[go: up one dir, main page]

WO2003049366A2 - Arrangement with a measuring transducer and at least one sensor connected in common to a process controller by means of a field bus - Google Patents

Arrangement with a measuring transducer and at least one sensor connected in common to a process controller by means of a field bus Download PDF

Info

Publication number
WO2003049366A2
WO2003049366A2 PCT/DE2002/004391 DE0204391W WO03049366A2 WO 2003049366 A2 WO2003049366 A2 WO 2003049366A2 DE 0204391 W DE0204391 W DE 0204391W WO 03049366 A2 WO03049366 A2 WO 03049366A2
Authority
WO
WIPO (PCT)
Prior art keywords
transmitter
measurement signal
master
measurement
slave
Prior art date
Application number
PCT/DE2002/004391
Other languages
German (de)
French (fr)
Other versions
WO2003049366A3 (en
Inventor
Hartmut Flämig
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2003049366A2 publication Critical patent/WO2003049366A2/en
Publication of WO2003049366A3 publication Critical patent/WO2003049366A3/en

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • G05B19/4185Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by the network communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L12/403Bus networks with centralised control, e.g. polling
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/31From computer integrated manufacturing till monitoring
    • G05B2219/31094Data exchange between modules, cells, devices, processors
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/31From computer integrated manufacturing till monitoring
    • G05B2219/31121Fielddevice, field controller, interface connected to fieldbus
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/31From computer integrated manufacturing till monitoring
    • G05B2219/31135Fieldbus
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/31From computer integrated manufacturing till monitoring
    • G05B2219/31174Load, use different protocols, formats, emulators for different systems
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/31From computer integrated manufacturing till monitoring
    • G05B2219/31179Master sends message with address of slave to all slaves, slave answers, interrupt
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L2012/4026Bus for use in automation systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • field devices including transmitters, are connected to one another in the decentralized peripheral area together with a decentralized process control and operation and monitoring via field buses, it being possible for different field buses to be connected to one another via bus couplers.
  • the field buses can in turn be connected to a central system bus via coupling devices, to which a central process control and operation and monitoring are also connected.
  • Communication between the field devices and the process control is based on the master-slave principle; d. H.
  • the master which operates the fieldbus, parameterizes the slaves (field devices) assigned to it and carries out the data exchange in cyclic operation.
  • the master sends the slave a telegram with output data, whereupon the slave sends the master with its input data, such as. B. answers measured values.
  • the master speaks to the next slave and the slave responds in the same way.
  • a relatively new function in the "Profibus" fieldbus is the so-called slave-slave communication, which is also referred to as data cross-traffic.
  • the master sends a telegram with its output data to a slave in the usual way. If this slave has been defined as a cross-traffic transmitter (publisher) in the fieldbus configuration, the slave replies with its input data in a broadcast telegram. This allows all other participants on the fieldbus to listen to this telegram. However, the data contained in the telegram can only be evaluated by those slaves that are published as cross Traffic receivers (subscribers) have been configured. Therefore, only intelligent field devices with their own preprocessing can be used as subscribers, since these devices must be able to process the cross-traffic information.
  • slave-slave communication The advantages of slave-slave communication are that the master is relieved and the time for data transmission is reduced because the data exchange takes place directly between the slaves and not via the detour via the master. Another advantage is that the data cross traffic does not require an additional telegram.
  • the bus cycle is not significantly extended; a mix of master-slave and cross-traffic relationships is possible.
  • cross-data traffic for drive controls. For example, the signal from a limit switch that is connected to a decentralized input / output periphery can be transmitted directly to a drive via the cross traffic in order to switch it off with the least possible delay. It is also known to transfer actual values directly to a controller for a drive via cross traffic.
  • the measurement signal it may be necessary to use the measurement signal, for example, for compensation purposes, such as B. temperature compensation, depending on other measured values, e.g. B. temperature.
  • additional measured values can be measured using additional sensors, e.g. B. temperature sensor on the transmitter, z. B. pressure transducer, are detected, but this is expensive and expensive the transmitter.
  • sensors e.g. B. temperature sensor on the transmitter, z. B. pressure transducer
  • the additional measured values can be measured using additional sensors, e.g. B. temperature sensor on the transmitter, z. B. pressure transducer, are detected, but this is expensive and expensive the transmitter.
  • the master can send the measured values and the measurement signal to a further slave for processing the measurement signal in order to subsequently request the processed measurement signal from the
  • the invention has for its object to simplify the measurement signal processing in a process automation system.
  • the object is achieved by an arrangement with a transmitter and at least one transmitter, which are connected together via a fieldbus to a process controller, at least the transmitter communicating with the process controller according to a master-slave transmission method, wherein the at least one transmitter communicates with the transmitter directly using a slave-slave transmission method, and the transmitter contains a measurement signal processing device that detects a measured variable as a function of a measured value transmitted by the at least one transmitter to a communicable one to the process controller Prepared measurement signal.
  • the at least one sensor can be a further transmitter or a limit switch.
  • the arrangement according to the invention advantageously enables measurement signal processing in the transmitter itself as a function of at least one measurement value transmitted from outside in data cross-traffic.
  • the at least one sensor delivers a measured value, e.g. B. Temperature measured value, on which the measured variable detected by the transmitter is dependent.
  • the measurement signal processing device contains a compensation device for compensating the influence of the measured value on the measurement signal.
  • the at least one sensor delivers a reference measured value;
  • the measurement signal conditioning device contains a calibration device for calibrating the measurement signal conditioning on the basis of the reference measured value.
  • the at least one transducer can have at least one measured value, e.g. B. temperature and absolute pressure, deliver from and the measurement signal of the transmitter, z. B. differential pressure across a cross-sectional constriction of a flow tube, a computing device in the measurement signal conditioning device a new measurement signal for a new measurement variable different from the measurement variable, eg. B. Flow calculated.
  • B. temperature and absolute pressure deliver from and the measurement signal of the transmitter, z. B. differential pressure across a cross-sectional constriction of a flow tube, a computing device in the measurement signal conditioning device a new measurement signal for a new measurement variable different from the measurement variable, eg. B. Flow calculated.
  • Compensation, calibration and calculation of new measurement signals can be implemented individually or in combination with one another in hardware or software in the transmitter.
  • FIG. 1 shows a first exemplary embodiment of the arrangement according to the invention for measured value compensation
  • Figure 2 shows a second embodiment of the arrangement for calibration
  • Figure 3 shows a third embodiment for calculating a new measurement signal for a new measurement variable.
  • Figure 1 shows a transmitter 1, the z. B. measures the pressure in a liquid line 2.
  • the transmitter 1 contains a measurement signal conditioning device 3, in which a measured variable, here the pressure, is processed into a communicable measurement signal.
  • the transmitter 1 is integrated into a process automation system via a fieldbus 4. bound, of which only one master device 5 is shown here. Communication between transmitter 1 and master 5 is based on the master-slave principle; ie the master 5 operates the fieldbus 4, parameterizes the slaves assigned to it, here the transmitter 1 and other field devices connected to the fieldbus 4, and carries out the data exchange in cyclic operation. For this purpose, the master 5 sends the slave 1 a telegram with output data, whereupon the slave 1 responds to the master 5 with its measurement signal.
  • the measurement variable detected by the transmitter 1 and thus the measurement signal from another measurement value e.g. B. the temperature of the liquid in the liquid line, depending.
  • a transmitter 6, here a temperature transmitter is provided, which measures the liquid temperature and is connected to the fieldbus 4 as a slave.
  • the measuring value transmitter 6 delivers the temperature measured value directly to the measuring transducer 1 according to a slave-slave transmission method also referred to as data cross-traffic.
  • the measuring signal conditioning device 3 contains one
  • Compensation device 7 which compensates for the influence of the measured value on the measurement signal of the transmitter 1.
  • the master 5 sends a telegram to the transmitter 6.
  • the data contained in the telegram can only be evaluated by those slaves that have been configured as cross-traffic receivers with regard to the publisher; in this case it is the transmitter 1.
  • the transmitter 10 is a capacitive level meter, which measures the level 11 of a liquid in a container 12.
  • the transmitter 10 is connected to a master 14 via a fieldbus 13 connected.
  • Two sensors 15 and 16 are also connected to the fieldbus 13, which are limit switches which detect the liquid level 11 at two different levels.
  • the measured values supplied by the two transducers 15 thus represent reference measured values in relation to the liquid level 11 and are transmitted directly to the transmitter 10 according to the slave-slave transmission method, whose measuring signal processing device 17 contains a calibration device 18 for calibrating the measuring signal processing on the basis of the reference measured values ,
  • FIG. 3 finally shows a measuring transducer 20 which measures the pressure drop (differential pressure) of a liquid over a constriction 21 in a liquid line 22.
  • Transmitter 20 together with two sensors 23 and 24, one of which measures the absolute pressure of the liquid and the other of which measures its temperature, is connected to a fieldbus 25, to which a master 26 is also connected. Those supplied by the two sensors 23 and 24
  • Absolute pressure or temperature measurement values 23 and 24 are transmitted directly to the transmitter 20 using the slave-slave transmission method, the measurement signal processing device 27 of which contains a computing device 28 which calculates a flow measurement signal from the differential pressure measurement signal, the absolute pressure measurement value and the temperature measurement value.
  • the differential pressure transmitter 20 thus works in direct interaction with the sensors 23 and 24 as a flow transmitter.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

A process automation system comprises a measuring transducer and at least one sensor connected in common to a process controller by means of a field bus, whereby at least the measuring transducer communicates with the process controller by means of a master-slave communication method. According to the invention, the measured signal processing may be simplified, whereby the at least one sensor (6) communicates directly with the measuring transducer (1) by means of a slave-slave communication method and the measuring transducer (1) comprises a measured signal preparation device (3) which prepares a measured signal, which may be communicated to the process controller (master 5), from the measured parameter recorded by the measuring transducer (1), depending on a measured value transmitted from the at least one sensor (6). The measured signal preparation carried out depending on the measured value serves, for example, for compensation or calibration purposes or for the calculation of new measured signals.

Description

Beschreibungdescription

Anordnung mit einem Messumformer und mindestens einem Messwertgeber, die gemeinsam über einen Feldbus mit einer Pro- zesssteuerung verbunden sind.Arrangement with a transmitter and at least one transmitter, which are connected to a process control via a fieldbus.

Bei bekannten Prozessautomatisierungssystemen sind im dezentralen Peripheriebereich Feldgeräte, darunter auch Messumformer, zusammen mit einer dezentralen Prozesssteuerung und Bedienung und Beobachtung über Feldbusse miteinander verbunden, wobei unterschiedliche Feldbusse über Buskoppler miteinander verbunden sein können. Die Feldbusse können wiederum über Koppeleinrichtungen an einem zentralen Anlagenbus angebunden sein, an dem auch eine zentrale Prozess- Steuerung und Bedienung und Beobachtung angeschlossen sind. Die Kommunikation zwischen den Feldgeräten und der Prozesssteuerung erfolgt nach dem Master-Slave-Prinzip; d. h. es gibt in der Prozesssteuerung jeweils ein ausgezeichnetes Gerät, den Master, welcher den Feldbus betreibt, die ihm zu- geordneten Slaves (Feldgeräte) parametriert und im zyklischen Betrieb den Datenaustausch durchführt. Dazu sendet der Master dem Slave ein Telegramm mit Ausgabedaten woraufhin der Slave dem Master mit seinen Eingabedaten, wie z. B. Messwerten antwortet. Danach spricht der Master den nächsten Slave an und dieser antwortet in gleicher Weise.In known process automation systems, field devices, including transmitters, are connected to one another in the decentralized peripheral area together with a decentralized process control and operation and monitoring via field buses, it being possible for different field buses to be connected to one another via bus couplers. The field buses can in turn be connected to a central system bus via coupling devices, to which a central process control and operation and monitoring are also connected. Communication between the field devices and the process control is based on the master-slave principle; d. H. There is an excellent device in the process control, the master, which operates the fieldbus, parameterizes the slaves (field devices) assigned to it and carries out the data exchange in cyclic operation. For this purpose, the master sends the slave a telegram with output data, whereupon the slave sends the master with its input data, such as. B. answers measured values. Then the master speaks to the next slave and the slave responds in the same way.

Eine relativ neue Funktion bei dem Feldbus "Profibus" ist die so genannte Slave-Slave-Kommunikation, die auch als Daten- querverkehr bezeichnet wird. Dabei sendet der Master in ge- wohnter Weise ein Telegramm mit seinen Ausgabedaten zu einem Slave. Ist dieser Slave im Rahmen der Feldbus-Projektierung als Querverkehrssender (Publisher) festgelegt worden, so antwortet der Slave mit seinen Eingabedaten in einem Broad- cast-Telegramm. Dadurch können alle anderen Teilnehmer am Feldbus dieses Telegramm mithören. Die in dem Telegramm enthaltenen Daten können jedoch nur von denjenigen Slaves ausgewertet werden, die bezüglich des Publishers als Quer- Verkehrsempfänger (Subscriber) projektiert worden sind. Als Subscriber können daher nur intelligente Feldgeräte mit eigener Vorverarbeitung eingesetzt werden, da diese Geräte die Querverkehrsinformationen verarbeiten können müssen. Vorteile der Slave-Slave-Kommunikation liegen in der Entlastung des Masters und in der Verkürzung der Zeit für die Datenübertragung, weil der Datenaustausch unmittelbar zwischen den Slaves und nicht über den Umweg über den Master erfolgt. Von weiterem Vorteil ist, dass der Datenquerverkehr kein zusätzliches Telegramm benötigt. Der Buszyklus verlängert sich nicht wesentlich; eine Mischung von Master- Slave- und Querverkehrsbeziehungen ist beliebig möglich. Es ist bisher vor allem bekannt, die Möglichkeiten des Daten- querverkehrs für Antriebssteuerungen zu nutzen. So kann beispielsweise das Signal eines Endschalters, der an einer dezentralen Ein-/Ausgabe-Peripherie angeschlossen ist, über den Querverkehr direkt an einen Antrieb übertragen werden, um diesen mit geringstmöglicher Verzögerung auszuschalten. Es ist ferner bekannt, Istwerte über den Querverkehr unmittelbar an einen Regler für einen Antrieb zu übertragen.A relatively new function in the "Profibus" fieldbus is the so-called slave-slave communication, which is also referred to as data cross-traffic. The master sends a telegram with its output data to a slave in the usual way. If this slave has been defined as a cross-traffic transmitter (publisher) in the fieldbus configuration, the slave replies with its input data in a broadcast telegram. This allows all other participants on the fieldbus to listen to this telegram. However, the data contained in the telegram can only be evaluated by those slaves that are published as cross Traffic receivers (subscribers) have been configured. Therefore, only intelligent field devices with their own preprocessing can be used as subscribers, since these devices must be able to process the cross-traffic information. The advantages of slave-slave communication are that the master is relieved and the time for data transmission is reduced because the data exchange takes place directly between the slaves and not via the detour via the master. Another advantage is that the data cross traffic does not require an additional telegram. The bus cycle is not significantly extended; a mix of master-slave and cross-traffic relationships is possible. Up until now, it has been known above all to use the possibilities of cross-data traffic for drive controls. For example, the signal from a limit switch that is connected to a decentralized input / output periphery can be transmitted directly to a drive via the cross traffic in order to switch it off with the least possible delay. It is also known to transfer actual values directly to a controller for a drive via cross traffic.

Bei Messumformern kann es erforderlich sein, das Messignal beispielsweise zu Kompensationszwecken, wie z. B. Temperaturkompensation, in Abhängigkeit von anderen Messwerten, z. B. Temperatur, aufzubereiten. Diese weiteren Messwerte können mittels zusätzlicher Sensoren, z. B. Temperatursensor, an dem Messumformer, z. B. Druckmessumformer, erfasst werden, was jedoch aufwändig ist und den Messumformer verteuert. Es ist auch bekannt, die zusätzlichen Messwerte mit Messwertgebern, beispielsweise weiteren Messumformern, zu erfassen und über den Feldbus an ein Mastergerät zu übertragen, welches von dem Messumformer das nicht aufbereitete Messignal erhält und dieses in Abhängigkeit von den Messwerten aufbereitet. Alternativ kann der Master die Messwerte und das Messignal zur Messsignalaufbereitung an einen weiteren Slave senden um anschließend von diesem das aufbereitete Messsignal anzufordern. Schließlich ist es bekannt, Messwerte über separate Leitungen unmittelbar zwischen Feldgeräten zu übertragen, wozu diese zusätzliche digitale oder analoge Ein-/Ausgabe- Schnittstellen benötigen. Alle diese Maßnahmen erfordern einen hohen programmierungstechnischen oder konstruktiven Aufwand.In the case of transmitters, it may be necessary to use the measurement signal, for example, for compensation purposes, such as B. temperature compensation, depending on other measured values, e.g. B. temperature. These additional measured values can be measured using additional sensors, e.g. B. temperature sensor on the transmitter, z. B. pressure transducer, are detected, but this is expensive and expensive the transmitter. It is also known to record the additional measured values with sensors, for example further transmitters, and to transmit them via the fieldbus to a master device, which receives the unprepared measurement signal from the transmitter and processes it as a function of the measured values. Alternatively, the master can send the measured values and the measurement signal to a further slave for processing the measurement signal in order to subsequently request the processed measurement signal from the latter. Finally, it is known to have separate readings Transfer lines directly between field devices, which require additional digital or analog input / output interfaces. All of these measures require a high level of programming or design effort.

Der Erfindung liegt die Aufgabe zugrunde, die Messsignalverarbeitung in einem Prozessautomatisierungssystem zu vereinfachen .The invention has for its object to simplify the measurement signal processing in a process automation system.

Gemäß der Erfindung wird die Aufgabe gelöst durch eine Anordnung mit einem Messumformer und mindestens einem Messwert- geber, die gemeinsam über einen Feldbus mit einer Prozesssteuerung verbunden sind, wobei zumindest der Messumformer mit der Prozesssteuerung nach einem Master-Slave-Übertra- gungsverfahren kommuniziert, wobei der mindestens eine Mess- wertgeber mit dem Messumformer unmittelbar nach einem Slave- Slave-Übertragungsverfahren kommuniziert und wobei der Messumformer eine Messsignalaufbereitungseinrichtung enthält, die eine von dem Messumformer erfasste Messgröße in Abhängigkeit von einem von dem mindestens einen Messwertgeber übermittelten Messwert zu einem an die Prozesssteuerung kommunizierbaren Messsignal aufbereitet. Bei dem mindestens einen Messwertgeber kann es sich je nach Anwendungsfall um einen weite- ren Messumformer oder um einen Grenzwertschalter handeln. Die erfindungsgemäße Anordnung ermöglicht vorteilhafterweise in dem Messumformer selbst eine Messsignalaufbereitung in Abhängigkeit von mindestens einem von außen im Datenquerverkehr übermittelten Messwert.According to the invention, the object is achieved by an arrangement with a transmitter and at least one transmitter, which are connected together via a fieldbus to a process controller, at least the transmitter communicating with the process controller according to a master-slave transmission method, wherein the at least one transmitter communicates with the transmitter directly using a slave-slave transmission method, and the transmitter contains a measurement signal processing device that detects a measured variable as a function of a measured value transmitted by the at least one transmitter to a communicable one to the process controller Prepared measurement signal. Depending on the application, the at least one sensor can be a further transmitter or a limit switch. The arrangement according to the invention advantageously enables measurement signal processing in the transmitter itself as a function of at least one measurement value transmitted from outside in data cross-traffic.

Zu Kompensationszwecken, beispielsweise zur Temperaturkompensation, liefert der mindestens eine Messwertgeber einen Messwert, z. B. Temperaturmesswert, von dem die von dem Messumformer erfasste Messgröße abhängig ist die Messsignal- aufbereitungseinrichtung enthält dabei eine Kompensationseinrichtung zur Kompensation des Einflusses des Messwertes auf das Messsignal. Zu Kalibrationszwecken liefert der mindestens eine Messwertgeber einen Referenzmesswert; die Messsignalaufbereitungs- einrichtung enthält eine Kalibriereinrichtung zur Kalibrierung der Messsignalaufbereitung anhand des Referenzmess- wertes.For compensation purposes, for example for temperature compensation, the at least one sensor delivers a measured value, e.g. B. Temperature measured value, on which the measured variable detected by the transmitter is dependent. The measurement signal processing device contains a compensation device for compensating the influence of the measured value on the measurement signal. For calibration purposes, the at least one sensor delivers a reference measured value; the measurement signal conditioning device contains a calibration device for calibrating the measurement signal conditioning on the basis of the reference measured value.

Schließlich kann der mindestens eine Messwertgeber mindestens einen Messwert, z. B. Temperatur und Absolutdruck, liefern, aus dem und dem Messsignal des Messumformers, z. B. Differenzdruck über einer Querschnittsverengung eines Durchflussrohres, eine Recheneinrichtung in der Messsignalauf- bereitungseinrichtung ein neues Messsignal für eine von der Messgröße verschiedene neue Messgröße, z. B. Durchfluss, berechnet.Finally, the at least one transducer can have at least one measured value, e.g. B. temperature and absolute pressure, deliver from and the measurement signal of the transmitter, z. B. differential pressure across a cross-sectional constriction of a flow tube, a computing device in the measurement signal conditioning device a new measurement signal for a new measurement variable different from the measurement variable, eg. B. Flow calculated.

Kompensation, Kalibrierung und Berechnung neuer Messsignale können einzeln oder in Kombination miteinander hard- oder softwaremässig in dem Messumformer implementiert sein.Compensation, calibration and calculation of new measurement signals can be implemented individually or in combination with one another in hardware or software in the transmitter.

Zur weiteren Erläuterung der Erfindung wird im folgenden auf die Figuren der Zeichnung Bezug genommen; im Einzelnen zeigenTo further explain the invention, reference is made below to the figures of the drawing; show in detail

Figur 1 ein erstes Ausführungsbeispiel der erfindungsge- mäßen Anordnung zur Messwertkompensation,FIG. 1 shows a first exemplary embodiment of the arrangement according to the invention for measured value compensation,

Figur 2 ein zweites Ausführungsbeispiel der erfindungsgemäßen Anordnung zur Kalibration undFigure 2 shows a second embodiment of the arrangement for calibration and

Figur 3 ein drittes Ausführungsbeispiel zur Berechnung eines neuen Messsignals für eine neue Messgröße.Figure 3 shows a third embodiment for calculating a new measurement signal for a new measurement variable.

Figur 1 zeigt einen Messumformer 1, der z. B. den Druck in einer Flüssigkeitsleitung 2 misst. Der Messumformer 1 enthält eine Messsignalaufbereitungseinrichtung 3, in der eine er- fasste Messgröße, hier der Druck, in ein kommunizerbares Messsignal aufbereitet wird. Der Messumformer 1 ist über einen Feldbus 4 in ein Prozessautomatisierungssystem einge- bunden, von dem hier nur ein Mastergerät 5 dargestellt ist. Die Kommunikation zwischen dem Messumformer 1 und dem Master 5 erfolgt nach dem Master-Slave-Prinzip; d. h. der Master 5 betreibt den Feldbus 4, parametriert die ihm zugeordneten Slaves, hier den Messumformer 1 und weitere an dem Feldbus 4 angeschlossene Feldgeräte, und führt im zyklischen Betrieb den Datenaustausch durch. Dazu sendet der Master 5 dem Slave 1 ein Telegramm mit Ausgabedaten woraufhin der Slave 1 dem Master 5 mit seinem Messsignal antwortet.Figure 1 shows a transmitter 1, the z. B. measures the pressure in a liquid line 2. The transmitter 1 contains a measurement signal conditioning device 3, in which a measured variable, here the pressure, is processed into a communicable measurement signal. The transmitter 1 is integrated into a process automation system via a fieldbus 4. bound, of which only one master device 5 is shown here. Communication between transmitter 1 and master 5 is based on the master-slave principle; ie the master 5 operates the fieldbus 4, parameterizes the slaves assigned to it, here the transmitter 1 and other field devices connected to the fieldbus 4, and carries out the data exchange in cyclic operation. For this purpose, the master 5 sends the slave 1 a telegram with output data, whereupon the slave 1 responds to the master 5 with its measurement signal.

Im vorliegenden Fall soll die von dem Messumformer 1 erfasste Messgröße und damit das Messignal von einem anderen Messwert, z. B. der Temperatur der Flüssigkeit in der Flüssigkeitsleitung, abhängig sein. Dazu ist ein Messwertgeber 6, hier ein Temperaturmessumformer, vorgesehen, der die Flüssigkeitstemperatur misst und als Slave an dem Feldbus 4 angeschlossen ist. Der Messwertgeber 6 liefert den Temperaturmesswert nach einem auch als Datenquerverkehr bezeichneten Slave-Slave- Übertragungsverfahren unmittelbar an den Messumformer 1. Dessen Messsignalaufbereitungseinrichtung 3 enthält eineIn the present case, the measurement variable detected by the transmitter 1 and thus the measurement signal from another measurement value, e.g. B. the temperature of the liquid in the liquid line, depending. For this purpose, a transmitter 6, here a temperature transmitter, is provided, which measures the liquid temperature and is connected to the fieldbus 4 as a slave. The measuring value transmitter 6 delivers the temperature measured value directly to the measuring transducer 1 according to a slave-slave transmission method also referred to as data cross-traffic. The measuring signal conditioning device 3 contains one

Kompensationseinrichtung 7, die den Einfluss des Messwertes auf das Messsignal des Messumformers 1 kompensiert. Bei dem Slave-Slave-Übertragungsverfahren sendet der Master 5 ein Telegramm mit zu dem Messwertgeber 6. Dieser ist im Rahmen der Feldbus-Projektierung als Querverkehrssender (Publisher) festgelegt worden und antwortet mit seinem Messwert in einem Broadcast-Telegramm. Dadurch können alle anderen Teilnehmer am Feldbus dieses Telegramm mithören. Die in dem Telegramm enthaltenen Daten können jedoch nur von denjenigen Slaves ausgewertet werden, die bezüglich des Publishers als Querverkehrsempfänger (Subscriber) projektiert worden sind; in diesem Fall ist dies der Messumformer 1.Compensation device 7, which compensates for the influence of the measured value on the measurement signal of the transmitter 1. In the slave-slave transmission method, the master 5 sends a telegram to the transmitter 6. This was defined as a cross-traffic transmitter (publisher) in the fieldbus configuration and replies with its measured value in a broadcast telegram. This allows all other participants on the fieldbus to listen to this telegram. However, the data contained in the telegram can only be evaluated by those slaves that have been configured as cross-traffic receivers with regard to the publisher; in this case it is the transmitter 1.

Bei dem in Figur 2 gezeigten Ausführungsbeispiel ist der Messumformer 10 ein kapazitiver Füllstandsmesser, der den Pegel 11 einer Flüssigkeit in einem Behälter 12 misst. Der Messumformer 10 ist über einen Feldbus 13 mit einem Master 14 verbunden. An dem Feldbus 13 sind noch zwei Messwertgeber 15 und 16 angeschlossen, bei denen es sich um Grenzwertschalter handelt, die den Flüssigkeitspegel 11 in zwei unterschiedlichen Höhen detektieren. Die von den beiden Messwertgebern 15 gelieferten Messwerte stellen also Referenzmesswerte in Bezug auf den Flüssigkeitspegel 11 dar und werden nach dem Slave-Slave-Übertragungsverfahren unmittelbar an den Messumformer 10 übertragen, dessen Messsignalaufbereitungs- einrichtung 17 eine Kalibriereinrichtung 18 zur Kalibrierung der Messsignalaufbereitung anhand der Referenzmesswerte enthält .In the exemplary embodiment shown in FIG. 2, the transmitter 10 is a capacitive level meter, which measures the level 11 of a liquid in a container 12. The transmitter 10 is connected to a master 14 via a fieldbus 13 connected. Two sensors 15 and 16 are also connected to the fieldbus 13, which are limit switches which detect the liquid level 11 at two different levels. The measured values supplied by the two transducers 15 thus represent reference measured values in relation to the liquid level 11 and are transmitted directly to the transmitter 10 according to the slave-slave transmission method, whose measuring signal processing device 17 contains a calibration device 18 for calibrating the measuring signal processing on the basis of the reference measured values ,

Figur 3 zeigt schließlich einen Messumformer 20, der den Druckabfall (Differenzdruck) einer Flüssigkeit über einer Verengung 21 in einer Flüssigkeitsleitung 22 misst. DerFIG. 3 finally shows a measuring transducer 20 which measures the pressure drop (differential pressure) of a liquid over a constriction 21 in a liquid line 22. The

Messumformer 20 ist zusammen mit zwei Messwertgebern 23 und 24, von denen der eine den Absolutdruck der Flüssigkeit und der andere deren Temperatur misst, an einem Feldbus 25 angeschlossen, an dem auch ein Master 26 angeschlossen ist. Die von den beiden Messwertgebern 23 und 24 geliefertenTransmitter 20, together with two sensors 23 and 24, one of which measures the absolute pressure of the liquid and the other of which measures its temperature, is connected to a fieldbus 25, to which a master 26 is also connected. Those supplied by the two sensors 23 and 24

' Absolutdruck- bzw. Temperaturmesswerte 23 und 24 werden nach dem Slave-Slave-Übertragungsverfahren unmittelbar an den Messumformer 20 übertragen, dessen Messsignalaufbereitungs- einrichtung 27 eine Recheneinrichtung 28 enthält, welche die aus dem Differenzdruckmesssignal, dem Absolutdruckmesswert und dem Temperaturmesswert ein Durchflussmesssignal berechnet. Der Differenzdruck-Messumformer 20 arbeitet also in unmittelbarem Zusammenwirken mit den Messwertgebern 23 und 24 als Durchfluss- Messumformer. ' Absolute pressure or temperature measurement values 23 and 24 are transmitted directly to the transmitter 20 using the slave-slave transmission method, the measurement signal processing device 27 of which contains a computing device 28 which calculates a flow measurement signal from the differential pressure measurement signal, the absolute pressure measurement value and the temperature measurement value. The differential pressure transmitter 20 thus works in direct interaction with the sensors 23 and 24 as a flow transmitter.

Claims

Patentansprüche claims 1. Anordnung mit einem Messumformer (1, 10, 20) und mindes- tens einem Messwertgeber (6, 15, 16, 23, 24), die gemeinsam über einen Feldbus (4, 13, 25) mit einer Prozesssteuerung (Master 5, 14, 25) verbunden sind, wobei zumindest der Messumformer (1, 10, 20) mit der Prozesssteuerung (Master 5, 14, 25) nach einem Master-Slave-Übertragungsverfahren kommuni- ziert, wobei der mindestens eine Messwertgeber (6, 15, 16, 23, 24) mit dem Messumformer (1, 10, 20) unmittelbar nach einem Slave-Slave-Übertragungsverfahren kommuniziert und wobei der Messumformer (1, 10, 20) eine Messsignalauf- bereitungseinrichtung (3, 17, 27) enthält, die eine von dem Messumformer (1, 10, 20) erfasste Messgröße in Abhängigkeit von einem von dem mindestens einen Messwertgeber (6, 15, 16, 23, 24) übermittelten Messwert zu einem an die Prozesssteuerung (Master 5, 14, 25) kommunizierbaren Messsignal aufbereitet .1. Arrangement with a transmitter (1, 10, 20) and at least one transmitter (6, 15, 16, 23, 24), which together via a fieldbus (4, 13, 25) with a process controller (master 5, 14, 25), at least the transmitter (1, 10, 20) communicating with the process control (master 5, 14, 25) according to a master-slave transmission method, the at least one transmitter (6, 15, 16, 23, 24) communicates with the transmitter (1, 10, 20) immediately according to a slave-slave transmission method and the transmitter (1, 10, 20) contains a measurement signal conditioning device (3, 17, 27) which a measurement variable detected by the transmitter (1, 10, 20) as a function of a measurement value transmitted by the at least one measurement value transmitter (6, 15, 16, 23, 24) for a measurement signal that can be communicated to the process control (master 5, 14, 25) processed. 2. Anordnung nach Anspruch 1, d a du r c h g e k e n n z e i c h n e t , dass die von dem Messumformer (1) erfasste Messgröße von dem Messwert des Messwertgebers (6) abhängig ist und dass die Messsignalaufbereitungseinrichtung (3) eine Kompensationseinrichtung (7) zur Kompensation des Einflusses des Messwertes auf das Messsignal enthält.2. Arrangement according to claim 1, since you rchgek characterized that the measured variable detected by the transmitter (1) is dependent on the measured value of the transmitter (6) and that the measurement signal conditioning device (3) has a compensation device (7) for compensating for the influence of the measured value contains the measurement signal. 3. Anordnung nach Anspruch 1 oder 2, d a d u r c h g e k e n n z e i c h n e t , dass der von dem mindestens einen Messwertgeber (15, 16) gelieferte Messwert ein Referenzmesswert ist und dass die Messsignalaufbereitungseinrichtung (17) eine Kalibriereinrichtung (18) zur Kalibrierung der Messsignalaufbereitung anhand des Referenzmesswertes enthält. 3. Arrangement according to claim 1 or 2, characterized in that the measured value supplied by the at least one transmitter (15, 16) is a reference measured value and that the measurement signal conditioning device (17) contains a calibration device (18) for calibrating the measurement signal conditioning on the basis of the reference measurement value. 4. Anordnung nach einem der vorangehenden Ansprüche, da du r c h g e k e nn z e i c hn e t , dass die Messsignal- aufbereitungseinrichtung (27) eine Recheneinrichtung (28) enthält, die aus dem Messsignal und dem Messwert des mindestens einen Messwertgebers (23, 24) ein neues Messsignal für eine von der Messgröße verschiedene neue Messgröße berechnet 4. Arrangement according to one of the preceding claims, since you rchgeke nn zeic hn et that the measurement signal processing device (27) contains a computing device (28) which from the measurement signal and the measured value of the at least one transmitter (23, 24) a new one Measurement signal calculated for a new measurement variable different from the measurement variable
PCT/DE2002/004391 2001-11-30 2002-11-29 Arrangement with a measuring transducer and at least one sensor connected in common to a process controller by means of a field bus WO2003049366A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10158745.7 2001-11-30
DE10158745A DE10158745A1 (en) 2001-11-30 2001-11-30 Arrangement with a transmitter and at least one transmitter, which are connected to a process control via a fieldbus

Publications (2)

Publication Number Publication Date
WO2003049366A2 true WO2003049366A2 (en) 2003-06-12
WO2003049366A3 WO2003049366A3 (en) 2003-08-07

Family

ID=7707492

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2002/004391 WO2003049366A2 (en) 2001-11-30 2002-11-29 Arrangement with a measuring transducer and at least one sensor connected in common to a process controller by means of a field bus

Country Status (2)

Country Link
DE (1) DE10158745A1 (en)
WO (1) WO2003049366A2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005083538A1 (en) * 2004-02-28 2005-09-09 Abb Research Ltd. Arrangement for devices in process instrumental technology
WO2005083539A1 (en) * 2004-02-28 2005-09-09 Abb Research Ltd. Process control system and method for operating a system of this type
EP1830236A2 (en) 2006-02-10 2007-09-05 Robert Bosch Gmbh Method for operating a network
EP2096799A1 (en) * 2006-01-30 2009-09-02 Robert Bosch GmbH Redundant communications network
WO2009080549A3 (en) * 2007-12-20 2009-12-17 Endress+Hauser Process Solutions Ag Field device and method for checking the calibration of a field device
CN101813935A (en) * 2010-03-17 2010-08-25 南京航空航天大学 Non-polar field bus system and realization method
EP2568262A1 (en) * 2011-09-09 2013-03-13 KROHNE Messtechnik GmbH Method for operating multiple neighbouring magnetic-inductive flow meters

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE502004010550D1 (en) * 2003-04-01 2010-02-04 Siemens Ag PROCESS ABSORPTION SPECTROMETER
DE10352307A1 (en) * 2003-11-06 2005-06-09 Endress + Hauser Flowtec Ag, Reinach Method for transmitting measured values between two measuring forms
CN100524123C (en) * 2005-06-22 2009-08-05 西门子公司 Field device
DE102008020508A1 (en) * 2008-04-23 2009-10-29 Codewrights Gmbh Device for determining or manipulating e.g. physical and/or chemical process variable in plant automation process, has sensor or actuator and evaluation units interchanging data over field bus
CN106576063B (en) 2014-08-08 2020-08-04 捷温有限责任公司 Bus system and bus system control method
DE102015115614A1 (en) 2015-09-16 2017-03-16 Krohne Messtechnik Gmbh Measuring device and measuring arrangement
DE102020111017A1 (en) 2020-04-22 2021-10-28 Endress+Hauser SE+Co. KG Method for communication between at least two field devices in automation technology

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991005293A1 (en) * 1989-10-02 1991-04-18 Rosemount Inc. Field-mounted control unit

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005083539A1 (en) * 2004-02-28 2005-09-09 Abb Research Ltd. Process control system and method for operating a system of this type
WO2005083538A1 (en) * 2004-02-28 2005-09-09 Abb Research Ltd. Arrangement for devices in process instrumental technology
US8000816B2 (en) 2004-02-28 2011-08-16 Abb Research Ltd Process control system and method for operating a system of this type
EP2096799A1 (en) * 2006-01-30 2009-09-02 Robert Bosch GmbH Redundant communications network
EP1830236B1 (en) 2006-02-10 2015-09-09 Robert Bosch Gmbh Method for operating a network
EP1830236A2 (en) 2006-02-10 2007-09-05 Robert Bosch Gmbh Method for operating a network
EP1830236A3 (en) * 2006-02-10 2008-02-13 Robert Bosch Gmbh Method for operating a network
WO2009080549A3 (en) * 2007-12-20 2009-12-17 Endress+Hauser Process Solutions Ag Field device and method for checking the calibration of a field device
CN101813935A (en) * 2010-03-17 2010-08-25 南京航空航天大学 Non-polar field bus system and realization method
CN103148901A (en) * 2011-09-09 2013-06-12 克洛纳测量技术有限公司 Method for operating multiple neighbouring magnetic-inductive flow meters
US9080905B2 (en) 2011-09-09 2015-07-14 Krohne Messtechnik Gmbh Method for operation of several adjacent magnetic-inductive flow meters
EP2568262A1 (en) * 2011-09-09 2013-03-13 KROHNE Messtechnik GmbH Method for operating multiple neighbouring magnetic-inductive flow meters
CN103148901B (en) * 2011-09-09 2017-06-30 克洛纳测量技术有限公司 Method for making multiple adjacent magnetic induction flowmeter work

Also Published As

Publication number Publication date
WO2003049366A3 (en) 2003-08-07
DE10158745A1 (en) 2003-06-26

Similar Documents

Publication Publication Date Title
EP2047216B1 (en) A 2-wire communication link which comprises a sensor, a measuring transducer, an isolation unit and a control unit
WO2003049366A2 (en) Arrangement with a measuring transducer and at least one sensor connected in common to a process controller by means of a field bus
EP1818672A1 (en) Measuring device, measuring probe and method for operating the measuring device
EP2181367B1 (en) Method for operating a field device for process automation having at least two measurement channels and field device for process automation having at least two measurement channels and suitable for performing said method
DE102012105446B4 (en) Device for determining and / or monitoring a chemical or physical process variable in automation technology
DE19958825A1 (en) Control system monitoring method for optical instrument, involves registering data regarding state of control units, in master capable microprocessor
DE69508424T2 (en) DEVICE AND METHOD FOR ADAPTING SENSORS OR ACTUATORS OF THE TYPE "HARD" TO A LOCAL INDUSTRIAL NETWORK
EP3983853B1 (en) Automation field device
DE102009046041A1 (en) Field device e.g. level indicator, operating arrangement for use in process automation system, has controlling unit and field devices performing cyclic or acyclic data communication, where field devices include extended functionality
DE102016122714A1 (en) Communication adapter for a transmitter of a field device
DE102016114600B3 (en) IO-Link capable sensor and method of communication
EP2475968B1 (en) Sensor network and method for the operation thereof
DE102013103212A1 (en) System for determining and / or monitoring and / or influencing at least one process variable
WO2019011603A1 (en) Method and data conversion unit for monitoring an automation system
EP1680716A2 (en) Method for transmitting measuring values between two measuring transducers
EP3082118B1 (en) Method for transmitting data between measuring devices and a data processing system in a measurement data recording device
WO2002007123A1 (en) Data transmission method
EP3413282B1 (en) Measurement transducer feed device and system
EP1947422B1 (en) Procedure and device for the parameterization of a sensor
EP2687930B1 (en) Automation unit for controlling a device or a system
EP3803360B1 (en) Monitoring device for a system for measuring process variables, in particular in liquid analysis
EP3153938B1 (en) Measuring apparatus
DE102006028006A1 (en) Field device and method for processing at least one measured variable in a field device
EP3163820B1 (en) Bus coupler for coupling field devices
DE202016104342U1 (en) IO-Link-capable sensor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): CN US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase