[go: up one dir, main page]

WO2003012847A1 - Semiconductor production apparatus monitoring method and control method - Google Patents

Semiconductor production apparatus monitoring method and control method Download PDF

Info

Publication number
WO2003012847A1
WO2003012847A1 PCT/JP2002/007858 JP0207858W WO03012847A1 WO 2003012847 A1 WO2003012847 A1 WO 2003012847A1 JP 0207858 W JP0207858 W JP 0207858W WO 03012847 A1 WO03012847 A1 WO 03012847A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection data
semiconductor manufacturing
manufacturing apparatus
sensors
allowable range
Prior art date
Application number
PCT/JP2002/007858
Other languages
French (fr)
Japanese (ja)
Inventor
Masayuki Tomoyasu
Original Assignee
Tokyo Electron Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Limited filed Critical Tokyo Electron Limited
Publication of WO2003012847A1 publication Critical patent/WO2003012847A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32917Plasma diagnostics
    • H01J37/32935Monitoring and controlling tubes by information coming from the object and/or discharge

Definitions

  • the present invention relates to a method for monitoring a semiconductor manufacturing apparatus and a method for controlling the same, and more particularly, to monitoring a semiconductor manufacturing apparatus so as to manufacture a semiconductor element meeting predetermined specifications when manufacturing a semiconductor element on an object to be processed.
  • the present invention relates to a method of monitoring a semiconductor manufacturing apparatus that can be controlled and a method of controlling the method.
  • Various semiconductor manufacturing apparatuses are used in a semiconductor manufacturing process.
  • Semiconductor manufacturing equipment such as a plasma processing apparatus is widely used in a film forming step and a etching step of a target object such as a semiconductor wafer (hereinafter, referred to as a “wafer”) and a glass substrate.
  • a target object such as a semiconductor wafer (hereinafter, referred to as a “wafer”) and a glass substrate.
  • a semiconductor device hereinafter, referred to as a “device”
  • an optimal device parameter high frequency
  • the semiconductor manufacturing device After setting these device parameters, the semiconductor manufacturing device is operated. During operation, a parameter sensor that monitors the device parameters is used to detect the actual value of each parameter, and it is also necessary to detect the harmonics, phase, and impedance of the high-frequency power supply that affect the processing of the wafer. Operational data such as the target signal and plasma emission intensity are detected via the additional sensors, and the semiconductor manufacturing equipment is monitored and controlled based on these detected data. At this time, the detection data from the plurality of parameter sensors and the additional sensor are analyzed by statistical processing such as multivariate analysis to obtain a correlation between the respective detection data, and the processing result of the wafer is determined based on the correlation.
  • a parameter sensor that monitors the device parameters is used to detect the actual value of each parameter, and it is also necessary to detect the harmonics, phase, and impedance of the high-frequency power supply that affect the processing of the wafer. Operational data such as the target signal and plasma emission intensity are detected via the additional sensors, and the semiconductor manufacturing equipment is monitored and controlled
  • the parameter sensor is a sensor that detects actual measured values of a plurality of device parameters.
  • the additional sensor refers to the sensor to be monitored.
  • the additional sensor is a factor that affects the processing state of the wafer other than the equipment parameters, such as electrical signals such as harmonics, phase, and impedance of a high-frequency power supply, plasma emission intensity, and exhaust gas. It is a sensor that detects and monitors the gas components and the like.
  • Japanese Patent Application Laid-Open No. 10-125660 uses a model equation based on multivariate analysis that associates an electrical signal reflecting a plasma state with plasma processing characteristics, and models the electrical signal value during processing.
  • a technique for predicting plasma characteristics by applying the equation has been proposed.
  • Japanese Patent Application Laid-Open No. H10-135,091 discloses, in a process processing step, product quality result information such as yield information and electrical characteristic information and in-line measurement information such as manufacturing apparatus history information.
  • a technique has been proposed that uses information that affects product quality and analyzes the causal relationship between the quality result information of these products and the information that affects product quality using multi-stage multivariate analysis means.
  • Japanese Patent Laid-Open Publication No. Hei 11-87332 analyzes multiple process parameters, statistically correlates these parameters, and detects changes in process characteristics based on this correlation.
  • techniques have been proposed to prevent the adverse effects of single data noise.
  • the operator monitors and controls the processing status of wafers using parameter sensors and additional sensors.
  • the permissible range of the sensor's detection value the upper and lower limits are set to a safer side than the assumed permissible limit, so the control range of the device is narrow and the operation tends to be cramped.
  • the control range is for the production of non-defective devices conforming to the specifications, the upper and lower limits are set to the safe side, so the detected values of the sensors easily exceed the set range, and the operation time is shortened and the operation starts. There was a problem that the rate decreased.
  • a model expression is obtained by performing a multivariate analysis process by associating a plurality of detection data obtained through a plurality of sensors with a processing result. After that, the plasma processing characteristics are predicted by applying each detected data to this model formula, and based on the predicted values, the plasma state is determined to be normal or abnormal, and the processing result of the wafer is predicted.
  • the present invention has been made to solve the above-mentioned problems, and it is possible to increase the operation rate by giving a wide range of operation of the apparatus, and to judge the normality or abnormality of the processing on the object with high sensitivity. It is an object of the present invention to provide a method of monitoring a semiconductor manufacturing apparatus and a method of controlling the same, which can easily and surely correct a normal state even when there is an abnormality in processing of an object to be processed. Disclosure of the invention
  • a method for monitoring a semiconductor manufacturing apparatus comprises: setting a plurality of apparatus parameters of the semiconductor manufacturing apparatus in the semiconductor manufacturing apparatus; A method of monitoring a semiconductor manufacturing device based on a previously created variation allowable range group of detection data of a plurality of sensors of the semiconductor manufacturing device when manufacturing a predetermined semiconductor element on a body,
  • the step of creating the variation allowable range group includes the plurality of device parameters that satisfy the expected specifications based on the specifications of the object to be processed, the expected specifications of the semiconductor element, and the characteristics of the semiconductor manufacturing device. Determining a permissible range thereof; processing each of the plurality of device parameters within the permissible range to process a trial workpiece; and processing the trial workpiece.
  • the method for monitoring a semiconductor manufacturing apparatus according to claim 3 of the present invention includes a method for monitoring a plurality of detected data from at least one sensor detected in an actual process and a method for monitoring the fluctuation tolerance. Characterized by comparison with corresponding permissible detection data of enclosures o
  • the method for monitoring a semiconductor manufacturing apparatus is characterized in that an abnormality is reported when at least one of the plurality of pieces of detection data deviates from a corresponding allowable detection data. Things.
  • the method of monitoring a semiconductor manufacturing apparatus wherein at least one of the plurality of detection data reaches an abnormal approach data value close to a corresponding allowable detection data.
  • the feature is to notify that the vehicle is approaching an abnormal state.
  • a method of controlling a semiconductor manufacturing apparatus wherein a plurality of device parameters of the semiconductor manufacturing apparatus are set in the semiconductor manufacturing apparatus, and a predetermined semiconductor element is manufactured on an object to be processed.
  • a method of controlling the semiconductor manufacturing apparatus based on a previously created variation allowable range group of a plurality of detection data of at least one sensor of the semiconductor manufacturing apparatus, wherein the variation allowable range group is created. Determining the plurality of device parameters that satisfy the expected specifications based on the specifications of the object to be processed, the expected specifications of the semiconductor element, and the characteristics of the semiconductor manufacturing apparatus.
  • the control method of a semiconductor manufacturing apparatus is a method for controlling a plurality of detection data from at least one sensor detected in an actual process and a corresponding allowable detection of the fluctuation allowable range group. It is characterized by comparing each day with ⁇
  • the method for controlling a semiconductor manufacturing apparatus wherein at least one of the plurality of detection data reaches an abnormally close data value close to a corresponding allowable detection data.
  • the feature is to notify that the vehicle is approaching an abnormal state.
  • FIG. 1 is a configuration diagram showing an example of a semiconductor manufacturing apparatus used in the method of the present invention.
  • FIG. 2 is an explanatory diagram conceptually showing the correspondence between process conditions and detection data.
  • the plasma processing apparatus 10 includes an aluminum processing chamber 11 capable of maintaining a high vacuum, A lower electrode 12 also serving as a mounting table on which the lower electrode 12 is placed, and an upper electrode 13 disposed above the lower electrode 12, and a lower electrode 12 and an upper electrode 13 are provided as described later.
  • the wafer W on the lower electrode 12 is etched by the plasma of the generated process gas.
  • a first high-frequency power supply 14 is connected to the lower electrode 12 via a matching unit 14A, and for example, high-frequency power of 2 MHz is applied from the first high-frequency power supply 14.
  • An electric measuring device 14 B is connected between the lower electrode 12 and the matching device 14 A, and the fundamental frequency of the high-frequency power supply 14 applied to the lower electrode 12 via the electric measuring device 14 B and Measures electrical signals such as voltage, current, phase, and impedance of harmonics.
  • a first high frequency power supply 15 is connected to the upper electrode 13 via a matching unit 15A. For example, high frequency power of 60 MHz is applied from the first high frequency power supply 15.
  • An electric measuring device 15B is connected between the upper electrode 13 and the matching device 15A, and the fundamental frequency of the high-frequency power supply 15 applied to the upper electrode 13 via the electric measuring device 15B. And harmonic voltage, current, phase, Measure electrical signals such as impedance dances.
  • the upper electrode 13 is formed, for example, in a hollow shape, and a process gas supply source (not shown) is connected to an upper surface of the upper electrode 13 via a gas pipe 16.
  • the process gas supply source is configured to supply two types of gases, for example, an etching gas such as a CF-based gas and a carrier gas such as an argon gas, and the first and second gas pipes 16 A and 16 are respectively provided.
  • B joins in the gas pipe 16 to supply a mixed gas of an etching gas and a carrier gas to the upper electrode 13 as a process gas.
  • Numerous holes are formed on the lower surface of the upper electrode 13 so as to be evenly distributed over the entire surface, and process gas is supplied into the processing chamber 11 through these holes.
  • the first and second gas pipes 16A and 16B are provided with first and second flow control devices 17A and 17B, respectively.
  • the flow rates of the etching gas and carrier gas are individually controlled via 17B.
  • the first and second gas pipes 16A and 1668 are provided with first and second gas flow sensors 18A and 19B, respectively. 8 Detect the flow rate of etching gas and carrier gas through B.
  • a focus ring 19 is provided on the outer peripheral portion of the upper surface of the lower electrode 12, and the plasma generated in the processing chamber 11 is focused on the wafer W via the focus ring 19.
  • An electrostatic chuck (not shown) is provided inside the focus ring 19, and the wafer W is electrostatically attracted via the electrostatic chuck.
  • a temperature sensor 20 is provided on the lower electrode 12, and detects the temperature of the lower electrode 12 when processing the wafer W via the temperature sensor 20, and thus detects the temperature of the wafer W.
  • a window 11 A filled with, for example, quartz glass is formed on a side surface of the processing chamber 11, and a plasma emission spectrometer 21 constituting an end point detection device is disposed in the window 11 A. ing.
  • the spectroscope 21 separates a specific wavelength, and the end point of the etching is detected based on a change in intensity at the specific wavelength.
  • Processing chamber 1 1 detects internal pressure A pressure sensor (not shown) is provided, and detects the pressure in the processing chamber 11 via the pressure sensor.
  • the high-frequency power supplies 14 and 15 and the first and second flow rate control devices 17 A and 17 B are connected to a control device 22, and the etching device parameters are controlled via the control device 22.
  • sensors such as electric measurement devices 14B and 15B, gas flow sensors 18A and 18B, temperature sensor 20 and plasma emission spectrometer 21 are connected to the control device 22. Detecting the etching situation via the sensor. Then, the control device 22 controls the plasma processing device 10 based on the detection value from the sensor to perform desired etching.
  • Electrical measuring instruments 14 B, 15 B, gas flow sensors 18 A, 18 B, temperature sensor 20, pressure sensor, etc. can be directly set as processing conditions for wafer W. It will work as a sensor for monitoring parameters.
  • the plasma emission spectrometer 21 cannot be directly set as the processing condition of the wafer W, but acts as an additional sensor for monitoring a parameter value that affects the processing condition of the wafer W.
  • the electric measuring instruments 14B and 15B are additional sensors for detecting electrical signals such as voltage, current, phase, impedance, etc. of the fundamental frequency and harmonics of the high-frequency power supplies 14 and 15 Will also work.
  • the control device 22 includes a detection data storage unit 22A that stores detection values from the parameter sensor and the additional sensor as detection data, respectively, A variation allowable range group creating unit 22B that creates a variation allowable range group based on the detection data stored in the storage unit 22A, and a variation allowable range created via the variation allowable range group creating unit 22B.
  • a tolerable range group storage unit 22 C that stores the range group, a comparison that compares the tolerable range group with the detected data obtained during the actual process, a judgment unit 22 D, and a central control that controls these. Part 2 2E is provided. This variation allowable range group is created using the trial wafer W before the actual process is performed as described below.
  • an input / output device 23 is connected to the control device 22. The device parameters and the like are set via the input / output device 23, and the processing result is output to the input / output device 23. .
  • the above-mentioned fluctuation allowable range group includes detection data of a plurality of sensors (parameter sensor and additional sensor) when etching that satisfies a desired device specification (expected structure) is performed. It is composed of a group of evenings gathered together.
  • This range includes the maximum value and the minimum value of the detection data of each sensor when a device that satisfies the expected structure is manufactured. Therefore, when all the detection data of a plurality of sensors have detection values between the maximum value and the minimum value, a semiconductor device that satisfies the expected structure by normal etching (hereinafter, simply referred to as “non-defective product”) is manufactured.
  • the semiconductor device does not satisfy the expected structure due to abnormal etching (hereinafter simply referred to as “defective product”). ) Can be determined to be manufactured. It should be noted that even if a device is determined to be defective here, it does not mean a device that is not entirely usable, but there is a classification of defective products, and there are applications according to each class.
  • a method of creating a variation allowable range group will be described. As described above, the allowable variation group is created using the trial wafer W before the actual process is performed. A trial wafer W having the same material and structure as the actual process is used.
  • the fluctuation tolerance group When creating the fluctuation tolerance group, it is considered to be optimal based on the specifications of the wafer W before the etching process, the expected structure of the device after the etching process, the tolerance of the expected structure, and the characteristic library of the plasma processing equipment.
  • the parameters of multiple devices to be obtained are obtained by the same method as in the past.
  • the specifications of the test wafer w include, for example, information on the base material (information on film type, film thickness, structure, manufacturing method), information on the film to be etched (information on film type, film thickness, structure, manufacturing method, etc.) and mask There is information on materials (information on film type, film thickness, mask pattern, etc.).
  • Information representing the expected structure of the device includes, for example, information such as pattern width, etching depth, taper angle, bowing degree, and mask material etching amount from the device shape surface, and from the electrical characteristics surface. Contains information such as wiring resistance, contact resistance, charge amount, leakage current, and dielectric breakdown.
  • the allowable range of the expected structure means a range that can be tolerated even if the values of the shape and electrical characteristics are slightly different from the device specifications.
  • the information of the characteristic library of the plasma processing apparatus includes, for example, information on the type of the plasma processing apparatus, the processing chamber, the electrode structure, the high-frequency power supply, and the like.
  • the optimal equipment parameters can be determined based on such information by conventional knowledge and / or experiments.
  • the best parameters for the above equipment are: high-frequency power of the lower electrode 12 of the plasma processing apparatus 10, high-frequency power of the upper electrode 13, the distance between both electrodes 12, 13 and the temperature and processing of the lower electrode 12. It consists of equipment parameters that easily affect the plasma state, such as the pressure in the chamber 11, the etching gas flow rate, and the carrier gas flow rate. Accordingly, the processing conditions can be set by inputting the parameters of the apparatus into the plasma processing apparatus 10 via the input / output device 23.
  • a plurality of equipment parameters, each of which satisfies the expected structure of the device centered on the optimal equipment parameters, and the allowable fluctuation range of the detection data It is obtained by etching using a trial wafer W using a known experimental design method.
  • the permissible range of fluctuation can be efficiently obtained in consideration of the main effects and interaction of the parameters of the apparatus.
  • the parameters of each device were changed between maximum and minimum values and between them based on the experimental design method.
  • the plasma processing apparatus 10 is subject to continuous use, consumables such as focusing 19 are consumed, and plasma by-products are accumulated inside the processing chamber 11, and the characteristics of the apparatus change over time.
  • consumables such as focusing 19 are consumed, and plasma by-products are accumulated inside the processing chamber 11, and the characteristics of the apparatus change over time.
  • Fig. 2 conceptually shows the relationship between the equipment parameter group P for all the trial wafers W and the parameter sensor group for these equipment parameter groups P and the detection data group D for additional sensors.
  • the equipment parameter group P and the detection data group D include those for the test wafer W that satisfies the expected structure and those for the test wafer W that does not satisfy the expected structure. I have.
  • the allowable device parameters P1 and the permissible detection data group (variable permissible range group) D1 for the trial wafer W satisfying the expected structure are indicated by white portions, respectively, and the trial wafers not satisfying the expected structure are shown.
  • the device parameter group P 2 for W and the detection data group D 2 are indicated by shaded portions.
  • the control device 22 detects the detection data via the central control unit 22E. Only the permissible detection data group D1 is extracted from the detection data group D of the above and taken into the fluctuation permissible range group creation unit 22B.
  • the permissible detection data of each sensor is sorted from the maximum value to the minimum value in order of magnitude.
  • the variation allowable range group is stored and stored in the variation allowable range group storage section 22 C via the central control section 22E.
  • the comparison / judgment unit 22D functions during the actual process, and detects the detection data input from each sensor during the etching of the wafer W and the corresponding allowable detection taken from the fluctuation allowable range group storage unit 22C.
  • the data is constantly compared with the data D 1. If any of the detected data deviates from the allowable detection data D 1, an error signal is output to notify an etching error, and the control device 22 is used. To stop the process.
  • the detection data of the electrical measuring instruments 14B and 15B deviate from the allowable detection data D1. Value, and abnormality is instantaneously detected via this detection value. You can know. Further, apart from each allowable detection data, by setting a value close to these values within the range of the maximum value and the minimum value as the abnormal approach data value, one of the detection data reaches the abnormal approach data value. When an error occurs, it can be notified that the vehicle is approaching an abnormal state. In the actual process, an average value for each wafer W may be sequentially obtained from the detection data input into the control device 22 and the average value may be compared with the allowable variation range of the average value of the allowable variation group.
  • the plasma processing apparatus 10 is most suitable for the plasma processing apparatus 10 because the consumables are consumed due to continuous use and plasma by-products are deposited inside the processing chamber 11 and the characteristics of the apparatus change temporarily. Even if an appropriate operating parameter is set, the detection data of each sensor changes with time, and the detection data corresponding to the optimum driving parameter also changes. In the present embodiment, when the wafer W is etched with the optimum operation parameters, the monitoring of the detection data from each sensor and the above-described fluctuation allowable range group are constantly monitored, and the change of the device characteristics over time is known. be able to.
  • electrical signals such as voltage, current, phase, and impedance of the fundamental frequency and harmonics of the high-frequency power supplies 14 and 15 are detected through the electrical measuring instruments 14B and 15B, and the 1.
  • the flow rates of the etching gas and the carrier gas are respectively detected through the second gas flow sensors 18A and 18B, and the temperature of the lower electrode 12 is detected through the temperature sensor 20.
  • the gas pressure in the processing chamber 11 and the temperature of the upper electrode 13 are detected.
  • each detected data is within the permissible range. If each detection data (or average value data) is within the allowable range until the etching of the wafer W is completed, the processed wafer W has a device satisfying the expected structure. If the processing of the wafer W is continued and any one of the detected data reaches the abnormal approach data, the comparison / determination unit 22D determines that fact and outputs an abnormal approach signal to indicate an abnormal state. Alerts and warns that you are approaching.
  • the comparison / determination unit 22D outputs an abnormal signal, and the device at this time is in an abnormal state that does not satisfy the expected structure. Notify that there is.
  • the cause of the abnormality can be ascertained reliably, and the process conditions can be surely corrected.
  • the trial wafer W is etched using the plasma processing apparatus 10, and it is determined whether or not the processed trial wafer W satisfies the expected structure.
  • a fluctuation range group consisting only of the permissible detection data D1 of a plurality of parameter sensors and additional sensors is created, and the plasma processing apparatus 10 is monitored and controlled based on the fluctuation range group.
  • the allowable range of the parameter sensor and the additional sensor can be extended to the maximum and the operation rate can be increased by providing a wider range of operation of the device, and the process can be performed with high sensitivity to normal and abnormal processes. It can be reliably monitored and controlled.
  • the plurality of detection data detected in the actual process is compared with the permissible detection data D 1 of the variation allowable range group, respectively. It is possible to easily know whether or not an error has occurred during the detection of an error, and to correct the equipment parameters in a short time to recover the process conditions to a favorable state.
  • an abnormal approach data value within the fluctuation allowable range group it is notified that any of the detected data has approached an abnormal state, so that an abnormality can be predicted instantaneously.
  • at least one of the detection data of the plurality of parameter sensors and the additional sensor exceeds the limit value of the corresponding allowable detection data, an error is notified and the process is stopped. Plasma treatment The processing device 10 can be reliably stopped, and subsequent production of a defective device can be reliably prevented.
  • the detection data is obtained by using several kinds of parameter sensors and additional sensors.
  • the present invention is not limited to these sensors, and may be used for detecting a plasma state.
  • Sensors sensors for detecting plasma density and plasma temperature
  • RAA residual gas analyzers
  • detectors for suspended particles in plasma measuring instruments for radical species and density in plasma such as IR-LAS
  • a measuring device for measuring the thickness of the deposited film and the film type a temperature measuring device for measuring the wafer surface temperature, a process vessel temperature, and an electrode surface can be used.
  • the plasma processing apparatus 10 itself reports the process abnormality.
  • the plasma processing apparatus 10 reports the abnormality to the upper computer, and notifies the operator via the upper computer overnight. Anomalies can also be signaled.
  • the present invention it is possible to increase the operation rate by providing a wide range of operation of the apparatus, and it is possible to judge the normality or abnormality of the processing on the object to be processed with high sensitivity. It is possible to provide a monitoring method of a semiconductor manufacturing apparatus and a control method thereof, which can easily and surely correct a normal state even when there is an abnormality in processing of an object to be processed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

A semiconductor production apparatus monitoring/control method includes a step of etching a test wafer (W) by using a plasma treatment apparatus (10), a step of deciding whether the treated test wafer (W) satisfies an expected structure, a step of creating a fluctuation allowance group including sensed data of a plurality of sensors when the expected structure is satisfied as allowance sensing data, and a step of monitoring/controlling the plasma treatment apparatus (10) according to the fluctuation allowance group.

Description

明 細 書 半導体製造装置の監視方法及びその制御方法 技術分野  Technical Field Monitoring method of semiconductor manufacturing equipment and its control method
本発明は、 半導体製造装置の監視方法及びその制御方法に関し、 更に詳しくは、 被処理体に半導体素子を製造する際に所定の仕様に叶った半導体素子を製造する ように半導体製造装置を監視し、 制御することができる半導体製造装置の監視方 法及びその制御方法に関する。 背景技術  The present invention relates to a method for monitoring a semiconductor manufacturing apparatus and a method for controlling the same, and more particularly, to monitoring a semiconductor manufacturing apparatus so as to manufacture a semiconductor element meeting predetermined specifications when manufacturing a semiconductor element on an object to be processed. The present invention relates to a method of monitoring a semiconductor manufacturing apparatus that can be controlled and a method of controlling the method. Background art
半導体製造工程では種々の半導体製造装置が用いられている。 半導体ウェハ (以下、 「ウェハ」 と称す。 ) やガラス基板等の被処理体の成膜工程ゃェヅチン グ工程ではブラズマ処理装置等の半導体製造装置が広く使用されている。 例えば ウェハに所定のプラズマ処理を施して所定の仕様に叶った半導体素子 (以下、 「デバイス」 と称す。 ) を製造する場合には、 このデバイスを製造するのに最適 な装置パラメ一夕 (高周波電力、 処理室内のガス圧力、 ガス流量、 サセプ夕温度 等のウェハを処理する際に装置に直接設定する数値データ) を選択した後、 これ らの装置パラメ一夕を半導体製造装置に設定する。 そして、 これらの装置パラメ 一夕を設定した後に半導体製造装置の運転を行う。 運転中には装置パラメ一夕を 監視するパラメ一夕センサを用いてそれぞれの実際の値を検出すると共に、 ゥェ ハの処理に影響する高周波電源の高調波、 位相、 インビ一ダンス等の電気的信号 やプラズマ発光強度等の運転データをそれぞれの追加センサを介して検出し、 こ れらの検出データに基づいて半導体製造装置を監視し、 制御している。 この際、 複数のパラメ一夕センサ及び追加センサからの検出データを多変量解析等の統計 的処理により解析して各検出データ間の相関関係を求め、 この相関関係に基づい てウェハの処理結果を予測したり、 半導体製造装置を監視し、 制御し、 ひいては 装置の異常やウェハの異常を検知し、 必要に応じて装置を停止させている。 尚、 本明細書では、 パラメ一夕センサとは、 複数の装置パラメ一夕の実測値を検出し 監視するセンサのことを云い、 追加センサとは、 装置パラメ一夕以外でウェハの 処理状態に影響する因子、 例えば高周波電源の高調波、 位相、 インピーダンス等 の電気的信号やプラズマ発光強度、 排気ガスのガス成分等を検出し監視するセン サのことを云う。 Various semiconductor manufacturing apparatuses are used in a semiconductor manufacturing process. Semiconductor manufacturing equipment such as a plasma processing apparatus is widely used in a film forming step and a etching step of a target object such as a semiconductor wafer (hereinafter, referred to as a “wafer”) and a glass substrate. For example, when a semiconductor device (hereinafter, referred to as a “device”) that meets a predetermined specification by performing a predetermined plasma process on a wafer is manufactured, an optimal device parameter (high frequency) for manufacturing the device is used. After selecting power, gas pressure in the processing chamber, gas flow rate, susceptor temperature, and other numerical data directly set in the equipment when processing the wafer, these equipment parameters are set in the semiconductor manufacturing equipment. After setting these device parameters, the semiconductor manufacturing device is operated. During operation, a parameter sensor that monitors the device parameters is used to detect the actual value of each parameter, and it is also necessary to detect the harmonics, phase, and impedance of the high-frequency power supply that affect the processing of the wafer. Operational data such as the target signal and plasma emission intensity are detected via the additional sensors, and the semiconductor manufacturing equipment is monitored and controlled based on these detected data. At this time, the detection data from the plurality of parameter sensors and the additional sensor are analyzed by statistical processing such as multivariate analysis to obtain a correlation between the respective detection data, and the processing result of the wafer is determined based on the correlation. It predicts, monitors and controls semiconductor manufacturing equipment, and detects equipment and wafer abnormalities, and shuts down equipment as necessary. In this specification, the parameter sensor is a sensor that detects actual measured values of a plurality of device parameters. The additional sensor refers to the sensor to be monitored. The additional sensor is a factor that affects the processing state of the wafer other than the equipment parameters, such as electrical signals such as harmonics, phase, and impedance of a high-frequency power supply, plasma emission intensity, and exhaust gas. It is a sensor that detects and monitors the gas components and the like.
例えば、 特開平 1 0— 1 2 5 6 6 0号公報にはプラズマ状態を反映する電気的 信号とプラズマ処理特性とを関連づける多変量解析によるモデル式を用い、 処理 時の電気的信号値をモデル式に当てはめてプラズマ特性を予測する技術が提案さ れている。 また、 特開平 1 0— 1 3 5 0 9 1号公報にはプロセス加工工程におい て、 歩留り情報や電気的特性情報等の製品の品質結果情報と、 製造装置履歴情報 等のインライン測定情報等の製品の品質に影響を与える情報とを用い、 これらの 製品の品質結果情報と製品の品質に影響を与える情報との因果関係を多段多変量 解析手段を用いて解析する技術が提案されている。 その他、 特開平 1 1— 8 7 3 2 3号公報には複数のプロセスパラメ一夕を分析し、 これらのパラメ一夕を統計 的に相関させ、 この相関関係を基にプロセス特性の変化を検出し、 単一データの ノイズによる悪影響を防止する技術が提案されている。  For example, Japanese Patent Application Laid-Open No. 10-125660 uses a model equation based on multivariate analysis that associates an electrical signal reflecting a plasma state with plasma processing characteristics, and models the electrical signal value during processing. A technique for predicting plasma characteristics by applying the equation has been proposed. Japanese Patent Application Laid-Open No. H10-135,091 discloses, in a process processing step, product quality result information such as yield information and electrical characteristic information and in-line measurement information such as manufacturing apparatus history information. A technique has been proposed that uses information that affects product quality and analyzes the causal relationship between the quality result information of these products and the information that affects product quality using multi-stage multivariate analysis means. In addition, Japanese Patent Laid-Open Publication No. Hei 11-87332 analyzes multiple process parameters, statistically correlates these parameters, and detects changes in process characteristics based on this correlation. However, techniques have been proposed to prevent the adverse effects of single data noise.
しかしながら、 装置パラメ一夕を設定した後、 パラメ一夕センサや追加センサ を用いてウェハの処理状況を監視し、 制御するために、 オペレータが過去の蓄積 処理データに基づいて経験と勘によってこれらのセンサの検出値の許容範囲を設 定する際に、 上下限値を想定する許容限界よりも安全サイ ドに設定するため、 装 置の制御域が狭く運転が窮屈になりがちで、 しかも、 本来は仕様に則った良品デ バイスを製造できる制御域であるにも拘わらず、 上下限値を安全サイドに設定し たがためにセンサの検出値が設定範囲を超え易く運転時間が短くなって稼働率が 低下するという課題があった。  However, after setting the equipment parameters, the operator monitors and controls the processing status of wafers using parameter sensors and additional sensors. When setting the permissible range of the sensor's detection value, the upper and lower limits are set to a safer side than the assumed permissible limit, so the control range of the device is narrow and the operation tends to be cramped. Although the control range is for the production of non-defective devices conforming to the specifications, the upper and lower limits are set to the safe side, so the detected values of the sensors easily exceed the set range, and the operation time is shortened and the operation starts. There was a problem that the rate decreased.
また、 上記各公報に記載された多変量解析手法を用いる場合には、 例えば複数 のセンサを介して得られた複数の検出データと処理結果を関連づけて多変量解析 処理を行ってモデル式を得た後、 このモデル式に各検出データを当てはめてブラ ズマ処理特性を予測し、 この予測値に基づいてプラズマの状態の正常、 異常を判 断したり、 ウェハの処理結果を予測したりしているが、 モデル式の作成に用いら れた複数の検出デ一夕が期待仕様に叶った構造の正常なデバイス (良品デバイ ス) を製造する場合に検出される正常な検出デ一夕であるか否かの判断がなされ ていないため ·実プロセスにおける複数の検出データからプラズマ状態を予測し 得たとしても、 その予測値が良品デバイスを製造すること条件に叶った予測値で あるか否かが必ずしも明確ではなく、 ウェハの処理結果を必ずしも正確に予測す ることができないという課題があった。 When the multivariate analysis methods described in the above publications are used, for example, a model expression is obtained by performing a multivariate analysis process by associating a plurality of detection data obtained through a plurality of sensors with a processing result. After that, the plasma processing characteristics are predicted by applying each detected data to this model formula, and based on the predicted values, the plasma state is determined to be normal or abnormal, and the processing result of the wafer is predicted. However, a normal device with a structure in which the multiple detection data used to create the model formula met the expected specifications (non-defective devices) Since it has not been determined whether or not it is a normal detection data that is detected when manufacturing the plasma, the plasma state can be predicted from multiple detection data in the actual process. However, it is not always clear whether the predicted value meets the conditions for manufacturing a good device, and the processing result of the wafer cannot always be predicted accurately.
本発明は、 上記課題を解決するためになされたもので、 装置の運転に幅を持た せて稼働率を高めることができると共に被処理体に対する処理の正常、 異常を高 感度で判断することができ、 しかも被処理体の処理に異常があった場合でも簡単 且つ確実に正常な状態に補正することができる半導体製造装置の監視方法及びそ の制御方法を提供することを目的としている。 発明の開示  SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and it is possible to increase the operation rate by giving a wide range of operation of the apparatus, and to judge the normality or abnormality of the processing on the object with high sensitivity. It is an object of the present invention to provide a method of monitoring a semiconductor manufacturing apparatus and a method of controlling the same, which can easily and surely correct a normal state even when there is an abnormality in processing of an object to be processed. Disclosure of the invention
上記目的を達成するために、 本発明の請求の範囲第 1項に記載の半導体製造装 置の監視方法は、 半導体製造装置の複数の装置パラメ一夕を前記半導体製造装置 に設定し、 被処理体に所定の半導体素子を製造する際に、 予め作成された前記半 導体製造装置の複数のセンサの検出データの変動許容範囲群に基づいて前記半導 体製造装置を監視する方法であって、 前記変動許容範囲群を作成する工程は、 前 記被処理体の仕様と前記半導体素子の期待仕様と前記半導体製造装置の特性に基 づいて前記期待仕様を満足する前記複数の装置パラメ一夕それそれの変動許容範 囲を求める工程と、 前記複数の装置パラメ一夕を前記変動許容範囲内でそれぞれ 変化させて試用の被処理体を処理する工程と、 前記試用の被処理体を処理する際 に、 前記半導体製造装置の複数のセンサからそれそれの少なくとも一種類の検出 データを収集する工程と、 前記期待仕様を満足する検出データのみからなる前記 複数のセンサからの検出デ一夕の変動許容範囲群を作成する工程とを備えたこと を特徴とするものである。 · 本発明の請求の範囲第 2項に記載の半導体製造装瘇の監視方法は、 前記複数の センサは少なくとも一つの追加センサを含むことを特徴とするものである。 本発明の請求の範囲第 3項に記載の半導体製造装置の監視方法は、 実プロセス で検出された少なくとも〜つのセンサからの複数の検出デ一夕と前記変動許容範 囲群の対応する許容検出データとをそれそれ比較することを特徴とするものであ る o In order to achieve the above object, a method for monitoring a semiconductor manufacturing apparatus according to claim 1 of the present invention comprises: setting a plurality of apparatus parameters of the semiconductor manufacturing apparatus in the semiconductor manufacturing apparatus; A method of monitoring a semiconductor manufacturing device based on a previously created variation allowable range group of detection data of a plurality of sensors of the semiconductor manufacturing device when manufacturing a predetermined semiconductor element on a body, The step of creating the variation allowable range group includes the plurality of device parameters that satisfy the expected specifications based on the specifications of the object to be processed, the expected specifications of the semiconductor element, and the characteristics of the semiconductor manufacturing device. Determining a permissible range thereof; processing each of the plurality of device parameters within the permissible range to process a trial workpiece; and processing the trial workpiece. The said A step of collecting at least one type of detection data from each of the plurality of sensors of the conductor manufacturing apparatus, and a variation allowable range group of detection data from the plurality of sensors consisting only of detection data satisfying the expected specification. And a step of creating. · The method for monitoring a semiconductor manufacturing device according to claim 2 of the present invention, wherein the plurality of sensors include at least one additional sensor. The method for monitoring a semiconductor manufacturing apparatus according to claim 3 of the present invention includes a method for monitoring a plurality of detected data from at least one sensor detected in an actual process and a method for monitoring the fluctuation tolerance. Characterized by comparison with corresponding permissible detection data of enclosures o
本発明の請求の範囲第 4項に記載の半導体製造装置の監視方法は、 前記複数の 検出データの少なくとも一つが対応する許容検出デ一夕から外れた時に異常を報 知することを特徴とするものである。  The method for monitoring a semiconductor manufacturing apparatus according to claim 4 of the present invention is characterized in that an abnormality is reported when at least one of the plurality of pieces of detection data deviates from a corresponding allowable detection data. Things.
本発明の請求の範囲第 5項に記載の半導体製造装置の監視方法は、 前記複数の 検出デ一夕のうち少なくとも一つが対応する許容検出デ一夕に近接した異常接近 データ値に達した時に異常状態に近づいたことを報知することを特徴とするもの である。  The method of monitoring a semiconductor manufacturing apparatus according to claim 5, wherein at least one of the plurality of detection data reaches an abnormal approach data value close to a corresponding allowable detection data. The feature is to notify that the vehicle is approaching an abnormal state.
本発明の請求の範囲第 6項に記載の半導体製造装置の制御方法は、 半導体製造 装置の複数の装置パラメ一夕を前記半導体製造装置に設定し、 被処理体に所定の 半導体素子を製造する際に、 予め作成された前記半導体製造装置の少なくとも一 つのセンサの複数の検出デ一夕の変動許容範囲群に基づいて前記半導体製造装置 を制御する方法であって、 前記変動許容範囲群を作成する工程は、 前記被処理体 の仕様と前記半導体素子の期待仕様と前記半導体製造装置の特性に基づいて前記 期待仕様を満足する前記複数の装置パラメ一夕それそれの変動許容範囲を求める 工程と、 前記複数の装置パラメ一夕を前記変動許容範囲内でそれそれ変化させて 試用の被処理体を処理する工程と、 前記試用の被処理体を処理する際に、 前記半 導体製造装置の複数のセンサからそれそれの少なくとも一種類の検出デ一夕を収 集する工程と、 前記期待仕様を満足する検出デ一夕のみからなる前記複数のセン ザからの検出デ一夕の変動許容範囲群を作成する工程とを備えたことを特徴とす るものである。  A method of controlling a semiconductor manufacturing apparatus according to claim 6 of the present invention, wherein a plurality of device parameters of the semiconductor manufacturing apparatus are set in the semiconductor manufacturing apparatus, and a predetermined semiconductor element is manufactured on an object to be processed. A method of controlling the semiconductor manufacturing apparatus based on a previously created variation allowable range group of a plurality of detection data of at least one sensor of the semiconductor manufacturing apparatus, wherein the variation allowable range group is created. Determining the plurality of device parameters that satisfy the expected specifications based on the specifications of the object to be processed, the expected specifications of the semiconductor element, and the characteristics of the semiconductor manufacturing apparatus. A step of changing the plurality of device parameters within the variation allowable range to process a trial object; and, when processing the trial object, the semiconductor manufacturing apparatus. Collecting at least one type of detection data from each of the plurality of sensors, and a variation in detection data from the plurality of sensors comprising only detection data satisfying the expected specification. And a step of creating an allowable range group.
本発明の請求の範囲第 7項に記載の半導体製造装置の制御方法は、 前記複数の センサは、 少なくとも一つの追加センサを含むことを特徴とするものである。 本発明の請求の範囲第 8項に記載の半導体製造装置の制御方法は、 実プロセス で検出された少なくとも一つのセンサからの複数の検出デ一夕と前記変動許容範 囲群の対応する許容検出デ一夕とをそれそれ比較することを特徴とするものであ ο  8. The control method of a semiconductor manufacturing apparatus according to claim 7, wherein the plurality of sensors include at least one additional sensor. The control method of a semiconductor manufacturing apparatus according to claim 8 of the present invention is a method for controlling a plurality of detection data from at least one sensor detected in an actual process and a corresponding allowable detection of the fluctuation allowable range group. It is characterized by comparing each day with 一
本発明の請求の範囲第 9項に記載の半導体製造装置の制御方法は、 前記複数の 検出デ一夕の少なくとも一つが対応する許容検出データから外れた時に異常を報 知すると共にプロセスを停止することを特徴とするものである。 The method of controlling a semiconductor manufacturing apparatus according to claim 9 of the present invention, When at least one of the detection data deviates from the corresponding permissible detection data, an abnormality is reported and the process is stopped.
本発明の請求の範囲第 1 0項に記載の半導体製造装置の制御方法は、 前記複数 の検出データのうち少なくとも一つが対応する許容検出デ一夕に近接した異常接 近データ値に達した時に異常状態に近づいたことを報知すること特徴とするもの である。 図面の簡単な説明  The method for controlling a semiconductor manufacturing apparatus according to claim 10 of the present invention, wherein at least one of the plurality of detection data reaches an abnormally close data value close to a corresponding allowable detection data. The feature is to notify that the vehicle is approaching an abnormal state. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明方法に用いられる半導体製造装置の一例を示す構成図である。 図 2は、 プロセス条件と検出デ一夕の対応関係を概念的に示す説明図である。 発明を実施するための最良の形態  FIG. 1 is a configuration diagram showing an example of a semiconductor manufacturing apparatus used in the method of the present invention. FIG. 2 is an explanatory diagram conceptually showing the correspondence between process conditions and detection data. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 図 1、 図 2に示す実施形態に基づいて本発明を説明する。  Hereinafter, the present invention will be described based on the embodiment shown in FIGS.
まず、 本発明に用いられる半導体製造装置としてのプラズマ処理装置について 説明する。 このプラズマ処理装置 1 0は、 例えば図 1に示すように、 高真空を保 持し得るアルミニウム製の処理室 1 1と、 この処理室 1内に配置され且つ被処理 体 (例えば、 ウェハ) Wを載置する載置台を兼ねる下部電極 1 2と、 この下部電 極 1 2の上方に配置された上部電極 1 3とを備え、 後述のように下部電極 1 2と 上部電極 1 3の間で生成するプロセスガスのプラズマによって下部電極 1 2上の ウェハ Wに対してエッチングを施すように構成されている。  First, a plasma processing apparatus as a semiconductor manufacturing apparatus used in the present invention will be described. As shown in FIG. 1, for example, as shown in FIG. 1, the plasma processing apparatus 10 includes an aluminum processing chamber 11 capable of maintaining a high vacuum, A lower electrode 12 also serving as a mounting table on which the lower electrode 12 is placed, and an upper electrode 13 disposed above the lower electrode 12, and a lower electrode 12 and an upper electrode 13 are provided as described later. The wafer W on the lower electrode 12 is etched by the plasma of the generated process gas.
上記下部電極 1 2には整合器 1 4 Aを介して第 1高周波電源 1 4が接続され、 例えば第 1高周波電源 1 4から 2 MH zの高周波電力を印加する。 この下部電極 1 2と整合器 1 4 A間には電気測定器 1 4 Bが接続され、 この電気測定器 1 4 B を介して下部電極 1 2に印加される高周波電源 1 4の基本周波数及び高調波の電 圧、 電流、 位相、 インピーダンス等の電気的信号を測定する。 また、 上部電極 1 3には整合器 1 5 Aを介して第 1高周波電源 1 5が接続され、 例えば第 1高周波 電源 1 5から 6 0 MH zの高周波電力を印加する。 この上部電極 1 3と整合器 1 5 A間には電気測定器 1 5 Bが接続され、 この電気測定器 1 5 Bを介して上部電 極 1 3に印加される高周波電源 1 5の基本周波数及び高調波の電圧、 電流、 位相、 ィンピ一ダンス等の電気的信号を測定する。 A first high-frequency power supply 14 is connected to the lower electrode 12 via a matching unit 14A, and for example, high-frequency power of 2 MHz is applied from the first high-frequency power supply 14. An electric measuring device 14 B is connected between the lower electrode 12 and the matching device 14 A, and the fundamental frequency of the high-frequency power supply 14 applied to the lower electrode 12 via the electric measuring device 14 B and Measures electrical signals such as voltage, current, phase, and impedance of harmonics. Further, a first high frequency power supply 15 is connected to the upper electrode 13 via a matching unit 15A. For example, high frequency power of 60 MHz is applied from the first high frequency power supply 15. An electric measuring device 15B is connected between the upper electrode 13 and the matching device 15A, and the fundamental frequency of the high-frequency power supply 15 applied to the upper electrode 13 via the electric measuring device 15B. And harmonic voltage, current, phase, Measure electrical signals such as impedance dances.
上記上部電極 1 3は例えば中空状に形成され、 その上面にはガス配管 1 6を介 してプロセスガス供給源 (図示せず) が接続されている。 このプロセスガス供給 源は、 例えば C F系ガス等のエッチングガスとアルゴンガス等のキヤリアガスの 二種類のガスを供給するように構成され、 それそれの第 1、 第 2ガス配管 1 6 A、 1 6 Bがガス配管 1 6で合流し、 エッチングガス、 キャリアガスの混合ガスを上 部電極 1 3へプロセスガスとして供給する。 この上部電極 1 3の下面には多数の 孔 (図示せず) が全面に渡って均等に分散して形成され、 これらの孔を介してプ ロセスガスを処理室 1 1内へ供給する。 また、 第 1、 第 2ガス配管 1 6 A、 1 6 Bにはそれそれ第 1、 第 2流量制御装置 1 7 A、 1 7 Bが配設され、 これらの流 量制御装置 1 7 A、 1 7 Bを介してエッチングガス、 キャリアガスの流量を個別 に制御する。 更に、 第 1、 第 2ガス配管 1 6 A、 1 6 8にはそれそれ第1、 第 2 ガス流量センサ 1 8 A、 1 9 Bが配設され、 これらのガス流量センサ 1 8 A、 1 8 Bを介してエッチングガス、 キヤリアガスの流量を検出する。  The upper electrode 13 is formed, for example, in a hollow shape, and a process gas supply source (not shown) is connected to an upper surface of the upper electrode 13 via a gas pipe 16. The process gas supply source is configured to supply two types of gases, for example, an etching gas such as a CF-based gas and a carrier gas such as an argon gas, and the first and second gas pipes 16 A and 16 are respectively provided. B joins in the gas pipe 16 to supply a mixed gas of an etching gas and a carrier gas to the upper electrode 13 as a process gas. Numerous holes (not shown) are formed on the lower surface of the upper electrode 13 so as to be evenly distributed over the entire surface, and process gas is supplied into the processing chamber 11 through these holes. The first and second gas pipes 16A and 16B are provided with first and second flow control devices 17A and 17B, respectively. The flow rates of the etching gas and carrier gas are individually controlled via 17B. Further, the first and second gas pipes 16A and 1668 are provided with first and second gas flow sensors 18A and 19B, respectively. 8 Detect the flow rate of etching gas and carrier gas through B.
上記下部電極 1 2上面の外周縁部にはフォーカスリング 1 9が配設され、 この フォーカスリング 1 9を介して処理室 1 1内で生成したプラズマをウェハ Wへ集 束させる。 このフォーカスリング 1 9の内側には静電チャック (図示せず) が配 設され、 この静電チャックを介してウェハ Wを静電吸着する。 また、 下部電極 1 2には温度センサ 2 0が配設され、 この温度センサ 2 0を介してウェハ Wを処理 する時の下部電極 1 2の温度、 ひいてはウェハ Wの温度を検出する。  A focus ring 19 is provided on the outer peripheral portion of the upper surface of the lower electrode 12, and the plasma generated in the processing chamber 11 is focused on the wafer W via the focus ring 19. An electrostatic chuck (not shown) is provided inside the focus ring 19, and the wafer W is electrostatically attracted via the electrostatic chuck. Further, a temperature sensor 20 is provided on the lower electrode 12, and detects the temperature of the lower electrode 12 when processing the wafer W via the temperature sensor 20, and thus detects the temperature of the wafer W.
従って、 プロセスガス供給源から処理室 1 1内へプロセスガスを供給し、 所定 の高真空を維持した状態で上下両電極 1 2、 1 3にそれそれの高周波電力を印加 すると、 上部電極 1 3の高周波電力によってプロセスガスのプラズマ Pを発生す ると共に'、 下部電極 1 2の高周波電力によってバイアス電位を発生し、 ウェハ W に対して反応性イオンエッチングを行う。  Therefore, when a process gas is supplied from the process gas supply source into the processing chamber 11 and high frequency power is applied to the upper and lower electrodes 12 and 13 while maintaining a predetermined high vacuum, the upper electrode 13 The plasma P of the process gas is generated by the high-frequency power, and a bias potential is generated by the high-frequency power of the lower electrode 12 to perform reactive ion etching on the wafer W.
更に、 上記処理室 1 1の側面には例えば石英ガラスを填め込んだ窓 1 1 Aが形 成され、 この窓 1 1 Aには終点検出装置を構成するプラズマ発光分光器 2 1が配 置されている。 この分光器 2 1によって特定波長を分光し、 この特定波長の強度 変化によってエッチングの終点を検出する。 処理室 1 1には内部の圧力を検出す る圧力センサ (図示せず) が配設され、 この圧力センサを介して処理室 1 1内の 圧力を検出する。 Further, a window 11 A filled with, for example, quartz glass is formed on a side surface of the processing chamber 11, and a plasma emission spectrometer 21 constituting an end point detection device is disposed in the window 11 A. ing. The spectroscope 21 separates a specific wavelength, and the end point of the etching is detected based on a change in intensity at the specific wavelength. Processing chamber 1 1 detects internal pressure A pressure sensor (not shown) is provided, and detects the pressure in the processing chamber 11 via the pressure sensor.
また、 上記高周波電源 1 4、 1 5及び第 1、 第 2流量制御装置 1 7 A、 1 7 B は制御装置 2 2に接続され、 この制御装置 2 2を介してエッチングの装置パラメ —夕を設定する。 また、 制御装置 2 2には電気測定器 1 4 B、 1 5 B、 ガス流量 センサ 1 8 A、 1 8 B、 温度センサ 2 0及びプラズマ発光分光器 2 1等のセンサ が接続され、 これらのセンサを介してェヅチング状況を検出する。 そして、 制御 装置 2 2はセンサからの検出値に基づいてプラズマ処理装置 1 0を制御して所望 のエッチングを行う。 電気測定器 1 4 B、 1 5 B、 ガス流量センサ 1 8 A、 1 8 B、 温度センサ 2 0及び圧力センサ等は、 ウェハ Wの処理条件として直接設定で きる装置パラメ一夕の実際の値を監視するパラメ一夕センサとして働くことにな る。 また、 プラズマ発光分光器 2 1は、 ウェハ Wの処理条件として直接設定はで きないがウェハ Wの処理条件に影響を及ぼすパラメ一夕の値を監視する追加セン サとして働くことになる。 さらに、 電気測定器 1 4 B、 1 5 Bは、 高周波電源 1 4、 1 5の基本周波数及び高調波の電圧、 電流、 位相、 インビ一ダンス等の電気 的信号を検出するための追加センサとしても働くことになる。  The high-frequency power supplies 14 and 15 and the first and second flow rate control devices 17 A and 17 B are connected to a control device 22, and the etching device parameters are controlled via the control device 22. Set. In addition, sensors such as electric measurement devices 14B and 15B, gas flow sensors 18A and 18B, temperature sensor 20 and plasma emission spectrometer 21 are connected to the control device 22. Detecting the etching situation via the sensor. Then, the control device 22 controls the plasma processing device 10 based on the detection value from the sensor to perform desired etching. Electrical measuring instruments 14 B, 15 B, gas flow sensors 18 A, 18 B, temperature sensor 20, pressure sensor, etc. can be directly set as processing conditions for wafer W. It will work as a sensor for monitoring parameters. In addition, the plasma emission spectrometer 21 cannot be directly set as the processing condition of the wafer W, but acts as an additional sensor for monitoring a parameter value that affects the processing condition of the wafer W. In addition, the electric measuring instruments 14B and 15B are additional sensors for detecting electrical signals such as voltage, current, phase, impedance, etc. of the fundamental frequency and harmonics of the high-frequency power supplies 14 and 15 Will also work.
そして、 上記制御装置 2 2は、 図 1に示すように、 上記パラメ一夕センサ及び 追加センサからの検出値を検出データとしてそれそれ記憶する検出データ記憶部 2 2 Aと、 この検出デ一夕記憶部 2 2 Aで記憶された検出データに基づいて変動 許容範囲群を作成する変動許容範囲群作成部 2 2 Bと、 この変動許容範囲群作成 部 2 2 Bを介して作成された変動許容範囲群を記憶する変動許容範囲群記憶部 2 2 Cと、 変動許容範囲群と実プロセス時に得られた検出デ一夕とを比較する比較 -判定部 2 2 Dと、 これらを制御する中央制御部 2 2 Eとを備えている。 この変 動許容範囲群は以下で説明するように実プロセスを実施する前に試用ウェハ Wを 用いて作成される。 また、 制御装置 2 2には入出力装置 2 3が接続され、 この入 出力装置 2 3を介して装置パラメ一夕等を設定し、 また、 処理結果等を入出力装 置 2 3へ出力する。  As shown in FIG. 1, the control device 22 includes a detection data storage unit 22A that stores detection values from the parameter sensor and the additional sensor as detection data, respectively, A variation allowable range group creating unit 22B that creates a variation allowable range group based on the detection data stored in the storage unit 22A, and a variation allowable range created via the variation allowable range group creating unit 22B. A tolerable range group storage unit 22 C that stores the range group, a comparison that compares the tolerable range group with the detected data obtained during the actual process, a judgment unit 22 D, and a central control that controls these. Part 2 2E is provided. This variation allowable range group is created using the trial wafer W before the actual process is performed as described below. Also, an input / output device 23 is connected to the control device 22. The device parameters and the like are set via the input / output device 23, and the processing result is output to the input / output device 23. .
上記変動許容範囲群は、 所望のデバイス仕様 (期待構造) を満足するエツチン グが行われた時の複数のセンサ (パラメ一夕センサ及び追加センサ) の検出デー 夕を纏めたデ一夕群によって構成されている。 この変動許容範囲群は期待構造を 満足するデバイスを製造した時の各センサの検出データの最大値及び最小値を含 んでいる。 従って、 複数のセンサの全ての検出データがそれそれの最大値と最小 値の間の検出値の時には正常なェツチングにより期待構造を満足する半導体素子 (以下、 単に 「良品」 と称す。 ) が製造されていると判断でき、 複数のセンサの 全ての検出データのうちいずれか一つでもこの範囲を逸脱していれば異常なエツ チングにより期待構造を満足しない半導体素子 (以下、 単に 「不良品」 と称 す。 ) が製造されていると判断することができる。 尚、 ここで不良品と判断され たデバイスであっても、 その全てが使いものにならないデバイスを意味するもの ではなく、 不良品の階級づけがあり、 それそれの階級に応じた用途がある。 次に、 変動許容範囲群を作成する方法について説明する。 変動許容範囲群は上 述したように実プロセスを実施する前に試用ウェハ Wを用いて作成される。 試用 ウェハ Wは実プロセスと同一の材質及び構造を有する試用ウェハ Wを使用する。 変動許容範囲群を作成する場合には、 まずエッチングプロセス前のウェハ Wの仕 様、 エッチングプロセス後のデバイスの期待構造、 期待構造の許容範囲及びブラ ズマ処理装置の特性ライブラリに基づいて最適と思われる複数の装置パラメ一夕 を従来と同様の手法によって求める。 The above-mentioned fluctuation allowable range group includes detection data of a plurality of sensors (parameter sensor and additional sensor) when etching that satisfies a desired device specification (expected structure) is performed. It is composed of a group of evenings gathered together. This range includes the maximum value and the minimum value of the detection data of each sensor when a device that satisfies the expected structure is manufactured. Therefore, when all the detection data of a plurality of sensors have detection values between the maximum value and the minimum value, a semiconductor device that satisfies the expected structure by normal etching (hereinafter, simply referred to as “non-defective product”) is manufactured. If any one of the detected data of a plurality of sensors deviates from this range, the semiconductor device does not satisfy the expected structure due to abnormal etching (hereinafter simply referred to as “defective product”). ) Can be determined to be manufactured. It should be noted that even if a device is determined to be defective here, it does not mean a device that is not entirely usable, but there is a classification of defective products, and there are applications according to each class. Next, a method of creating a variation allowable range group will be described. As described above, the allowable variation group is created using the trial wafer W before the actual process is performed. A trial wafer W having the same material and structure as the actual process is used. When creating the fluctuation tolerance group, it is considered to be optimal based on the specifications of the wafer W before the etching process, the expected structure of the device after the etching process, the tolerance of the expected structure, and the characteristic library of the plasma processing equipment. The parameters of multiple devices to be obtained are obtained by the same method as in the past.
試用ウェハ wの仕様としては、 例えば、 下地材料に関する情報 (膜種、 膜厚、 構造、 製法等の情報) 、 被エッチング膜に関する情報 (膜種、 膜厚、 構造、 製法 等の情報) 及びマスク材料に関する情報 (膜種、 膜厚、 マスクパターン等の情 報) がある。 デバイスの期待構造を表す情報としては、 例えば、 デバイスの形状 面からはパターン幅、 エッチング深さ、 テーパー角度、 ボーイング度合い、 マス ク材料のエッチング量等の情報があり、 また、 電気的特性面からは配線抵抗、 コ ン夕クト抵抗、 帯電量、 リーク電流、 絶縁破壊等の情報がある。 期待構造の許容 範囲は、 形状面及び電気的特性面等の値がデバイス仕様から多少ずれていても許 容できる範囲を意味する。 また、 プラズマ処理装置の特性ライブラリの情報とし ては、 例えば、 プラズマ処理装置の型式、 処理室、 電極構造及び高周波電源等に 関する情報がある。 最適な装置パラメ一夕はこれらの情報に基づいて従来の知見 及び/または実験等によって求められる。 上記最適な装置パラメ一夕は、 プラズマ処理装置 1 0の下部電極 1 2の高周波 電力、 上部電極 1 3の高周波電力、 両電極 1 2、 1 3間の距離、 下部電極 1 2の 温度、 処理室 1 1内の圧力、 エッチングガス流量、 キャリアガス流量等のプラズ マ状態に影響し易い装置パラメ一夕によって構成される。従って、 処理条件はこ れらの装置パラメ一夕を入出力装置 2 3を介してプラズマ処理装置 1 0に入力す ることにより設定することができる。 The specifications of the test wafer w include, for example, information on the base material (information on film type, film thickness, structure, manufacturing method), information on the film to be etched (information on film type, film thickness, structure, manufacturing method, etc.) and mask There is information on materials (information on film type, film thickness, mask pattern, etc.). Information representing the expected structure of the device includes, for example, information such as pattern width, etching depth, taper angle, bowing degree, and mask material etching amount from the device shape surface, and from the electrical characteristics surface. Contains information such as wiring resistance, contact resistance, charge amount, leakage current, and dielectric breakdown. The allowable range of the expected structure means a range that can be tolerated even if the values of the shape and electrical characteristics are slightly different from the device specifications. The information of the characteristic library of the plasma processing apparatus includes, for example, information on the type of the plasma processing apparatus, the processing chamber, the electrode structure, the high-frequency power supply, and the like. The optimal equipment parameters can be determined based on such information by conventional knowledge and / or experiments. The best parameters for the above equipment are: high-frequency power of the lower electrode 12 of the plasma processing apparatus 10, high-frequency power of the upper electrode 13, the distance between both electrodes 12, 13 and the temperature and processing of the lower electrode 12. It consists of equipment parameters that easily affect the plasma state, such as the pressure in the chamber 11, the etching gas flow rate, and the carrier gas flow rate. Accordingly, the processing conditions can be set by inputting the parameters of the apparatus into the plasma processing apparatus 10 via the input / output device 23.
最適な装置パラメ一夕を求めた後、 最適な装置パラメ一夕を中心にデバイスの 期待構造を満足する複数の装置パラメ一夕それそれの変動許容範囲及び検出デー 夕の変動許容範囲群を従来公知の実験計画法を用いて実際に試用ウェハ Wを用い たエッチングによって求める。 実験計画法を用いることにより装置パラメ一夕の 主効果や交互作用を勘案してこの変動許容範囲を効率的に求めることができる。 試用ウェハ Wを用いてエッチングを行う際に、 各装置パラメ一夕を実験計画法に 基づいて最大、 最小及びこれらの間で変化させ、 各装置パラメ一夕を変化させた 時々の電気測定器 1 4 B、 1 5 B、 第 1、 第 2ガス流量センサ 1 8 A、 1 8 B、 温度センサ 2 0及びプラズマ発光分光器 2 1等のセンサからの電気的信号を検出 データ信号として検出し、 これらの検出データ信号を試用ウェハ毎に制御装置 2 2に取り込んだ後、 各試用ウェハ Wの複数の検出デ一夕を検出デ一夕記憶部 2 2 Aで記憶する。 この際、 各試用ウェハ Wの複数のパラメ一夕センサ及び追加セン サからの検出データはそれぞれ演算処理されてそれそれのパラメ一夕センサ及び 追加センサ毎の平均値が記憶される。 各試用ウェハ Wとその検出デ一夕を関連づ けて記憶させる。 また、 プラズマ処理装置 1 0は継続使用によりフォ一カスリン グ 1 9等の消耗品の消耗やプラズマ副生成物の処理室 1 1内部での堆積があって 装置特性が経時的に変化するため、 これらの影響を観るために、 ある程度消耗し た消耗品を装着した装置についても同様の検出データを求めておくことにより、 より精度の高い変動許容範囲群を作成することができる。  After finding the optimal equipment parameters, a plurality of equipment parameters, each of which satisfies the expected structure of the device centered on the optimal equipment parameters, and the allowable fluctuation range of the detection data It is obtained by etching using a trial wafer W using a known experimental design method. By using the experimental design method, the permissible range of fluctuation can be efficiently obtained in consideration of the main effects and interaction of the parameters of the apparatus. When performing etching using the trial wafer W, the parameters of each device were changed between maximum and minimum values and between them based on the experimental design method. 4 B, 15 B, first and second gas flow sensors 18 A, 18 B, temperature sensor 20, and electrical signals from sensors such as plasma emission spectrometer 21 are detected as detection data signals, After fetching these detection data signals into the control device 22 for each trial wafer, a plurality of detected data of each trial wafer W is stored in the detected data storage unit 22A. At this time, the detection data from the plurality of parameter sensors and the additional sensors of each trial wafer W are each subjected to arithmetic processing, and the average value of each parameter sensor and additional sensor is stored. Each test wafer W and its detection data are stored in association with each other. In addition, since the plasma processing apparatus 10 is subject to continuous use, consumables such as focusing 19 are consumed, and plasma by-products are accumulated inside the processing chamber 11, and the characteristics of the apparatus change over time. In order to observe these effects, by obtaining the same detection data for a device equipped with a consumable that has been consumed to some extent, it is possible to create a more accurate fluctuation allowable range group.
また、 全ての試用ウェハ Wをエッチングした後、 各装置パラメ一夕を変化させ る度毎に処理された試用ウェハ Wの形状や電気的特性を各種の検査機器を用いて 検査し、 全ての試用ウェハ Wの形状や電気的特性がそれそれのデバイスの期待構 造を満足するか否かをチェックする。 最適な装置パラメ一夕を中心に複数の装置 パラメ一夕を変化させて試用ウェハ wをエッチングしたことから、 処理後の試用 ウェハ wの中にはデバイスの形状面や電気的特性面からデバイスの期待構造を満 足するものもあれば、 満足しないものもある。 図 2は、 全ての試用ウェハ Wに対 する装置パラメ一夕群 Pと、 これらの装置パラメ一夕群 Pに対応するパラメ一夕 センサ及び追加センサの検出デ一夕群 Dとの関係を概念的に示じたもので、 これ らの装置パラメ一夕群 P及び検出デ一夕群 Dは期待構造を満足する試用ウェハ W に対するもの及び期待構造を満足しない試用ウェハ Wに対するものの双方を含ん でいる。 図 2では、 期待構造を満足する試用ウェハ Wに対する許容装置パラメ一 夕群 P 1及び許容検出データ群 (変動許容範囲群) D 1をそれそれ白抜き部分で 示し、 期待構造を満足しない試用ウェハ Wに対する装置パラメ一夕群 P 2及び検 出データ群 D 2をそれそれ斜線部分で示してある。 また、 許容装置パラメ一夕群 P 1が得られた後、 更にこの許容装置パラメ一夕群 P 1内の許容装置パラメ一夕 を用いてウェハ Wを処理し、 この時の許容検出データを得ることにより、 変動許 容範囲群の検出データをより充実したものにすることができる。 In addition, after etching all the test wafers W, the shape and electrical characteristics of the processed test wafers W are inspected using various kinds of inspection equipment each time the parameters of each apparatus are changed. Check whether the shape and electrical characteristics of the wafer W satisfy the expected structure of each device. Optimal equipment Since the test wafer w was etched with different parameters, some of the processed test wafers w satisfy the expected structure of the device in terms of device shape and electrical characteristics. Some do not. Fig. 2 conceptually shows the relationship between the equipment parameter group P for all the trial wafers W and the parameter sensor group for these equipment parameter groups P and the detection data group D for additional sensors. The equipment parameter group P and the detection data group D include those for the test wafer W that satisfies the expected structure and those for the test wafer W that does not satisfy the expected structure. I have. In FIG. 2, the allowable device parameters P1 and the permissible detection data group (variable permissible range group) D1 for the trial wafer W satisfying the expected structure are indicated by white portions, respectively, and the trial wafers not satisfying the expected structure are shown. The device parameter group P 2 for W and the detection data group D 2 are indicated by shaded portions. After the allowable device parameter group P1 is obtained, the wafer W is further processed using the allowable device parameter in the allowable device parameter group P1, and the allowable detection data at this time is obtained. As a result, the detection data of the fluctuation allowable range group can be enhanced.
そして、 期待構造を満足する個々の試用ウェハ Wを特定するナンバー等を入出 力装置 2 3から入力すると、 制御装置 2 2では中央制御部 2 2 Eを介して検出デ —夕記憶部 2 2 Aの検出デ一夕群 Dから許容検出データ群 D 1のみを抽出して変 動許容範囲群作成部 2 2 B内に取り込む。 変動許容範囲群作成部 2 2 Bでは、 例 えば許容検出デ一夕群 D 1を複数のセンサ毎に分類した後、 それそれのセンサの 許容検出デ一夕を大きさ順に最大値から最小値まで配列したテーブルを変動許容 範囲群として作成した後、 中央制御部 2 2 Eを介してこの変動許容範囲群を変動 許容範囲群記億部 2 2 Cに格納し、 記憶させる。 また、 比較 ·判定部 2 2 Dは実 プロセス時に機能するもので、 ウェハ Wのエッチング中に各センサから入力され た検出データと、 変動許容範囲群記憶部 2 2 Cから取り込んだ対応する許容検出 デ一夕 D 1とを常時比較し、 複数の検出デ一夕のいずれかがその許容検出データ D 1から外れると、 異常信号を出力してエッチングの異常を報知し、 制御装置 2 2を介してプロセスを停止させる。 例えば、 処理中に何等かの原因で高周波電源 1 4、 1 5に異常があった場合には、 電気的測定器 1 4 B、 1 5 Bの検出データ が許容検出データ D 1から外れた異常値を示し、 この検出値を介して瞬時に異常 を知ることができる。 更に、 各許容検出データとは別に、 最大値と最小値の範囲 内でこれらの値に近い値を異常接近データ値として設定することにより、 いずれ かの検出デ一夕が異常接近データ値に達した時に異常状態に近づいたことを報知 するようにすることもできる。 尚、 実プロセス時には制御装置 2 2内に入力した 検出データからウェハ W毎の平均値を逐次求め、 平均値を変動許容範囲群の平均 値の変動許容範囲と比較するようにしても良い。 Then, when a number or the like for specifying each trial wafer W that satisfies the expected structure is input from the input / output device 23, the control device 22 detects the detection data via the central control unit 22E. Only the permissible detection data group D1 is extracted from the detection data group D of the above and taken into the fluctuation permissible range group creation unit 22B. In the variation allowable range group creating unit 22B, for example, after classifying the permissible detection data group D1 for each of a plurality of sensors, the permissible detection data of each sensor is sorted from the maximum value to the minimum value in order of magnitude. After the table arranged up to this point is created as a variation allowable range group, the variation allowable range group is stored and stored in the variation allowable range group storage section 22 C via the central control section 22E. The comparison / judgment unit 22D functions during the actual process, and detects the detection data input from each sensor during the etching of the wafer W and the corresponding allowable detection taken from the fluctuation allowable range group storage unit 22C. The data is constantly compared with the data D 1. If any of the detected data deviates from the allowable detection data D 1, an error signal is output to notify an etching error, and the control device 22 is used. To stop the process. For example, if for some reason the high-frequency power supplies 14 and 15 fail during processing, the detection data of the electrical measuring instruments 14B and 15B deviate from the allowable detection data D1. Value, and abnormality is instantaneously detected via this detection value. You can know. Further, apart from each allowable detection data, by setting a value close to these values within the range of the maximum value and the minimum value as the abnormal approach data value, one of the detection data reaches the abnormal approach data value. When an error occurs, it can be notified that the vehicle is approaching an abnormal state. In the actual process, an average value for each wafer W may be sequentially obtained from the detection data input into the control device 22 and the average value may be compared with the allowable variation range of the average value of the allowable variation group.
ところで、 プラズマ処理装置 1 0は継続使用により消耗品の消耗やプラズマ副 生成物の処理室 1 1内部での堆積があり装置特性が絰時的に変化するため、 ブラ ズマ処理装置 1 0に最適な運転パラメ一夕を設定しても各センサの検出デ一夕は それそれ経時的に変化し、 最適な運転パラメ一夕に対応する検出デ一夕も変化す る。 本実施形態では最適な運転パラメ一夕でウェハ Wをエッチングする場合には 各センサからの検出デ一夕と上述の変動許容範囲群を介して常時監視し、 経時的 な装置特性の変化を知ることができる。  By the way, the plasma processing apparatus 10 is most suitable for the plasma processing apparatus 10 because the consumables are consumed due to continuous use and plasma by-products are deposited inside the processing chamber 11 and the characteristics of the apparatus change temporarily. Even if an appropriate operating parameter is set, the detection data of each sensor changes with time, and the detection data corresponding to the optimum driving parameter also changes. In the present embodiment, when the wafer W is etched with the optimum operation parameters, the monitoring of the detection data from each sensor and the above-described fluctuation allowable range group are constantly monitored, and the change of the device characteristics over time is known. be able to.
次に、 本発明方法の一実施形態について説明する。 入出力装置 2 3を介してプ ラズマ処理装置 1 0に複数の最適装置パラメ一夕を入力した後、 プラズマ処理装 置 1 0が駆動すると、 ウェハ Wを下部電極 1 2上に載置し、 プロセスガス供給源 から第 1、 第 2流量制御装置 1 7 A、 1 7 Bを介してエッチングガス、 キャリア ガスを供給すると、 これらのガスがプロセスガスとして上部電極 1 3から処理室 1 1内に流入する。 そして、 上下両電極 1 2、 1 3に第1、 第 2高周波電源 1 4、 1 5を印加すると、 上下両電極 1 2、 1 3間でプラズマ Pを生成し、 ウェハ Wの エッチングが行われる。 この際、 電気的測定器' 1 4 B、 1 5 Bを介して高周波電 源 1 4、 1 5の基本周波数及び高調波の電圧、 電流、 位相、 インピーダンス等の 電気的信号を検出し、 第 1、 第 2ガス流量センサ 1 8 A、 1 8 Bを介してエッチ ングガス、 キャリアガスの流量をそれそれ検出し、 温度センサ 2 0を介して下部 電極 1 2の温度を検出する。 同様に、 処理室 1 1内のガス圧力や上部電極 1 3の 温度を検出する。 これらのパラメ一夕センサ及び追加センサの検出デ一夕が制御 装置 2 2に入力すると、 比較 '判定部 2 2 Dを介して各検出データを監視してお り、 各検出データとそれそれに対応する変動許容範囲群の許容検出データ D 1と 常時比較し、 各検出デ一夕が許容範囲内にあるか否かを判定する。 ウェハ Wのエッチングを終了するまで各検出デ一夕 (または平均値データ) が それそれ許容範囲内にあれば、 処理後のウェハ Wは期待構造を満足するデバイス がえられたことになる。 ウェハ Wの処理を継続し、 各検出デ一夕のいずれか一つ でも異常接近データに達すれば、 比較 ·判定部 2 2 Dがその旨を判定して異常接 近信号を出力し、 異常状態に近づいていることを報知し、 警告する。 更に、 ゥェ ハ Wの処理を継続した後、 各検出データが許容範囲を逸脱すると、 比較 ·判定部 2 2 Dが異常信号を出力し、 この時のデバイスは期待構造を満足しない異常状態 であることを報知する。 また、 異常のあった時には異常データを入出力装置 2 3 に出力することにより、 異常原因を確実に突き止めることができ、 プロセス条件 を確実に補正することができる。 Next, an embodiment of the method of the present invention will be described. After inputting a plurality of optimum device parameters to the plasma processing device 10 via the input / output device 23, when the plasma processing device 10 is driven, the wafer W is placed on the lower electrode 12 and When an etching gas and a carrier gas are supplied from the process gas supply source via the first and second flow control devices 17A and 17B, these gases are transferred from the upper electrode 13 into the processing chamber 11 as a process gas. Inflow. When the first and second high-frequency power supplies 14 and 15 are applied to the upper and lower electrodes 12 and 13, plasma P is generated between the upper and lower electrodes 12 and 13, and the wafer W is etched. . At this time, electrical signals such as voltage, current, phase, and impedance of the fundamental frequency and harmonics of the high-frequency power supplies 14 and 15 are detected through the electrical measuring instruments 14B and 15B, and the 1. The flow rates of the etching gas and the carrier gas are respectively detected through the second gas flow sensors 18A and 18B, and the temperature of the lower electrode 12 is detected through the temperature sensor 20. Similarly, the gas pressure in the processing chamber 11 and the temperature of the upper electrode 13 are detected. When the detection data of the parameter sensor and the additional sensor are input to the control device 22, each detection data is monitored through the comparison unit 22 D, and each detection data and the corresponding detection data are monitored. It is constantly compared with the permissible detection data D1 of the fluctuation permissible range group to determine whether each detected data is within the permissible range. If each detection data (or average value data) is within the allowable range until the etching of the wafer W is completed, the processed wafer W has a device satisfying the expected structure. If the processing of the wafer W is continued and any one of the detected data reaches the abnormal approach data, the comparison / determination unit 22D determines that fact and outputs an abnormal approach signal to indicate an abnormal state. Alerts and warns that you are approaching. Furthermore, if the detected data deviates from the allowable range after continuing the processing of wafer W, the comparison / determination unit 22D outputs an abnormal signal, and the device at this time is in an abnormal state that does not satisfy the expected structure. Notify that there is. In addition, when there is an abnormality, by outputting the abnormality data to the input / output device 23, the cause of the abnormality can be ascertained reliably, and the process conditions can be surely corrected.
以上説明したように本実施形態によれば、 試用ウェハ Wをブラズマ処理装置 1 0を用いてエッチングし、 処理後の試用ウェハ Wが期待構造を満足するか否かを 判定し、 期待構造を満足する時の複数のパラメ一夕センサ及び追加センサの許容 検出データ D 1のみからなる変動許容範囲群を作成し、 この変動許容範囲群に基 づいてプラズマ処理装置 1 0を監視し、 制御するようにしたため、 パラメ一夕セ ンサ及び追加センサの変動許容範囲を最大限まで拡張して装置の運転に幅を持た せて稼働率を高めることができると共に、 プロセスの正常、 異常を高感度で且つ 確実に監視し、 制御することができる。 しかもプロセス異常があった場合には異 常のあった検出デ一夕を確実に突き止めて装置パラメ一夕を確実に補正すること ができる。  As described above, according to the present embodiment, the trial wafer W is etched using the plasma processing apparatus 10, and it is determined whether or not the processed trial wafer W satisfies the expected structure. In this case, a fluctuation range group consisting only of the permissible detection data D1 of a plurality of parameter sensors and additional sensors is created, and the plasma processing apparatus 10 is monitored and controlled based on the fluctuation range group. As a result, the allowable range of the parameter sensor and the additional sensor can be extended to the maximum and the operation rate can be increased by providing a wider range of operation of the device, and the process can be performed with high sensitivity to normal and abnormal processes. It can be reliably monitored and controlled. In addition, when there is a process abnormality, it is possible to reliably locate the abnormal detection data and correct the device parameters.
また、 本実施形態によれば、 実プロセスで検出された複数の検出デ一夕と変動 許容範囲群の許容検出デ一夕 D 1とをそれそれ比較するようにしたため、 いずれ のパラメ一夕センサの検出デ一夕に異常があつたかを簡単に知ることができ、 短 時間で装置パラメ一夕を補正してプロセス条件を良好な状態に回復することがで きる。 また、 変動許容範囲群内に異常接近データ値を設定することにより、 いず れかの検出データが異常状態に近づいたことを報知するため、 異常を瞬時に予測 することができる。 更に、 複数のパラメ一夕センサ及び追加センサの検出デ一夕 の少なくとも一つが対応する許容検出デ一夕の限界値に超えた時に異常を報知す ると共にプロセスを停止するようにしたため、 プロセス異常の時にはプラズマ処 理装置 1 0が確実に停止し、 その後の不良デバイスの製造を確実に防止すること ができる。 Further, according to the present embodiment, the plurality of detection data detected in the actual process is compared with the permissible detection data D 1 of the variation allowable range group, respectively. It is possible to easily know whether or not an error has occurred during the detection of an error, and to correct the equipment parameters in a short time to recover the process conditions to a favorable state. In addition, by setting an abnormal approach data value within the fluctuation allowable range group, it is notified that any of the detected data has approached an abnormal state, so that an abnormality can be predicted instantaneously. Further, when at least one of the detection data of the plurality of parameter sensors and the additional sensor exceeds the limit value of the corresponding allowable detection data, an error is notified and the process is stopped. Plasma treatment The processing device 10 can be reliably stopped, and subsequent production of a defective device can be reliably prevented.
尚、 上記実施形態では数種のパラメ一夕センサ及び追加センサを用いて検出デ 一夕を得ているが、 本発明はこれらのセンサに制限されるものではなく、 プラズ マ状態を検出する他のセンサ (プラズマ密度やプラズマ温度を検出するセンサ) 、 残留ガス分析器 (R G A) 、 プラズマ中浮遊粒子検出器、 I R— L A S等のブラ ズマ中のラジカル種や密度の測定器、 プロセス容器への堆積膜厚や膜種の測定器、 ウェハ表面温度、 プロセス容器温度、 電極表面等の温度測定器を用いることがで きることは云うまでもない。 また、 上記実施形態ではプラズマ処理装置 1 0自体 がプロセス異常を報知するようにしてあるが、 プラズマ処理装置 1 0から上位コ ンピュー夕に異常を報知し、 上位コンビュ一夕を介してオペレー夕に異常を知ら せるようにすることもできる。  In the above embodiment, the detection data is obtained by using several kinds of parameter sensors and additional sensors. However, the present invention is not limited to these sensors, and may be used for detecting a plasma state. Sensors (sensors for detecting plasma density and plasma temperature), residual gas analyzers (RGA), detectors for suspended particles in plasma, measuring instruments for radical species and density in plasma such as IR-LAS, and process vessels It goes without saying that a measuring device for measuring the thickness of the deposited film and the film type, a temperature measuring device for measuring the wafer surface temperature, a process vessel temperature, and an electrode surface can be used. Further, in the above embodiment, the plasma processing apparatus 10 itself reports the process abnormality. However, the plasma processing apparatus 10 reports the abnormality to the upper computer, and notifies the operator via the upper computer overnight. Anomalies can also be signaled.
以上説明したように本発明によれば、 装置の運転に幅を持たせて稼働率を高め ることができると共に被処理体に対する処理の正常、 異常を高感度で判断するこ とができ、 しかも被処理体の処理に異常があった場合でも簡単且つ確実に正常な 状態に補正することができる半導体製造装置の監視方法及びその制御方法を提供 することができる。  As described above, according to the present invention, it is possible to increase the operation rate by providing a wide range of operation of the apparatus, and it is possible to judge the normality or abnormality of the processing on the object to be processed with high sensitivity. It is possible to provide a monitoring method of a semiconductor manufacturing apparatus and a control method thereof, which can easily and surely correct a normal state even when there is an abnormality in processing of an object to be processed.

Claims

請 求 の 範 囲 The scope of the claims
1 . 半導体製造装置の複数の装置パラメ一夕を前記半導体製造装置に設定し、 被処理体に所定の半導体素子を製造する際に、 予め作成された前記半導体製造装 置の複数のセンサの検出デ一夕の変動許容範囲群に基づいて前記半導体製造装置 を監視する方法であって、 1. A plurality of device parameters of a semiconductor manufacturing apparatus are set in the semiconductor manufacturing apparatus, and when manufacturing a predetermined semiconductor element on an object to be processed, detection of a plurality of sensors of the semiconductor manufacturing apparatus prepared in advance is performed. A method of monitoring the semiconductor manufacturing apparatus based on a variation allowable range group of days and nights,
前記変動許容範囲群を作成する工程は、  The step of creating the variation allowable range group,
前記被処理体の仕様と前記半導体素子の期待仕様と前記半導体製造装置の特性 に基づいて前記期待仕様を満足する前記複数の装置パラメ一夕それそれの変動許 容範囲を求める工程と、  A step of obtaining a variation allowable range of each of the plurality of apparatus parameters that satisfy the expected specification based on the specification of the object to be processed, the expected specification of the semiconductor element, and the characteristics of the semiconductor manufacturing apparatus;
前記複数の装置パラメ一夕を前記変動許容範囲内でそれそれ変化させて試用の 被処理体を処理する工程と、  Processing the trial object by changing the plurality of apparatus parameters within the variation allowable range;
前記試用の被処理体を処理する際に、 前記半導体製造装置の複数のセンサから それそれの少なくとも一種類の検出データを収集する工程と、  A step of collecting at least one type of detection data from each of the plurality of sensors of the semiconductor manufacturing apparatus when processing the trial object;
前記期待仕様を満足する検出データのみからなる前記複数のセンサからの検出 データの変動許容範囲群を作成する工程と、  A step of creating a permissible range group of detection data from the plurality of sensors consisting only of detection data satisfying the expected specification;
を備えたことを特徴とする半導体製造装置の監視方法。 A method for monitoring a semiconductor manufacturing apparatus, comprising:
2 . 前記複数のセンサは、 少なくとも一つの追加センサを含むことを特徴と する請求の範囲第 1項に記載の半導体製造装置の監視方法。 2. The method for monitoring a semiconductor manufacturing apparatus according to claim 1, wherein the plurality of sensors include at least one additional sensor.
3 . 実プロセスで検出された少なくとも一つのセンサからの複数の検出デ一 夕と前記変動許容範囲群の対応する許容検出デ一夕とをそれそれ比較することを 特徴とする請求の範囲第 1項又は第 2項に記載の半導体製造装置の監視方法。 3. The method according to claim 1, wherein a plurality of detection data from at least one sensor detected in an actual process is compared with a corresponding allowable detection data of the fluctuation allowable range group. 3. The method for monitoring a semiconductor manufacturing apparatus according to item 2 or 2.
4 . 前記複数の検出デ一夕のうち少なくとも一つが対応する許容検出データ から外れた時に異常を報知することを特徴とする請求の範囲第 1項ないし第 3項 のいずれか 1項に記載の半導体製造装置の監視方法。 4. The method according to any one of claims 1 to 3, wherein an abnormality is notified when at least one of the plurality of detection data deviates from corresponding allowable detection data. A method for monitoring a semiconductor manufacturing apparatus.
5 . 前記複数の検出デ一夕のうち少なくとも一つが対応する許容検出デ一夕 に近接した異常接近データ値に達した時に異常状態に近づいたことを報知するこ とを特徴とする請求の範囲第 1項ないし第 3項のいずれか 1項に記載の半導体製 造装置の監視方法。 5. When at least one of the plurality of detection data has reached an abnormal approach data value close to a corresponding allowable detection data, it is notified that an abnormal state has been approached. 4. The method for monitoring a semiconductor manufacturing device according to any one of Items 1 to 3.
6 . 半導体製造装置の複数の装置パラメ一夕を前記半導体製造装置に設定し、 被処理体に所定の半導体素子を製造する際に、 予め作成された前記半導体製造装 置の少なくとも一つのセンサの複数の検出デ一夕の変動許容範囲群に基づいて前 記半導体製造装置を制御する方法であって、 6. A plurality of device parameters of the semiconductor manufacturing apparatus are set in the semiconductor manufacturing apparatus, and when a predetermined semiconductor element is manufactured on an object to be processed, at least one sensor of the semiconductor manufacturing apparatus prepared in advance is used. A method of controlling the semiconductor manufacturing apparatus based on a plurality of fluctuation tolerance ranges of detection data,
前記変動許容範囲群を作成する工程は、  The step of creating the variation allowable range group,
前記被処理体の仕様と前記半導体素子の期待仕様と前記半導体製造装置の特性 に基づいて前記期待仕様を満足する前記複数の装置パラメ一夕それそれの変動許 容範囲を求める工程と、  A step of obtaining a variation allowable range of each of the plurality of apparatus parameters that satisfy the expected specification based on the specification of the object to be processed, the expected specification of the semiconductor element, and the characteristics of the semiconductor manufacturing apparatus;
前記複数の装置パラメ一夕を前記変動許容範囲内でそれそれ変化させて試用の 被処理体を処理する工程と、  Processing the trial object by changing the plurality of apparatus parameters within the variation allowable range;
前記試用の被処理体を処理する際に、 前記半導体製造装置の複数のセンサから それそれの少なくとも一種類の検出デ一夕を収集する工程と、  Collecting the at least one kind of detection data from each of the plurality of sensors of the semiconductor manufacturing apparatus when processing the trial object;
前記期待仕様を満足する検出データのみからなる前記複数のセンサからの検出 データの変動許容範囲群を作成する工程と、  A step of creating a permissible range group of detection data from the plurality of sensors consisting only of detection data satisfying the expected specification;
を備えたことを特徴とする半導体製造装置の制御方法。 A method for controlling a semiconductor manufacturing apparatus, comprising:
7 . 前記複数のセンサは、 少なくとも一つの追加センサを含むこ'とを特徴と する請求の範囲第 6項に記載の半導体製造装置の制御方法。 7. The control method for a semiconductor manufacturing apparatus according to claim 6, wherein the plurality of sensors include at least one additional sensor.
8 . 実プロセスで検出された少なくとも一つのセンサからの複数の検出デー 夕と前記変動許容範囲群の対応する許容検出データとをそれそれ比較することを 特徴とする請求の範囲第 6項又は第 7項に記載の半導体製造装置の制御方法。 8. The method according to claim 6, wherein a plurality of detected data from at least one sensor detected in an actual process are compared with corresponding permissible detection data of the fluctuation permissible range group, respectively. 8. The method for controlling a semiconductor manufacturing apparatus according to item 7.
9 . 前記複数の検出デ一夕のうち少なくとも一つが対応する許容検出デ一夕 から外れた時に異常を報知すると共にプロセスを停止することを特徴とする請求 の範囲第 6項ないし第 8項のいずれか 1項に記載の半導体製造装置の制御方法。 9. Allowable detection data corresponding to at least one of the plurality of detection data. 9. The control method for a semiconductor manufacturing apparatus according to claim 6, wherein an abnormality is notified and a process is stopped when the semiconductor device deviates from the process.
1 0 . 前記複数の検出デ一夕のうち少なくとも一つが対応する許容検出デー 夕に近接した異常接近デ一夕値に達した時に異常状態に近づいたことを報知する こと特徴とする請求の範囲第 6項ないし第 8項のいずれか 1項に記載の半導体製 造装置の制御方法。 10. When at least one of the plurality of detection data has reached an abnormal approaching data close to the corresponding permissible detection data, a notification that an abnormal state has been approached is provided. 9. The method for controlling a semiconductor manufacturing device according to any one of items 6 to 8.
PCT/JP2002/007858 2001-08-01 2002-08-01 Semiconductor production apparatus monitoring method and control method WO2003012847A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001233438A JP2003045846A (en) 2001-08-01 2001-08-01 Monitoring and controlling method of semiconductor- manufacturing apparatus
JP2001-233438 2001-08-01

Publications (1)

Publication Number Publication Date
WO2003012847A1 true WO2003012847A1 (en) 2003-02-13

Family

ID=19065216

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/007858 WO2003012847A1 (en) 2001-08-01 2002-08-01 Semiconductor production apparatus monitoring method and control method

Country Status (3)

Country Link
JP (1) JP2003045846A (en)
TW (1) TW559974B (en)
WO (1) WO2003012847A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114639583A (en) * 2020-12-15 2022-06-17 友威科技股份有限公司 Reprocessing equipment for removing wafer defects by plasma etching

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005057122A (en) * 2003-08-06 2005-03-03 Renesas Technology Corp Trouble detecting method by plasma emission intensity
US7957821B2 (en) 2004-11-17 2011-06-07 Taiwan Semiconductor Manufacturing Co., Ltd. Systems and methods for statistical process control
JP4920991B2 (en) 2006-02-22 2012-04-18 株式会社日立ハイテクノロジーズ Plasma processing apparatus and plasma processing method
JP4669849B2 (en) * 2007-01-30 2011-04-13 みずほ情報総研株式会社 Discrete data processing system, discrete data processing method, and discrete data processing program
US9691618B2 (en) 2015-11-13 2017-06-27 Samsung Electronics Co., Ltd. Methods of fabricating semiconductor devices including performing an atomic layer etching process
JP6745643B2 (en) * 2016-05-17 2020-08-26 東京エレクトロン株式会社 Plasma processing apparatus and plasma processing method
HUP1900246A1 (en) * 2019-07-05 2021-01-28 Univ Szegedi Method and equipment for monitoring a spark particle generator
US11735447B2 (en) 2020-10-20 2023-08-22 Applied Materials, Inc. Enhanced process and hardware architecture to detect and correct realtime product substrates

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11150047A (en) * 1997-11-17 1999-06-02 Matsushita Electron Corp Semiconductor device manufacturing method
US5993050A (en) * 1997-04-30 1999-11-30 Oki Electric Industry Co., Ltd. Method of and apparatus for extracting model parameters
JPH11345752A (en) * 1998-06-01 1999-12-14 Hitachi Ltd Semiconductor manufacturing method and electronic control card, semiconductor manufacturing apparatus and semiconductor inspection apparatus therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5993050A (en) * 1997-04-30 1999-11-30 Oki Electric Industry Co., Ltd. Method of and apparatus for extracting model parameters
JPH11150047A (en) * 1997-11-17 1999-06-02 Matsushita Electron Corp Semiconductor device manufacturing method
JPH11345752A (en) * 1998-06-01 1999-12-14 Hitachi Ltd Semiconductor manufacturing method and electronic control card, semiconductor manufacturing apparatus and semiconductor inspection apparatus therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114639583A (en) * 2020-12-15 2022-06-17 友威科技股份有限公司 Reprocessing equipment for removing wafer defects by plasma etching

Also Published As

Publication number Publication date
JP2003045846A (en) 2003-02-14
TW559974B (en) 2003-11-01

Similar Documents

Publication Publication Date Title
JP3630931B2 (en) Plasma processing apparatus, process monitoring method, and semiconductor device manufacturing method
CN100552889C (en) Plasma treatment device
KR102457883B1 (en) Methods and systems for chamber matching and monitoring
CN1316546C (en) Method for fault identification in plasma process
US11348846B2 (en) Wafer processing tool having a micro sensor
US4857136A (en) Reactor monitoring system and method
KR102581356B1 (en) Method of diagnosing an abnormal state of a substrate-processing apparatus and apparatus for performing the same
US7054786B2 (en) Operation monitoring method for treatment apparatus
CN100419969C (en) Method and apparatus for aging a semiconductor device of a sensing plasma device
JP6386287B2 (en) Plasma stability determination method and plasma processing apparatus
WO2003012847A1 (en) Semiconductor production apparatus monitoring method and control method
JP4610021B2 (en) Processing device operating method and processing device abnormality detection method
JP4970847B2 (en) Method for detecting abnormal operation of plasma processing
JP2004207703A5 (en)
JP2007088497A (en) Process control system, process control method and process processing device
WO2021065295A1 (en) Abnormality determination system and abnormality determination method for plasma treatment
KR101794066B1 (en) method for optimizing plasma process
WO2023107260A1 (en) System for wafer dechucking and health monitoring
US20050277209A1 (en) Plasma leak monitoring method, plasma processing apparatus and plasma processing method
JP2004152999A (en) Plasma processing method and plasma processing apparatus
JPH07258853A (en) Method and device for discriminating state of process
JP3984868B2 (en) Plasma etching apparatus simulation apparatus and plasma etching apparatus including the simulation apparatus
WO2007037012A1 (en) Chamber matching method, semiconductor process assisting device, maintenance method, and maintenance assisting device
KR20070069359A (en) Plasma device and plasma control method using same
JP4300182B2 (en) Maintenance method of plasma processing apparatus

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BY BZ CA CH CN CO CR CU CZ DE DM DZ EC EE ES FI GB GD GE GH HR HU ID IL IN IS KE KG KP KR KZ LK LR LS LT LU LV MA MD MG MK MW MX MZ NO NZ OM PH PL PT RO SD SE SG SI SK SL TJ TM TN TR TT UA UG US UZ VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ UG ZM ZW AM AZ BY KG KZ RU TJ TM AT BE BG CH CY CZ DK EE ES FI FR GB GR IE IT LU MC PT SE SK TR BF BJ CF CG CI GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase