[go: up one dir, main page]

WO2003049366A2 - Dispositif comportant un transducteur de mesure et au moins un capteur de mesure relies en commun a une commande de processus par l'intermediaire d'un bus de terrain - Google Patents

Dispositif comportant un transducteur de mesure et au moins un capteur de mesure relies en commun a une commande de processus par l'intermediaire d'un bus de terrain Download PDF

Info

Publication number
WO2003049366A2
WO2003049366A2 PCT/DE2002/004391 DE0204391W WO03049366A2 WO 2003049366 A2 WO2003049366 A2 WO 2003049366A2 DE 0204391 W DE0204391 W DE 0204391W WO 03049366 A2 WO03049366 A2 WO 03049366A2
Authority
WO
WIPO (PCT)
Prior art keywords
transmitter
measurement signal
master
measurement
slave
Prior art date
Application number
PCT/DE2002/004391
Other languages
German (de)
English (en)
Other versions
WO2003049366A3 (fr
Inventor
Hartmut Flämig
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2003049366A2 publication Critical patent/WO2003049366A2/fr
Publication of WO2003049366A3 publication Critical patent/WO2003049366A3/fr

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • G05B19/4185Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by the network communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L12/403Bus networks with centralised control, e.g. polling
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/31From computer integrated manufacturing till monitoring
    • G05B2219/31094Data exchange between modules, cells, devices, processors
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/31From computer integrated manufacturing till monitoring
    • G05B2219/31121Fielddevice, field controller, interface connected to fieldbus
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/31From computer integrated manufacturing till monitoring
    • G05B2219/31135Fieldbus
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/31From computer integrated manufacturing till monitoring
    • G05B2219/31174Load, use different protocols, formats, emulators for different systems
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/31From computer integrated manufacturing till monitoring
    • G05B2219/31179Master sends message with address of slave to all slaves, slave answers, interrupt
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L2012/4026Bus for use in automation systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • field devices including transmitters, are connected to one another in the decentralized peripheral area together with a decentralized process control and operation and monitoring via field buses, it being possible for different field buses to be connected to one another via bus couplers.
  • the field buses can in turn be connected to a central system bus via coupling devices, to which a central process control and operation and monitoring are also connected.
  • Communication between the field devices and the process control is based on the master-slave principle; d. H.
  • the master which operates the fieldbus, parameterizes the slaves (field devices) assigned to it and carries out the data exchange in cyclic operation.
  • the master sends the slave a telegram with output data, whereupon the slave sends the master with its input data, such as. B. answers measured values.
  • the master speaks to the next slave and the slave responds in the same way.
  • a relatively new function in the "Profibus" fieldbus is the so-called slave-slave communication, which is also referred to as data cross-traffic.
  • the master sends a telegram with its output data to a slave in the usual way. If this slave has been defined as a cross-traffic transmitter (publisher) in the fieldbus configuration, the slave replies with its input data in a broadcast telegram. This allows all other participants on the fieldbus to listen to this telegram. However, the data contained in the telegram can only be evaluated by those slaves that are published as cross Traffic receivers (subscribers) have been configured. Therefore, only intelligent field devices with their own preprocessing can be used as subscribers, since these devices must be able to process the cross-traffic information.
  • slave-slave communication The advantages of slave-slave communication are that the master is relieved and the time for data transmission is reduced because the data exchange takes place directly between the slaves and not via the detour via the master. Another advantage is that the data cross traffic does not require an additional telegram.
  • the bus cycle is not significantly extended; a mix of master-slave and cross-traffic relationships is possible.
  • cross-data traffic for drive controls. For example, the signal from a limit switch that is connected to a decentralized input / output periphery can be transmitted directly to a drive via the cross traffic in order to switch it off with the least possible delay. It is also known to transfer actual values directly to a controller for a drive via cross traffic.
  • the measurement signal it may be necessary to use the measurement signal, for example, for compensation purposes, such as B. temperature compensation, depending on other measured values, e.g. B. temperature.
  • additional measured values can be measured using additional sensors, e.g. B. temperature sensor on the transmitter, z. B. pressure transducer, are detected, but this is expensive and expensive the transmitter.
  • sensors e.g. B. temperature sensor on the transmitter, z. B. pressure transducer
  • the additional measured values can be measured using additional sensors, e.g. B. temperature sensor on the transmitter, z. B. pressure transducer, are detected, but this is expensive and expensive the transmitter.
  • the master can send the measured values and the measurement signal to a further slave for processing the measurement signal in order to subsequently request the processed measurement signal from the
  • the invention has for its object to simplify the measurement signal processing in a process automation system.
  • the object is achieved by an arrangement with a transmitter and at least one transmitter, which are connected together via a fieldbus to a process controller, at least the transmitter communicating with the process controller according to a master-slave transmission method, wherein the at least one transmitter communicates with the transmitter directly using a slave-slave transmission method, and the transmitter contains a measurement signal processing device that detects a measured variable as a function of a measured value transmitted by the at least one transmitter to a communicable one to the process controller Prepared measurement signal.
  • the at least one sensor can be a further transmitter or a limit switch.
  • the arrangement according to the invention advantageously enables measurement signal processing in the transmitter itself as a function of at least one measurement value transmitted from outside in data cross-traffic.
  • the at least one sensor delivers a measured value, e.g. B. Temperature measured value, on which the measured variable detected by the transmitter is dependent.
  • the measurement signal processing device contains a compensation device for compensating the influence of the measured value on the measurement signal.
  • the at least one sensor delivers a reference measured value;
  • the measurement signal conditioning device contains a calibration device for calibrating the measurement signal conditioning on the basis of the reference measured value.
  • the at least one transducer can have at least one measured value, e.g. B. temperature and absolute pressure, deliver from and the measurement signal of the transmitter, z. B. differential pressure across a cross-sectional constriction of a flow tube, a computing device in the measurement signal conditioning device a new measurement signal for a new measurement variable different from the measurement variable, eg. B. Flow calculated.
  • B. temperature and absolute pressure deliver from and the measurement signal of the transmitter, z. B. differential pressure across a cross-sectional constriction of a flow tube, a computing device in the measurement signal conditioning device a new measurement signal for a new measurement variable different from the measurement variable, eg. B. Flow calculated.
  • Compensation, calibration and calculation of new measurement signals can be implemented individually or in combination with one another in hardware or software in the transmitter.
  • FIG. 1 shows a first exemplary embodiment of the arrangement according to the invention for measured value compensation
  • Figure 2 shows a second embodiment of the arrangement for calibration
  • Figure 3 shows a third embodiment for calculating a new measurement signal for a new measurement variable.
  • Figure 1 shows a transmitter 1, the z. B. measures the pressure in a liquid line 2.
  • the transmitter 1 contains a measurement signal conditioning device 3, in which a measured variable, here the pressure, is processed into a communicable measurement signal.
  • the transmitter 1 is integrated into a process automation system via a fieldbus 4. bound, of which only one master device 5 is shown here. Communication between transmitter 1 and master 5 is based on the master-slave principle; ie the master 5 operates the fieldbus 4, parameterizes the slaves assigned to it, here the transmitter 1 and other field devices connected to the fieldbus 4, and carries out the data exchange in cyclic operation. For this purpose, the master 5 sends the slave 1 a telegram with output data, whereupon the slave 1 responds to the master 5 with its measurement signal.
  • the measurement variable detected by the transmitter 1 and thus the measurement signal from another measurement value e.g. B. the temperature of the liquid in the liquid line, depending.
  • a transmitter 6, here a temperature transmitter is provided, which measures the liquid temperature and is connected to the fieldbus 4 as a slave.
  • the measuring value transmitter 6 delivers the temperature measured value directly to the measuring transducer 1 according to a slave-slave transmission method also referred to as data cross-traffic.
  • the measuring signal conditioning device 3 contains one
  • Compensation device 7 which compensates for the influence of the measured value on the measurement signal of the transmitter 1.
  • the master 5 sends a telegram to the transmitter 6.
  • the data contained in the telegram can only be evaluated by those slaves that have been configured as cross-traffic receivers with regard to the publisher; in this case it is the transmitter 1.
  • the transmitter 10 is a capacitive level meter, which measures the level 11 of a liquid in a container 12.
  • the transmitter 10 is connected to a master 14 via a fieldbus 13 connected.
  • Two sensors 15 and 16 are also connected to the fieldbus 13, which are limit switches which detect the liquid level 11 at two different levels.
  • the measured values supplied by the two transducers 15 thus represent reference measured values in relation to the liquid level 11 and are transmitted directly to the transmitter 10 according to the slave-slave transmission method, whose measuring signal processing device 17 contains a calibration device 18 for calibrating the measuring signal processing on the basis of the reference measured values ,
  • FIG. 3 finally shows a measuring transducer 20 which measures the pressure drop (differential pressure) of a liquid over a constriction 21 in a liquid line 22.
  • Transmitter 20 together with two sensors 23 and 24, one of which measures the absolute pressure of the liquid and the other of which measures its temperature, is connected to a fieldbus 25, to which a master 26 is also connected. Those supplied by the two sensors 23 and 24
  • Absolute pressure or temperature measurement values 23 and 24 are transmitted directly to the transmitter 20 using the slave-slave transmission method, the measurement signal processing device 27 of which contains a computing device 28 which calculates a flow measurement signal from the differential pressure measurement signal, the absolute pressure measurement value and the temperature measurement value.
  • the differential pressure transmitter 20 thus works in direct interaction with the sensors 23 and 24 as a flow transmitter.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

Selon l'invention, un système d'automatisation de processus comprend un transducteur de mesure et au moins un capteur de mesure qui sont reliés en commun à une commande de processus par l'intermédiaire d'un bus de terrain, au moins le transducteur de mesure communiquant avec ladite commande de processus selon un procédé de transmission maître-esclave. Pour que le traitement du signal de mesure soit simplifié, il est proposé que le ou les capteur(s) de mesure (6) communiquent avec le transducteur de mesure (1) directement selon un procédé de transmission esclave-esclave et que le transducteur de mesure (1) contienne un dispositif de mise en forme de signal de mesure (3) qui met une grandeur de mesure détectée par le transducteur de mesure (1) en forme de signal de mesure pouvant être communiqué à la commande de processus (maître 5), cela en fonction d'une valeur de mesure transmise par le ou les capteur(s) de mesure (6). La mise en forme du signal de mesure faite en fonction de la valeur de mesure sert, par exemple, à la compensation ou à l'étalonnage, ou bien au calcul de nouveaux signaux de mesure.
PCT/DE2002/004391 2001-11-30 2002-11-29 Dispositif comportant un transducteur de mesure et au moins un capteur de mesure relies en commun a une commande de processus par l'intermediaire d'un bus de terrain WO2003049366A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10158745.7 2001-11-30
DE10158745A DE10158745A1 (de) 2001-11-30 2001-11-30 Anordnung mit einem Messumformer und mindestens einem Messwertgeber, die gemeinsam über einen Feldbus mit einer Prozesssteuerung verbunden sind

Publications (2)

Publication Number Publication Date
WO2003049366A2 true WO2003049366A2 (fr) 2003-06-12
WO2003049366A3 WO2003049366A3 (fr) 2003-08-07

Family

ID=7707492

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2002/004391 WO2003049366A2 (fr) 2001-11-30 2002-11-29 Dispositif comportant un transducteur de mesure et au moins un capteur de mesure relies en commun a une commande de processus par l'intermediaire d'un bus de terrain

Country Status (2)

Country Link
DE (1) DE10158745A1 (fr)
WO (1) WO2003049366A2 (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005083538A1 (fr) * 2004-02-28 2005-09-09 Abb Research Ltd. Configuration d'appareils dans le cadre de la technique de controle des processus industriels
WO2005083539A1 (fr) * 2004-02-28 2005-09-09 Abb Research Ltd. Systeme de commande de processus et procede pour faire fonctionner ce systeme
EP1830236A2 (fr) 2006-02-10 2007-09-05 Robert Bosch Gmbh Procédé destiné au fonctionnement d'un réseau
EP2096799A1 (fr) * 2006-01-30 2009-09-02 Robert Bosch GmbH Réseau de communication redondant
WO2009080549A3 (fr) * 2007-12-20 2009-12-17 Endress+Hauser Process Solutions Ag Appareil de champ et procédé pour vérifier l'étalonnage d'un appareil de champ
CN101813935A (zh) * 2010-03-17 2010-08-25 南京航空航天大学 无极性现场总线系统及实现方法
EP2568262A1 (fr) * 2011-09-09 2013-03-13 KROHNE Messtechnik GmbH Procédé de fonctionnement de plusieurs débitmètres voisins à induction magnétique

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE502004010550D1 (de) * 2003-04-01 2010-02-04 Siemens Ag Prozess-absorptionsspektrometer
DE10352307A1 (de) * 2003-11-06 2005-06-09 Endress + Hauser Flowtec Ag, Reinach Verfahren zum Übertragen von Messwerten zwischen zwei Messumformen
CN100524123C (zh) * 2005-06-22 2009-08-05 西门子公司 现场设备
DE102008020508A1 (de) * 2008-04-23 2009-10-29 Codewrights Gmbh Vorrichtung zur Erfassung oder Beeinflussung einer physikalischen und/oder chemischen Prozessgröße
CN106576063B (zh) 2014-08-08 2020-08-04 捷温有限责任公司 总线系统和总线系统控制方法
DE102015115614A1 (de) 2015-09-16 2017-03-16 Krohne Messtechnik Gmbh Messgerät und Messanordnung
DE102020111017A1 (de) 2020-04-22 2021-10-28 Endress+Hauser SE+Co. KG Verfahren zur Kommunikation zwischen mindestens zwei Feldgeräten der Automatisierungstechnik

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991005293A1 (fr) * 1989-10-02 1991-04-18 Rosemount Inc. Unite de commande installee sur site

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005083539A1 (fr) * 2004-02-28 2005-09-09 Abb Research Ltd. Systeme de commande de processus et procede pour faire fonctionner ce systeme
WO2005083538A1 (fr) * 2004-02-28 2005-09-09 Abb Research Ltd. Configuration d'appareils dans le cadre de la technique de controle des processus industriels
US8000816B2 (en) 2004-02-28 2011-08-16 Abb Research Ltd Process control system and method for operating a system of this type
EP2096799A1 (fr) * 2006-01-30 2009-09-02 Robert Bosch GmbH Réseau de communication redondant
EP1830236B1 (fr) 2006-02-10 2015-09-09 Robert Bosch Gmbh Procédé destiné au fonctionnement d'un réseau
EP1830236A2 (fr) 2006-02-10 2007-09-05 Robert Bosch Gmbh Procédé destiné au fonctionnement d'un réseau
EP1830236A3 (fr) * 2006-02-10 2008-02-13 Robert Bosch Gmbh Procédé destiné au fonctionnement d'un réseau
WO2009080549A3 (fr) * 2007-12-20 2009-12-17 Endress+Hauser Process Solutions Ag Appareil de champ et procédé pour vérifier l'étalonnage d'un appareil de champ
CN101813935A (zh) * 2010-03-17 2010-08-25 南京航空航天大学 无极性现场总线系统及实现方法
CN103148901A (zh) * 2011-09-09 2013-06-12 克洛纳测量技术有限公司 用于使多个相邻的磁感应流量计工作的方法
US9080905B2 (en) 2011-09-09 2015-07-14 Krohne Messtechnik Gmbh Method for operation of several adjacent magnetic-inductive flow meters
EP2568262A1 (fr) * 2011-09-09 2013-03-13 KROHNE Messtechnik GmbH Procédé de fonctionnement de plusieurs débitmètres voisins à induction magnétique
CN103148901B (zh) * 2011-09-09 2017-06-30 克洛纳测量技术有限公司 用于使多个相邻的磁感应流量计工作的方法

Also Published As

Publication number Publication date
WO2003049366A3 (fr) 2003-08-07
DE10158745A1 (de) 2003-06-26

Similar Documents

Publication Publication Date Title
EP2047216B1 (fr) Une connexion de communication traditionnelle à deux conducteurs qui comprend un capteur, un transformateur de mesure, une unité de séparation et une unité de commande
WO2003049366A2 (fr) Dispositif comportant un transducteur de mesure et au moins un capteur de mesure relies en commun a une commande de processus par l'intermediaire d'un bus de terrain
EP1818672A1 (fr) Dispositif de mesure, sonde de mesure et procédé destinés au fonctionnement du dispositif de mesure
EP2181367B1 (fr) Procédé de commande d'un appareil de terrain de l'automatisation de processus disposant d'au moins deux canaux de mesure, et appareil de terrain disposant d'au moins deux canaux de mesure et adapté à la mise en oeuvre du procédé
DE102012105446B4 (de) Vorrichtung zur Bestimmung und/oder Überwachung einer chemischen oder physikalischen Prozessgröße in der Automatisierungstechnik
DE19958825A1 (de) Verfahren zur Kontrolle eines Steuerungssystems
DE69508424T2 (de) Vorrichtung und verfahren zur anpassung von sensoren oder aktoren des typs "hart" zu einem lokalen industriellen netzwerk
EP3983853B1 (fr) Appareil de terrain de la technique de l'automatisation
DE102009046041A1 (de) Anordnung zur Bedienung von Feldgeräten in der Automatisierungstechnik mittels eines Konfigurier-/Managementsystems
DE102016122714A1 (de) Kommunikations-Adapter für einen Transmitter eines Feldgeräts
DE102016114600B3 (de) IO-Link-fähiger Sensor und Verfahren zum Kommunizieren
EP2475968B1 (fr) Réseau de détecteurs et procédé pour faire fonctionner ce dernier
DE102013103212A1 (de) System zur Bestimmung und/oder Überwachung und/oder Beeinflussung zumindest einer Prozessgröße
WO2019011603A1 (fr) Procédé et unité de conversion de données pour surveiller une installation de la technologie d'automatisation
EP1680716A2 (fr) Procede de transmission de valeurs de mesure entre deux transducteurs de mesure
EP3082118B1 (fr) Procede de transmission de donnees entre des dispositifs de mesure et un dispositif de traitement de donnees dans un systeme d'enregistrement de donnees de mesure
WO2002007123A1 (fr) Procede de transmission de donnees
EP3413282B1 (fr) Appareil d'alimentation du transducteur de mesure et système
EP1947422B1 (fr) Procédé et appareil pour paramétrer un dispositif de mesure
EP2687930B1 (fr) Unité d'automatisation destinée à la commande d'un appareil ou d'une installation
EP3803360B1 (fr) Dispositif de surveillance pour un système de mesure de grandeurs de processus, en particulier d'analyse de liquides
EP3153938B1 (fr) Dispositif de mesure
DE102006028006A1 (de) Feldgerät und Verfahren zum Verarbeiten mindestens einer Messgröße in einem Feldgerät
EP3163820B1 (fr) Coupleur de bus pour des appareils de terrain
DE202016104342U1 (de) IO-Link-fähiger Sensor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): CN US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase