WO2003039793A1 - Procede d'elaboration de nanoparticules metalliques dans lequel des micelles a coque reticulee tiennent lieu de moules - Google Patents
Procede d'elaboration de nanoparticules metalliques dans lequel des micelles a coque reticulee tiennent lieu de moules Download PDFInfo
- Publication number
- WO2003039793A1 WO2003039793A1 PCT/JP2002/007118 JP0207118W WO03039793A1 WO 2003039793 A1 WO2003039793 A1 WO 2003039793A1 JP 0207118 W JP0207118 W JP 0207118W WO 03039793 A1 WO03039793 A1 WO 03039793A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- general formula
- group
- metal
- hydrophilic
- polysilane
- Prior art date
Links
- 239000000693 micelle Substances 0.000 title claims abstract description 46
- 239000002105 nanoparticle Substances 0.000 title description 6
- 238000002360 preparation method Methods 0.000 title description 4
- 238000000034 method Methods 0.000 claims abstract description 25
- 239000006185 dispersion Substances 0.000 claims abstract description 22
- 239000010419 fine particle Substances 0.000 claims abstract description 21
- 239000012736 aqueous medium Substances 0.000 claims abstract description 5
- 229920000469 amphiphilic block copolymer Polymers 0.000 claims abstract 2
- 229910052751 metal Inorganic materials 0.000 claims description 27
- 239000002184 metal Substances 0.000 claims description 27
- 229920000548 poly(silane) polymer Polymers 0.000 claims description 26
- 229910021645 metal ion Inorganic materials 0.000 claims description 20
- 229920000642 polymer Polymers 0.000 claims description 17
- 229920001477 hydrophilic polymer Polymers 0.000 claims description 15
- 238000004519 manufacturing process Methods 0.000 claims description 14
- 239000002923 metal particle Substances 0.000 claims description 13
- 239000003638 chemical reducing agent Substances 0.000 claims description 12
- 239000003431 cross linking reagent Substances 0.000 claims description 12
- 125000004432 carbon atom Chemical group C* 0.000 claims description 11
- 125000002947 alkylene group Chemical group 0.000 claims description 10
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical group [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 8
- 229920001400 block copolymer Polymers 0.000 claims description 8
- 150000001875 compounds Chemical class 0.000 claims description 8
- 229910052760 oxygen Inorganic materials 0.000 claims description 8
- 239000001301 oxygen Substances 0.000 claims description 8
- 239000000178 monomer Substances 0.000 claims description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical group N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 6
- 238000004132 cross linking Methods 0.000 claims description 6
- 238000006116 polymerization reaction Methods 0.000 claims description 6
- 125000005702 oxyalkylene group Chemical group 0.000 claims description 5
- 229910001111 Fine metal Inorganic materials 0.000 claims description 4
- 125000000217 alkyl group Chemical group 0.000 claims description 4
- 229920001577 copolymer Polymers 0.000 claims description 4
- 125000000524 functional group Chemical group 0.000 claims description 4
- 125000000843 phenylene group Chemical group C1(=C(C=CC=C1)*)* 0.000 claims description 4
- 229910052717 sulfur Chemical group 0.000 claims description 4
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical group [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 3
- 229910052757 nitrogen Inorganic materials 0.000 claims description 3
- 239000011593 sulfur Chemical group 0.000 claims description 3
- 125000003118 aryl group Chemical group 0.000 claims description 2
- 238000012661 block copolymerization Methods 0.000 claims description 2
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 claims description 2
- 229910052739 hydrogen Inorganic materials 0.000 claims description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 2
- 125000000962 organic group Chemical group 0.000 claims description 2
- 229920001281 polyalkylene Polymers 0.000 claims description 2
- 150000001450 anions Chemical class 0.000 claims 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims 1
- 230000000379 polymerizing effect Effects 0.000 claims 1
- 239000002245 particle Substances 0.000 description 25
- 229910052737 gold Inorganic materials 0.000 description 21
- 239000010931 gold Substances 0.000 description 21
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 15
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 12
- 239000002082 metal nanoparticle Substances 0.000 description 11
- 238000006722 reduction reaction Methods 0.000 description 9
- 239000000243 solution Substances 0.000 description 9
- 238000009826 distribution Methods 0.000 description 8
- 229910052763 palladium Inorganic materials 0.000 description 7
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 6
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- -1 silver ions Chemical class 0.000 description 6
- 238000003756 stirring Methods 0.000 description 6
- 239000002253 acid Substances 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- 230000000087 stabilizing effect Effects 0.000 description 5
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 4
- 229920002845 Poly(methacrylic acid) Polymers 0.000 description 3
- 125000004429 atom Chemical group 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 239000004094 surface-active agent Substances 0.000 description 3
- 150000004685 tetrahydrates Chemical class 0.000 description 3
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- QUSNBJAOOMFDIB-UHFFFAOYSA-N Ethylamine Chemical compound CCN QUSNBJAOOMFDIB-UHFFFAOYSA-N 0.000 description 2
- MZRVEZGGRBJDDB-UHFFFAOYSA-N N-Butyllithium Chemical compound [Li]CCCC MZRVEZGGRBJDDB-UHFFFAOYSA-N 0.000 description 2
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 238000000862 absorption spectrum Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- PIBWKRNGBLPSSY-UHFFFAOYSA-L palladium(II) chloride Chemical compound Cl[Pd]Cl PIBWKRNGBLPSSY-UHFFFAOYSA-L 0.000 description 2
- 239000011541 reaction mixture Substances 0.000 description 2
- 229910000077 silane Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 125000004434 sulfur atom Chemical group 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 229940071240 tetrachloroaurate Drugs 0.000 description 2
- PMRDEBIBRUPKPH-UHFFFAOYSA-N 2-methyl-3-trimethylsilylprop-2-enoic acid Chemical compound OC(=O)C(C)=C[Si](C)(C)C PMRDEBIBRUPKPH-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 238000001069 Raman spectroscopy Methods 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000000412 dendrimer Substances 0.000 description 1
- 229920000736 dendritic polymer Polymers 0.000 description 1
- 238000010511 deprotection reaction Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000002296 dynamic light scattering Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000011990 functional testing Methods 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 229920001600 hydrophobic polymer Polymers 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920000962 poly(amidoamine) Polymers 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000012429 reaction media Substances 0.000 description 1
- 238000001226 reprecipitation Methods 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000001235 sensitizing effect Effects 0.000 description 1
- 239000010944 silver (metal) Substances 0.000 description 1
- 229910001961 silver nitrate Inorganic materials 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 238000004627 transmission electron microscopy Methods 0.000 description 1
- 239000011882 ultra-fine particle Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/16—Making metallic powder or suspensions thereof using chemical processes
- B22F9/18—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
- B22F9/24—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J13/00—Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
- B01J13/02—Making microcapsules or microballoons
- B01J13/06—Making microcapsules or microballoons by phase separation
- B01J13/14—Polymerisation; cross-linking
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/05—Metallic powder characterised by the size or surface area of the particles
- B22F1/054—Nanosized particles
- B22F1/0545—Dispersions or suspensions of nanosized particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/70—Nanostructure
- Y10S977/773—Nanoparticle, i.e. structure having three dimensions of 100 nm or less
- Y10S977/775—Nanosized powder or flake, e.g. nanosized catalyst
- Y10S977/777—Metallic powder or flake
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2982—Particulate matter [e.g., sphere, flake, etc.]
- Y10T428/2991—Coated
- Y10T428/2998—Coated including synthetic resin or polymer
Definitions
- a micelle having a unit constituting the polysilane therein is formed in an aqueous medium using a block copolymer of a hydrophilic polymer and polysilane, and the micelle has a shell portion.
- Shell-crosslinked micelles are prepared by crosslinking with a crosslinking agent, and the micelles are used to reduce the metal ion such as gold, platinum, palladium, and silver ions of the polysilane main chain, and the micelle template.
- the present invention relates to a method for preparing nano-dispersed particles of the metal by utilizing the metal properties.
- Metal particles especially particles such as gold, platinum, palladium, rhodium, and silver, are drugs that utilize the penetration of ultrafine particles into the fine inner network system, functional test agents, and drug delivery systems (DDS).
- DDS drug delivery systems
- a method of reducing metal ions in the presence of a surfactant or polymer 1.
- a surfactant or a polymer is allowed to coexist in the reduction reaction medium to stabilize metal fine particles generated by reduction of metal ions.
- ⁇ process uses a separate reducing agent and the reducing and the additive material from the outside by irradiation causes the surfactant or polymer are coexist with metal Ion, for example borohydride Na Application Benefits um (N a BH 4) It is what you do.
- metal Ion for example borohydride Na Application Benefits um (N a BH 4) It is what you do.
- this method can reduce many types of metal ions, it has the problem that a separate metal ion reducing agent must be added [Ref. 1; G. Schmid 3 Chem. Rev., 92, 1709 (1992)) c
- This method utilizes the strong affinity between zeo atoms and gold to stabilize gold particles or the like generated by reduction by electrostatically bonding to the sulfur atoms.
- the i-atom exhibiting the function is provided by introducing a group having the atom into a terminal or a side chain of a constituent unit (dendron) or polymer of a dendritic molecule.
- DNA molecules are effective in stabilizing gold particles and the like in place of the stabilizing substance.
- the advantage of this method is that it is possible to modify the metal particle surface with various organic substances, especially compounds with the desired functional groups, but it is said that this method is not very effective for metals other than gold. [Reference 2; M. House, M. Walker ⁇ D.
- This method uses a water-soluble poly (amidoamine) dendrimer, After incorporation of the metal ions in den de Rimmer, it is intended to prepare several tens nm of the metal particles with a reducing agent such as borohydride Na preparative potassium (N a BH 4) [Document 5; M. Zhao, L. Sun, and RM Crooks, J. Am. Chem. Soc, 120, 4877 (1998); Reference 6; L. Balogand DATomali a 3 J. Am. Chem. Soc., 120, 7355 (1998). Reference 7; Y. Nie, LKYeung, and M. Crooks. J. Chem. Soc., 123, 6840-6846 (2001).
- a reducing agent such as borohydride Na preparative potassium (N a BH 4)
- An object of the present invention is to solve the problem that a metal reducing agent must be added separately from the component for stabilizing metal nanoparticles in the conventional technique. Unless an inorganic reducing agent is separately added, stable metal nanoparticles cannot be obtained unless an organic medium is used.Therefore, it is possible to apply the obtained metal nanoparticles to reactions in an aqueous system. It is an object of the present invention to provide a method for preparing metal nanoparticles that eliminates the problem of being unable to do so. In other words, the metal ion can be reduced using water as a solvent without using the inorganic reducing agent or the like. It is an object of the present invention to provide a method capable of preparing metal nanoparticles having monodisperse properties by producing the same in the presence of a metal.
- the present inventors have synthesized a block copolymer of polysilane, which is a hydrophobic polymer, and polymer acrylate, which is a carbon-based hydrophilic polymer, based on the amphiphilicity of the block polymer.
- SCM shell cross-linked micelles
- polysilane has a metal ion reducing ability [Ref. 12; A. ⁇ . Diaz, M. Baier, GM allraff, RDMiller, J. Nelson, W. Piero, J. El ctrochem Soc. 138, 742 (1991) 0, which can be used to form a metal layer by using a polysilane layer as a reducing agent for metal ions such as Au, Ag, Pt, and Pd. [Reference 13]; M. Fukushima, N. Noguti 3 M. Aramata, Y. Hamada, E. Tae i, S. Mori, and Y. Yamamoto. Syth. Met., 97, 273-280 (1998).]).
- metal ion reducing ability Ref. 12; A. ⁇ . Diaz, M. Baier, GM allraff, RDMiller, J. Nelson, W. Piero, J. El ctrochem Soc. 138, 742 (1991) 0, which can be
- the present inventors focused on the reducing power of the metal ion of the polysilane, the stabilizing effect and the water solubility of the amphiphilic polymer reported by the present inventors, and have a polysilane constituent unit inside.
- the crosslinked micelle as a template to reduce the metal ions such as gold and palladium in water
- a stable dispersion of metal particles could be prepared by the method described above, and the above-mentioned problem of the present invention could be solved. Disclosure of the invention
- the basic constitution of the present invention is that the polysilane obtained from a block copolymer of a hydrophilic polymer and a polysilane represented by the general formula P1 is provided on the inner surface of a micelle, and the sealing portion of the micelle is provided.
- This is a method for preparing monodispersed fine particles of the metal by reducing metal ions using the crosslinked hydrophilic micelles and using the micelles as a reducing agent.
- R 1 , R 2 , 3 and R 4 are groups independently selected from alkyl groups and aryl groups having up to 10 carbon atoms, and m is the degree of polymerization.
- the ratio n / m of the silane to the polymerization degree m is determined so as to be 10 to 20 (m / n is 0.05 to 0.10).
- the parents of the general formula PB are obtained, in which the hydrophilic micelles are obtained by block copolymerization of a polysilane and an anionically polymerizable monomer having at least a hydrophilic side chain with a hydrophilic polymer containing one hydrophilic polymer component.
- R 2 R 3 , R 4 , m and n are the same as those in the general formula P 1.
- R 6 is H or a lower alkyl group
- R 7 is a divalent organic group, and is COOR— (where R is alkylene or phenylene having up to 3 carbon atoms), or phenylene.
- R 8 is a C ⁇ 0H or 0H group.
- h represents a copolymer component that forms a hydrophilic polymer with n (the general formula P 1 corresponds to the case where h is 0), and does not impair the hydrophilicity of the shell in relation to 0 to n The range of values of the degree. ]
- the cross-linking agent is selected from the compounds represented by the general formula B.
- R 9 is an alkylene chain having 4 or less carbon atoms
- R 1 0 is of the alkylene down to impart functionality to the metal fine particle dispersion obtained
- a functional group that substitutes for H, n is 2-30, and M is oxygen, nitrogen or sulfur.
- the production of the metal fine particle dispersion wherein M of the cross-linking agent of the general formula B is oxygen and R is a poly (oxyalkylene) having an alkylene group having 4 or less carbon atoms.
- M of the cross-linking agent of the general formula B is oxygen and R is a poly (oxyalkylene) having an alkylene group having 4 or less carbon atoms.
- FIG. 1 shows the step of forming hydrophilic micelles M of the present invention, in which the hydrophilic micelles are cross-linked V to form seal cross-linked micelles (SCM), and the metal is reduced by using the SCM as ⁇ type MR
- FIG. 2 is a schematic diagram of a metal nanoparticle preparation process including a step of preparing metal nanoparticles by performing the method.
- FIG. 2 shows the results obtained in Example 1 according to the schematic diagram of the preparation of metal nanoparticles.
- 3 shows the particle size distribution of the obtained gold nanoparticles.
- FIG. 3 shows the particle size distribution of the palladium nanoparticles obtained in Example 2.
- FIG. 4 shows the particle size distribution of the gold nanoparticles obtained in the comparative example.
- a hydrophilic polymer and a polymer used in a method for preparing a hydrophilic micelle used for preparing a monodispersed fine particle dispersion of the metal by reducing a metal ion are provided.
- a block copolymer with silane a unit of the polysilane of the general formula P1 and a hydrophilic polymer such as, for example, a hydrophilic group such as acrylic acid and mesyacrylic acid are used.
- the monomer having a hydrophilic group the following compound group C can be exemplified.
- hydrophilic 02 07118 As a crosslinking agent for the hydrophilic micelle shell, hydrophilic 02 07118
- a unit having an atom for example, polyoxyalkylene (alkylene having 2 to 4 carbon atoms), which imparts functionality to metal monodispersed fine particles, for example, in the case of an improvement in the analysis of the above-mentioned known application, the component to be analyzed Examples thereof include a polyalkylene derivative having a binding functional group, and a product obtained by substituting oxygen with a sulfur atom for improving affinity with a metal.
- Various solvents can be used by changing the ratio of the crosslinking agent or the polysilane of the unit of the copolymer of the general formulas P1 and PB to the monomer having a hydrophilic group.
- metal ions used for preparing the metal monodispersed fine particles of the present invention those described in the above-mentioned prior art can be used.
- Preferable examples include nodulating gold acid, for example, tetrachloroauric (in) acid tetrahydrate, halogenated platinic acid, silver nitrate, and palladium chloride ( ⁇ ). It can be selected appropriately in relation to the application.
- Example 1 the present invention will be described specifically with reference to Examples, but the present invention is not limited to these Examples.
- Example 1 the present invention will be described specifically with reference to Examples, but the present invention is not limited to these Examples.
- FIG. 1 schematically shows a method for preparing metal nanoparticles in which the shell cross-linked micelle (SCM) is made into a gun shape.
- Figure 2 shows 2 shows the particle size distribution of the deposited gold nanoparticles.
- the average particle size of the gold particles measured by a transmission electron microscope (TEM) was 11.1 nm.
- Reduction reaction of gold ions using polysilane micelles (uncrosslinked) as type II 1.76 g of the polysilane-block-polymethacrylic acid copolymer synthesized in Example 1 and 7. ⁇ mL of water were added to the vial, and the mixture was sufficiently stirred to prepare a water solution. Then, 1.9 g of tetrachloroaurate (III) tetrahydrate dissolved in 3. O mL of water was added thereto, and the mixture was stirred and reacted. Start reaction The color gradually changed from yellow to purple. In the ultraviolet-visible absorption spectrum of the reaction mixture, absorption at 550 nm derived from fine gold particles was observed. The average particle size of the gold particles was 25.4 nm as measured by transmission electron microscopy (TEM).
- TEM transmission electron microscopy
- the present invention relates to a method wherein a shell cross-linked micelle (SCM) obtained by cross-linking a hydrophilic micelle obtained from a polysilane and a hydrophilic polymer, in particular, polymer acrylic acid with an appropriate cross-linking agent, into a
- SCM shell cross-linked micelle
- a hydrophilic micelle obtained from a polysilane and a hydrophilic polymer, in particular, polymer acrylic acid with an appropriate cross-linking agent into a
- nanometer-sized metal particles of controlled size and highly stable dispersion in water can be prepared without using a separate reducing agent other than the SCM.
- the present invention provides a method for producing highly usable metal nanoparticles close to monodispersion.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Dispersion Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Composite Materials (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Medicinal Chemistry (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Veterinary Medicine (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Silicon Polymers (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Graft Or Block Polymers (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
Description
Claims
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/491,133 US7241814B2 (en) | 2001-11-09 | 2002-07-12 | Preparation of metallic nanoparticles with shell-crosslinked micelle as mold |
DE60217401T DE60217401T2 (de) | 2001-11-09 | 2002-07-12 | Herstellung von metallnanoteilchen mit schalenvernetztem micell als formwerkzeug |
EP02746018A EP1452254B1 (en) | 2001-11-09 | 2002-07-12 | Preparation of metallic nanoparticle with shell-crosslinked micelle as mold |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001-344048 | 2001-11-09 | ||
JP2001344048A JP4094277B2 (ja) | 2001-11-09 | 2001-11-09 | シェル架橋型ミセルを鋳型とする金属ナノ粒子の調製 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2003039793A1 true WO2003039793A1 (fr) | 2003-05-15 |
Family
ID=19157625
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2002/007118 WO2003039793A1 (fr) | 2001-11-09 | 2002-07-12 | Procede d'elaboration de nanoparticules metalliques dans lequel des micelles a coque reticulee tiennent lieu de moules |
Country Status (5)
Country | Link |
---|---|
US (1) | US7241814B2 (ja) |
EP (1) | EP1452254B1 (ja) |
JP (1) | JP4094277B2 (ja) |
DE (1) | DE60217401T2 (ja) |
WO (1) | WO2003039793A1 (ja) |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4644430B2 (ja) * | 2004-02-10 | 2011-03-02 | 独立行政法人科学技術振興機構 | 炭素化合物の封入された微小粒子の複合体 |
JP4746834B2 (ja) * | 2003-10-10 | 2011-08-10 | 独立行政法人科学技術振興機構 | 炭素化合物を内包する微小粒子の複合体 |
CA2542049C (en) * | 2003-10-10 | 2012-07-17 | Japan Science And Technology Agency | Finely particulate composite containing carbon compound encapsulated therein |
JP4728093B2 (ja) * | 2005-03-02 | 2011-07-20 | 独立行政法人科学技術振興機構 | 固/液界面に形成された吸着ミセル膜を反応場として形成される単結晶質の貴金属超薄膜ナノ粒子及びその製造方法 |
GB0505569D0 (en) * | 2005-03-18 | 2005-04-27 | Syngenta Ltd | Formulations |
JP5231710B2 (ja) * | 2005-04-28 | 2013-07-10 | 大阪瓦斯株式会社 | 金属微粒子と無機微粒子とを含む組成物およびその製造方法 |
DE102005035374A1 (de) | 2005-07-22 | 2007-01-25 | Universität Potsdam | Nanohohlkapseln |
US20090298676A1 (en) * | 2005-10-26 | 2009-12-03 | Michael Meier | Unimolocular Micelles Containing Metal Nanoparticles and their Use as Catalyst for Synthesis of Carbon-Carbon-Bonds |
JP4840584B2 (ja) | 2006-03-02 | 2011-12-21 | 独立行政法人科学技術振興機構 | 有機合成反応用のポリシラン担持遷移金属触媒 |
WO2007106771A2 (en) * | 2006-03-10 | 2007-09-20 | The Arizona Board Of Regents On Behalf Of The University Of Arizona | Multifunctional polymer coated magnetic nanocomposite materials |
DE102008016712A1 (de) | 2007-03-29 | 2008-10-16 | Josef Hormes | Nanopartikel mit einem aus einem Metall bestehenden Kernpartikel und einer Hülle aus einem Polymer |
DE102009015470A1 (de) | 2008-12-12 | 2010-06-17 | Byk-Chemie Gmbh | Verfahren zur Herstellung von Metallnanopartikeln und auf diese Weise erhaltene Metallnanopartikel und ihre Verwendung |
KR101462656B1 (ko) | 2008-12-16 | 2014-11-17 | 삼성전자 주식회사 | 나노입자/블록공중합체 복합체의 제조방법 |
CN101811193B (zh) * | 2010-04-06 | 2011-08-24 | 浙江大学 | 一种银纳米片自组装体材料的制备方法 |
US9096432B2 (en) | 2011-02-01 | 2015-08-04 | Nanosi Advanced Technologies, Inc. | Auric acid assisted silicon nanoparticle formation method |
EP2913127B1 (en) * | 2012-10-24 | 2018-08-15 | Nippon Soda Co., Ltd. | Production method for particles of element having standard electrode potential greater than 0v |
CN104439272B (zh) * | 2014-11-04 | 2016-05-18 | 天津大学 | 一种去润湿和模板法相结合制备有序排布金颗粒的方法 |
CN104475751A (zh) * | 2014-12-05 | 2015-04-01 | 山东理工大学 | 一种制备两亲性纳米银粒子的新方法 |
CN105056996B (zh) * | 2015-08-20 | 2017-05-17 | 郑州大学 | 对苯二甲酸二甲酯选择性加氢制1,4‑环己烷二甲酸二甲酯用催化剂及其制备方法、使用方法 |
CN105080603B (zh) * | 2015-08-20 | 2017-05-17 | 郑州大学 | 一种硝基苯选择性加氢制苯胺用催化剂及其制备方法、使用方法 |
JP6673756B2 (ja) * | 2016-06-14 | 2020-03-25 | 日本曹達株式会社 | 単体を製造若しくは回収する方法 |
CN113058512A (zh) * | 2020-01-02 | 2021-07-02 | 中国科学院化学研究所 | 一种有机/无机复合壁材包覆的相变微胶囊及其制备方法与应用 |
CN115121194B (zh) * | 2021-03-24 | 2023-08-29 | 中国科学院理化技术研究所 | 一种非对称磁性聚合物微球及其制备方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11271981A (ja) * | 1998-03-20 | 1999-10-08 | Shin Etsu Chem Co Ltd | 貴金属コロイド分散層を有する基板及びパターン形成方法 |
JP2001200180A (ja) * | 2000-01-17 | 2001-07-24 | Shin Etsu Chem Co Ltd | 導電性粉体の製造方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3169660D1 (en) * | 1980-06-25 | 1985-05-09 | Hitachi Ltd | Process for forming metallic images |
US4808659A (en) * | 1985-12-13 | 1989-02-28 | Ube Industries, Ltd. | Adhesive composition comprising organometallic polymer |
JPH07246329A (ja) * | 1994-03-09 | 1995-09-26 | Nippon Paint Co Ltd | マイクロカプセルの製造方法及びマイクロカプセル |
WO1997049387A1 (en) * | 1996-06-27 | 1997-12-31 | G.D. Searle And Co. | Particles comprising amphiphilic copolymers, having a cross-linked shell domain and an interior core domain, useful for pharmaceutical and other applications |
US7332527B2 (en) * | 2003-05-16 | 2008-02-19 | Board Of Regents Of The University Of Nebraska | Cross-linked ionic core micelles |
-
2001
- 2001-11-09 JP JP2001344048A patent/JP4094277B2/ja not_active Expired - Fee Related
-
2002
- 2002-07-12 DE DE60217401T patent/DE60217401T2/de not_active Expired - Fee Related
- 2002-07-12 WO PCT/JP2002/007118 patent/WO2003039793A1/ja active IP Right Grant
- 2002-07-12 EP EP02746018A patent/EP1452254B1/en not_active Expired - Lifetime
- 2002-07-12 US US10/491,133 patent/US7241814B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11271981A (ja) * | 1998-03-20 | 1999-10-08 | Shin Etsu Chem Co Ltd | 貴金属コロイド分散層を有する基板及びパターン形成方法 |
JP2001200180A (ja) * | 2000-01-17 | 2001-07-24 | Shin Etsu Chem Co Ltd | 導電性粉体の製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP1452254A4 * |
Also Published As
Publication number | Publication date |
---|---|
JP4094277B2 (ja) | 2008-06-04 |
US20040259154A1 (en) | 2004-12-23 |
US7241814B2 (en) | 2007-07-10 |
EP1452254A1 (en) | 2004-09-01 |
EP1452254A4 (en) | 2006-02-08 |
JP2003147418A (ja) | 2003-05-21 |
DE60217401T2 (de) | 2007-10-11 |
DE60217401D1 (de) | 2007-02-15 |
EP1452254B1 (en) | 2007-01-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2003039793A1 (fr) | Procede d'elaboration de nanoparticules metalliques dans lequel des micelles a coque reticulee tiennent lieu de moules | |
Pradhan et al. | Janus nanoparticles by interfacial engineering | |
Kanaras et al. | Thioalkylated tetraethylene glycol: a new ligand for water soluble monolayer protected gold clusters | |
US8182867B2 (en) | Producing composite nanoparticles containing organic ions | |
Emrick et al. | Self-assembly of dendritic structures | |
He et al. | Aqueous synthesis of amphiphilic graphene quantum dots and their application as surfactants for preparing of fluorescent polymer microspheres | |
Esumi | Dendrimers for nanoparticle synthesis and dispersion stabilization | |
Li et al. | Synthesis and self-assembly of amphiphilic hybrid nano building blocks via self-collapse of polymer single chains | |
Pan et al. | Covalent attachment of quantum dot on carbon nanotubes | |
Prasad et al. | Solvent-adaptable silver nanoparticles | |
WO2004078641A1 (en) | Metal nano-particles coated with silicon oxide and manufacturing method thereof | |
CA2506388A1 (en) | Surface modification of nanocrystals using multidentate polymer ligands | |
WO2002020200A1 (fr) | Metal fonctionnel a fines particules et semi-conducteur fonctionnel a fines particules presentant chacun une stabilite de dispersion et procede de production | |
Tao et al. | Modification of multi-wall carbon nanotube surfaces with poly (amidoamine) dendrons: synthesis and metal templating | |
Mejia-Ariza et al. | Formation of hybrid gold nanoparticle network aggregates by specific host–guest interactions in a turbulent flow reactor | |
CN104209505A (zh) | 金属Janus纳米颗粒及其制备方法 | |
Jańczewski et al. | Introduction of quantum dots into PNIPAM microspheres by precipitation polymerization above LCST | |
Jiang et al. | Preparation of gold nanoparticles in the presence of poly (benzyl ether) alcohol dendrons | |
Kim et al. | Supramolecular polymerization based on the metalation of porphyrin nanosheets in aqueous media | |
Sun et al. | Preparation of pH-responsive silver nanoparticles by RAFT polymerization | |
Liu et al. | Synthesis of nanometer-sized poly (methyl methacrylate) polymer network by gold nanoparticle template | |
Herrera-González et al. | Synthesis of gold colloids using polyelectrolytes and macroelectrolytes containing arsonic moieties | |
Assis et al. | Two-dimensional synthesis of silver nanoparticle in situ Langmuir films from the reduction of silver sulfadiazine | |
Wu et al. | Forming water-soluble CdSe/ZnS QDs using amphiphilic polymers, stearyl methacrylate/methylacrylate copolymers with different hydrophobic moiety ratios and their optical properties and stability | |
Wu et al. | Preparation and characterization of Prussian blue coated polymeric nanoparticles via dispersion polymerization template |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 10491133 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2002746018 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 2002746018 Country of ref document: EP |
|
WWG | Wipo information: grant in national office |
Ref document number: 2002746018 Country of ref document: EP |