイミ ドへキ サン、 トリエチレングリコー ビスマレイミ ド、 N, N' —: m—フエ二レンジマ レイミ ド、 m—トリレンジマレイミ ド、 N, N' —1 , 4—フエ二レンジマレイ ミ ド、 N , Ν' ージフエニルメタンジマレイミ ド、 Ν, Ν' ージフエニルエーテ ルジマレイミ ド、 Ν, Ν' —ジフエニルスルホンジマレイミ ド、 1 , 4—ビス (マレイミ ドエチル) 一 1 , 4一ジァゾ二アビシクロ一 [ 2 , 2 , 2 ] オクタンジクロリ ド、 4, 4 ' 一^ f ソプロピリデンジフェニ^^-ジシアナ一 ト · N, Ν' ― (メチレンジ一 ρ—フエ二レン) ジマレイミ ド等の 2官能マレイ ミ ド; Ν— ( 9—アタリジ-ル) マレイミ ドの如きマレイミド基とマレイミ ド基 以外の重合性官能基とを有するマレイミ ド等が挙げられる。 マレイミド系のモノ マーは、 ビエルモノマー、 ビニルエーテル類、 アクリル系モノマー等の重合性炭 素 -炭素二重結合を有する化合物と共重合させることもできる。
これらの化合物 (a)は、 単独で用いることも、 2種類以上を混合して用いるこ ともできる。 また、 活性エネルギー線重合性ィ匕合物 (a)は、 粘度の調節、 接着性 や半硬化状態での粘着性を増すなどの目的で、 多官能モノマーと単官能モノマー の混合物とすることもできる。
単官能 (メタ) アクリル系モノマーとしては、 例えば、 メチルメタクリレート、 アルキル (メタ) アタリレート、 イソボルニル (メタ) アタリ レート、 アルコキ シポリエチレングリコール (メタ) アタリ レート、 フエノキシジアルキノレ (メ タ.) アタリ レート、 フエノキシポリエチレングリコール (メタ) ァクリレート、 アルキルフエノキシポリエチレングリコール (メタ) アタリレート、 ノニルフエ ノキシポリプロピレングリコール (メタ) アタリレート、 ヒ ドロキシァノレキル
(メタ) アタリ レート、 グリセロールァクリ レートメタクリレート、
ブタンジオールモノ (メタ) アタリレート、 2—ヒ ドロキシー 3—フエノキシプ 口ピノレアクリ レート、 2—ァクリロイノレォキシェチルー 2—ヒ ドロキシプロピル アタリ レート、 ェチレノキサイ ド変性フタル酸アタリレート、 w—力ルゴキシァ プロラク トンモノアクリレート、 2—ァクリロイルォキシプロピルハイ ドロジェ ンフタレート、 2—アタリロイルォキシェチルコハク酸、 アクリル酸ダイマー、 2—ァクリロイルォキシプロピリへキサヒ ドロノ、ィ ドロジヱンフタレート、 フッ 素置換アルキル (メタ) アタリ レート、
塩素置換アルキル (メタ) アタリ レート、 スルホン酸ソーダエトキシ (メタ) ァ タリ レート、 スルホン酸一 2—メチルプロパン一 2—アクリルアミ ド、 燐酸エス テル基含有 (メタ) アタリレート、 スルホン酸エステル基含有 (メタ) アタリレ ート、 シラノ基含有 (メタ) アタリ レート、 ( (ジ) アルキル) アミノ基含有 (メタ) アタリレート、 4級 ( (ジ) アルキル) アンモニゥム基含有 (メタ) ァ タリ レート、 (N—アルキル) アクリルアミ ド、 (N、 N—ジアルキル) アタリ ルアミ ド、 ァクロロイルモリホリン等が挙げられる。
単官能マレイミ ド系モノマーとしては、 例えば、 N—メチルマレイミ ド、 N— ェチルマレイミ ド、 N—ブチルマレイミ ド、 N—ドデシルマレイミ ドの如き N— アルキルマレイミ ド; N—シクロへキシルマレイミ ドの如き N—脂環族マレイミ ド; N—ベンジルマレイミ ド; N—フエ-ルマレイミ ド、 N— (アルキルフエ二 ノレ) マレイミ ド、 N—ジァノレコキシフエ二ノレマレイミ ド、 N— ( 2—クロ口フエ ニル) マレイミ ド、
2 , 3—ジクロ口一 N— ( 2 , 6—ジェチルフエニル) マレイミ ド、 2 , 3—ジ クロ口一 N— ( 2—ェチル一 6—メチルフエュル) マレイミ ドの如き N— (置換 又は非置換フエ-ル) マレイミ ド; N—べンジルー 2 , 3—ジクロロマレイミ ド、 N— ( 4 ' —フノレオロフェニル) 一 2, 3—ジクロロマレイミ ドの如きノヽロゲン を有するマレイミ ド; ヒ ドロキシフヱニルマレイミ ドの如き水酸基を有するマレ イミ ド; N— (4—カルボキシー 3—ヒ ドロキシフエ-ル) マレイミ ドの如き力 ルポキシ基を有するマレイミ ド;
N—メ トキシフエエルマレイミ ドの如きアルコキシル基を有するマレイミ ド; N 一 [ 3— (ジェチルァミノ) プロピル] マレイミ ドの如きアミノ基を有するマレ イミ ド; N— ( 1—ピレニル) マレイミドの如き多環芳香族マレイミ ド; N— (ジメチルァミノ一 4一メチル一 3—クマリニル) マレイミ ド、 N— (4—ァ- リノ一 1一ナフチル) マレイミドの如き複素環を有するマレイミ ド等が挙げられ る。
組成物 (X)に後述の両親媒性の化合物 (b)を添加する場合には、 化合物 (a)は疎 水性の化合物(a)を使用することが好ましい。 疎水性の化合物 (a)とは、 その単独 重合体が、 6 0度以上の水との接触角を示すものを言う。 疎水性の化合物 (a)と しては、 化合物(a)として上に例示した化合物の中から選択使用できるが、 例示 した化合物の殆どは疎水性の化合物(a)である。
組成物 (X)は、 活性エネルギー線の照射により硬化樹脂となるものであり、 必 須成分として化合物 (a)を含有する。 組成物 (X)は化合物 (a)単独を含むものであ つてもよく、 複数種の化合物(a)の混合物でもよい。 組成物 (X)には、 必要に応じ て他の成分を添加することが出来る。 組成物 ωに添加しうる他の成分としては、 化合物 (a)と共重合' 1·生の化合物、 活性エネルギー線重合開始剤、 重合遅延剤、 重 合禁止剤、 增粘剤、 改質剤、 着色剤、 溶剤を挙げることができる。
組成物 ωに添加しうる、 化合物 (a)と共重合性の化合物は、 両親媒性化合物、 親水性化合物、 疎水' 1"生化合物などであり得る。 組成物 (X)に添加しうる、 化合物 (a)と共重合性の親水性化合物は、 分子内に親水基を有し、 親水†生の重合体を与 えるものである。
このような化合物としては、 例えば、 ビニルピロリ ドン; N置換または非置 換 J アクリルアミ ド;アクリル酸;ポリエチレングリコール基含有 (メタ) ァク リレート ;水酸基含有 (メタ) アタリレート ;ァミノ基含有 (メタ) ァクリ レー ト ;力ルポキシル基含有 (メタ) アタリレート;燐酸基含有 (メタ) ァクリレー ト ;スルホン基含有 (メタ) アタリレートなどを挙げることができる。
組成物 (X)に添加しうる、 化合物(a)と共重合性の疎水性化合物は、 分子内に疎 水基を有し、 疎水性の重合体を与えるものである。 このようなィ匕合物としては、 例えば、 アルキル (メタ) ァクリレート ;フッ素含有 (メタ) ァクリレート ; (アルキル置換) シロキサン基含有 (メタ) アタリレート等を例示できる。
組成物 (X)に添カ卩しうる、 化合物 (a)と共重合性の両親媒性の化合物 [以下、 こ のような化合物を 「両親媒性化合物 (b)」 又は、 単に 「化合物 (b) J と称する] は、 1分子中に 1個以上の重合性炭素一炭素不飽和結合を有する化合物であることが 好ましい。 両親媒性の化合物 (b)はその単独重合体が架橋重合体となるものであ る必要はないが、 架橋重合体となる化合物であってもよい。
また、 两親媒性の化合物 (b)は、 疎水性の化合物 (a)と均一に相溶するものであ る。 この場合の 「相溶する」 とは、 巨視的に相分離しないことを言い、 ミセルを 形成して安定的に分散している状態も含まれる。
本発明で言う、 両親媒性の化合物とは、 分子中に親水基と疎水基を有し、 水、 疎水性溶媒の両者とそれぞれ相溶する化合物を言う。 この場合においても、 相溶 とは巨視的に相分離しないことを言い、 ミセルを形成して安定的に分散している 状態も含まれる。 両親媒性の化合物 (b)は、 0 °Cにおいて、 水に対する溶解度が 0. 5重量%以上で、 且つ 2 5 °Cのシクロへキサン: トルエン = 5 : 1 比) 混合溶媒に対する溶解度が 2 5重量%以上であることが好ましい。
ここで言う溶解度、 例えば、 溶解度が 0. 5重量%以上であるとは、 少なくと も 0 . 5重量%の化合物が溶解可能であることを言うのであって、 0 . 5重量% の化合物は溶媒に溶解しないものの、 該化合物中にごくわずかの溶媒が溶解可能 であるものは含まない。 水に対する溶解度、 あるいはシクロへキサン: トルエン = 5 : 1 (重量比) 混合溶媒に対する溶解度の少なくとも一方がこれらの値より 低い化合物を使用すると、 高い表面親水性と耐水性の両者を満足することが困難 となる。
両親媒性の化合物 (b)は、 にノニオン性親水基、 特にポリエーテル系の親水 基を有する場合には、 親水性と疎水性のバランスが、 グリフィンの H L B (エイ チ .エル. ビー) 値にして 1 0〜1 6の範囲にあるものが好ましく、 1 1〜1 5の範囲にあるものが更に好ましい。 この範囲外では、 高い親水性と耐水性に優 れた成形物を得ることが困難である力、 それを得るための化合物の組み合わせや 混合比が極めて限定されたものとなり、 成形物の性能が不安定となりがちである。 両親媒性の化合物 (b)が有する親水基は任意であり、 例えば、 アミノ基、 四級 アンモニゥム基、 フォスフォニゥム基の如きカチオン基;スルホン基、 燐酸基、 カルボニル基の如きァニオン基;水酸基、 ポリエチレンダリコール基などのポリ エーテル基、 アミ ド基の如きノニオン基;アミノ酸基の如き両性イオン基であつ てよい。 辑水基として、 好ましいのは、 ポリエーテル基、 特に好ましくは繰り返 し数 6〜2 0のポリエチレンダリコール鎖を有する化合物である。
両親媒性の化合物 (b)の疎水基としては、 例えば、 アルキル基、 アルキレン基、 アルキルフヱニル基、 長鎖アルコキシ基、 フッ素置換アルキル基、 シロキサン基 などが挙げられる。 両親媒"生の化合物 (b)は、 疎水基として、 炭素数 6〜2 0の アルキル基又はアルキレン基を含むことが好ましい。 炭素数 6〜 2 0のアルキル 基又はアルキレン基は、 例えば、 アルキルフエニル基、 アルキルフエノキシ基、 アルコキシ基、 フェニルアルキル基などの形で含有されていてもよい。
両親媒性の化合物 (b)は、 親水基として繰り返し数 6〜2 0のポリエチレング リコール鎖を有し、 且つ、 疎水基として炭素原子数 6〜2 0のアルキル基又はァ ルキレン基を有する化合物であることが好ましい。 更に好ましく使用できる両親 媒性の化合物 (b)として、 一般式 (1) で表わされる化合物を挙げることができ る。
一般式 (1)
CH^CR'COO (R2O) n— φ— R3
(式中、 R1は水素、 ハロゲン原子又は低級アルキル基を表わし、 R2は炭素 数 1〜3のアルキレン基を表わし、 nは 6~20の整数、 φはフエ-レン基、 R 3は炭素数 6〜 20のアルキル基を表わす)
ここで、 R3はより具体的には、 へキシル基、 ヘプチル基、 ォクチル基、 ノニ ル基、 デシル基、 ドデシノレ基、 又はペンタデシル基であり、 好ましくはノ-ル基 又はドデシル基である。 一般式 (1) において、 nの数が大きいほど、 R3の炭 素原子数も大きいことが好ましレ、。
n数と R 3の炭素数の関係はグリフィンのエイチ ·エル' ビー (HLB) 値に して 1 0〜1 6の範囲にあることが好ましく、 1 1〜1 5の範囲にあることが特 に好ましい。 これらの両親媒性の化合物 (b)の中でも、 ノユルフェノキシポリエ チレングリコーノレ (n = 8〜l 7) (メタ) ァクリ レート、 ノユルフェノキシポ リプロピレングリコール (n=8〜1 7) (メタ) アタリレートが特に好ましレヽ。 組成物 (X)に添加することができる活性エネルギー線重合開始剤は、 本発明で 使用する活性エネルギー線に対して活性であり、 化合物 (a)を重合させることが 可能なものであれば、 特に制限はなく、 例えば、 ラジカル重合開始剤、 ァニオン 重合開始剤、 カチオン重合開始剤であって良い。 活性エネルギー線重合開始剤は、 使用する活性エネルギー線が光線である場合に特に有効である。
そのような光重合開始剤としては、 例えば、 p— tert—ブチルトリクロロアセ トフエノン、 2, 2' ージエトキシァセトフエノン、 2—ヒドロキシ一 2—メチ ルー 1一フエニルプロパン一 1—オンの如きァセトフエノン類;ベンゾフエノン、 4、 4' —ビスジメチ^/アミノベンゾフエノン、 2〜クロ口チォキサントン、 2 ーメチルチオキサントン、 2—ェチルチオキサントン、 2—ィソプロピルチォキ サントンの如きケトン類;
ベンゾイン、 ベンゾインメチノレエーテノレ、 ベンゾインイソプロピノレエーテノレ、 ベ ンゾィンィソプチルエーテルの如きべンゾィンエーテノレ類;ベンジルジメチルケ タール、 ヒ ドロキシシクロへキシルフェニルケトンの如きべンジルケタール類; N—アジドスルフォエルフェニルマレイミ ド等のアジドなどが挙げられる。 また、 マレイミド系化合物などの重合性光重合開始剤を挙げることができる。
組成物 ωに光重合開始剤を混合使用する場合の使用量は、 非重合性光重合開 始剤の場合、 0 . 0 0 5〜 2 0重量0 /0の範囲が好ましく、 0 . 1〜 5重量0 /0の範 囲が特に好ましい。 光重合開始剤は重合性のもの、 例えば、 活性エネルギー線重 合性化合物(a)として例示した多官能や単官能のマレイミ ド系モノマーであって も良い。 この場合の使用量は、 上記に限られない。
組成物 (X)に添加することができる重合遅延剤としては、 例えば活性エネルギ 一線重合性化合物(a)がァクリロイル基含有化合物の場合には、 スチレン、 a— メチノレスチレン、 α—フエニルスチレン、 ρ—ォクチノレスチレン、 ρ― ( 4—ぺ ンチノレシク口へキシノレ) スチレン、 ρ—フエエルスチレン、 ρ― ( ρ—ェトキ シフエニル) フエニノレスチレン、 2 , 4一ジフェ二ノレ一 4—メチノレー 1一ペンテ ン、 4, 4 —ジビ二ルビフエニル、 2—ビニルナフタレン等の、 使用する活性 エネルギー線重合性ィ匕合物(a)より重合速度の低いビニル系モノマ を挙げるこ とができる。
組成物 ωに添加することができる重合禁止剤としては、 例えば活性エネルギ 一線重合性ィ匕合物 (a)が重合性の炭素一炭素二重結合含有化合物の場合には、 ノ、 ィ ドロキノン、 メ トキシハイ ドロキノン等のハイ ドロキノン誘導体;ブチルヒ ド 口キシトノレェン、 t e r t—ブチノレフエノーノレ、 ジォクチ/レフエノーノレなどのヒ ンダントフェノール類等が挙げられる。
活性エネルギー線として光線を使用する場合には、 パターユング精度を向上さ せるために、 重合遅延剤及び/又は重合禁止剤と光重合開始剤を併用することが 好ましい。 また、 組成物 (X)に添加することができる増粘剤としては、 例えば、 ポリスチレンなどの鎖状重合体が挙げられる。
組成物 (X)に添加することができる改質剤としては、 例えば、 撥水剤や剥離剤 として機能するシリコンオイルやフッ素置換炭化水素などの疎水性ィヒ合物;親水 ィ匕剤や吸着抑制剤として機能するポリビュルピロリ ドン、 ポリエチレングリコ一 ノレ、 ポリビュルアルコールなどの水溶性重合体;濡れ性向上剤、 離型剤、 吸着抑 制剤として機能する、 ノニオン系、 ァニオン系、 カチオン系などの界面活性剤が 挙げられる。 組成物(X)に必要に応じて混合使用することができる着色剤として は、 任意の染料や顔料、 蛍光色素、 紫外線吸収剤が挙げられる。
組成物 (X)に添加することの出来る溶剤としては、 組成物 (X)の各成分を溶解し て均一な溶液とするものであれば任意であり、 揮発性のの溶剤であることが好ま しい。 組成物 ωの粘度が高い場合、 特に薄く塗工する場合などには、 組成物 ω に溶剤を添加することが好ましい。 該溶剤は、 塗工後、 或いはその後の任意のェ 程で揮発除去される。
本発明の製造方法は、 塗工支持体上に組成物 (X)を塗工して未硬化の塗膜を形 成する。 この工程を 「工程 (i)」 と称する。 塗膜の厚さは任意であるが、 Ι μ πι 以上であることが好ましく、 5 μ ιη以上が更に好ましく、 Ι Ο μ πι以上であるこ とが更に好ましい。 これより薄いと製造が困難となる。
塗膜の厚みはまた、 1 0 0 0 μ πι以下であることが好ましく、 4 0 0 μ πι以下 がより好ましく、 2 0 0 μ ΐη以下であることが更に好ましい。 これより厚いと本 発明の効果が減じる。 塗膜の厚みは、 硬化時の収縮などにより若干変化するが、 樹脂層 (X)となる層の厚みと概ね一致する。 塗工部位は任意であり、 塗工支持体 の全面であっても、 部分的であってもよい。 又逆に、 後述の部材 (J)と積層する 部分以外の部分に'も塗工されていてもよい。
塗工支持体に組成物 (X)を塗工する方法としては、 塗工支持体の上に塗工でき る任意の塗工方法を用いることができ、 例えば、 スピンコート法、 ローラ"コー ト法、 流延法、 デイツビング法、 スプレー法、 バーコ一ター法、 X— Υアプリケ 一タ¾、 スクリーン印刷法、 凸版印刷法、 グラビア印刷法、 ノズルからの押し出 しゃ注型などが挙げられる。 また、 組成物 (X)を特に薄く塗工する場合には、 組 成物 )に溶剤を含有させて塗工した後、 該溶剤を揮発させる方法を採用するこ ともできる。
組成物 (X)の未硬化の塗工物に、 欠損部とすべき部分を除いて活性エネルギー 線を照射して、 照射部分の組成物 (X)を半硬化させる一方、 組成物 (X)の活性エネ ルギ一線非照射部を未硬化部分として残す (以後、 この操作を 「パター-ング露 光』 若しくは単に 「露光」 と称する場合もある) 。 この工程を半碑化塗膜を形成 する工程 (i i)と称する。 照射の角度は任意であり、 必ずしも塗膜面に直角でなく ても良い。
ここで言う半硬化とは、 組成物 (X)が非流動性または難流動性となる程度であ り、 且つ、 活性エネルギー線のさらなる照射によって重合できる未反応の活性ェ ネルギ一線重合性官能基が残存する程度に硬化させることを言う。 組成物(X)を 半硬化させる方法は、 組成物 (X)を完全硬化させるには不十分な線量の活性エネ ルギ一線の照射、 又は、 後述の再照射温度より低温での照射、 もしくはその両法 を組み合わせた方法であることが好ましい。
活性エネルギー線の照射線量が過小で、 硬化の程度が不十分であると、 未硬化 部分の除去の際、 選択性が不十分となって目的の形状の欠損部が形成されなくな る他、 部材 (J)と接着する工程において、 部材 (J)が表面に凹部を有する場合には、 組成物(X)が該凹部に入り込み、 該凹部を閉塞させたり、 該凹部断面積の変動を もたらすために好ましくない。
一方、 照射量が過大で硬化の程度が過剰であると、 半硬化塗膜が柔軟性を失う と共に接着性が低下し部材 (J)との接着が不完全となりがちである。 好適な半硬 化の程度は、 使用する系での簡単な実験により、 適宜求めることができる。
パターユング露光におけるパターンの形状、 即ち欠損部とする部分の形状は、 用途目的に応じて任意に設定できる。 例えば、 連絡路、 流入出口、 貯液槽、 反応 槽、 液一液接触部、 クロマトグラフィーや電気泳動の展開路、 検出部、 バルブ構 造の一部;弁の周囲部分、 加圧タンク、 減圧タンク、 圧力検出部等として用いら れる空間;センサー埋め込み部として使用する空間などとして使用する空洞状の 欠損部の全部又は一部とすることが出来る。
欠損部とする形状が、 塗膜の面内において線状である場合には、 直線、 ジグザ グ、 渦巻き、 馬蹄形その他の形状であってよい。 また、 貯液槽や反応槽等として 使用する場合には、 円形や矩形であって良い。 更に、 欠損部とする形状は、 該塗 膜層の表裏を連絡する微小な貫通孔であっても良い。 該欠損部は、 塗膜の外周部、 即ちマイクロデパイスの外周部に連絡していてもしていなくても良い。
欠損部を、 塗膜表面から見て線状とする場合には、 欠損部即ち未硬化部は幅 1 〜1 0 0 0 πιであることが好ましい。 幅は 1 μ m以上が好ましく、 5 ju m以上 がより好ましく、 1 0 μ πι以上であることが更に好ましい。 これより狭い幅の未 硬化部を有するマイク口デバイスは製造が困難となる。 未硬化部の幅は 1 0 0 0 ; u m以下であることが好ましく、 5 0 0 m以下がより好ましく、 2 0 0 m以 下であることが更に好ましい。
これより未硬化部の幅が広いと、 本発明の効果が減じる。 溝の幅/深さ比は任 意であるが、 0 . 2〜1 0の範囲が好ましく、 0 . 5〜5の範囲が更に好ましい。 露光によつて形成される未硬化部の寸法は、 活性エネルギー線非照射部の寸法と 必ずしも同じではなく、 活性エネルギー線非照射部の寸法より大きくなる場合も あるし小さくなる場合もある。
活性エネルギー線の種類や照射量、 化合物 (a)の反応性、 活性エネルギー線重 合開始剤の種類や添加量、 重合禁止剤や遅延剤の添加量等により変化しうる。 し かし、 変化の度合いはそれほど大きなものでなく、 せいぜい 1ノ 2〜 2倍程度で ある。 未硬化部の断面形状は、 矩形 (角の丸まった矩形を含む) 、 台形 (角の丸 まった台形を含む) 、 半円形等の任意の形状であってよい。
本発明に用いることのできる活性エネルギー線としては、 紫外線、 可視光線、 赤外線、 レーザー光線、 放射光の如き光線;エックス線、 ガンマ線、 放射光の如 き電離放射線;電子線、 イオンビーム、 ベータ線、 重粒子線の如き粒子線が挙げ られる。 これらの中でも、 取り扱い性や硬化速度の面から紫外線及び可視光が好 ましく、 紫外線が特に好ましい。 硬化速度を速め、 硬化を完全に行なう目的で、 活性エネルギー線の照射を低酸素濃度雰囲気で行なうことが好ましい。 低酸素濃 度雰囲気としては、 窒素気流中、 二酸化炭素気流中、 アルゴン気流中、 真空又は 減圧雰囲気が好ましい。
欠損部とする部分以外の部分に活性エネルギー線を照射する方法は任意であり、 例えば、 照射不要部分をマスキングして照射する、 あるいはレーザーなどの活性 エネルギー線のビームを走査する等のフォトリソグラフィ一の手法が利用できる 本発明の製法においては、 露光後、 非照射部分の未硬化の組成物(X)を除去し、 樹脂の欠損部とする (以後、 この操作を 「現像」 と称する場合がある) 。 このェ 程を 「工程 (i i i)」 と称する。 未硬化の組成物 (X)の除去方法は任意であり、 例え ば、 圧縮空気などによる吹き飛ばし、 ろ紙などによる吸収、 水などの非溶剤の液 体流による洗い流し、 溶剤洗浄、 揮発、 分解等の方法が利用できる。
これらの中で、 非溶剤の液体流による洗い流し又は溶剤洗浄が好ましい。 現像 によって組成物 (X)の未硬化部が欠損部になる。 形成される欠損部の形状 ·寸法 は、 組成物 ωの未硬化部の形状 ·寸法と概ね同じであるが、 完全に一致するわ けではない。 例えば、 圧縮空気などによる吹き飛ばしゃ非溶剤の液体流による洗 い流しでは、 溶剤洗浄に比べて欠損部の幅が狭くなりがちであるし、 非照射部分 の未硬化組成物(X)が完全に除去されず、 欠損部の底が丸くなつたり、 欠損部の 底が塗工支持体表面に届いていなレ、場合もあり得る。
本発明で製造されるマイクロデバィスの樹脂層 (X)の一部に、 部材ひ)と接触し ていながら接着していない部分を形成する場合には、 {工程 ωと工程(ϋ)の間、 工程(i i)と工程(i i i)の間、 及び工程(i i i)と工程(iv)の間) 力 ^選ばれる、 1つ 以上の工程間において、 樹脂層(X)となる塗膜の一部に選択的に活性エネルギー 線を照射して、 行程(iv)で他の部材と積層する際に、 該被照射部分が他の部材と 接着しない程度にまで硬化させる部分硬化を施す。 この工程を 「工程 (i i' ) J と 称する。
即ち、 工程(i i' )を工程 (i)と工程(i i)の間に実施する場合には、 樹脂層(X)と なる未硬化塗膜を部分硬化させ、 その後、 欠損部となる部分を除いて半硬化させ る。 工程 (i i)と工程(i i i)の間に実施する場合には、 樹脂層 (X)となる塗膜には、 未硬化部と半硬化部分が存在する状態で部分硬化させ、 その後、 欠損部を形成す る。
• 工程(i i i)と工程(iv)の間に実施する場合には、 欠損部が形成された半硬化塗 膜の一部を部分硬化させる。 工程 (i i')は、 実質的に工程 (i)、 (i i)ゝ 及び (i i i) と実質的に同時であっても良いし、 複数の段階で実施しても良い。 工程 (i i' )に 用いる活性エネルギー線は塗膜を半硬化させる工程(i i)と同様である。
樹脂層 (X)の一部が部材 00と接触していながら接着していない構造を形成する 場合も同様である。 即ち、 樹脂層(X)の一部が部材 )、 部材 (K)の両者に接着し ていない部分を設ける場合には、 上記と同じ方法を用いることが出来る。
但し、 樹脂層 (X)の一部に、 部材 (J)に接着しており、 部材 (K)には接着してい ない部分を設ける場合には、 部分硬化を施す工程が、 工程 (iv)と工程 (vlの間、 工程 (iv)と工程 (vi)の間、 工程 (V)と工程 (vilの間、 工程 (vi)と部材 (K)を積層す る工程の間、 工程 (V)と部材 (K)を積層する工程の間、 のいずれかの任意の工程間 であること以外は上記と同じ方法で形成することができる。
工程 (iii)の後に、 組成物 ωの半硬化塗膜を部材 )と積層し、 該半硬化塗膜 を樹脂層 (X)と成す。 この工程を 「工程 (iv)」 と称する。 組成物 (X)の半硬化塗膜 と部材 (J)との積層は、 用途、 目的に応じた形態であってよく、 必ずしも全面で ある必要はない。
部材 (J)の形状は特に限定する必要はなく、 用途目的に応じた形状を採りうる。 例えば、 シート状 (フィルム、 リボンを含む) .、 板状、 塗膜状、 棒状、 チューブ 状、 その他複雑な形状の成型物などであり得るが、 成形し易く、 組成物 (X)半硬 化塗膜を積層 ·接着し易いといった面から、 接着すべき面が平面状又は 2次曲面 状であることが好ましく、 シート状又は板状であることが特に好ましい。 なお、 後述の部材 or )は、 部材 )の中の特定の形状を有するものである。
部材 (j)の素材は、 本発明の製造方法で組成物 ωが接着可能なものであれば特 に制約はない。 部材ひ)の素材として使用可能なものとしては、 例えば、 重合体、 ガラス、 石英の如き結晶、 セラミック、 シリコンの如き半導体、 金属などが挙げ られるが、 これらの中でも、 易成形性、 高生産性、 低価格などの点から重合体 (ポリマー) が特に好ましい。
部材 (J)は支持体上に形成されたものであってもよい。 この場合の支持体の素 材は任意であり、 例えば、 重合体、 ガラス、 セラミック、 金属、 半導体などであ つて良い。 支持体の形状も任意であり、 例えば、 板状物、 シート状物、 塗膜、 棒 状物、 紙、 布、 不織布、 多孔質体、 射出成型品等であって良い。 該支持体は、 本 マイクロデバイスと一体化されるものであっても、 形成後に除去されるものであ つても良い。 複数のマイクロデパイスを 1つの部材 (J)上に形成することも可能 であるし、 製造後、 これらを切断して複数のマイクロデバイスとすることも可能 である。
部材 (J)に使用する重合体は、 単独重合体であっても、 共重合体であっても良 く、 また、 熱可塑性重合体であっても、 熱硬化性重合体であっても良い。 生産性 の面から、 部材 (J)に使用する重合体は、 熱可塑性重合体又は活性エネルギー線 硬化性の架橋重合体であることが好ましい。
部材 (J)に使用できる重合体としては、 例えば、 ポリスチレン、 ポリ一 α—メ チルスチレン、 ポリスチレン/マレイン酸共重合体、 ポリスチレン/アタリロニ トリル共重合体の如きスチレン系重合体;ポルスルホン、 ポリエーテルスルホン の如きポリスルホン系重合体;ポリメチルメタクリレート、 ポリアクリロ二トリ ルの如き (メタ) アタリル系重合体;ポリマレイミド系重合体; ビスフエノール Α系ポリカーボネート、 ビスフエノール F系ポリカーボネート、 ビスフエノール Z系ポリカーボネートなどのポリカーボネート系重合体;
ポリエチレン、 ポリプロピレン、 ポリ一 4ーメチルペンテン一 1の如きポリオレ フィン系重合体;塩化ビニル、 塩化ビニリデンの如き塩素含有重合体;酢酸セル ロース、 メチルセノレロースの如きセルロース系重合体;ポリウレタン系重合体; ポリアミ ド系重合体;ポリイミ ド系重合体;ポリ一 2, 6—ジメチルフエ二レン ォキサイド、 ポリフエ二レンサルフアイドの如きポリエーテル系又はポリチォェ 一テル系重合体;ポリエーテルエーテルケトンの如きポリエーテルケトン系重合 体;ポリエチレンテレフタレート、 ポリアリレートの如きポリエステル系重合 体;エポキシ樹脂; ウレァ樹脂;フエノール樹脂;ポリ四フッ化工チレン、 P F A (四フッ化工チレンとパーフロロアルコキシエチレンの共重合体) などのフッ 素系重合体、 ポリジメチルシロキサン等のシリコーン系重合体;本発明で使用す る活性エネルギー線硬化性組成物 (X)の硬化物、 等が挙げられる。
これらの中でも、 接着性が良好な点などから、 スチレン系重合体、 (メタ) ァ クリル系重合体、 ポリ力ーボネート系重合体、 ポリスルホン系重合体、 ポリエス テル系重合体が好ましい。 また部材 (J)は、 活性エネルギー線硬化性樹脂の硬化 物であることも好ましい。 部材 (J)は、 ポリマーブレンドやポリマーァロイで構 成されていても良いし、 積層体その他の複合体であっても良い。 更に、 部材 (J) は、 改質剤、 着色剤、 充填材、 強化材などの添加物を含有しても良い。
部材 (J)に含有させることができる改質剤としては、 例えば、 シリコンオイル やフッ素置換炭化水素などの疎水化剤 (撥水剤) ;水溶性重合体、 界面活性剤、 シリカゲルなどの無機粉末、 などの親水化剤が挙げられる。 部材 )に含有させ ることができる着色剤としては、 任意の染料や顔料、 蛍光性の染料や顔料、 紫外 線吸収剤が拳げられる。 部材 (J)に含有させることができる強化材としては、 例 えば、 クレイなどの無機粉末、 有機や無機の繊維が挙げられる。
部材 (J)が接着性の低い素材、 例えば、 ポリオレフイン、 フッ素系重合体、 ポ リフエ二レンサルファ'イド、 ポリエーテルエーテルケトン等の場合には、 部材 ひ)の接着面の表面処理やプライマーの使用により、 接着性を賦与或いは向上さ せることが好まし!/、。 また、 部材 (J)の表面に活性エネルギー線硬化性組成物を 塗布し、 活性エネルギー線照射により半硬化させた層を形成し、 これを部材 (J) とすることも樹脂層(X)との接着性向上の為に好ましく、 接着性の観点からは、 接着する樹脂層(X)と同様の活性エネルギー線硬化性組成物を用いることが更に 好ましい。
また、 本発明のマイクロデバイスの使用に当たって、 接着性を向上させる目的 の他に、 タンパク質などの溶質のデバイス表面への吸着を抑制する目的で、 部材 (J)の表面を親水化することも好ましい。
部材 (J)は、 表面に溝などの凹部を有する部材、 表面に凹部を有しない部材、 層内に欠損部を有しない組成物 (X) (半) 硬化樹脂層、 又は分離膜であってよい し、 これらの複合体でも良い。 又、 部材 )は、 その上に樹脂層 (X)を積層して形 成した後に除去可能なものであっても良い。 さらに、 部材 (J)は、 単独の樹脂層
(Χ)、 積層された複数の樹脂層 (Χ)、 又は樹脂層 (X)が他の部材に積層された部材 であり得る。 単独の樹脂層(X)は、 本発明の工程 (V)における塗工支持体の除去と 同じ方法で形成できる。
部材 (J)と接着された樹脂層 (X)から塗工支持体を除去することにより、 樹脂層 (X)を部材 (J)に転写する。 この工程を 「工程 (v) J と称する。 除去方法は任意で あり、 剥離、 溶解、 分解、 溶融、 揮発などであり得るが、 生産性が高い点で剥離 が好ましく、 また、 柔軟で薄い樹脂層 (X)を破損することなく形成出来る点では 溶解が好ましい。
塗工支持体の除去が剥離である場合は、 後述の工程 (vi)を本工程 (V)の前に施 すことが好ましい。 或いは、 本工程の前後に施すことも好ましい。 剥離による除 去は、 引張りによる剥離、 刃による剥離、 水流などの液体流による剥離、 圧空な どによる気体流による剥離、 水への浸漬などによる自然剥離など任意であり、 剥 離を容易にするため、 温度条件を変えたり、 水中で実施することも好ましい。 また、 塗工支持体の素材と組成物 (X)の組み合わせを選択し、 未硬化塗膜及び 半硬化塗膜の状態では付着性であり、 硬化後は接着力が低くなる組み合わせを選 択することで容易となる。 剥離による除去は、 樹脂層 (X)が引張り弾性率が 0 . :!〜 1 O G P aであるように比較的剛性が高い場合に好ましい方法である。
塗工支持体の除去が溶解である場合は、 後述の工程 (vi)は本工程 (V)の前であ つても後であっても良い。 勿論、 本工程の前後に施しても良い。. 溶解による除去 は、 塗工支持体の素材と組成物 (X)の組み合わせを選択し、 塗工支持体を選択的 に溶解する溶剤により実施することが出来る。 このような溶剤としては、 例えば 水、 酸、 アルカリ、 低級アルコール、 ケトン系溶剤、 エステル系溶剤、 エーテル 系溶剤、 炭化水素等を挙げることができる。 溶解方法も任意であり、 例えば、 液 体中への浸漬、 シャワー、 蒸気洗浄などの方法を採ることが出来る。
これらは塗工支持体が完全に溶解することを要さない。 即ち、 塗工支持体の一 部が膨潤、 溶解し樹脂層 (X) 力 ら剥離すれば十分に本発明の目的が達せられる。 従って、 水などの塗工支持体を溶解する溶剤を強く吹き付けることにより、 塗工 支持体の一部が膨潤、 溶解し、 塗工支持体が樹脂層 (X) 力 剥離する方法も含 まれる。
これらの中で、 水、 酸、 アルカリによるものが好ましい。 溶解による除去は、 後述の工程 (vi)が本工程 (V)の前である場合で、 樹脂層 (X)の欠損部が長い線状、 曲線状、 多数の線状である場合のように、 剥離による除去が困難である場合に好 適である。 また、 溶解による除去は、 硬化した樹脂層 (X)が引張り弾性率が 1〜 7 0 0 M P aであるような比較的剛性の低い場合に好ましい方法である。 また分 解による除去は、 酸化分解、 加水分解など任意であり、 上記の溶解による除去と 同様に扱える。
工程 (V)の前及び Z又は後に、 即ち、 塗工支持体が積層されている状態及び Z 又は除去された状態で、 半硬化の樹脂層 (X)に活性エネルギー線を再照射し、 組 成物 (X)を更に硬化させて部材 (J)に接着する。 この工程を工程 (vi)と称する。 本 工程における活性エネルギー線の照射は、 作製されるマイクロデバイスに十分な 強度を持たせる程度に組成物 (X)層を硬化させると共に、 組成物 (X)硬化物層と部 材 (J)とを十分な強度で接着することを意味する。
また、 工程 (V)の塗工支持体の除去が剥離によるものである場合には、 剥離可 能な程度に硬化させることを意味する。 従って、 必ずしも重合性基が完全に消失 するまで硬化させる必要はない。 特に、 樹脂層 (X)に更に他の部材を積層 ·接着 する場合には、 硬化の程度は、 塗工支持体を剥離可能な程度に硬化していながら、 活性エネルギー線の 3度目の照射で他の部材と接着可能な程度に重合性基が残存 する程度であることが好ましい。
工程 (vi)で硬化に用いることのできる活性エネルギー線としては、 組成物(X) の半硬化に用いることの出来る活性エネルギー線として例示したものを使用する ことが出来る。 本工程で使用する活性エネルギー線は、 工程 (ii)で使用したもの と同じであっても異なるものであっても良い。 また、 強度、 照射温度、 雰囲気酸 素濃度などの照射条件が異なっていても良い。
樹脂層(X)は、 層内にパターニング露光と現像によつて形成された樹脂の欠損 部を有し、 該欠損部は、 該層を部材 (J)と積層することにより、 また必要に応じ て、 樹月旨層 (X)の上にさらに他の部材 (K)を積層して部材 (J)と他の部材 (K)とで樹 脂層(X)を挟持することにより、 流路その他として使用される空涧を構成するこ とができる。 空^!は、 マイクロデバイスの外部に連絡しているものであっても連 絡していないものであっても良い。 なお、 後述の榭脂層 (Χ' )は、 樹脂層 (X)の中 の特定の形状を有するものである。
部材 (J)上に樹脂層 (X)を積層した後、 樹脂層 (X)が積層された部材 (J) を工程 (iv) における部材 (J) の代わりに用いて、 樹脂層 (X)の形成工程、 即ち、 工程 (i)、 (ii) (iii)、 (iv) , 及び (v)なる一連の工程、 又は工程(i;)、 (ii) (iii)、 (iv)ヽ )、 及び (vi)なる一連の工程、 又は工程(i)、 (ii) , (iii)、 (iv) , (vi) 及び (v)なる一連の工程を繰り返すことによって、 樹脂層 (X)を複数層積層するこ とができる。
このとき工程(vi)は必ずしも実施する必要はないが、 支持体の剥離方法によつ ては実施が必要である場合がある。 連続する 2つの樹脂層 (X)の樹脂層 (X)の形状 は同じであっても異なっていても良く、 また、 厚みや、 樹脂層(X)を構成する組 成物 ωの種類が異なっていても良い。 また、 2回以上繰り返す場合には、 その 度ごとに上記のいずれから選ばれる一連の工程を選択して実施できる。
本発明の製造方法は、 工程 (V)における塗工支持体の除去方法によって、 好ま しい手順が異なる。 例えば、 塗工支持体の除去が溶解によるものである場合は、 半硬化の樹脂層 (X)に他の部材 (κ)を積層して、 部材 ωと他の部材 (κ)とで樹脂層
(X)を挟持し、 この状態で工程 (vi)の活性エネルギー線照射を行い、 これらを接 着することが好ましい。
また、 塗工支持体の除去が溶解によるものである場合は、 部材 σ)上に形成さ れ、 塗工支持体が除去された半硬化状態の樹脂層 ) を部材 ωの代わりに使用 して、 上記のいずれかの一連の工程を繰り返すことによって、 樹脂層(X)を複数 層を積層し、 この状態で工程 (vi)の活性エネルギー線照射を行い、 これらを接着 することが出来る。
塗工支持体の除去が剥離によるものである場合、 工程 (vi)を工程 (V)の前に行 い、 部材 (J)上に形成された、 塗工支持体が除去された硬化した樹脂層 (X)を部材 (J)の代わりに使用して、 工程(i)、 (ii)、 (iii)、 (iv)、 (vi)、 及び (v)の工程を 繰り返すことによって、 樹脂層 (X)に複数層を積層したマイクロデパイスを製造 することが出来る。
また、 上記と同様にして、 樹脂層(X)の上に他の部材を介して他の樹脂層 (X)を 積層しても良いし、 部材 (J)上に榭脂層 (X)が形成された部材を形成し、 それを複 数枚張り合わせることにより、 複数の樹脂層 (X)を有するマイクロデバイスとす ることも可能である。
連続した 3層以上の部材の欠損部を連結させることによって、 空洞状の流路の 立体交差が可能になり、 マイクロデバィスに複雑な機能を持たせることが可能に なる。 このような形態は、 部材を貫通する欠損部を有する部材、 又は表面に凹状 の欠損部を有する部材、 又は部材を貫通する欠損部と表面に凹状の欠損部を有す る部材から選ばれる部材 (J)、 及び部材 (J)と同様の構造を有する部材 (Κ)を使用 した、 部材 (J) -樹脂層 (X)—部材 (Κ)積層体であり得る。 この時、 部材 (Κ)は樹脂 層 (X)と同じ素材 '構造であって良いし、 樹脂層 (X)は複数層であって良いし、 部 材 (J)も樹脂層 (X) と同じ素材'構造であって良い。 形成された樹脂層 (X)の上に他の部材 (K)を密着させることも好ましい。 密着は、 接着、 粘着、 非接着の密着などであり得るが、 接着であることが好ましい。 接着 方法は任意であるが、 部材 (K)素材に活性エネルギー線硬化性組成物を用い、 半 硬化させた状態で樹脂層(X)に接触させ、 活性エネルギー線を再照射して、 接着 する方法が好ましい。 例えば、 欠損部を形成しないこと以外は樹旨層 (X)と同様 の方法で形成することも好ましい。 なお、 後述の部材 (Κ' )は、 部材 (Κ)の特定形 状のものである。
部材 (Κ)の形状や寸法は、 部材 (J)と同様であり、 部材を貫通する欠損部を有す る部材、 表面に溝状などの凹状の欠損部を有する部材、 部材を貫通する欠損部や 表面に凹状の欠損部を有しない部材、 本発明で言う樹脂層 (X)と同様の方法で形 成され、 同様の素材 ·構造を有する樹脂層、 層内に欠損部を有しない組成物 (X) の (半) 硬化樹脂層、 分離膜など、 及びこれらの複合体であり得る。 部材 (Κ)の 代わりに、 任意の部材上に榭脂層(X)が積層された部材を用いることも出来る。 樹脂層 (X)は、 活性エネルギー線重合性ィ匕合物 (a)の選択や組成物 (X)の各成分 の配合により、 目的の硬度に形成することが出来る。 樹脂層 (X)の引張弾性率は、 例えば 0 . 0 1 G P a〜l O G P a、 好ましくは 0 . 0 5 G P a〜3 G P aとす ることが出来る。
本発明のマイクロデバイスは、 樹脂層(X)に弁となる構造を設けることにより、 バルブを有するマイクロデバイスとすることもできる。 弁となる構造は、 その一 部が固定されたシート状であることが、 製造が容易であり好ましい。 その一部が 固定されたシート状とは、 例えば舌状、 1以上の部分で固定された円や矩形など であり得る。
本発明の製造方法においては、 本発明の工程 (ii)において、 弁と成る部分を残 してその周囲を欠損部とする形状に露光することにより、 その一部が固定された シート状の弁を形成することが出来る。 例えば、 舌状の弁となる構造を形成する には、 馬蹄形の欠損部を形成すべく露光すればよい。
そして、 弁の形成された樹脂層(X)の一方の側には弁より小さな面積の孔状の 欠損部を有する部材 )、 部材 (K)又は樹脂層 (X)を、 孔状の欠損部を弁に合わせ て積層し、 樹脂層 (X)の他方の側には弁が可動出来るように、 弁より大きな空洞 となる欠損部を有する、 部材 (J)、 部材 (K)又は榭月旨層 (X)を積層することによつ てパルプを形成することが出来る。
樹月旨層 (X)を、 他の部材ゃ樹脂層、 例えば上記の、 弁より小さな面積の孔状の 欠損部を有する部材 (J)、 部材 (K)又は樹脂層 (X)と接着する際に、 弁の部分も接 着されてしまうことを避けるために、 工程(iv)の前に、 樹脂層(X)の弁となる部 分に活性エネルギー線を照射して、 該部分が接着しない程度に硬化を進めること が好ましい。 該活性エネルギー線照射は、 工程 (ii)と同時及び /又は又は工程 (iii)と工程(iv)の間に実施することが好ましい。
弁が形成される樹脂層(X)は、 柔軟な素材で形成することが好ましく、 該層を 挟持する層ゃ部材より低い引張弾性率の素材で形成することが好ましい。 弁が形 成される樹脂層(X)に使用する素材の好ましい引張弾性率は I MP a〜l G P a、 更に好ましくは 1 0〜5 0 O M P a、 更に好ましくは 5 0〜3 0 O MP aである。 この範囲より低いと強度や繰り返し耐久性に劣るものとなりがちであり、 これよ り高いと閉時に漏洩が生じがちとなる。
本発明の製造方法においては、 弁を有するマイクロデバイスを作製する場合と 同様に、 可動なダイャフラムを有するマイク口デバィスを製造する場合において も、 ダイヤフラムが隣接する部材、 即ち、 榭脂層 (X)、 部材 (J)又は部材 (K)と接 着されてしまうことを避けるために、 ダイヤフラムに樹脂層(X)が隣接する場合 には、 工程 ωと工程 (iv)の間に、 樹脂層 (X)の非接着とすべき部分に活性エネル ギ一線を照射して、 該部分が接着しない程度に硬ィヒを進める工程を設けることが 好ましい。
このような方法で製造することのできるマイクロデパイスの例としては、 ダイ ャフラム式バルブ機構、 チェックバルブ機構、 ダイャフラム式開閉バルブ機構、 ダイヤフラム式流量調節バルブ機構などを有するマイク口デバイスを挙げること ができる。
形成したマイクロデバイスは、 穿孔、 切断などの後加工することも可能である。 また、 本発明のマイクロデバイスは全体が微小な大きさである為、 一枚の樹脂層 に多数の部材を同時に作成することが生産効率、 並びに各部材の細部の精度の良 い位置決めに有用である。 即ち、 複数の微小なマイクロデバイスを一枚の露光現 像版上に作成することにより、 再現性良く、 且つ高い精度の寸法安定性を有して 多数のマイク口デパイスを一度に生産することができる。
本発明のマイクロデバイスは、 材を貫通する欠損部を有する部材、 又は表 面に凹状の欠損部を有する部材、 又は部材を貫通する欠損部と表面に凹状の欠損 部を有する部材から選ばれる部材 ')} と、 層の一部に欠損部を有し、 該欠損部 の最小幅が、 1〜: 1 0 0 0 mである、 活性エネルギー線硬ィ匕性樹脂層(X' )の 1 つ以上の層と、 {部材を貫通する欠損部を有する部材、 又は表面に凹状の欠損部 を有する部材、 又は部材を貫通する欠損部と表面に凹状の欠損部を有する部材か ら選ばれる部材 (Κ' ) } とが積層され、 部材中の少なくとも 2つ以上の欠損部が連 結して空洞を形成している、 積層構造を有するマイクロデバイスである。
部材 (J' )は、 {部材を貫通する欠損部を有する部材、 又は表面に凹状の欠損部 を有する部材、 もしくは部材を貫通する欠損部と表面に凹状の欠損部を有する部 材} であること以外は、 本発明の製造方法で使用した部材 (J)と同様であり、 部 材 (J)の特定形状のものである。 部材 (κ' )もまた、 {該部材を貫通する欠損部を 有する部材、 又は表面に凹状の欠損部を有する部材、 もしくは部材を貫通する欠 損部と表面に凹状の欠損部を有する部材} であること以外は、 本発明の製造方法 で使用した部材 (Κ)と同様であり、 部材 (Κ)の特定形状のものである。
部材を貫通する欠損の位置、 形状、 寸法は、 該欠損部が樹脂層 (Χ' )に連結でき る面に開口していること以外は任意である。 部材を貫通する欠損部の形状は、 例 えば丸孔、 角孔、 スリット状、 円錐状、 角錐状、 樽状、 ネジ孔、 その他複雑な形 状の欠損部であり得る。 部材 CT )の欠損部は樹脂層 (X' )の欠損部に比べて大きな 孔であり得る、 部材 σ )表面に形成された ω状の欠損部の寸法形状は、 後述のよ うな、 本発明マイク口デバイス内に形成される空洞の形状 ·寸法と同様である。 欠損部を有する部材 (j' )、 部材 (κ' )の製造方法は任意であり、 例えば、 射出成 形、 溶融レプリカ法、 溶液キャスト法、 活性エネルギー線硬化性組成物を用いた フォトリソグラフ法、 又は活性エネルギー線硬化性組成物を用いたキャスト成型 法などにより製造できる。 また、 部材 (J' )は、 本発明で言う樹脂層 (Χ' )と同じ素 材 ·形状の樹脂層であり得るし、 本発明で言う樹脂層 ' )が複数層積層された構 造物であり得るし、 本発明で言う樹脂層 (X' )が他の部材に積層された積層物であ り得る。
本発明のマイクロデバイスは、 部材 (J' )、 1つ以上の樹脂層(x' )、 部材 (κ' )の 積層体であり、 その合計の層数は 3以上であり、 用途、 目的にもよるが 3〜 1 0 であることが好ましく、 3〜6であることが更に好ましい。
本発明のマイクロデバイスにおいては、 樹脂層(Χ' )に形成された欠損部は、 本 発明の製造方法における樹脂層 (X)と異なり、 該樹脂層の表裏を貫通していて、 該樹脂層が他の樹月旨層 (X' )又は貫通孔ゃ凹部を有する部材と積層されることでこ れらの層や部材を連絡した空洞を形成している。 樹脂層 (χ' )については、 該樹脂 層に形成された欠損部が該樹脂層の表裏を貫通していること以外は、 本発明の製 造方法における樹脂層 (X)と同様である。
本発明のマイクロデバイスにおいては、 部材 σ')、 1層以上の樹脂層(χ,)、 及 び部材 (Κ')に形成された各欠損部は、 少なくとも隣り合った 2層の欠損部同士が 連絡して空洞を形成している。 好ましくは連続した 3層以上の欠損部が互いに連 絡して空洞を形成している。
本発明のマイク口デバイスに更に他の部材、 例えば欠損部を有する部材を積層 することも可能である。 また、 2つ以上の本発明のマイクロデバイスを、 表面に 開口した空洞同士が連絡するようにして接着して、 新たなマイクロデバイスとす ることも可能であるし、 貫通孔ゃ凹部を有しない部材を挟んで積層接着して、 空 洞部が互いに連絡していない複数の部分から成るマイクロデバイスとすることも 可能である。
このような例としては、 マイクロデバイスがダイヤフラム式ポンプ機構やダイ ャフラム式バルブ機構を有するような、 ダイヤフラム構造を有するデバイスであ り、 貫通孔ゃ凹部を有しない部材がダイヤフラムを形成しているマイクロデパイ スを例示することが出来る。 貫通孔ゃ凹部を有しない部材は活性エネルギー線硬 化性樹脂で形成されていることが、 層間接着性が高くまた生産性も高いため、 好 ましい。 また、 このような部材は、 多孔質膜、 透析膜、 気体分離膜などであり得 る。
本発明のマイクロデパイスにおける空洞の形状は、 用途目的に応じて任意に設 定できる。 例えば、 連絡路、 流入出口、 貯液槽、 反応槽、 液一液接触部、 クロマ 一や電気泳動の展開路、 検出部、 パルプなどの流体の流路;加圧タン ク、 減圧タンク、 圧力検出部などの空間;センサー埋め込み部として使用する空 間などとして使用する空洞状の欠損部の全部又は一部とすることが出来る。 異なる樹脂層(χ' )内に形成された複数の流路或いは枝分力れした流路が、 榭月旨 層 (Χ' )を隔てて立体交差していることが、 流路を平面内に形成しなければならな V、制約から解放され、 複雑なデバイスを構成出来るため好ましレ、。
また、 本発明においては、 空洞がバルブの一部であり得る。 パルプの種類は任 意であり、 例えばチェックパルプ (常時閉であり、 一定以上の圧力が掛かると開 となるパルプ) 、 逆止弁 (一方向には常時開であり、 逆方向には常時閉であるバ ルブ) 、 開閉バルブ、 流量調節バルブなどであり得る。
バルブが弁を有する場合には、 弁の形状は任意であり、 例えば、 舌状などの、 その一部が固定されたシート状 (フィルム状、 膜状、 リボン状、 板状などを含 む) ;空洞に閉じこめられた球状、 円錐状、 板状などの独立した塊状物などであ り得る。 弁となる構造は、 その一部が固定されたシート状であることが、 製造が 容易であり好ましい。
その一部が固定されたシート状とは、 例えば舌状、 2以上の部分で固定された 円や矩形などであり得る。 本発明のマイクロデバイスにおいては、 樹脂層 (Χ' )の 一部に、 弁と成る部分の周囲を欠損部として、 その一部が固定されたシート状の 弁を形成することが出来る。
例えば、 欠損部が馬蹄形であることにより、 舌状の弁となる構造が得られる。 そして、 弁が形成された樹脂層(Χ' )の一方の側には弁より小さな面積の孔状の欠 損部が弁に合わせて積層されており、 他方の側には弁が可動出来るように、 弁よ り大きな空洞が形成されていることによってバルブとして機能し得る。
弁を有する樹脂層 (Χ' )は、 柔軟な素材で形成されていることが好ましく、 該樹 脂層を挟持する層ゃ部材より低い引張弾性率の素材で形成されていることが好ま しい。 弁を有する樹脂層(Χ' )として使用される素材の好ましい引張弾性率は 1 M P a〜l G P a、 更に好ましくは 1 0〜 5 0 0 MP a、 更に好ましくは 5 0〜 3 O O MP aである。 この範囲より低いと強度や繰り返し耐久性に劣るものとなり がちであり、 これより高いと閉時に漏洩が生じがちとなる。 また、 発明はダイヤフラム式のパルプ機構を有するマイクロデバイスを提供す る。 ダイヤフラム式バルブ機構の好ましい第 1の例は、 樹脂層(x, )が、 一方の 側がダイヤフラムとなる樹脂層、 他の側が欠損部を有する他の部材と直接積層さ れており、 樹脂層 (X' )の欠損部が積層されることで空洞となり、 樹脂層 (χ' )の 裏面に積層された他の部材が、 該空洞への流入口又は流出口、 またはその両者と なる孔状の欠損部を有し、 流入口、 流出口の少なくとも一方が、 樹脂層(X' )を 隔ててダイャフラムの対向面に形成されていて、 その周がダイヤフラムに接して おらず、 ダイヤフラムを変形させて、 該流入口、 流出口の少なくとも一方の周に 接することによって流路を閉鎖しうる構造を有するものである。
他の部材の所定の位置に形成された孔状の欠損部が、 流入口又は流出口のいず れかである場合には、 他方は、 樹脂層(X' )に形成された線状の欠損部とダイヤ フラムとなる樹脂層とで形成された毛細管状の流路、 あるいは、 他の部材)に形 成された溝状の欠損部と樹脂層(X' )とで形成された毛細管状の流路などであり 得る。
このような構造のバルブとして、 常時開のダイヤフラム式バルブを挙げること ができる。 ダイヤフラムととなる樹脂層、 樹脂層 (x,)及び他の部材が接着されて 積層された構造は、 本発明の製造方法によって製造することができる。 . 本発明は、 また、 {部材を貫通する欠損部を有する部材、 又は表面に凹状の欠 損部を有する部材、 又は部材を貫通する欠損部と表面に凹状の欠損部を有する部 材から選ばれる部材 (J' ) } と、 層の一部に欠損部を有し、 該欠損部の最小幅が 1 〜1 0 0 0 M mである、 活性エネルギー線硬化性榭脂層(X' )の 1つ以上の層と、 欠損部がなくダイヤフラムとなす部材 (Κ' ' )とが積層され、 部材 (Κ' ' )が隣接して 積層された他の部材と接触しているが接着していない部分を有し、 該部分がダイ ャフラム部分である、 部材 (J,)と樹脂層 (Χ')中の少なくとも 2つ以上の欠損部が 連結して空洞を形成している、 積層構造を有するマイクロデバイスを提供する。 即ち、 部材 (J')、 1層以上の樹脂層 (X' )、 及び欠損部を有しない部材 (Κ' ' )の 積層体から成り、 部材 (Κ' ' )が隣接して積層された他の部材と接触しているが接 着していない部分を有し、 該部分がダイヤフラム部分である、 マイクロデバイス を提供する。 部材 (J')と樹脂層 (Χ')については、 上述の、 部材 (J')、 樹脂層 (Χ')と同様であり、 部材 (Κ')の代わりに、 ダイヤフラムとなる、 欠損部を有しない部材 (Κ")を用いる こと以外は、 前記の部材 α')、 樹脂層(χ')、 部材 (κ')から成るマイクロデバイス と同様である。
部材 or )は、 該部材に積層された他の部材と接触しているが、 接着していな い部分を有し、 該部分がダイヤフラム部分となる。 即ち、 ダイヤフラムを変形さ せると該非接着部分が空洞と成りうる。
本発明のダイヤフラム式バルブ機構の好ましい第 2の例は、 上記の構造を採つ ている上に、 樹脂層(X' )が、 該空洞となりうる部部への流入口又は流出口、 ま たはその両者となる孔状の欠損部を有し、 該流入口又は流出口の少なくとも一方 がダイヤフラムの対向面に形成されていて、 その周がダイヤフラムに接している が接着しておらず、 ダイヤフラムの変形により、 流路が開となることを特徴とす るものである。
樹月旨層 (X' )の所定の位置に形成された穴状の欠損部が、 流入口又は流出口の いずれかである場合には、 他方は、 樹脂層(X' )の線状の欠損部とダイヤフラム でもって形成された流路の、 該空洞となる部分への接続口して形成できる。
部材 (J')には、 流入口、 又は、 流出口、 又はその両者に接続された流路となる 欠損部を形成できる。 重罪 (J 、 樹脂層 (Χ')及び部材 (K")が接着されて積層され た構造は、 本発明の製造方法によって製造することができる。 このような構造の バルブとして、 常時閉のダイヤフラム式バルブやチェックパルプを拳げることが できる。
上記第 1の例、 第 2の例のいずれにおいても、 ダイヤフラムの厚みは、 好まし くは 1〜5 0 θ ί πι、 更に好ましくは 5〜2 0 0 /z mである。 ダイヤフラムの厚 みは空洞部の寸法により最適値が異なり、 空洞の面積が小さいほど薄くすること が好ましい。 しかしながら、 この範囲未満では製造が困難となり、 この範囲を越 えると、 マイクロでデバイスとしてのメリットが低下する。
また、 ダイヤフラムは、 引張弹 1"生率が好ましくは 1〜7 0 O MP a、 更に好ま しくは 1 0 MP a〜 3 0 0 MP aの範囲にある素材で形成されている。 ダイヤフ ラムの直径や素材の硬度にもよるが、 これより小さいと、 製造が困難となったり、 開状態を維持することが困難と成り、 また、 この範囲を超えると、 開閉が困難と なる。
ダイヤフラムを構成する素材は、 J I S K- 7 1 2 7により測定された破断 伸び率が、 好ましくは 2 %以上、 更に好ましくは 5 %以上のものである。 破断伸 びの上限は、 自ずと限界はあろうが、 高いことそれ自身による不都合は無い為、 上限を設けることは要せず、 例えば、 4 0 0 %でありうる。 本発明においては、 J I S K— 7 1 2 7による引張試験で 2〜 5 %という低い破断伸び率を示す素 材であっても、 本発明の使用方法においては破壊しにくく、 上記試験による破断 伸び率以上の歪みを与えても破壊することなく使用可能である。
ダイヤフラムを変形させる方法は任意であり、 例えばダイヤフラムの反対側に 形成した空洞への、 流体の圧入や減圧などの圧力変化、 機械的な圧迫又は吸引な どでありうる。
本発明は、 複数の層、 特に 3層以上の層に一部が流路として使用される空洞が 形成された多層構造のマイクロデバイスを提供することができる。 また、 微細な 弁や、 薄く柔軟なダイヤフラムの形成や、 これらの目的位置への接着が容易であ り、 バルブ機構を有するマイクロデバイスを提供できる。 更に、 接着剤による流 路の閉塞が無く、 各層の間や層と他の部材との間からの液体の漏洩がないデバイ スが得られる。 更に、 両親媒性の重合性ィ匕合物を用いることにより、 生体成分の 吸着や損失がなく再現性に優れるケミカルデバイスが得られる。 これらにより、 複雑な工程の反応 ·分析が可能なマイクロデバイスを提供できる。 実施例
以下、 実施例及び比較例を用いて、 本発明を更に詳細に説明するが、 本発明は これら実施例の範囲に限定されるものではない。 なお、' 以下の実施例において、 「部」 及び 「%」 は、 特に断りがない限り、 各々 「重量部」 及び 「重量%」 を表 わす。
[活性エネルギー線照射]
2 0 0Wメタルハライドランプを光源とするゥシォ電機株式会社製のマルチラ イト 2 0 0型露光装置用光源ュ-ットを用い、 3 6 5 n mにおける紫外線強度が 10 OmWZcm2の紫外線を、 室温、 窒素雰囲気中で照射した。
[組成物 (X)の調製]
〔組成物 (X- 1)の調製〕
活性エネルギー線重合性化合物 (a)として、 平均分子量約 2000の 3官能ゥ レタンァクリレートオリゴマー (大日本インキ化学工業株式会社製の 「ュニディ ック V—4263J ) 30部、 1, 6—へキサンジオールジアタリレート (日本 化薬株式会社製の 「カャラッド HDDA」 ) 45部、
両親媒性化合物 (b) として、 ノユルフェノキシポリエチレングリコール (n = 17) アタリレート (第一工業製薬株式会ネ: t¾の 「N— 177 E」 ) 25部、 光 重合開始剤として 1—ヒドロキシシク口へキシルフェ -ルケトン (チパガイギー 社製の 「ィルガキュア一 184」.) 5部、 及ぴ重合遅延剤として 2, 4—ジフエ ニル一 4ーメチルー 1一ペンテン (関東化学株式会社製) 0. 1部を混合して、 活性エネルギー線硬化性組成物 (X-1)を調製した。 なお、 活性エネルギー線硬化 性組成物 (X-1)の紫外線硬化物は、 引張弾性率が 56 OMP a、 水との接触角が 12度であった。
〔組成物 (χ-1')の調製〕
光重合開始剤の量が 2部であること、 及び重合遅延剤を含有しないこと以外は 組成物 (X- 1)と同様の組成の組成物(X- )を調製した。 なお、 活性エネルギー線 硬化性組成物(X - )の紫外線硬化物は、 引張弹†生率が 58 OMP a、 水との接触 角が 12度であった。
〔組成物 (X-2)の調製〕
活性エネルギー線硬化性化合物(a)として、 ポリテトラメチレングリコール (平均分子量 250) マレイミドカプリエート (特開平 11— 124403号公 報の合成例 1 3に記載の方法によって合成した) 75部、 両親媒性化合物 (b) として、 ノ^ルフエノキシポリエチレングリコール (n= 17) ァクリレート (第一工業製薬株式会社製の 「N— 177E」 ) 25部、 重合遅延剤として 2, 4—ジフエ二ルー 4一メチル一 1 ;ンテン (関東化学株式会社製) 0. 01部 を混合して、 活性エネルギー線硬ィ匕性組成物 (x-2)を調製した。 なお、 活性エネ ルギ一線硬化性組成物 (X- 2)の紫外線硬化物は、 引張弾性率が 6 1 OMP a , 水 との接触角が 19度であった。
〔組成物 (X- 2' )の調製〕
重合遅延剤を含有しないこと以外は組成物 (X- 2)と同様の組成の組成物(χ-2' ) を調製した。 なお、 活性エネルギー線硬化性組成物 (X - 2')の紫外線硬ィ匕物は、 引 張弾性率が 630MP a、 水との接触角が 19度であつた。
〔組成物 (X- 3)の調製〕
活性エネルギー線重合性化合物 (a)として、 平均分子量約 2000の 3官能ゥ レタンアタリレートオリゴマー (大日本ィンキ化学工業株式会社製の 「ュニディ ック V— 4263」 ) 30部、 co—テトラデカンジォーノレジアタリレートと ω— ペンタデカンジオールジァクリレートを主成分とするアルキルジァクリレート (ソマール株式会社製の ("サ一トマ一 C 2000」 ) 45部、
及びノニルフエノキシポリエチレングリコール (η=1 7) アタリレート (第一 工業製薬株式会社製の 「Ν— 1 77 Ε」 ) 25部、 光重合開始剤として 1—ヒド 口キシシクロへキシルフェニルケトン (チバガイギー社製の 「イノレガキュア一 1 84」 ) 5部、 及ぴ重合遅延剤として 2, 4—ジフエ-ルー 4一メチル一 1—ぺ ンテン (関東化学株式会社製) 0. 1部を混合して、 活性エネルギー線硬化性組 成物(X - 3)を調製した。 なお、 活性エネルギー線硬化性組成物 (χ-3)の紫外線硬ィ匕 物は、 引張 3単性率が 16 OMP a、 水との接触角が 14度であった。
[実施例 1]
本実施例では、 糸且成物 (X)にアクリル系樹脂を使用した本発明のマイクロデバ イスを、 塗工支持体の剥離により除去する製法で製造する方法について述べる。 〔工程 (i)〕
塗工支持体 (1) として、 片面がコロナ放電処理された厚さ 3 Ομπιの 2軸延 伸ポリプロピレンフィルム (二村化学株式会社製、 Ο Ρ Ρフィルム) を 5 c m X 5 cmに切断して使用し、 このコロナ処理面側に、 127 imのパーコータ 一を用いて組成物 (X-1)を塗工し、 塗膜 (2) を形成した。
〔工程 (ii)〕
次いで、 窒素雰囲気中で、 非露光部幅 100 μπι、 非露光部長 30mmのフォ トマスクを通して、 図 1に示した非露光部 (3) 以外の部分に紫外線を 1秒間照 射する露光を行って半硬化させた。
〔工程 (iii)〕
半硬化塗膜に水道蛇口から出た流水に当てて、 非露光部 (3) の未硬化の組成 物 (X-1)を洗浄除去することにより、 塗工支持体 (1) の上に、 欠損部 (3) を 有する半硬化塗膜 (2) を形成した。
〔部材 (J- 1)の作製〕 ·
塗工支持体 (1) の代わりにポリスチレン (大日本インキ化学工業株式会社製 の 「ディックスチレン xC— 520 J ) からなる 5 c mX 5 c mX厚さ 3mmの 板状の基材 (4) を使用したこと、 組成物(X- 1)の代わりに、 組成物 (X - 1')を使 用したこと、 及び、 露光に当たりフォトマスクを使用しなかったこと以外は、 上 記の半硬化塗膜 (2) の作製と同様にして、 基材 (4) の表面に組成物 (X- 1')の 半硬化塗膜 (5) が形成された部材 (J - 1)を作製した。
〔工程 (iv)〕
部材 (J-1)の半硬化塗膜 (5) 形成面に、 塗工支持体 (1) 上に形成された半 硬化塗膜 (2) を密着させて積層し、 半硬化状態の樹脂層 (X-1)前駆体 (2' ) とした。
〔工程 (vi)〕
その積層体に、 露光に用いたと同じ紫外線をフォトマスク無しで 5秒間照射し て、 樹脂層 (X - 1)前駆体 (2' ) をさらに硬化させて樹脂層 (X-1) (2' ) とする と同時に、 部材 (J - 1)の樹脂層 (5) と接着した。
〔工程 (v)〕
次いで、 この 4層積層物から塗工支持体 (1) を剥離し、 部材 (J - 1)の樹脂層 (5) の上に樹脂層 (X- 1) (2' ) 、 即ち、 欠損部 (3) を有する、 組成物 (X - 1) の硬化物の層が接着されたマイクロデバィス(D- 1)を作製した。
〔部材 (K- 1)の接着〕
ポリスチレン (大日本インキ化学工業株式会社製の 「ディックスチレン XC— 520」 ) からなる 5 cmX 5 cmX厚さ 3!11111の板を部材(1(-1) (6) として 基材の代わりに使用したこと以外は部材 (J-1)と同様にして、 部材 (K- 1) (6) 上 に接着用樹脂層として組成物 - 1')の半硬化塗膜 (7) を形成し、 これを樹脂層 (X-l) (2' ) の表面に密着させた。
〔工程 (vi)〕
その状態で露光に用いたと同じ紫外線をフォトマスク無しで 30秒間照射して、 半硬化塗膜 (7) を硬化した樹脂層 (7) と成すと同時に、 部材 (K - 1) (6) 及 ぴ樹脂層 (7) を樹脂層 (X-1) (2) 表面に接着し、 樹脂層 (X-1) (2) の欠損部 (3) を空洞 (3' ) と成すと共に、 全ての活性エネルギー線硬化性組成物 (X) を十分に硬化させた。
〔その他の構造の形成〕
その後、 毛細管状の空洞 (3' ) の両端部において、 部材 (K- 1) (6) 及ぴ接 着樹脂層 (7) に、 ドリルにて直径 1. 6 mmの孔を穿ち、 直径 1. 6 mmのス テンレスパイプをエポキシ樹脂にて接着して流入口 (8) 及び流出口 (9) を形 成することにより、 図 2及び図 3に示したような、 内部に毛細管状の空洞
(3' ) を有するマイクロデバイス(D-1)を作製した。
〔漏洩試験〕
マイクロデバイス(D - 1)の流入口 (8) から水を注入し、 流出口 (9) を閉じ て、 空洞内に 0. IMP aの圧力を掛けた状態で 1時間放置したが、 水の漏洩は 認められなかった。
〔空洞部の観察〕
マイクロデバイス(D- 1)を切断し、 走査型電子顕微鏡 (SEM) にて観察した ところ、 毛細管状の空洞 (3' ) の断面は矩形であり、 幅 95/zm、 高さ 60μ mであつ 7こ。
[実施例 2]
本実施例では、 表面に凹状の欠損部を有する部材 (J)を使用した本発明の製造 方法について述べる。
〔部材 (J)の作製〕
5 cmX 5 c mX厚さ 3mmのポリスチレン (大日本インキ化学工業株式会 社製の 「ディックスチレン xC_520」 ) 製の板とシリコンウェハー製の鎳型 をガラス板に挟み、 パネ式のクランプで止めて 120°Cの熱風炉中で約 2時間加 熱し、 室温で冷却後、 剥離することにより、 溝の寸法が幅 50 μ m、 深さ 25 μ mであること以外は実施例 1と同様の形状と長さの溝状の囬部をポリスチレン板 の表面に形成し、 部材 (J-2)とした。
〔半硬化塗膜の形成〕
露光のパターンが、 部材 (J - 2)に形成された溝の両端部に相当する位置にそれ ぞれ直径 3 0 0 mの孔が形成される形状であること以外は、 実施例 1と同様に して、 塗工支持体の上に、 2つの穴状の欠損部を有する半硬化塗膜を形成した 〔工程 (i)、 (ii)、 (iii)〕 。
〔樹脂層 (X- 2)の作製〕
部材 (J' - 2)の溝形成面に、 相互の位置を合わせて、 塗工支持体上に形成された 半硬化塗膜密着させ 〔工程 (iv)〕 、 その状態で、 露光に用いたと同じ紫外線をフ オトマスク無しで 3 0秒間照射して、 半硬化塗膜を硬化させて樹脂層 (X - 2)とし た 〔工程 (vi)〕 。 次いで、 この 3層積層物から塗工支持体を剥離し 〔工程 (v).〕 、 部材 (J-2)表面に樹脂層 (X - 2)、 即ち、 流入口及び流出口となる欠損部を 有する、 糸且成物 (X - 1)の硬化物の層が接着された、 図 2及び図 3の空洞と同様の 形状の空洞を有するマイクロデバイス(D- 2)を作製した。
[実施例 3 ]
本実施例では、 組成物 (X)にマレイミ ド樹脂を使用した本発明のマイクロデバ イスを、 塗工支持体の剥離により除去する製法で製造する方法について述べる。 組成物(X)として組成物(X- 1)の代わりに組成物 (X- 2)を用いたこと、 組成物(X - 1' )の代わりに組成物(χ-2' )を用いたこと、 及び露光時間が 2秒であること以外 は実施例 1と同様にして、 実施例 1と同様の構造のマイクロデパイス(D- 3)を作 製した。
[実施例 4 ]
本実施例では、 樹脂層 (Χ' )が 3相積層され、 内部に立体交差する流路を有する マイクロデパイス及びその製法について述べる。
〔部材 (J- 4-1)の形成〕
実施例 1と全く同様にして、 基材 (3 5 ) の表面に、 欠損部のない組成物 (X - 1' )半硬化樹脂層 (3 6 ) が形成された部材 - 4-1)を作製した。
〔樹脂層 (X' -4-1)の形成〕 非露光部が、 図 4に示されたように、 幅 1 00 /_tm、 長さ 3 Ommの非露光部 (3 3) と、 幅 1 00 μπι、 長さ 1 4mmの 2本の直線が 2mmの間をあけて、 非露光部 (3 3) に直角な方向に直線状に配列された非露光部 (34) であるこ とこと以外は実施例 1と同様にして、 塗工支持体 (3 1) の上に、 塗膜の欠損部 (3 3) 、 (34) を有する半硬化塗膜 (3 2) を形成し、 部材 (J-4- 1) (3 5) の表面に積層し、 1 0秒間紫外線照射して、 欠損部 (3 3' ) 、 (3 ' ) を有する樹脂層 (Χ'- 4-1) (3 2 ' ) を形成し、 これを部材 (J'- 4-2)とした。
〔榭脂層(X' -4 - 2)の形成〕
部材 (J- 4-1)の代わり部材 (J' -4-2)を使用したこと、 及び、 非露光部 (3 8) 力 図 8に示された層間連絡路として機能する欠損部 (3 8' ) となる直径 3 0 0 m、 間隔 2 mmの 2つの円形部分であること以外は榭脂層 (X' -4-1)の形成と 同様にして、 塗膜の欠損部 (3 8) を有する半硬化塗膜 (3 7) を樹脂層 (X' - 4- 1)の上に転写し、 欠損部 (38' ) を有する樹脂層 (X' -4- 2)' (3 7 ' ) を形成し、 部材 (J' -4-3)とした。
〔樹脂層(Χ'- 4-3)の形成〕
部材 (J - 4-1)の代わりに部材 ( -4- 3)を使用したこと、 非露光部 (40) の形 状が、 図 8における 2つの欠損部 (34' ) を層間連絡路 (38' ) を経て連絡 する欠損部 (40' ) となる、 幅 1 00 μ πι、 長さ 2 mmの線状であること以外 は榭脂層(X' -4-1)の形成と同様にして、 塗膜の欠損部 (40) を有する半硬化塗 膜 (3 9) を樹脂層 (Χ'- 4- 2)の上に転写し、 欠損部 (40' ) を有する樹脂層 (Χ, -4- 3)を形成した。
〔部材 (Κ- 4)の接着〕
樹脂層(X - 1)の代わりに樹脂層(X' -4-3)に接着したこと以外は、 実施例 1にお ける部材 (Κ 1)と同様の部材 (Κ - 4) (4 1) を実施例 1と同様にして、 接着用の樹 脂層 (4 2) によって接着した。
〔流入出部の形成〕
樹脂層(Χ'- 4-1)の欠損部 (3 3' ) の両端部において、 基材 (3 5) 及ぴ樹脂 層 (3 6) にドリルにて直径 1. 6 mmの孔を穿ち、 直径 1. 6 mmのステンレ スパイプを接着して、 樹脂層(X' -4-1)の欠損部 (3 3 ) に連絡する流入部 (4 3) 及び流出部 (44) を形成した。 また、 榭脂層 (Χ'- 4-1)の欠損部 (34' ) の両端部において、 基材 (35) 及び樹脂層 (36) に、 ドリルにて直径 1. 6 mmの孔を穿ち、 直径 1. 6 mmのステンレスパイプを接着して、 樹脂層 (Χ'- 4 - 1)の欠損部 (34' ) に連絡する流入部 (45) 及び流出部 (46) を形成して、 マイクロデバィス (D- 4)を作製した。
〔通水試験〕
流入部 (45) から導入した染料着色水は、 欠損部 (34' ) 、 (38' ) 、 (40' ) 、 (38' ) s 及び (34' ) を経て液体流出部 (46) から流出し、 これとは別に流入部 (43) 力 ^導入した蒸留水は、 欠損部 (33' ) を通って、 染料着色水と混じることなく流出部 (44) から流出した。 即ち、 独立した 2本 の流路が立体交差していることが確認された。
[実施例 5]
本実施例では、 ダイヤフラム式バルブ機能を有するマイク口デバイスの製法に ついて述べる。
〔部材 (J- 5-1)の形成〕
実施例 1で作製した部材 (J-1)と全く同様にして、 ポリスチレン製の基材 (5
4) 上に欠損部を有しない樹脂層 (55) が形成された部材 (J - 5-1)を作製した。 〔樹脂層 (X- 5-1)の形成〕
非露光部の幅が異なること以外は実施例 1における樹脂層 (X - 1)の形成と同様 にして、 部材 (J- 5-1)の表面に、 欠損部 (53' ) の幅が約 200 μπιである樹 脂層 (X-5 1) (52) を形成し、 部材 (J - 5- 2)とした。
〔中間層の形成〕
部材 (J - 1)の代わりに部材 (J-5-2)を使用したこと、 組成物 (x-1)の代わりに組 成物 (X- 3)を使用したこと、 及び露光がフォトマスクを使用しない全面照射であ ること、 以外は実施例 1における樹脂層 (X - 1)の形成と同様にして、 欠損部を有 しない中間層 (56) を樹脂層 (X- 5-1)の上に形成した。
〔樹脂層 (X-5- 2)の形成〕
部材 (J- 1)の代わり部材 (J-5- 3)を使用したこと、 非露光部の形状が、 図 9に示 された欠損部 (58' ) を形成するような、 中心部に直径 lmmの円形部分と、 これに接続された長さ 15mm、 幅 200 μ mの直線状部分から成るパターンで あること、 以外は実施例 1における樹脂層 (X - 1)の形成と同様にして、 中間層
(56) の上に樹脂層(X- 5 - 2) (57) を形成し、 部材 (J - 5 - 4)とした。
〔部材 (K- 5)の接着〕
樹脂層 (X- 1)の代わりに樹脂層(X-5-2)に接着したこと以外は、 実施例 1におけ る部材 (K - 1)の接着と同様にして、 部材 (K- 1)と同じ部材 (K - 5) (59) を接着用 樹脂層 (60) を介して部材 (J- 5- 4)に接着した。
〔流入出口の形成〕
樹脂層(X- 5-1)の欠損部 (53' ) の両端部において、 部材 (J- 5-1)に、 ドリル にて直径 5. 1mmの孔を穿ち、 外径 5 mmの塩化ビニル管をエポキシ系接着剤 にて接着して、 樹脂層(X-5- 1)の欠損部 (53' ) に連絡する液体流入部 (6 1) 及び液体流出部 (62) を形成した。
また、 樹脂層(X- 5- 2) (57) の欠損部 (58' ) の外側端部において、 部材 (K-5)の基材 (59) 及ぴ樹脂層 (60) に、 ドリルにて直径 1. 6 mmの孔を 穿ち、 外径 1. 6 mmのステンレス管をエポキシ系接着剤にて接着して、 樹脂層 (X-5-2) (57) の欠損部 (58' ) に連絡する気体導入部 (63) を形成して、 マイクロデバイス(D-5)を作製した。 作製されたマイク口デバイスの平面図の模 式図を図 9に、 図 9中の A部における断面図を図 10に示す。
〔流量調節試験〕
液体流入部 (61) から圧力約 10 k P aで水を導入し、 大気に解放した液体 流出部 (62) から流出させた状態で、 気体導入部 (63) から 0. 5MP aの 圧力の窒素を導入したところ、 水の流量は殆どゼロになった。 また、 窒素圧を変 化させることによって水の流量を調節することができた。 即ち、 開閉バルブ及ぴ 流量調節バルブとして作動することを確認した。
[実施例 6]
本実施例では、 榭脂層(X' )がそれぞれ表面に溝を有する部材 (J' )及ぴ部材 (Κ' ) に挟持された形状の本発明のマイク口デバイスを、 塗工支持体の除去が溶解によ る除去である本発明の製造方法によって製造する方法について述べる、
〔塗工支持体の作製〕 片面がコロナ放電処理された厚さ 30 μιηの 2軸延伸ポリプロピレンフィルム (二村化学株式会社製、 ΟΡΡフィルム) のコロナ処理面側に、 ポリビエルアル コール (和光純薬部式会社製、 重合度 2000) の 20%水溶液を塗布し、 4 0°Cの温風乾燥及ぴ 40°Cの真空乾燥を行った後、 OP Pフィルムから剥離して、 ポリビュルアルコールフィルムを形成し、 これを塗工支持体とした。
〔部材 (J'- 6)の作製〕
実施例 2と同様の溶融レプリカ法で、 実施例 1におけるポリスチレン板 ( 4 ) 、 欠損部のない樹脂層 (5) 、 及ぴ、 図 4に示された 3本の直線状の欠損部を有す る樹脂層 (X - 1)が積層された形状と同様の形状である、 凹部を有する部材を作製 し、 部材 (J'- 6)を作製した。
〔樹脂層 (Χ')前駆体の作製〕
塗工支持体がポリビュルアルコールフィルムであること、 及び、 欠損部とする 形状が、 図 5に示された 2つの孔状の欠損部 (38) と同形状であること、、 以外 は実施例 2の工程(i)、 (ii)及び(iii)と同様にして半硬化塗膜を形成した。
塗工支持体上に作製された半硬化塗膜を部材 (J' -6)に積層した後、 40°Cの流 水で洗浄して塗工支持体を溶解除去し、 部材 (J' -6)に積層された半硬化状態の樹 脂層 ' -6)前駆体を形成した(工程 (i V)、 (v))0
〔部材 (Κ')の作製〕
表面の凹状の欠損部の形状が、 図 6に示された欠損部と同じ形状であること以 外は、 部材ひ'- 6)と同様にして部材 (Κ'- 6)を作製した。
〔部材 (Κ')の積層と接着〕
樹脂層 (Χ'- 6)前駆体の上に、 部材 (Κ'- 6)を積層し、 紫外線を 40秒間照射して (工程 (vi))、 樹脂層 (Χ'- 6)前駆体を硬化せせると同時に、 部材 (J'- 6)及び部材 (Κ' -6)を樹脂層 (X' -6)に接着した。
〔その他の構造の形成〕
その後、 実施例 1と同様にして、 各流路の端部にステンレスパイプを接着して 流入部及び流出部を形成することにより、 図 7及び図 8に示したマイクロデパイ ス(D - 4)と同様の流路構造を有するマイクロデバイス(D- 6)とした。
[実施例 7 ] 本実施例では、 表面に溝を有する部材 cr )に、 樹脂層 (χ' )が 2層積層された形 状の本発明のマイク口デバイスを、 塗工支持体の除去が溶解による除去である本 発明の製造方法により製造する例について述べる、
〔塗工支持体、 部材 (J' - 7)〕
実施例 6と同様にして、 ポリビュルアルコールフィルムの塗工支持体を作製し た。 また、 部材 (Γ )として、 実施例 6の部材 (J' - 6)と同じものを用い、 部材 (Γ - 7-1) , とした。
〔部材 (J' -7-1)一樹脂層 (X' -7-1)積層体の作製〕
実施例 6と全く同様にして、 実施例 6における部材 (J' -6)、 樹脂層 (X' -6)積層 体と全く同じ部材を作製し、 部材 CT -7 - 1)と樹脂層 (X' - 7 - 1)前駆体の積層体とし た。
〔樹脂層 (X' -7-2)の形成〕
部材ひ' -7-1)と樹脂層(Χ' - 7 - 1)前駆体の積層体を新たに部材 (J' - 7- 2)とし、 欠 損部の形状が実施例 6の部材 (Κ' -6)の凹状の欠損部と同形状であること以外は同 様の操作によつて樹脂層 (X' -7-1)前駆体の上に樹脂層 (X' -7-2)前駆体を積層し、 部材 (J,- 7 - 2)とした。
〔部材 (Κ' -7)の積層と接着〕
部材 (Κ' -7)として実施例 6で用いたポリスチレン板をそのまま用い、 これを樹 脂層 (Χ' - 7- 2)前駆体に積層し、 その状態で紫外線を 4 0秒間照射して、 樹脂層 (X' -7-1)前駆体及び樹脂層 (X' -7-2)前駆体を硬化せせると同時に、 部材 (J' -7)、 樹脂層 (X' -7-1)、 樹脂層(X' -7- 2)、 及ぴ部材 (Κ' - 7)を接着した。
〔その他の構造の形成〕
その後、 実施例 1と同様にして、 各流路の端部にステンレスパイプを接着して 流入部及び流出部を形成することにより、 図 7及ぴ図 8に示したマイクロデバイ ス(D- 4)と同様の流路構造を有するマイクロデパイス(D - 7)とした。
[実施例 8 ]
本実施例では、 弁を有し、 ポンプとして機能する本発明のマイクロデバイスを、 本発明の製造方法により作製する例について述べる。
〔部材 (J,- 8- 1)の作製〕 ポリスチレン (大日本インキ化学工業株式会社製の 「ディックスチレン XC— 520」 ) からなる 5 cmX 5 c mX厚さ 3 mmの板を基材 (71) としてこ れに組成物(X - )を塗布し、 フォトマスク無しで紫外線を 1秒間照射して欠損部 の無い半硬化塗膜 (72) を形成した。
更にその上に糸且成物(X-1)を塗布し、 フォトマスクを用いて図 1 1に示された、 欠損部 (74) と成す部分以外の部分に紫外線を 3秒間照射し、 未照射部分の未 硬化の組成物(x-1)をメタノールにて除去して該塗膜の欠損部として表面に幅 1 00 m、 間隔 0. 6 mmを置いて直列に並んだ長さ 1 Ommの 2本の凹状の欠 損部 (74) 、 (74' ) が形成された樹脂層 (73) を形成した。 この積層体 の凹状の欠損部 (74) 、 (74' ) の両端部において直径 3 mmの貫通孔 (7 5) 、 (75' ) を穿ち、 部材 , -8-1)とした。
〔樹脂層 (X' -8-1)の形成〕
欠損部と成す形状が、 図 12に示されたように、 中心間距離が lmmで設けら れた直径 100 μπιと 600 /imの 2つの孔状 (77) 、 (77 ' ) であること 以外は、 実施例 1と同様にして、 塗工支持体の剥離法によって部材 (J' -8-1)の上 に上記形状の欠損部を有する樹脂層 (X' -8-1) (76) を積層して、 これを部材 (J,一 8— 2)とした。
〔榭脂層 (X' -8- 2)の形成〕
組成物(X)として組成物 (X - 3)を使用したこと、 及び欠損部と成す形状が、 図 1 3に示されたように、 芯間距離 lmmで設けられた、 直径 400 mの舌状の弁 (80) 、 (80' ) と成す部分の周囲の幅 100 μηιの馬蹄形 (79) 、 (7 9' ) であること以外は、 実施例 6と同様にして、 塗工支持体 (図示せず) 上に 半硬化塗膜を形成した。
次いで、 フォトマスクを用いて、 馬蹄形の欠損部 (79) 、 (79, ) で囲ま れた舌状の弁 (80) 、 (80' ) と成す部分のみにさらに紫外線を 20秒間照 射し、 照射部分の組成物 (X-3)を硬化させ、 他の部分は半硬化状態にとどめた
[工程(iii')] 。 これを実施例 6と同様にして、 塗工支持体の溶解除去法によつ て部材 (J'- 8-2)の上に樹脂層 (Χ'- 8- 2) (78) を積層した構造体を得、 これを部 材 , - 8-3)とした。 〔樹脂層 (Χ' -8-3)の形成〕
部材 '- 8-3)の樹脂層(Χ' -8-2)の上に、 大小の 2つの孔 (82) 、 (82' ) の位置を樹脂層 (X' - 8-1) (76) の孔 (77) 、 (77' ) とは逆にして積層し たこと以外は樹脂層 (X' -8-1) (76) と同様の方法で、 図 12に示された樹脂層 (Χ' -8-3) (81) を作製して積層し、 これを部材 (J, -8-4)とした。
〔樹脂層 (X' -8- 4)の形成〕
欠損部 (84) の形状が、 図 14に示された様な、 長さ 1. 5mm、 幅 700 μπιの直線状であること以外は、 樹脂層(Χ, - 8 - 1) (76) と同様にして、 樹脂層 (X' -8-4) (83) を部材 (J' -8-4)の樹脂層(Χ,- 8-3) (81) の上に積層し、 これ を部材ひ'- 8 - 5)とした。
〔中間層の形成〕
部材 CT -5-2)の代わりに部材 (J' -8-5)を使用したこと以外は実施例 5における 中間層 (56) の形成と同様にして、 樹脂層 (Χ'- 8- 4)の上に、 柔軟な素材で形成 された欠損部を有しない中間層 (85) (ダイヤフラム層) を積層、 接着した。 〔部材 (Κ'- 8)の作製と接着〕
凹状の欠損部 (88) の形状が図 16に示したように、 長さ 1. 5mm、 幅 7 O O jumの直線と、 長さ 10mm、 幅 300 /_t mの直線から成る T字型であるこ と、 及び部材を貫通する孔状の欠損部 (89) 1S 幅 30 O/ mの凹状の欠損部 の端に 1力所設けられていること以外は部材 (Γ -8-1)と同様の部材 (Κ' -8)を部材 (Γ- 8-1)と同様の方法で作製した。 即ち、 部材 (Κ'-8)は、 ポリスチレン製の基材 (86) と欠損部 (88) を有する樹脂層 (87) の積層体として形成されてい る。
次いで部材 (Κ'- 8)を、 該部材の欠損部 (88) を中間層 (85) を隔てて樹月旨 層(X' -8- 4)の欠損部 (84) に相対する位置に合わせて、 中間層 (85) の上に 積層し、 紫外線を 30秒間照射することによって中間層 (85) に接着し、 中間 層 (85) をダイヤフラムと成した。 また、 この紫外線照射によって、 その他の 樹脂層も十分に硬化させた。
〔流入出部の形成〕
部材 (J'-8)及び部材 (Κ' -8)に設けられた孔 (75) 、 (75' ) 、 (89) に. 外径 3 mmの塩ィ匕ビ二ル管をエポキシ系接着剤にて接着して、 液体流入部 (9 0) 、 液体流出部 (91) 、 及ぴ気体導入部 (92) を形成して、 マイクロデバ イス(D-8)を作製した。 作製されたマイクロデバイスの平面図の模式図を図 17 に、 立面図の模式図を図 18に示す。
〔送液試験〕
液体流入部 (90) から水を導入したところ、 水は大気に解放した液体流出部 (9 1) から流出した。 逆に、 液体流出部 (91) に水を導入しても液体流入部 (90) からは流出しなかった。 次いで、 気体導入部 (92) に 0. 5MP aの 圧力の窒素を間欠的に導入したところ、 水は液体流入部 (90) から吸い込まれ、 液体流出部 (9 1) から流出した。 即ち、 本マイクロデバイスはポンプとして作 動した。
[実施例 9]
本実施例では、 ダイヤフラムが隣接する部材と接しているが接着していない構 造を有する、 ダイヤフラム式バルブ機能を有するマイクロデバイス及びその製造 方法の例について述べる。.
〔マイクロデバイスの作製〕
樹脂層(X- 5-1)の非照射部分の形状が、 液体流入部 (61) 液体流出部 (6 2) に相当する 2つの孔状であること、 樹脂層 (X- 5-1)の非照射部分の未硬化樹 脂の除去の後で中間層 (56) を積層する前に、 実施例 5における樹脂層 (X - 5 - 1)の非照射部分に相当する部分に紫外線を照射して、 該部分を硬化させたこと、 中間層 (56) のダイヤフラムとなる部分即ち、 実施例 5の空洞 (53) の形状 に紫外線を照射し、 照射部分を硬化させたこと、 及び、 中間層 (56) が本発明 のマイクロデバイスに於ける部材 (K")に相当すること以外は実施例 5と同様の方 法で、 実施例 5の空洞 (53) の厚みがゼ口であること以外は、 実施例 5で作製 したと同様のマイク口デパイスを作製した。
〔通水試験〕
液体流入部 (61) から圧力約 5 k P aで水を導入したが、 水は大気に解放し た液体流出部 (62) 力 流出しなかった。 圧力を 15 kP aまで上昇させたと ころ、 水は液体流出部 (62) から流出した。 この状態で、 気体導入部 (63) から 0. 5 M P aの圧力の窒素を導入したところ、 水の流量はゼロになった。 ま た、 窒素圧を変化させることによって水の流量を調節することができた。 即ち、 チェックバル具、 開閉バルブ及ぴ流量調節バルブとして作動することを確認した。 産業上の利用可能性
本発明は、 破損しやすい非常に薄い層の欠損部として形成された微細な毛細管 状の空洞を有するマイクロデパイスの製造方法、 特に立体的に形成された複雑な 流路を有するマイク口デバイスの生産性の高い製造方法を提供すること、 並びに、 複数の樹脂層が積層され、 微細な毛細管状の空洞が各層を貫通して互いに連絡し、 立体交差している微細な毛細管状の流路、 反応槽となるべき空間、 ダイヤフラム 式バルブ、 及び弁構造などを有する多機能なマイクロデバイスを提供することが できる。

Claims

請 求 の 範 囲
1 . 下記の工程を含む、 欠損部を有する樹脂層 (X)を 1層以上有し、 該樹脂層 が他の部材又は他の樹脂層(X)と積層されて、 欠損部が空洞を形成している、 積 層構造を有するマイク口デバイスの製造方法。
(i) 塗工支持体に、 活性エネルギー線重合性ィヒ合物 (a)を含有する活性エネルギ 一線硬化性組成物 (X)を塗工する、 未硬化塗膜を形成する工程 (i)、
(ii) 欠損部と成すべき部分以外の未硬化塗膜に活性エネルギー線を照射し、 照 射部の未硬化塗膜を非流動性または難流動性となし、 且つ未反応の活性エネルギ 一線重合性官能基が残存する程度に半硬化させる、 半硬化塗膜を形成する工程
(")、
(iii) 半硬化塗膜から非照射部分の未硬化の組成物 ωを除去し、 塗膜の欠損部 を有する半硬化塗膜を得る工程 (iii)、
(iv) 欠損部を有する半硬化塗膜を他の部材 (J)に積層させ樹脂層 (X)と成す工程 (iv) ,
(v) 塗工支持体を樹脂層(X)から除去することにより、 樹脂層 (X) を部材 (J) に転写する工程 (v)、 及び、
(vi)工程 (iv)の後であって工程 (V)の前、 又は工程 (V)の後、 又は工程 (V)の前後 に、 半硬化状態の樹脂層(X)に活性エネルギー線を照射して樹脂層(X)を更に硬化 させ、 樹脂層 (X)を部材 (J)に接着させる工程 (vi;)。
2 . 工程 (V)における塗工支持体の除去が、 塗工支持体の溶解による除去であ る請求項 1に記載のマイク口デバイスの製造方法。
3 . 工程 (vi)が工程 (V)の前であり、 工程 (V)における塗工支持体の除去が剥離 である請求項 1に記載のマイク口デバイスの製造方法。
4 . 工程 )、 (ii) (iii) (iv)ゝ 及び (v)を行った後、 又は工程 (i)、 (ii) (iii) (iv)、 (v)、 及び (vi)を行った後、 又は工程(i)、 (ii) , (iii) (iv) (vi)、 及び (v)を、 この順で行った後に、 樹脂層(X)が積層された部材 (J)を工程 (iv)における部材 (J)の代わりに用いて、 工程 (i)〜(V)又は工程 (i)〜 (vi)を操り 返すことにより、 榭脂層 (X)を複数積層する、 請求項 1に記載のマイクロデバイ スの製造方法。
5 . 複数の樹脂層(X)を、 その欠損部の少なくとも一部が重なり合うように積 層することにより、 積層体中に複数の樹脂層 (X)の欠損部が連結した空洞を形成 する請求項 1に記載のマイクロデバイスの製造方法。
6 . 部材 (J)が該部材を貫通する欠損部を有する部材、 又は、 表面に凹状の欠 損部を有する部材、 又は該部材を貫通する欠損部と表面に凹状の欠損部を有する 部材であり、 部材 (J)の欠損部と樹脂層 (X)の欠損部の少なくと一部が重なり合う ように、 部材 (J)と樹脂層 (X)とを積層することにより、 積層体中に、 部材 (J)の 欠損部と樹脂層(X)の欠損部が連結した空洞を形成する請求項 1に記載のマイク 口デバイスの製造方法。
7 . 工程 (vi)が工程 (V)の後であり、 工程 (vi)において、 半硬化状態の樹脂層 (X)に他の部材 (K)を接触させ、 その状態で活性エネルギー線を照射して、 樹脂層 (X)を部材 (J)に接着すると同時に他の部材 (K)に接着する請求項 1に記載のマイ クロデバイスの製造方法。
8 . 部材 (K)が、 該部材を貫通する欠損部及び/又は表面に凹状の欠損部を有 し、 部材 (K)の欠損部と樹脂層 (X)の欠損部が少なくともその一部において重なる ように部材 (K)と樹脂層 (X)とを積層することにより、 積層体中に、 部材 (K)の欠 損部と樹脂層(X)の欠損部が連結した空洞を形成する請求項 7に記載のマイク口 デバイスの製造方法。
9 . {工程 (i)と工程 (i i)の間、 工程 (i i)と工程 (i i i)の間、 及び工程 (i i i)と 工程 (iv)の間 } から選ばれる 1つ以上の工程間において、 樹脂層(X)の一部に活 性エネルギー線を照射して、 行程 (iv)で該被照射部分が他の部材と接着しない程 度にまで硬化させる部分硬化を施すことにより、 樹脂層 (X)に、 他の部材または 樹脂層と接触していても接着していない部分を形成する、 請求項 1に記載のマイ クロデバイスの製造方法。
1 0 . 工程(ii)における活性エネルギー線の照射を弁を形成する形状に行い、 樹脂層 (X)の一部に弁となる構造を設けること、 及び部分硬化を施す部分が樹月旨 層(X)の弁となる部分である、 請求項 9に記載のマイク口デバイスの製造方法。
1 1 . 樹脂層(X)の厚みが 1〜 1 0 0 0 mの範囲にある請求項 1に記載のマ イク口デバイスの製造方法。
1 2 . 樹脂層(X)の欠損部の最小幅が 1〜 1 0 0 0 μ mの範囲にある請求項 1 に記載のマイク口デパイスの製造方法。
1 3 . 活性エネ ギ一線重合性化合物(a)が、 一分子中に 2つ以上の活 1生エネ ルギ一線重合性官能基を有する化合物である請求項 1に記載のマイク口デバイス の製造方法。 .
1 4 . 活性エネルギー線重合性ィ匕合物 (a)が、 ァクリロイル基又はマレイミ ド 基を有する化合物である請求項 1 3に記載のマイク口デバイスの製造方法。
1 5 . 活性エネルギー線硬化性組成物 ωが、 単独重合体が 6 0度以上の水と の接触角を示す疎水性の活性エネルギー線重合性化合物 (a)と、 これと共重合し うる両親媒性の重合性ィ匕合物(b )を含有するものである請求項 1に記載のマイク ロデパイスの製造方法。
1 6 . 両親媒性の重合性ィ匕合物 (b)が、 分子内に繰り返し数 6〜 2 0のポリエ チレンダリコール鎖と、 炭素数 6〜 2 0個のアルキル基を含有する化合物である 請求項 1 5に記載のマイク口デバイスの製造方法。
1 7 . 部材 (J)が、 スチレン系重合体、 (メタ) アクリル系重合体、 ポリカー ボネート系重合体、 ポリスルホン系重合体、 ポリエステル系重合体なる群から選 ばれた重合体で形成されている請求項 1に記載のマイク口デバイスの製造方法。
1 8 . {部材を貫通する欠損部を有する部材、 又は表面に凹状の欠損部を有す る部材、 又は部材を貫通する欠損部と表面に凹状の欠損部を有する部材から選ば れる部材 ')} と、 層の一部に欠損部を有し、 該欠損部の最小幅が、 1〜1 0 0 0 μ mである、 活性エネルギー線硬化性樹脂層(X' )の 1つ以上の層と、 {部材を 貫通する欠損部を有する部材、 又は表面に凹状の欠損部を有する部材、 又は部材 を貫通する欠損部と表面に凹状の欠損部を有する部材から選ばれる部材 (Κ' ) } と が積層され、 部材中の少なくとも 2つ以上の欠損部が連結して空洞を形成してい る、 積層構造を有するマイクロデバイス。
1 9 . 部材 (J')、 樹脂層(Χ')、 及び部材 (Κ')から選ばれる 1つ以上の部材が、 部材の積層面に平行方向に設けられた、 1つ以上の線状の空洞を有する、 請求項 1 8に記載のマイク口デバイス。
2 0 . 欠損部を有する樹脂層(Χ' )の厚さが、 5〜1 0 0 である請求項 1
8に記載のマイクロデパイス。
2 1 . 空洞の一部が流体の流路であり、 異なる樹脂層 (Χ' )内に形成された複数 の流路、 又は枝分かれした流路が樹脂層(X' )を隔てて立体交差している請求項 1 8に記載のマイク口デパイス。
2 2 . 部材 (J')、 樹脂層(Χ')、 及ぴ部材 (Κ')から選ばれる 1つ以上の部材のー 部に隣接して積層された他の部材と接触しているが接着していない部分を有する、 請求項 1 8に記載のマイクロデバイス。
2 3 . 少なくとも樹脂層 (Χ' )の 1層の一部に、 周囲部分の一部を欠損部とする ことにより、 弁となる構造が設けられており、 隣接して積層された他の部材と接 触しているが接着していない部分が弁である、 請求項 2 2に記載のマイクロデバ イス。
2 4 . 1つの樹脂層 (Χ' )中に、 弁となる構造が 2つ以上設けられている請求項 2 3に記載のマイク口デパイス。
2 5 . 弁となる構造が設けられた樹月旨層 (Χ' )が、 それを挟持する部材又は榭脂 層より低い引張弾性率の素材により形成されている請求項 2 2に記載のマイクロ デバイス。
2 6 . 活性エネルギー線硬化性樹脂層(X' )が、 (メタ) アタリロイル基含有ィ匕 合物を含む活性エネルギー線硬化性,袓成物の硬化物である請求項 1 8に記載のマ ィク口デバイス。
2 7 . 部材 (J')、 樹脂層(Χ')、 及び部材 (Κ')から選ばれる、 1つ以上の部材が、 一方の側がダイヤフラムとなる部材、 他の側が欠損部を有する他の部材と直接積 層されており、 該欠損部が積層されることで空洞となり、 ダイヤフラムとなる部 材の裏面に積層された他の部材が該空洞への流入口又は流出口、 又はその両者と なる各孔状の欠損部を有し、 流入口、 流出口の少なくとも一方が、 該部材を隔て てダイヤフラムの対向面に形成されており、 その周がダイヤフラムに接しておら ず、 ダイヤフラムを変形させて、 該流入口、 又は流出口の少なくとも一方の周に 接することによって流路を閉鎖しうる、 請求項 1 8に記載のマイクロデバイス。
2 8 . 活性エネルギー線硬化性組成物が、 活性エネルギー線重合性ィ匕合物と共 重合可能な両親媒性の活性エネルギー線重合性化合物を含有する請求項 1 8に記 載のマイク口デバイス。
2 9 . 両親媒性の活性エネルギー線重合性ィ匕合物が、 分子内に繰り返し数 6〜
2 0のポリエチレングリコール鎖と、 炭素数 6〜 2 0個のアルキル基を含有する 化合物である請求項 2 8に記載のマイクロデバイス。
3 0 . 空洞の一部、 又は全部が流体の流路である請求項 1 8に記載のマイク口 デバイス。
3 1 . {部材を貫通する欠損部を有する部材、 又は表面に凹状の欠損部を有す る部材、 又は部材を貫通する欠損部と表面に凹状の欠損部を有する部材から選ば れる部材 ')} と、 層の一部に欠損部を有し、 該欠損部の最小幅が 1〜 1 0 0 0 μ πιである、 活性エネルギー線硬化性樹脂層 (X' )の 1つ以上の層と、 欠損部がな くダイヤフラムとなす部材 (κ' ' )とが積層され、 部材 (κ' ' )が隣接して積層された 他の部材と接触しているが接着していなレ、部分を有し、 該部分がダイヤフラム部 分である、 部材 or)と樹月旨層(χ')中の少なくとも 2つ以上の欠損部が連結して空 洞を形成している、 積層構造を有するマイクロデバイス。
3 2 . 部材 (J')と樹脂層(Χ')の 1つ以上の部材の欠損部が、 流入口又は流出口、 又はその両者となる各穴状の欠損部であり、 該流入口又は流出口の少なくとも一 方がダイヤフラムの対向面に形成されていて、 その周がダイヤフラムに接してい るが接着しておらず、 ダイヤフラムの変形により、 流路が開となる、 請求項 3 1 に記載のマイクロデバイス。
3 3 . ダイヤフラムが、 その厚みが 1〜5 0 0 / mで、 引張弾性率 1〜7 0 0 M P aの範囲の素材で形成されている、 請求項 2 7、 3 1又は 3 2に記載のマイ クロデバイス。
3 4 . 請求項 1〜1 7のいずれか一項に記載の製造方法により製造されたマイ ク口デバイス。
PCT/JP2001/005242 2000-06-20 2001-06-20 Microdispositif a structure multicouche et son procede de fabrication WO2001098199A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU2001274558A AU2001274558A1 (en) 2000-06-20 2001-06-20 Microdevice having multilayer structure and method for fabricating the same
KR1020027017213A KR100739515B1 (ko) 2000-06-20 2001-06-20 적층 구조를 가지는 마이크로디바이스 및 그 제조 방법
US10/297,625 US7220334B2 (en) 2000-06-20 2001-06-20 Method of manufacturing microdevice having laminated structure
EP01941105A EP1295846A4 (en) 2000-06-20 2001-06-20 MICROBUCKET COMPRISING A MULTILAYER STRUCTURE AND METHOD FOR THE PRODUCTION THEREOF
CA2412061A CA2412061A1 (en) 2000-06-20 2001-06-20 Microdevice having multilayer structure and method for fabricating the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000184425 2000-06-20
JP2000-184425 2000-06-20

Publications (1)

Publication Number Publication Date
WO2001098199A1 true WO2001098199A1 (fr) 2001-12-27

Family

ID=18684870

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/005242 WO2001098199A1 (fr) 2000-06-20 2001-06-20 Microdispositif a structure multicouche et son procede de fabrication

Country Status (7)

Country Link
US (1) US7220334B2 (ja)
EP (1) EP1295846A4 (ja)
KR (1) KR100739515B1 (ja)
CN (1) CN1222466C (ja)
AU (1) AU2001274558A1 (ja)
CA (1) CA2412061A1 (ja)
WO (1) WO2001098199A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004081559A1 (ja) * 2003-03-11 2004-09-23 Kawamura Institute Of Chemical Research マイクロ流体素子及びその製造方法
CN110394976A (zh) * 2014-05-29 2019-11-01 三菱化学株式会社 利用热熔融层叠法的层叠造型用支承材和层叠物、以及层叠造型物的制造方法

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6935617B2 (en) * 2002-07-26 2005-08-30 Applera Corporation Valve assembly for microfluidic devices, and method for opening and closing the same
US7198759B2 (en) * 2002-07-26 2007-04-03 Applera Corporation Microfluidic devices, methods, and systems
WO2004011149A1 (en) * 2002-07-26 2004-02-05 Applera Corporation Valve assembly for microfluidic devices, and method for opening and closing same
US7264723B2 (en) * 2002-11-01 2007-09-04 Sandia Corporation Dialysis on microchips using thin porous polymer membranes
JP4404672B2 (ja) * 2003-05-28 2010-01-27 セイコーエプソン株式会社 液滴吐出ヘッド、液滴吐出ヘッドの製造方法、マイクロアレイ製造装置、及びマイクロアレイの製造方法
US20050069462A1 (en) * 2003-09-30 2005-03-31 International Business Machines Corporation Microfluidics Packaging
US20050069949A1 (en) * 2003-09-30 2005-03-31 International Business Machines Corporation Microfabricated Fluidic Structures
CN100585393C (zh) * 2004-04-28 2010-01-27 爱科来株式会社 电泳芯片和具有该电泳芯片的电泳装置
CN100443397C (zh) * 2004-05-28 2008-12-17 哈尔滨工业大学 微冷却测控系统的加工方法
US20080286152A1 (en) * 2005-11-08 2008-11-20 Ecole Polytechinque Federale De Lausanne Hyperbrached Polymer for Micro Devices
CA2641443A1 (en) * 2006-02-15 2007-08-23 Aida Engineering, Ltd. Microchannel chip and method for manufacturing such chip
JP4721227B2 (ja) * 2006-05-22 2011-07-13 アイダエンジニアリング株式会社 マイクロ流路チップ及びその製造方法
US8642307B2 (en) * 2006-05-25 2014-02-04 Nalge Nunc International Corporation Cell culture surface chemistries
CA2656686A1 (en) * 2006-07-05 2008-01-10 Aida Engineering, Ltd. Micro passage chip and fluid transferring method
US7959876B2 (en) * 2006-07-17 2011-06-14 Industrial Technology Research Institute Fluidic device
US7794665B2 (en) * 2006-07-17 2010-09-14 Industrial Technology Research Institute Fluidic device
US20080021364A1 (en) * 2006-07-17 2008-01-24 Industrial Technology Research Institute Fluidic device
US20090074615A1 (en) * 2007-09-17 2009-03-19 Ysi Incorporated Microfluidic module including an adhesiveless self-bonding rebondable polyimide
US9539572B2 (en) * 2008-02-27 2017-01-10 Boehringer Ingelheim Microparts Gmbh Apparatus for the separation of plasma
ES2531400T3 (es) 2008-07-15 2015-03-13 L3 Technology Ltd Tarjeta de prueba
KR101099495B1 (ko) * 2008-10-14 2011-12-28 삼성전자주식회사 원심력 기반의 미세유동장치, 이의 제조 방법 및 이를 이용한 시료분석방법
US9103787B2 (en) 2010-05-25 2015-08-11 Stmicroelectronics S.R.L. Optically accessible microfluidic diagnostic device
EP2712722A1 (en) 2012-09-28 2014-04-02 Siemens Aktiengesellschaft Part and method to manufacture
CN103551096B (zh) * 2013-10-25 2015-05-27 南京工业大学 一种碳纤维微芯片反应器
US9707727B2 (en) * 2014-04-09 2017-07-18 Nike, Inc. Selectively applied adhesive particulate on nonmetallic substrates
US10004292B2 (en) * 2014-04-09 2018-06-26 Nike, Inc. Selectively applied adhesive particulate on nonmetallic substrates
WO2016186837A1 (en) * 2015-05-20 2016-11-24 Nike Innovate C.V. Selectively applied adhesive particulate on nonmetallic substrates
JP6699178B2 (ja) * 2016-01-06 2020-05-27 住友ベークライト株式会社 構造体および構造体の製造方法
CN107305214B (zh) * 2016-04-22 2019-01-04 清华大学 一种硬质微流体芯片的制作方法
CN109890921B (zh) 2016-08-25 2022-01-11 莫赛纳实验室公司 一种使用光刻和可粘附地粘结材料制作三维结构的方法
WO2018148853A1 (es) * 2017-02-15 2018-08-23 BLANCO GRANDI , Sergio Mario Dispositivo de toma de muestras genéticas no intrusivo
JP6904267B2 (ja) 2018-01-18 2021-07-14 株式会社島津製作所 バルブシステム
JP7045924B2 (ja) 2018-05-11 2022-04-01 東京応化工業株式会社 細胞捕捉用フィルター膜及びその使用
CN113070113B (zh) * 2021-06-03 2021-08-20 成都齐碳科技有限公司 芯片结构、成膜方法、纳米孔测序装置及应用
CN115532193B (zh) * 2022-10-19 2024-04-12 贵州大学 一种制备纳米二氧化钛的微反应设备及使用方法
US12338557B2 (en) * 2023-11-23 2025-06-24 Asia Vital Components (China) Co. , Ltd. Woven mesh structure
CN117511739B (zh) * 2024-01-04 2024-03-12 中日友好医院(中日友好临床医学研究所) 微流体骨类器官芯片的构建方法及装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07227909A (ja) * 1994-02-21 1995-08-29 Japan Synthetic Rubber Co Ltd 光造形装置
JPH08136905A (ja) * 1994-11-09 1996-05-31 Sekisui Chem Co Ltd 液晶表示パネル用基板及びその製造方法
JPH08316625A (ja) * 1995-05-22 1996-11-29 Hitachi Chem Co Ltd 電極の接続方法およびこれに用いる接続部材
US5639423A (en) * 1992-08-31 1997-06-17 The Regents Of The University Of Calfornia Microfabricated reactor
JPH10264258A (ja) * 1997-03-24 1998-10-06 Ricoh Co Ltd 三次元物体形成方法、三次元物体形成装置及び三次元物体
JP2888344B2 (ja) * 1988-06-15 1999-05-10 大日本印刷株式会社 立体模様の形成方法及び立体模様形成体
JP2000108161A (ja) * 1998-10-08 2000-04-18 Sumitomo Heavy Ind Ltd 多層部品の製造方法及び製造装置
JP7084033B2 (ja) * 2016-06-27 2022-06-14 国立大学法人京都大学 miRNAの発現に応答して蛋白質遺伝子を発現させる方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3502520A (en) * 1965-12-30 1970-03-24 Ibm Process of making patterned unitary solid bodies from finely divided discrete particles
JPH0784033B2 (ja) 1992-02-20 1995-09-13 帝人製機株式会社 光造形装置および光造形方法
JPH0784033A (ja) 1993-09-14 1995-03-31 Matsushita Electric Works Ltd 応答器
DE19602861C2 (de) * 1996-01-28 1997-12-11 Meinhard Prof Dr Knoll Probenahmesystem für in Trägerflüssigkeiten enthaltene Analyte sowie Verfahren zu seiner Herstellung
US6136212A (en) * 1996-08-12 2000-10-24 The Regents Of The University Of Michigan Polymer-based micromachining for microfluidic devices
JP3599160B2 (ja) 1997-05-16 2004-12-08 大日本インキ化学工業株式会社 マレイミド誘導体を含有する活性エネルギー線硬化性組成物及び該活性エネルギー線硬化性組成物の硬化方法
WO1999000657A1 (en) 1997-06-26 1999-01-07 Perseptive Biosystems, Inc. High density sample holder for analysis of biological samples
US6117396A (en) * 1998-02-18 2000-09-12 Orchid Biocomputer, Inc. Device for delivering defined volumes
WO2000033084A2 (en) * 1998-12-01 2000-06-08 Syntrix Biochip, Inc. Arrays of organic compounds attached to surfaces
AU7101000A (en) * 1999-09-10 2001-04-10 Caliper Technologies Corporation Microfabrication methods and devices
ATE503209T1 (de) * 2000-05-03 2011-04-15 Caliper Life Sciences Inc Herstellungsprozesse für substrate mit mehreren tiefen

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2888344B2 (ja) * 1988-06-15 1999-05-10 大日本印刷株式会社 立体模様の形成方法及び立体模様形成体
US5639423A (en) * 1992-08-31 1997-06-17 The Regents Of The University Of Calfornia Microfabricated reactor
JPH07227909A (ja) * 1994-02-21 1995-08-29 Japan Synthetic Rubber Co Ltd 光造形装置
JPH08136905A (ja) * 1994-11-09 1996-05-31 Sekisui Chem Co Ltd 液晶表示パネル用基板及びその製造方法
JPH08316625A (ja) * 1995-05-22 1996-11-29 Hitachi Chem Co Ltd 電極の接続方法およびこれに用いる接続部材
JPH10264258A (ja) * 1997-03-24 1998-10-06 Ricoh Co Ltd 三次元物体形成方法、三次元物体形成装置及び三次元物体
JP2000108161A (ja) * 1998-10-08 2000-04-18 Sumitomo Heavy Ind Ltd 多層部品の製造方法及び製造装置
JP7084033B2 (ja) * 2016-06-27 2022-06-14 国立大学法人京都大学 miRNAの発現に応答して蛋白質遺伝子を発現させる方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004081559A1 (ja) * 2003-03-11 2004-09-23 Kawamura Institute Of Chemical Research マイクロ流体素子及びその製造方法
US7357864B2 (en) 2003-03-11 2008-04-15 Kawamura Institute Of Chemical Research Microfluidic device
CN110394976A (zh) * 2014-05-29 2019-11-01 三菱化学株式会社 利用热熔融层叠法的层叠造型用支承材和层叠物、以及层叠造型物的制造方法
CN110394976B (zh) * 2014-05-29 2021-08-27 三菱化学株式会社 利用热熔融层叠法的层叠造型用支承材和层叠物、以及层叠造型物的制造方法

Also Published As

Publication number Publication date
CA2412061A1 (en) 2001-12-27
US7220334B2 (en) 2007-05-22
EP1295846A1 (en) 2003-03-26
EP1295846A4 (en) 2006-09-06
US20030175162A1 (en) 2003-09-18
AU2001274558A1 (en) 2002-01-02
CN1222466C (zh) 2005-10-12
KR20030010737A (ko) 2003-02-05
CN1437560A (zh) 2003-08-20
KR100739515B1 (ko) 2007-07-13

Similar Documents

Publication Publication Date Title
WO2001098199A1 (fr) Microdispositif a structure multicouche et son procede de fabrication
JP3777112B2 (ja) マイクロ流体デバイス及びその製造方法
Hutchison et al. Robust polymer microfluidic device fabrication via contact liquid photolithographic polymerization (CLiPP)
KR20030038739A (ko) 미소 케미컬 디바이스 및 그 유량 조절 방법
JP2002102681A (ja) 加熱脱気機構を有する微小ケミカルデバイス
JP2002018271A (ja) 微小ケミカルデバイス
JP2000246092A (ja) マイクロケミカルデバイスの製造方法
JP2002086399A (ja) 積層構造を有するマイクロデバイス及びその製造方法
JP2003084001A (ja) 微小バルブ機構を有するマイクロ流体デバイス、マイクロ流体デバイスの微小バルブ機構駆動装置、及び流量調節方法
JP2007216226A (ja) マイクロノズル、その製造方法、スポッティング方法及びスポッタ
JP4039481B2 (ja) 多孔質部を有するマイクロ流体デバイスの製造方法
JP2003136500A (ja) 樹脂ダイヤフラムを有するマイクロ流体デバイスの製造方法
Gutierrez-Rivera et al. Multilayer bonding using a conformal adsorbate film (CAF) for the fabrication of 3D monolithic microfluidic devices in photopolymer
Carlborg et al. Rapid permanent hydrophilic and hydrophobic patterning of polymer surfaces via off-stoichiometry thiol-ene (OSTE) photografting
JP2001137613A (ja) 抽出機構を有する微小ケミカルデバイス
JP2001070784A (ja) バルブ機構を有する微小ケミカルデバイス
JP2002370200A (ja) 微小バルブ機構の製造方法
JP2000288381A (ja) 微小ケミカルデバイスの製造法
JP2006136990A (ja) バルブを有するマイクロ流体デバイス
JP3777113B2 (ja) 積層構造を有するマイクロ流体デバイス及びその製造方法
JP2000248076A (ja) 微小ケミカルデバイスの製造方法
JP2003139662A (ja) マイクロ流体デバイス
JP4307771B2 (ja) マイクロ流体デバイスの製造方法
JP2002005887A (ja) 親水性接液部を有する微小ケミカルデバイスの製造方法
JP2000297157A (ja) 微小ケミカルデバイス

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2412061

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2001941105

Country of ref document: EP

Ref document number: 10297625

Country of ref document: US

Ref document number: 1020027017213

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 018113478

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020027017213

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2001941105

Country of ref document: EP