[go: up one dir, main page]

WO2006006459A1 - オリゴアニリン化合物の精製方法およびオリゴアニリン化合物 - Google Patents

オリゴアニリン化合物の精製方法およびオリゴアニリン化合物 Download PDF

Info

Publication number
WO2006006459A1
WO2006006459A1 PCT/JP2005/012454 JP2005012454W WO2006006459A1 WO 2006006459 A1 WO2006006459 A1 WO 2006006459A1 JP 2005012454 W JP2005012454 W JP 2005012454W WO 2006006459 A1 WO2006006459 A1 WO 2006006459A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
oligo
formula
compound
phosphorus compound
Prior art date
Application number
PCT/JP2005/012454
Other languages
English (en)
French (fr)
Inventor
Taku Kato
Takuji Yoshimoto
Original Assignee
Nissan Chemical Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Industries, Ltd. filed Critical Nissan Chemical Industries, Ltd.
Priority to JP2006528926A priority Critical patent/JP5374819B2/ja
Priority to KR1020077000424A priority patent/KR101186938B1/ko
Priority to US11/631,034 priority patent/US20080042557A1/en
Priority to CN2005800231289A priority patent/CN1984941B/zh
Priority to EP05758164.7A priority patent/EP1767565B1/en
Publication of WO2006006459A1 publication Critical patent/WO2006006459A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/026Wholly aromatic polyamines
    • C08G73/0266Polyanilines or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/82Purification; Separation; Stabilisation; Use of additives
    • C07C209/84Purification
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/54Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to two or three six-membered aromatic rings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/311Purifying organic semiconductor materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers

Definitions

  • the present invention relates to a method for purifying an oligo-phosphorus compound and an oligo-phosphorus compound.
  • the present applicant found an organic solvent-based charge transporting varnish using a charge transporting material having a low molecular weight oligo-phosphorus compound power, and used a charge transporting thin film obtained by using the same. It has been found that an organic electoluminescence device (hereinafter abbreviated as an organic EL device) has excellent characteristics (see Patent Document 1: Japanese Patent Publication No. 10-509751). Impurity contamination in the oligo-phosphorus compound causes problems such as shortening the lifetime of the organic EL device and reducing the reproducibility of the organic EL device characteristics.
  • a trace amount of metal is considered.
  • the above-described low-molecular oligoaniline compound is easily oxidized by oxygen in the air or oxygen in a solvent during long-term storage or production, and tends to be an oxide containing a quinonedimine structure.
  • the amount of this oxidant generated increases, there may be a problem in the reproducibility of the film formation, for example, the uniformity of the thin film is impaired.
  • the applicant of the present invention treated the oligo-phosphorus compound with a reducing agent such as hydrazine (Patent Document 2: International Publication No. 03Z071559 pamphlet) or High viscosity solvent is used as a varnish preparation solvent to create a thin film with high and uniformity
  • a reducing agent such as hydrazine
  • High viscosity solvent is used as a varnish preparation solvent to create a thin film with high and uniformity
  • Ru method Patent Document 3: pamphlet of International Publication No. 04Z043117
  • improvements on the uniformity of the thin film have already been made.
  • Patent Document 1 Japanese Patent Publication No. 10-509751
  • Patent Document 2 Pamphlet of International Publication No. 03Z071559
  • Patent Document 3 International Publication No.04Z043117 Pamphlet
  • the present invention has been made in view of the above circumstances, and can provide an oligo-phosphorus compound capable of exhibiting excellent organic EL device characteristics with low impurity content with good reproducibility.
  • An object of the present invention is to provide an efficient purification method for oligo-phosphorus compounds.
  • the present inventors prepared an oligo-phosphorus compound solution containing a predetermined amount or more of an oxidant, and treated this with a predetermined amount of activated carbon. Then, by recrystallization, the content of the oxidant and the remaining metal component in the oligo-phosphorus compound can be remarkably reduced, and the content of the oxidant and the remaining metal component is low.
  • the present inventors have found that an organic EL device having the obtained charge transporting thin film can exhibit excellent EL device characteristics with good reproducibility, and completed the present invention.
  • the present invention provides:
  • An oligo-phosphorus compound-containing solution represented by the formula (1) after production is dissolved in a solvent to prepare an oligo-phosphorus compound-containing solution. Is treated with 4 to 20% by mass of activated carbon based on the oligoguayline compound, and then recrystallized.
  • a method of purifying an oligo-phosphorus compound characterized by obtaining an oligo-compound represented by the formula (1) having an extinction coefficient at 560 nm and an ⁇ force of 3 ⁇ 40 or less,
  • R 1 R 2 and R 3 are each independently hydrogen, hydroxyl group, halogen group, amino group, silanol group, thiol group, carboxyl group, sulfonic acid group, phosphoric acid group, phosphoric acid ester group. , Ester group, thioester group, amide group, nitro group, monovalent hydrocarbon group, organooxy group, organoamino group, organosilyl group, organothio group, acyl group or sulfone group, and A and B are independent of each other The following general formula (2) or (3)
  • R 4 to R ′′ are each independently hydrogen, hydroxyl group, halogen group, amino group, silanol group, thiol group, carboxyl group, sulfonic acid group, phosphoric acid group, Phosphate ester group, ester group, thioester group, amide group, nitro group, monovalent hydrocarbon group, organooxy group, organoamino group, organosilyl group, organothio group, acyl group or sulfone group, m and n are Each is an integer greater than or equal to 1 and satisfies m + n ⁇ 20.)
  • L-000 oligo-phosphorus compound represented by formula (1) is dissolved in a solvent to form an oligo-phosphorus compound-containing solution.
  • the prepared oligo-phosphorus compound-containing solution was treated with 4 to 20% by mass of activated carbon with respect to the oligo-phosphorus compound, and then recrystallized to have an extinction coefficient ⁇ at 560 nm of 30 or less.
  • Oligoline represented by formula (1) characterized in that the content of each metal component of Li, Mg, Ca, Fe, Cu, Zn, Ti, Sn, Na and K is lppm or less Compound,
  • the amount of oxidant and residual metal contained in the oligo-phosphorus compound can be significantly reduced.
  • the generation of foreign matter, etc. in the charge transporting thin film using the oligo-phosphorus compound can be suppressed, the life of the organic EL device equipped with this thin film can be extended, and the reproducibility of the device characteristics can be achieved.
  • the content ratio of the oxidant can be kept below a certain level, not only can the management of the oligolin production process be facilitated, but an oligolin of a certain quality can be obtained with good reproducibility.
  • FIG. 1 is an atomic force micrograph of Example 9.
  • FIG. 2 is an atomic force micrograph of Example 10.
  • FIG. 3 is an atomic force micrograph of Comparative Example 6.
  • FIG. 4 is a view showing a light emitting surface when the OLED element of Example 12 is driven at 8V.
  • FIG. 5 is a view showing a light emitting surface when the OLED element of Example 13 is driven at 8V.
  • FIG. 6 is a view showing a light emitting surface when the OLED element of Example 14 is driven at 8V.
  • FIG. 7 is a view showing a light emitting surface when the OLED element of Comparative Example 7 is driven at 8V.
  • the first method for purifying an oligo-phosphorus compound according to the present invention is to prepare an oligo-phosphorus compound-containing solution by dissolving the oligo-phosphorus compound represented by the above formula (1) after production in a solvent.
  • the prepared oligo-Liny compound-containing solution was treated with 4 to 20% by mass of activated carbon with respect to the oligo-Liny compound, then recrystallized, and the extinction coefficient ⁇ at 560 nm was 30 or less.
  • An oligo-phosphorus compound represented by the above formula (1) is used.
  • an oligoaniline compound having a degree of purification that cannot be achieved by only the recrystallization treatment, only the activated carbon treatment, only the celite treatment, or the like is obtained.
  • the oligo-phosphorus compound used in the first purification method of the present invention is an unpurified product immediately after production (synthesis), or after being stored for a predetermined period in an unpurified state. Contains a certain amount or more of acid bodies.
  • This acid complex has a quinonedimine structure represented by the following formula as a partial structure, which has an absorption maximum wavelength at 560 nm, and the oligo-line compound obtained by a general method is not purified, Absorption coefficient at 560nm immediately after production ⁇ force 3 ⁇ 40 ⁇ : More than LOO
  • the oligo-Liny compound after storage for about 720 days or less at room temperature in air The coefficient ⁇ force is often about 00 to 1000.
  • the second method for purifying an oligo-phosphorus compound according to the present invention includes an oxidant, and the extinction coefficient ⁇ at 560 nm is 80 to:
  • recrystallization treatment is performed, and the oligomer represented by the above formula (1) having an extinction coefficient ⁇ at 560 nm of 30 or less It is a diphosphorus compound.
  • the acid body may be increased again to the extent that it is stored for a predetermined period and gives the above-mentioned extinction coefficient.
  • the solvent that can be used for the preparation of the oligo-phosphorus compound-containing solution and the recrystallization treatment is not particularly limited as long as it is a solvent that can dissolve the oligo-phosphorus compound.
  • 1,4 dioxane, tetrahydrofuran, 1,3 dioxolane, diethylene glycol jetyl ether, acetonitrile, etc. can be used, and 1,4 dioxane is preferred.
  • the solvent used for the preparation of the oligo-phosphorus compound-containing solution and the recrystallization treatment is subjected to a degassing treatment.
  • the degassing method is not particularly limited, and may be appropriately selected from known degassing methods such as ultrasonic degassing and vacuum degassing.
  • the oxygen concentration (DO) in the solvent after deaeration is not particularly limited, but is preferably about 5% or less, more preferably 3% or less, and even more preferably 1% or less. .
  • the oligo-phosphorus concentration in the oligo-phosphorus compound-containing solution may be within a concentration at which the oligo-phosphorus can be completely dissolved, but the operability during the activated carbon treatment and the purification by the recrystallization treatment. Considering the balance between the degree of recovery and the recovery rate, 0.1 to 10% by mass is preferable, and 1 to 6% by mass is more preferable.
  • the prepared oligo-phosphorus compound-containing solution is added to the oligo-phosphorus compound in 4 to 4 times.
  • Treat the activated carbon with 20% by mass of activated carbon In this case, the type of activated carbon is not particularly limited, but powdered activated carbon is preferred.
  • the activated carbon treatment either a method of adding activated carbon to the oligo-phosphorus compound-containing solution or a method of caloring the oligo-phosphorus-containing solution in the activated carbon may be used.
  • the method of removing the used activated carbon after the activated carbon treatment is simple.
  • a method of hot filtration in a state where the oligourine compound is dissolved is simple.
  • the amount of celite used is preferably about 10 to 300% by mass with respect to any activated carbon.
  • the purification process of the present invention is less than the activated carbon usage force mass 0/0, impurities contained in Origoayuri down compounds, especially trace metal content, the effect of removing insufficient.
  • impurities contained in Origoayuri down compounds, especially trace metal content the effect of removing insufficient.
  • the filterability at the time of removing the activated carbon deteriorates and the recovery rate of the oligo-phosphorus compound decreases.
  • the recovery rate is a very important factor. Even if the trace metal content can be sufficiently removed, the recovery rate is reduced if the recovery rate of the oligo-phosphorus compound decreases. This is a problem in terms of stable supply.
  • the amount of activated carbon used should be 4-15% by mass. Furthermore, in order to further improve the recovery rate of the oligo-phosphorus compound to 95% or more, it is preferable to use 4 to 10% by mass of activated charcoal.
  • the amount of the oligo-phosphorus compound serving as a standard for adding activated carbon is a value including impurities.
  • a recrystallization treatment is further performed. This treatment can be performed after removing the activated carbon by filtration, and the primary purified oligo-phosphorus compound obtained by removing the solvent can be dissolved again in the solvent. If the filtrate is used as it is, an extra operation such as solvent removal is not required, and thus efficient processing becomes possible.
  • the cooling temperature at the time of recrystallization is not particularly limited as long as it is below the temperature at which the dissolved oligo-phosphorus compound precipitates, but usually, the filtrate filtered when heated to room temperature (20 ° C). A method of allowing to cool is used.
  • the precipitated oligo-phosphorus compound is recovered using an appropriate means such as filtration and further dried. Since the oligo-phosphorus compound has the property of being easily oxidized even by oxygen in the air, it is preferable to perform this recovery operation in an inert gas atmosphere such as nitrogen gas. Is preferably carried out under reduced pressure using a vacuum dryer or the like. At this time, the drying temperature and time are arbitrary, but in general, drying is performed at a temperature of about room temperature (20 ° C) to about 200 ° C for about 1 to 48 hours. Let dry.
  • the activated carbon treatment and the recrystallization treatment may be performed a plurality of times, or the series of the activated carbon treatment and the recrystallization treatment may be repeated. If a series of recrystallization treatments are performed once, it is usually possible to obtain an oligo-phosphorus compound represented by the formula (1) having an extinction coefficient ⁇ at 560 nm of 30 or less.
  • a charge transporting thin film produced by using such an oligo-phosphorus compound having a low content of acid bodies is excellent in film formability.
  • the trace metal component in order to use a charge transporting thin film prepared using an oligo-phosphorus compound for electronic device applications, it is preferable to reduce the trace metal component to a minimum such as 1 ppm or less.
  • the content of each metal component of Li, Mg, Ca, Fe, Cu, Zn, Ti, Sn, Na, and K in the oligo-phosphorus compound can be reduced to 1 ppm or less.
  • the oligo-phosphorus compound used in the purification method of the present invention will be described.
  • the oligo-phosphorus compound used in the present invention is represented by the formula (1).
  • RR 2 and R 3 are each independently hydrogen, hydroxyl group, halogen group, amino group, silanol group, thiol group, carboxyl group, sulfonate group, phosphate group, phosphorus group It represents an acid ester group, an ester group, a thioester group, an amide group, a nitro group, a monovalent hydrocarbon group, an organooxy group, an organoamino group, an organosilyl group, an organothio group, an acyl group or a sulfone group.
  • a and B each independently represent a divalent group represented by the following general formula (2) or (3).
  • R 4 to R U are each independently hydrogen, hydroxyl group, halogen group, amino group, silanol group, thiol group, carboxyl group, sulfonate group, phosphate group, phosphate ester group, ester group, thioester.
  • the monovalent hydrocarbon group include a methyl group, an ethyl group, a propyl group, a butyl group, a t-butyl group, a hexyl group, an octyl group, and a decyl group.
  • Alkyl groups such as cyclopentyl groups, cycloalkyl groups such as cyclohexyl groups, bicycloalkyl groups such as bicyclohexyl groups, bur groups, 1 propellyl groups, 2-propellyl groups, iso Loper group, 1-methyl-2-probe group, 1 or 2 or 3 butyr group, alkenyl group such as hexenyl group, phenyl group, xylyl group, tolyl group, biphenyl group, Some or all of the hydrogen atoms of these monovalent hydrocarbon groups, such as aralkyl groups such as naphthyl groups, benzyl groups, phenyl groups, phenylcyclohexyl groups, etc., and monovalent hydrocarbon groups, Examples thereof include those substituted with a hydroxyl group, an alkoxy group or the like.
  • organooxy group examples include an alkoxy group, an alkoxy group, an aryloxy group, and the like.
  • examples of the alkyl group, alkenyl group, and aryl group include the same groups as those exemplified above. It is done.
  • organoamino group examples include phenylamino group, methylamino group, ethylamino group, propylamino group, butylamino group, pentylamino group, hexylamino group, heptylamino group, octylamino group, noramino group, decylamino group, laurylamino group.
  • Dialkylamino groups such as alkylamino groups such as dimethylamino groups, dimethylamino groups, jetylamino groups, dipropylamino groups, dibutylamino groups, dipentylamino groups, dihexylamino groups, diheptylamino groups, dioctylamino groups, dino-lamino groups, didecylamino groups, etc.
  • alkylamino groups such as dimethylamino groups, dimethylamino groups, jetylamino groups, dipropylamino groups, dibutylamino groups, dipentylamino groups, dihexylamino groups, diheptylamino groups, dioctylamino groups, dino-lamino groups, didecylamino groups, etc.
  • organosilyl group examples include a trimethylsilyl group, a triethylsilyl group, a tripropylsilyl group, a tributylsilyl group, a tripentylsilyl group, a trihexylsilyl group, a pentyldimethylsilyl group, a hexyldimethylsilyl group, and an octyl group.
  • examples thereof include a dimethylsilyl group and a decyldimethylsilyl group.
  • organothio groups include alkylthio groups such as methylthio, ethylthio, propylthio, butylthio, pentylthio, hexylthio, heptylthio, octylthio, nonylthio, decylthio, and laurylthio. It is.
  • acyl group examples include a formyl group, a acetyl group, a propionyl group, a butyryl group, an isoptyryl group, a valeryl group, an isovaleryl group, and a benzoyl group.
  • the number of carbon atoms in the alkyl group, alkoxy group, thioalkyl group, alkylamino group, organosiloxy group, organosilyl group, etc. is not particularly limited, but is generally 1-20, preferably 1-8. .
  • Preferred substituents include fluorine, sulfonic acid group, substituted or unsubstituted organooxy group, alkyl group, and organosilyl group.
  • the oligo-phosphorus compound of the present invention has a formula (4) in which the ⁇ -conjugated system in the molecule is greatly expanded in consideration of improving the charge transport property of the charge transport thin film.
  • the charge transportability is synonymous with conductivity and means any one of hole transportability, electron transportability, and both charge transportability of holes and electrons.
  • the charge transporting varnish itself prepared using the oligo-phosphorus compound may have a charge transporting property, or the thin film obtained using the varnish may have a charge transporting property.
  • R 1 and R 2 are a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, particularly an alkyl group having 1 to 4 carbon atoms, and an alkyl group or alkoxy group having 1 to 4 carbon atoms, respectively.
  • Preferred are a phenyl group, a cyclohexyl group, a cyclopentyl group, a biphenyl group, a bicyclohexyl group or a phenylcyclohexyl group, or an acyl group having 2 to 4 carbon atoms.
  • R 3 has a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, and an alkoxy group as a substituent, but a phenol group is preferred! /.
  • R 1 is a hydrogen atom and R 3 is a phenyl group, that is, a compound in which both ends of an oligo-phosphorus compound are sealed with a phenyl group is preferable.
  • the substituents R 4 to R U include a hydrogen atom, an alkyl group, an alkoxy group, an alkoxyalkyl group, an alkenyl group, an acyl group, a sulfonic acid group, and a hydroxyl group, each having 1 to 4 carbon atoms.
  • a phenyl group, a cyclohexyl group, a cyclopentyl group, a biphenyl group, a bicyclohexyl group or a phenylcyclohexylene group is preferable.
  • R 4 to R U a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, and the carbon number of the alkyl group Is an alkoxyalkyl group having 1 to 20 carbon atoms, an alkyl group having 2 to 4 carbon atoms, an acyl group having 2 to 4 carbon atoms, a benzoyl group, a sulfonic acid group, and a hydroxyl group.
  • a phenyl group, a cyclohexyl group, a cyclopentyl group, a biphenyl group, a bicyclohexene A xyl group or a phenylcyclohexyl group is more preferred.
  • a hydrogen atom an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms and an alkyl group having 1 to 4 carbon atoms, a bur group, 2-Probel group, acetyl group, benzoyl group, sulfonic acid group, hydroxyl group, each substituent (the substituent is an alkyl group having 1 to 4 carbon atoms or an alkoxy group having 1 to 4 carbon atoms)
  • a phenyl group, a cyclohexyl group, a biphenyl group, a bicyclohexyl group or a phenylcyclohexyl group is preferred.
  • the oligo-phosphorus compound in the present invention has no molecular weight distribution, in other words, an oligomer having a dispersion force in consideration of increasing the solubility and making the charge transport property uniform. Linyi compound is preferable. Further, the molecular weight is usually 200 or more, preferably 400 or more as the lower limit for suppressing volatilization of the material and manifesting the charge transport property, and the upper limit is usually 5000 or less, preferably for improving the solubility. Is less than 2000.
  • m + n has a force of exerting a good charge transport property and also has a power of 4 or more from the viewpoint of ensuring solubility in a solvent. The following is preferable.
  • Such compounds include oligo-phosphorus compounds soluble in organic solvents such as phenol tetralin and phenol pentaline.
  • the method for synthesizing the above-mentioned oligo-phosphorus compound is not particularly limited, but in general, Bulletin of Chemical Society of Japan, 1994, No. 1 67, p. 1749-1752, and Synthetic Metals, USA, 1997, 84, p. 119-120.
  • the charge transporting varnish according to the present invention comprises an oligo-phosphorus compound having a content of each metal component of Li, Mg, Ca, Fe, Cu, Zn, Ti, Sn, Na and K of 1 ppm or less. It includes things.
  • the oligo-phosphorus compound is suitable for use in electronic materials with a low content of metal components, if the content of the acid complex is high, the varnish force is obtained using the oligo-phosphorus compound.
  • the surface roughness Ra of the fabricated charge transporting thin film increased, and as a result, organic EL devices equipped with this thin film did not emit light uniformly!
  • the extinction coefficient ⁇ is preferably lowered to 400 or less, more preferably 250 or less, even more preferably 100 or less, and even more preferably 30 or less.
  • Examples of the oligo-phosphorus compound having a low content of the metal component and the acid complex include an oligo-phosphorus compound obtained by the above-described purification method.
  • the solvent used in preparing the charge transporting varnish is not particularly limited as long as it can dissolve or disperse the oligo-phosphorus compound.
  • cyclohexanol Ethylene glycol, ethylene glycol diglycidyl ether, 1,3-octylene glycol, diethylene glycol, dipropylene glycol, triethylene glycol, tripropylene glycol, 1,3 butanediol, 1,4 butanediol, propylene glycol 1 type of xylene glycol, N, N dimethylformamide, N, N dimethylacetamide, N-methylpyrrolidone, N-methylformaldehyde, N, N, -dimethylimidazolidinone, dimethyl sulfoxide, black mouth form, toluene, methanol, etc. These can be used alone or in admixture of two or more.
  • a conventionally known charge transporting material such as an electron-accepting dopant or a hole-transporting dopant can be blended in an appropriate amount.
  • a sulfonic acid derivative represented by the following general formula (5) is preferable.
  • Specific examples of the sulfonic acid derivative include sulfosalicylic acid derivatives such as 5-sulfosalicylic acid.
  • D represents a benzene ring, naphthalene ring, anthracene ring, phenanthrene ring or heterocyclic ring, and R 16 R 17 each independently represents a carboxyl group or a hydroxyl group
  • the charge transporting thin film according to the present invention is prepared from the above-described charge transporting varnish, and has an average surface roughness Ra of 1 nm or less.
  • Ra exceeds lnm, the light emission efficiency in the organic EL element characteristics is lowered, and the light emission surface is likely to be non-uniform.
  • This thin film can be produced, for example, by applying a charge transporting varnish on a substrate and evaporating the solvent.
  • the varnish application method is not particularly limited, and examples thereof include a dipping method, a spin coating method, a transfer printing method, a roll coating method, an ink jet method, a spray method, and a brush coating.
  • the solvent evaporation method can be performed in an appropriate atmosphere using, for example, a hot plate or an oven. Evaporation may be performed.
  • the baking temperature may be any temperature that evaporates the solvent. For example, about 40 to 250 ° C. can be adopted.
  • the thickness of the charge transporting thin film is not particularly limited, but is preferably 5 to 200 nm when used as a charge injection layer in the organic EL device.
  • the charge transporting thin film can be suitably used as a thin film constituting an organic EL device.
  • the charge injection layer can be suitably used.
  • the materials constituting the cathode, the anode, the electron transport layer, the hole transport layer, and the light emitting layer constituting the organic EL element may be appropriately selected from known materials.
  • the ferrule tetralin (hereinafter abbreviated as PTA) represented by the formula (6) is replaced with Bulletin of Chemical Society of Japan, 1994, No. 67 , P.1749-1752, was synthesized from p-hydroxydiphenylamine and p-phenylenediamine (light blue solid, 85% yield).
  • the filtrate was allowed to cool until the internal temperature reached 20 ° C. After allowing to cool, the pale purple solution on which PTA was deposited was transferred to a glove box while being put in a reaction vessel, and nitrogen flow was performed until the relative humidity reached 5%.
  • the PTA was suction filtered using a Buchner funnel in a glove box while maintaining a relative humidity of 5%.
  • the PTA on the Buchner funnel was washed in the order of 200 mL of 1,4 dioxane, 200 mL of dehydrated toluene, and 200 mL of jetyl ether. The washed PTA was transferred to a lOOmL round bottom flask with a fluorocoating microspatel in a glove box, decompressed using a 3-way cock, and then purged with nitrogen.
  • the oxygen concentration (DO) in the solvent (dehydrated 1,4 dioxane) after deaeration using ultrasonic waves was less than 1%.
  • the oxygen concentration (DO) in the solvent was measured using a fluorescence oximeter [FO-960 (sensor: standard type WPH-130), manufactured by Automatic System Research Co., Ltd.]. At this time, DO was calibrated as 0% when nitrogen was measured and 20.9% when air was measured.
  • the filtrate was allowed to cool until the internal temperature reached 20 ° C. After cooling, the light purple solution with PTA deposited is While still in the reaction vessel, it was transferred to a glove box and nitrogen flow was performed until the relative humidity was 5%.
  • the PTA was suction filtered using a Buchner funnel in a glove box while maintaining a relative humidity of 5%. The PTA on the Buchner funnel was washed in the order of 200 mL of 1,4 dioxane, 200 mL of dehydrated toluene, and 200 mL of jetyl ether.
  • the PTA after washing was transferred to a lOOmL round bottom flask with a fluorocoating microspatel in a glove box, decompressed using a three-way cock, and then purged with nitrogen. Thereafter, it was dried under reduced pressure for 24 hours in a vacuum dryer maintained at 120 ° C. 19.44 g of white solid PTA (recovery rate 97.2%) was obtained.
  • the filtrate was allowed to cool until the internal temperature reached 20 ° C. After allowing to cool, the pale purple solution on which PTA was deposited was transferred to a glove box while being put in a reaction vessel, and nitrogen flow was performed until the relative humidity reached 5%.
  • the PTA was suction filtered using a Buchner funnel in a glove box while maintaining a relative humidity of 5%. The PTA on the Buchner funnel was washed in the order of 200 mL of 1,4 dioxane, 200 mL of dehydrated toluene, and 200 mL of jetyl ether.
  • the washed PTA was transferred to a lOOmL round bottom flask with a fluorocoating microspatel in a glove box, decompressed using a 3-way cock, and then purged with nitrogen. Thereafter, it was dried under reduced pressure for 24 hours in a vacuum dryer maintained at 120 ° C. 19.08 g of PTA as a white solid was obtained (recovery 95.4%).
  • the dark blue filtrate after suction filtration is transferred to a 1 L round bottom flask in a glove box, decompressed using a 3-way cock, purged with nitrogen, exposed to the atmosphere, and then using an evaporator. The solvent was distilled off completely.
  • the resulting blue PTA was washed with 200 mL of jetyl ether in a glove box. After washing, the PTA was transferred to a 100 mL round bottom flask with a fluoro-resin micro-part in a glove box, decompressed using a three-way cock, and then purged with nitrogen. Thereafter, it was dried under reduced pressure for 24 hours in a vacuum dryer maintained at 120 ° C. 82 g of PTAO. (Solid recovery 4.1%) was obtained as a blue solid.
  • a white solid PTA precipitated in the solvent and a blue solid PTA recovered from the filtrate were mixed evenly to obtain a PTA for confirming the effect of the activated carbon treatment alone.
  • the internal temperature was kept at 90 ° C., and the mixture was heated and stirred for 1 hour to completely dissolve PTA. Then, it was left to cool until the internal temperature reached 20 ° C. After allowing to cool, the purple solution with PTA deposited was transferred to a glove box while still in the reaction vessel, and nitrogen flow was performed until the relative humidity reached 5%. PTA was suction filtered using a Buchner funnel in a glove box while maintaining a relative humidity of 5%. The PTA on the Buchner funnel was washed in the order of 200 mL of 1,4-dioxane, 200 mL of dehydrated toluene, and 200 mL of jetyl ether.
  • the PTA was transferred to a lOOmL round bottom flask with a fluoro-resin micro-part in a glove box, decompressed using a 3-way cock, and then purged with nitrogen. Thereafter, it was dried under reduced pressure for 24 hours in a vacuum dryer maintained at 120 ° C. 19.58 g of white solid PTA (recovery rate 97.9%) was obtained.
  • UV-VIS ultraviolet-visible absorption
  • the solution was shaken over 2 minutes so that no concentration gradient occurred in the solution in the volumetric flask.
  • the acetonitrile baseline was then corrected over 3 minutes.
  • a completely homogeneous PTA solution was measured in the UV-VIS spectrum 1 minute after baseline correction.
  • the cell used for UV-VIS spectrum measurement was a quartz cell with a solution thickness of 1 cm.
  • the maximum absorption wavelength ( ⁇ ) appears near 560nm.
  • an inductively coupled plasma emission spectrometer (Vista—Pro, Seiko Instruments Inc.) was used, and PTA 200 mg was subjected to microwave digestion with 3 mL of nitric acid and 1 mL of sulfuric acid, and recovered at 20 g (100-fold dilution). Measured by luminescence.
  • the PTA immediately after synthesis used as a control contained Ca, Fe, and Na that seemed to be artificially or apparatusally mixed at the time of manufacture, and further used as a catalyst. It can be seen that a relatively large amount of Ti derived from the obtained titanium alkoxide is contained.
  • the PTA of Example 1 that had been subjected to activated carbon treatment and recrystallization treatment had a residual metal content of lppm or less for all of Li, Mg, Ca, Fe, Cu, Zn, Ti, Sn, Na, and K. It is powerful to be.
  • Example 1 the purification method of Example 1 is one in which both the oxidant and trace metal components contained in PTA are easily and efficiently removed by two treatments, activated carbon treatment and recrystallization treatment. It turns out that it is optimal.
  • the amount of activated carbon used was 0.2 g (1% by mass relative to PTA, Comparative Example 4), 0.4 g (2% by mass, Comparative Example 5), 0.8 g (4% by mass, Example 2) 1.2 g (6 mass%, Example 3), 1.6 g (8 mass%, Example 4), 2. Og (10 mass%, Example 5), 3. Og (15 mass) %, Example 6), 4. PTA was purified in the same manner as in Example 1, except that Og (20% by mass, Example 7) was used. Table 3 shows the recovery amount and recovery rate of PTA in Examples 2 to 7 and Comparative Examples 4 and 5. The PTAs obtained in Examples 2 to 7 and Comparative Examples 4 and 5 were all white solids.
  • Example 8 The PTA obtained in Example 1 was stored for 720 days in an environment of 23 ° C. and a relative humidity of 45%. The PTA after storage was purified again in the same manner as in Example 1 to obtain 19.30 g of white solid PTA (recovery rate 96.5%). For PTA (control) after storage for 720 days and PTA obtained by refining it, a UV-VIS spectrum was measured after preparing a solution in the same manner as in Example 1. Table 4 shows the absorbance A and extinction coefficient ⁇ attributed to the acid body in which the absorption maximum wavelength appears around 560 nm in the UV-VIS spectrum measurement.
  • the PTA obtained in Example 1 was stored at room temperature of 23 ° C and humidity of 45% for 370 days.
  • the PTA stored for 370 days was prepared in the same manner as in Example 1, and after measuring the UV-VIS spectrum, the extinction coefficient ⁇ attributable to the acid complex appearing at the absorption maximum wavelength near 560 nm was calculated. However, it showed a high value of 211.2422, and it was found that a lot of acid bodies were contained.
  • the soot after storage for 370 days has already been refined by activated carbon treatment, celite filtration, and recrystallization process, the trace metal components and their contents are the same as in Example 1, and the acid Only the content of the body is different.
  • a charge transporting varnish was prepared in the same manner as in Example 9, using the soot purified in Example 8.
  • a charge-transporting varnish was prepared in the same manner as in Example 9, using the cocoon prepared in Example 8 and used for purification after storage for 720 days.
  • the extinction coefficient ⁇ attributed to the oxidant appearing near the absorption maximum wavelength of 560 nm is 409.4214 as described above. Since this cocoon has already undergone purification, such as activated carbon treatment, celite filtration, and recrystallization process, the trace metal components and their contents are the same as in Example 1, and only the oxidant content. Is different.
  • Each of the charge transporting varnishes prepared in Examples 9 to L and Comparative Example 6 was applied onto a glass substrate with a hook by a spin coating method to form a 30 nm hole transporting thin film. . These thin films are observed with an atomic force microscope (AFM, Nanoscope IV type Dimension 3100, manufactured by Digital Co., Ltd., Digital Co., Ltd.). The surface average roughness (Ra) was measured. The AFM measurement was performed using the tapping method with the scanning at lHz and the z range at lOOnm.
  • Fig. 1 shows the AFM diagram of Example 9
  • Fig. 2 shows the AFM diagram of Example 10
  • Fig. 3 shows the AFM diagram of Comparative Example 6.
  • Table 9 shows Ra values of Example 9 to L 1 and Comparative Example 6.
  • the charge transporting varnish prepared in Example 9 was applied on a glass substrate with ITO by a spin coating method to form a 30 nm hole transporting thin film. After that, the substrate on which the thin film has been formed is introduced into a vacuum deposition system, and a—NPD, Alq, LiF, and Al are sequentially deposited, and OLED
  • the deposition rate was 0.3 to 0.4 nmZs for materials other than LiF and 0.02 to 0.04 nmZs for LiF.
  • a series of deposition operations was performed under vacuum until all layers were deposited.
  • An OLED device was produced in the same manner as in Example 12 except that the charge transporting varnish prepared in Example 10 was used.
  • Example 14 An OLED device was produced in the same manner as in Example 12 except that the charge transporting varnish prepared in Example 11 was used.
  • An OL ED device was produced in the same manner as in Example 12 except that the charge transporting varnish prepared in Comparative Example 7 was used.
  • the device characteristics were measured using the OLED devices fabricated in Examples 12 to 14 and Comparative Example 7. Table 6 shows element characteristics, Ip, and conductivity.
  • the characteristics of the OLED element were measured using an organic EL luminous efficiency measuring device (EL1003, manufactured by Precise Gage), and the emission start voltage or 10 mAZcm 2 , 50 mAZcm 2 and lOOmA / cm 2 were measured. The voltage, brightness, and light emission efficiency when the threshold value is used are shown.
  • EL1003 organic EL luminous efficiency measuring device
  • the conductivity after the formation of the hole-transporting thin film on the ITO-coated glass substrate was introduced into a vacuum deposition apparatus, and lOOnm deposited A1, thickness 30nm, lOOmAZcm 2 Energized current - voltage characteristics force was also calculated .
  • the film thickness was measured using a surface shape measuring device (DEKTAK3ST, manufactured by Nippon Vacuum Technology Co., Ltd.), and Ip was measured using a photoelectron spectrometer (AC-2, manufactured by Riken Keiki Co., Ltd.). Furthermore, the light-emitting surface when the OLED device fabricated in Example 12 is driven at 8V is shown in FIG.
  • FIG. Fig. 6 shows the light-emitting surface when the OLED device fabricated in (1) is driven at 8V
  • Fig. 7 shows the light-emitting surface when the OLED device fabricated in Comparative Example 7 is driven at 8V.
  • the light emitting surface was observed using an optical microscope ECLIPSE ME600 (manufactured by Nikon Co., Ltd.), and observed and photographed at a magnification of 10 times.
  • Inhomogeneous parts of electroluminescence such as dark spots and bright spots are assumed to be related to the surface roughness of the hole injection layer. This part promotes electrical short-circuiting of organic EL elements and causes uneven emission. This is one of the factors that increase the process margin, making it impossible to provide inexpensive and highly efficient organic EL devices.
  • Example 14 even if PTA is produced in a large amount of acid bodies, if it is purified again using the purification method of the present invention and used again, it will be originally oxidized. It is clear that an OLED element exhibiting the same excellent device characteristics as Example 12 using PTA with a small amount of PTA can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Electroluminescent Light Sources (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Description

オリゴァニリンィ匕合物の精製方法およびオリゴァニリンィ匕合物 技術分野
[0001] 本発明は、オリゴァ-リン化合物の精製方法およびオリゴァ-リンィ匕合物に関する。
背景技術
[0002] 本出願人は、低分子オリゴァ-リン化合物力 なる電荷輸送性物質を用いた有機 溶媒系の電荷輸送性ワニスを見出すとともに、これを使用して得られる電荷輸送性薄 膜を使用した有機エレクト口ルミネッセンス素子 (以下、有機 EL素子と略す)が、優れ た特性を有することを見出した (特許文献 1 :特表平 10— 509751号公報参照)。 オリゴァ-リンィ匕合物への不純物の混入は、有機 EL素子の寿命を縮めたり、有機 E L素子特性の再現性を低下させたりする等の問題を弓 Iき起こす原因となる。
混入する不純物としては、微量の金属分が考えられる。例えば、製造時に、人為的 に、もしくは装置的に混入する Ca、 Fe、 Naや、オリゴァ-リンィ匕合物の製造に使用さ れる金属試薬に由来する残存金属が挙げられる。
[0003] 近年の環境への配慮に対する期待および社会的責任、さらには電子材料分野に おいて詳細な金属管理項目が規定される潮流になっていることに鑑みれば、オリゴァ 二リン (有機 EL素子)中に残存する金属分をできる限り減少させることが必要となる。 また、優れた特性を有する有機 EL素子を、一定の品質で、かつ、再現性よく製造 することは、工業的製造法という観点から特に重要な課題である。工業的スケールで 再現性を保持するためには、一般的に、煩雑な操作を必要としない手法が望まれる
[0004] 一方、上述した低分子オリゴァニリン化合物は、長期保存や製造の段階で空気中 の酸素や、溶媒中の酸素などによって容易に酸ィ匕され、キノンジィミン構造を含む酸 化体となり易い。この酸化体の生成量が増加すると、薄膜の均一性が損なわれるなど 、成膜の再現性に問題が生じることがある。
本出願人は、この酸ィ匕体を除去するためにヒドラジン等の還元剤でオリゴァ-リンィ匕 合物を処理する方法 (特許文献 2 :国際公開第 03Z071559号パンフレット参照)や 、高 、均一性を有する薄膜を作成するためにワニス調製溶剤として高粘度溶剤を用
V、る方法 (特許文献 3:国際公開第 04Z043117号パンフレット参照)等を見出し、 薄膜の均一性に関する改良を既に行ってきた。
[0005] しかし、これらの改良法を用いる場合であっても、当該方法を工業的スケールで再 現性よく実施するとともに、製造工程における管理の容易化を図るためには、原料と なるオリゴァ-リン化合物への酸ィ匕体の含有割合ができるだけ少なぐかつ、一定で あることが望まれる。
このように、原料となるオリゴァ-リンィ匕合物の純度は、安定した EL素子特性を再 現するために重要な要素であることから、その優れた精製方法の開発が望まれる。
[0006] 特許文献 1 :特表平 10— 509751号公報
特許文献 2 :国際公開第 03Z071559号パンフレット
特許文献 3 :国際公開第 04Z043117号パンフレット
発明の開示
発明が解決しょうとする課題
[0007] 本発明は、上記事情に鑑みてなされたものであり、不純物の含有量が少なぐ優れ た有機 EL素子特性を再現性よく発揮させ得るオリゴァ-リンィ匕合物を得ることができ る、オリゴァ-リン化合物の効率的な精製方法を提供することを目的とする。
課題を解決するための手段
[0008] 本発明者らは、上記目的を達成するために鋭意検討を重ねた結果、所定量以上の 酸化体を含有するオリゴァ-リン化合物の溶液を調製し、これを所定量の活性炭で 処理した後、再結晶させることで、オリゴァ-リン化合物中の酸化体および残存金属 成分の含有量を著しく低減し得るとともに、酸化体および残存金属成分の含有量の 低 、オリゴァ-リンィ匕合物から得られる電荷輸送性薄膜を備えた有機 EL素子が、優 れた EL素子特性を再現性よく発揮し得ることを見出し、本発明を完成した。
[0009] すなわち、本発明は、
1. 製造後の未精製の式(1)で表されるオリゴァ-リンィ匕合物を、溶媒に溶かしてォ リゴァ-リンィ匕合物含有溶液を調製し、このオリゴァ-リンィ匕合物含有溶液を、前記ォ リゴァユリン化合物に対して 4〜 20質量%の活性炭で処理した後、さらに再結晶処理 し、 560nmにおける吸光係数 ε力 ¾0以下である式(1)で表されるオリゴァ 合物を得ることを特徴とするオリゴァ-リンィ匕合物の精製方法、
[化 1]
Figure imgf000005_0001
(式中、 R1 R2および R3は、それぞれ独立して、水素、水酸基、ハロゲン基、アミノ基、 シラノール基、チオール基、カルボキシル基、スルホン酸基、リン酸基、リン酸エステ ル基、エステル基、チォエステル基、アミド基、ニトロ基、一価炭化水素基、オルガノ ォキシ基、オルガノアミノ基、オルガノシリル基、オルガノチォ基、ァシル基またはスル ホン基を示し、 Aおよび Bは、それぞれ独立して、下記一般式(2)または(3)
[化 2]
Figure imgf000005_0002
( 2 ) ( 3 )
で表される二価の基であり、 R4〜R"は、それぞれ独立して、水素、水酸基、ハロゲン 基、アミノ基、シラノール基、チオール基、カルボキシル基、スルホン酸基、リン酸基、 リン酸エステル基、エステル基、チォエステル基、アミド基、ニトロ基、一価炭化水素 基、オルガノォキシ基、オルガノアミノ基、オルガノシリル基、オルガノチォ基、ァシル 基またはスルホン基を示し、 mおよび nは、それぞれ独立して、 1以上の整数で、 m+ n≤ 20を満足する。)
2. 酸化体を含み、 560nmにおける吸光係数 ε力 ¾0〜: L000である式(1)で表さ れるオリゴァ-リンィ匕合物を、溶媒に溶力してオリゴァ-リンィ匕合物含有溶液を調製し 、このオリゴァ-リンィ匕合物含有溶液を、前記オリゴァ-リン化合物に対して 4〜20質 量%の活性炭で処理した後、さらに再結晶処理し、 560nmにおける吸光係数 εが 3 0以下である式(1)で表されるオリゴァ-リンィ匕合物を得ることを特徴とするオリゴァ- リン化合物の精製方法、 [化 3]
( 1 )
Figure imgf000006_0001
(式中、 Aおよび Bは、上記と同じ。 )
3. Li、 Mg、 Ca、 Fe、 Cu、 Zn、 Ti、 Sn、 Naおよび Kの各金属成分の含有量が lpp m以下である式(1)で表されるオリゴァ-リンィ匕合物を得る 1または 2のオリゴァ-リン 化合物の精製方法、
4. 前記オリゴァ-リンィ匕合物力 式 (4)で表されるオリゴァ-リンィ匕合物である 1〜3 < 、ずれかのオリゴァ-リン化合物の精製方法、
[化 4]
Figure imgf000006_0002
(式中、 Ri〜R'、 m, nは、上記と同じ。 )
5. Li、 Mg、 Ca、 Fe、 Cu、 Zn、 Ti、 Sn、 Naおよび Kの各金属成分の含有量が lpp m以下であることを特徴とする式(1)で表されるオリゴァ-リン化合物、
[化 5]
Figure imgf000006_0003
(式中、
Figure imgf000006_0004
Aおよび Bは、上記と同じ。 )
6. 560nmにおける吸光係数 ε力 400以下である 5のオリゴァ-リン化合物、
7. 式 (4)で表される 5または 6のオリゴァ-リンィ匕合物、
Figure imgf000007_0001
(式中、 〜 、 m, nは、前記と同じ意味を示す。 )
8. 5〜7の 、ずれかのオリゴァ-リン化合物を含むことを特徴とする電荷輸送性ヮ ニス、
9. 8の電荷輸送性ワニスカゝら作製され、表面平均粗さ Raが lnm以下であることを 特徴とする電荷輸送性薄膜、
10. 9の電荷輸送性薄膜を備えることを特徴とする有機エレクト口ルミネッセンス素 子
を提供する。
発明の効果
[0010] 本発明によれば、オリゴァ-リン化合物に含まれる酸化体および残存金属量を著し く低減できる。これにより、当該オリゴァ-リンィ匕合物を用いてなる電荷輸送性薄膜に おける異物発生等を抑制でき、この薄膜を備えた有機 EL素子の長寿命化を達成で きる上、素子特性の再現性を確保することもできる。また、酸化体の含有割合を一定 以下にすることができるため、オリゴァ-リン製造工程の管理が容易になるだけでなく 、再現性よく一定の品質のオリゴァ-リンを得ることができる。
図面の簡単な説明
[0011] [図 1]実施例 9の原子間力顕微鏡写真を示す図である。
[図 2]実施例 10の原子間力顕微鏡写真を示す図である。
[図 3]比較例 6の原子間力顕微鏡写真を示す図である。
[図 4]実施例 12の OLED素子を 8Vで駆動した時の発光面を示す図である。
[図 5]実施例 13の OLED素子を 8Vで駆動した時の発光面を示す図である。
[図 6]実施例 14の OLED素子を 8Vで駆動した時の発光面を示す図である。
[図 7]比較例 7の OLED素子を 8Vで駆動した時の発光面を示す図である。
発明を実施するための最良の形態 [0012] 以下、本発明についてさらに詳しく説明する。
本発明に係る第 1のオリゴァ-リン化合物の精製方法は、製造後の未精製の上記 式(1)で表されるオリゴァ-リン化合物を、溶媒に溶力してオリゴァ-リン化合物含有 溶液を調製し、このオリゴァ-リンィ匕合物含有溶液を、オリゴァ-リンィ匕合物に対して 4〜20質量%の活性炭で処理した後、さらに再結晶処理し、 560nmにおける吸光 係数 εが 30以下である上記式(1)で表されるオリゴァ-リンィ匕合物とするものである 。すなわち、活性炭処理と再結晶処理とを組み合わせることで、再結晶処理のみ、活 性炭処理のみ、セライト処理のみなどでは、達成し得ない精製度のオリゴァニリンィ匕 合物を得るものである。
[0013] 本発明の第 1の精製方法に供されるオリゴァ-リンィ匕合物は、製造 (合成)直後の未 精製のものや、未精製の状態で所定期間保存後のものであり、通常は、一定量以上 の酸ィ匕体を含んでいる。
この酸ィ匕体は、 560nmに吸収極大波長を有する、下記式で示されるキノンジィミン 構造を部分構造として有しており、一般的な手法により得られたオリゴァ-リン化合物 は、未精製の場合、製造直後の 560nmにおける吸光係数 ε力 ¾0〜: LOO以上である ことが多ぐまた、大気雰囲気下、常温で、例えば、 720日間以下程度の期間保存後 のオリゴァ-リンィ匕合物は、同吸光係数 ε力 00〜 1000程度であることが多い。
[0014] [化 7]
Figure imgf000008_0001
(式中、 R4〜R6は上記と同じ。)
そこで、この 560nmにおける吸光係数 εを酸化体含有量の指標とし、本発明に係 る第 2のオリゴァ-リンィ匕合物の精製方法は、酸化体を含み、 560nmにおける吸光 係数 εが 80〜: L000である上記式(1)で表されるオリゴァ-リンィ匕合物を、溶媒に溶 力してオリゴァ-リンィ匕合物含有溶液を調製し、このオリゴァ-リンィ匕合物含有溶液を 、オリゴァ-リンィ匕合物に対して 4〜20質量%の活性炭で処理した後、さらに再結晶 処理し、 560nmにおける吸光係数 εが 30以下である上記式(1)で表されるオリゴァ 二リン化合物とするものである。
この第 2の精製方法に供されるオリゴァ-リンィ匕合物は、上記吸光係数 εを有して いるものであれば、未精製のものでも、再結晶などの一般的な精製処理が施されたも のでもよぐさらには、本発明の精製処理を施した後、所定期間保存して上記吸光係 数を与える程度に再度酸ィ匕体が増加したものであってもよい。
[0016] 本発明にお 、て、オリゴァ-リン化合物含有溶液の調製および再結晶処理に使用 可能な溶媒としては、オリゴァ-リンィ匕合物を溶解し得る溶媒であれば特に限定され るものではなぐ例えば、 1, 4 ジォキサン、テトラヒドロフラン、 1, 3 ジォキソラン、 ジエチレングリコールジェチルエーテル、ァセトニトリルなどを用いることができるが、 1, 4 ジォキサンが好適である。
オリゴァ-リンィ匕合物が、溶媒中の酸素で酸化される可能性があることから、オリゴ ァ-リン化合物含有溶液の調製および再結晶処理に使用される溶媒は、脱気処理 が施されていることが好ましい。脱気処理法は、特に限定されるものではなぐ超音波 脱気、真空脱気などの公知の脱気法から適宜選択すればよい。脱気後の溶媒中の 酸素濃度 (DO)は、特に限定されるものではないが、 5%以下程度とすることが好まし ぐより好ましくは 3%以下、より一層好ましくは 1%以下である。
また、オリゴァ-リンィ匕合物含有溶液中のオリゴァ-リン濃度は、オリゴァ-リンが完 全に溶解し得る濃度以内であればよいが、活性炭処理時の操作性や、再結晶処理 での精製度と回収率とのバランスなどを考慮すると、 0. 1〜10質量%が好ましぐ 1 〜6質量%がより好ましい。
[0017] 本発明の第 1および第 2の精製方法 (以下、両者を併せて単に精製方法という)で は、調製したオリゴァ-リン化合物含有溶液を、オリゴァ-リンィ匕合物に対して 4〜20 質量%の活性炭にて活性炭処理を行う。この場合、活性炭の種類は特に限定されな いが、粉末状の活性炭が好適である。また、活性炭処理にあたっては、オリゴァ-リン 化合物含有溶液中に活性炭を加える手法、活性炭中にオリゴァ-リン含有溶液をカロ える手法のどちらも用いてもよい。
活性炭処理後、使用した活性炭を除去する手法に特に制限はないが、オリゴァユリ ン化合物が溶解している状態で熱時ろ過する手法が簡便である。また、ろ過の際に は、固定相としてセライトを用いることが好ましい。この際、セライト使用量は任意であ る力 活性炭に対して、 10〜300質量%程度が好適である。
[0018] 本発明の精製方法において、活性炭使用量力 質量0 /0未満であると、オリゴァユリ ン化合物中に含まれる不純物、特に微量金属分、の除去効果が不十分となる。また 、 20質量%を超えると、活性炭除去時のろ過性などが悪ィ匕し、オリゴァ-リンィ匕合物 の回収率が低下する。工業的製造プロセスの観点から、回収率は非常に重要なファ クタ一であり、微量金属分が充分に除去できても、オリゴァ-リンィ匕合物の回収率が 低下してしまっては歩留まり、安定供給の面で問題となる。
この点を考慮し、微量金属成分の除去効果を十分に発揮させつつ、オリゴァニリン 化合物の回収率を 90%以上とするためには、活性炭使用量を 4〜 15質量%とするこ と力 子ましく、さらにオリゴァ-リンィ匕合物の回収率を 95%以上とするためには、活性 炭使用量を 4〜 10質量%とすることが好ま 、。
なお、活性炭添加の基準となるオリゴァ-リンィ匕合物質量は、不純物を含む値であ る。
[0019] 本発明の精製方法では、活性炭を除去した後、さらに再結晶処理を行う。この処理 は、活性炭除去後のろ液力も溶媒を除去して得た一次精製オリゴァ-リンィ匕合物を 再度溶媒に溶力して行うこともできるが、ろ過にて活性炭を除去した後のろ液をその まま用いると、溶媒除去などの余分な操作を必要としな 、ため効率的な処理が可能と なる。
再結晶時の冷却温度は、溶解しているオリゴァ-リンィ匕合物が析出する温度以下 であれば、特に制限はないが、通常、熱時ろ過したろ液を室温(20°C)程度まで放冷 する手法が用いられる。
[0020] 再結晶にてオリゴァ-リン化合物が析出した後、析出したオリゴァ-リンィ匕合物をろ 過などの適宜な手段を用いて回収し、さらに乾燥する。オリゴァ-リン化合物は、空 気中の酸素でも酸化され易い性質を有しているため、この回収作業は、窒素ガス等 の不活性ガス雰囲気下で行うことが好ましぐまた、その後の乾燥工程は、真空乾燥 機などを用いて減圧下で行うことが好ましい。この際、乾燥温度および時間は任意で あるが、一般的には室温(20°C)程度から 200°C程度の温度で、 1〜48時間程度乾 燥させる。
[0021] なお、本発明の精製方法では、活性炭処理および再結晶処理をそれぞれ複数回 行っても、活性炭処理および再結晶処理の一連の処理を繰り返し行ってもよいが、 活性炭処理およびこれに続く再結晶処理の一連の処理を一回行えば、通常は、 560 nmにおける吸光係数 εが 30以下である式(1)で表されるオリゴァ-リンィ匕合物を得 ることがでさる。
このような酸ィ匕体の含有量の低いオリゴァ-リンィ匕合物を用いて作製された電荷輸 送性薄膜は、成膜性に優れたものとなる。
また、オリゴァ-リンィ匕合物を用いて作製される電荷輸送性薄膜を、電子デバイス 用途に用いるためには、微量金属成分を lppm以下など最小限まで減少させること が好ましいが、本発明の精製方法によれば、オリゴァ-リンィ匕合物中の Li、 Mg、 Ca、 Fe、 Cu、 Zn、 Ti、 Sn、 Naおよび Kの各金属成分の含有量を lppm以下まで減少す ることちでさる。
[0022] 次に、本発明の精製方法に共されるオリゴァ-リンィ匕合物について説明する。本発 明で使用されるオリゴァ-リンィ匕合物は、式(1)で表される。
[0023] [化 8]
( 1 )
Figure imgf000011_0001
[0024] 式(1)中、 R R2および R3は、それぞれ独立して、水素、水酸基、ハロゲン基、アミ ノ基、シラノール基、チオール基、カルボキシル基、スルホン酸基、リン酸基、リン酸ェ ステル基、エステル基、チォエステル基、アミド基、ニトロ基、一価炭化水素基、オル ガノォキシ基、オルガノアミノ基、オルガノシリル基、オルガノチォ基、ァシル基または スルホン基を示す。 Aおよび Bは、それぞれ独立して、下記一般式(2)または(3)で 表される二価の基を示す。
[0025] [化 9]
Figure imgf000012_0001
( 2 ) ( 3 )
(R4〜RUは、それぞれ独立して、水素、水酸基、ハロゲン基、アミノ基、シラノール基 、チオール基、カルボキシル基、スルホン酸基、リン酸基、リン酸エステル基、エステ ル基、チォエステル基、アミド基、ニトロ基、一価炭化水素基、オルガノォキシ基、ォ ルガノアミノ基、オルガノシリル基、オルガノチォ基、ァシル基またはスルホン基を示し 、 mおよび nは、それぞれ独立して、 1以上の整数で、 m+n≤20を満足する。 ) [0026] 一価炭化水素基の具体例としては、メチル基,ェチル基,プロピル基,ブチル基, t ブチル基,へキシル基,ォクチル基,デシル基等のアルキル基、シクロペンチル基 ,シクロへキシル基等のシクロアルキル基、ビシクロへキシル基等のビシクロアルキル 基、ビュル基, 1 プロぺ-ル基, 2—プロぺ-ル基,イソプロぺ-ル基, 1ーメチルー 2—プロべ-ル基, 1または 2または 3 ブテュル基,へキセニル基等のァルケ-ル基 、フエ-ル基,キシリル基,トリル基,ビフエ-ル基,ナフチル基等のァリール基、ベン ジル基,フエ-ルェチル基,フエ-ルシクロへキシル基等のァラルキル基などや、こ れらの一価炭化水素基の水素原子の一部または全部がハロゲン原子、水酸基、ァ ルコキシ基などで置換されたものが挙げられる。
[0027] オルガノォキシ基の具体例としては、アルコキシ基、ァルケ-ルォキシ基、ァリール ォキシ基などが挙げられ、これらのアルキル基、アルケニル基、ァリール基としては、 上記で例示したと同様のものが挙げられる。
オルガノアミノ基の具体例としては、フエニルァミノ基,メチルァミノ基,ェチルァミノ 基,プロピルアミノ基,ブチルァミノ基,ペンチルァミノ基,へキシルァミノ基,へプチ ルァミノ基,ォクチルァミノ基,ノ-ルァミノ基,デシルァミノ基,ラウリルアミノ基等のァ ルキルアミノ基、ジメチルァミノ基,ジェチルァミノ基,ジプロピルアミノ基,ジブチルァ ミノ基,ジペンチルァミノ基,ジへキシルァミノ基,ジヘプチルァミノ基,ジォクチルアミ ノ基,ジノ -ルァミノ基,ジデシルァミノ基等のジアルキルアミノ基、シクロへキシルアミ ノ基、モルホリノ基などが挙げられる。 [0028] オルガノシリル基の具体例としては、トリメチルシリル基、トリェチルシリル基、トリプロ ビルシリル基、トリブチルシリル基、トリペンチルシリル基、トリへキシルシリル基、ペン チルジメチルシリル基、へキシルジメチルシリル基、ォクチルジメチルシリル基、デシ ルジメチルシリル基などが挙げられる。
オルガノチォ基の具体例としては、メチルチオ基、ェチルチオ基、プロピルチオ基、 ブチルチオ基、ペンチルチオ基、へキシルチオ基、へプチルチオ基、ォクチルチオ 基、ノニルチオ基、デシルチオ基、ラウリルチオ基などのアルキルチオ基等が挙げら れる。
[0029] ァシル基の具体例としては、ホルミル基、ァセチル基、プロピオニル基、ブチリル基 、イソプチリル基、バレリル基、イソバレリル基、ベンゾィル基等が挙げられる。
アルキル基、アルコキシ基、チォアルキル基、アルキルアミノ基、オルガノシロキシ 基、オルガノシリル基などにおける炭素数は、特に限定されるものではないが、一般 に炭素数 1〜20、好ましくは 1〜8である。
好ましい置換基としては、フッ素、スルホン酸基、置換もしくは非置換のオルガノォ キシ基、アルキル基、オルガノシリル基が挙げられる。
[0030] さらに、本発明のオリゴァ-リンィ匕合物は、電荷輸送性薄膜の電荷輸送性を向上さ せる点を考慮すると、分子内の π共役系をなるベく拡張させた式 (4)で表されるオリ ゴァ-リンィ匕合物が好ましい。ここで電荷輸送性とは、導電性と同義であり、正孔輸送 性、電子輸送性、正孔および電子の両電荷輸送性のいずれかを意味する。本発明 においては、オリゴァ-リン化合物を用いて作成される電荷輸送性ワニス自体に電荷 輸送性があるものでもよぐ当該ワニスを使用して得られる薄膜に電荷輸送性がある ものでもよい。
[0031] [化 10]
Figure imgf000013_0001
(式中、 〜 、 m, nは、上記と同じ意味を示す。 ) [0032] 式 (4)において、 R1および R2としては、水素原子、炭素数 1〜20、特に炭素数 1〜 4のアルキル基、それぞれ炭素数 1〜4のアルキル基もしくはアルコキシ基の置換基 を有してもよいフエ-ル基、シクロへキシル基、シクロペンチル基、ビフエ-ル基、ビシ クロへキシル基もしくはフエ-ルシクロへキシル基、炭素数 2〜4のァシル基が好まし い。 R3としては、水素原子、炭素数 1〜4のアルキル基、置換基としてアルコキシ基を 有して 、てもよ 、フエ-ル基が好まし!/、。
特に R1が水素原子で、かつ R3がフエニル基である化合物、すなわちオリゴァ-リン 化合物の両末端がフエニル基で封止されて ヽるものが好まし 、。
[0033] 置換基 R4〜RUとしては、水素原子、アルキル基、アルコキシ基、アルコキシアルキ ル基、ァルケ-ル基、ァシル基、スルホン酸基、水酸基、それぞれ炭素数 1〜4のァ ルキル基またはアルコキシ基の置換基を有して 、てもよ 、フエ-ル基、シクロへキシ ル基、シクロペンチル基、ビフエ-ル基、ビシクロへキシル基もしくはフエ-ルシクロへ キシノレ基が好ましい。
[0034] 中でも、 R4〜RUとしては、水素原子、炭素数 1〜20のアルキル基、炭素数 1〜20 のアルコキシ基、アルコキシ基の炭素数が 1〜20でありアルキル基の炭素数が 1〜2 0のアルコキシアルキル基、炭素数 2〜4のァルケ-ル基、炭素数 2〜4のァシル基、 ベンゾィル基、スルホン酸基、水酸基、それぞれ置換基 (該置換基は炭素数 1〜4の アルキル基または炭素数 1〜4のアルコキシ基である)を有して!/、てもよ!/、フエ-ル基 、シクロへキシル基、シクロペンチル基、ビフエ-ル基、ビシクロへキシル基もしくはフ ェニルシクロへキシル基がより好ましい。特に、水素原子、炭素数 1〜4のアルキル基 、炭素数 1〜4のアルコキシ基、アルコキシ基の炭素数 1〜4でありアルキル基の炭素 数が 1〜4のアルコキシアルキル基、ビュル基、 2—プロべ-ル基、ァセチル基、ベン ゾィル基、スルホン酸基、水酸基、それぞれ置換基 (該置換基は炭素数 1〜4のアル キル基または炭素数 1〜4のアルコキシ基である)を有して!/、てもよ!/、フエ-ル基、シ クロへキシル基、ビフエ-ル基、ビシクロへキシル基もしくはフエ-ルシクロへキシル基 が好適である。
なお、式 (4)中の 2つのベンゼン環において、同一の符号を付した置換基同士は 互いに同一でも、異なっていてもよい。 [0035] 本発明におけるオリゴァ-リンィ匕合物は、溶解性を高めるとともに、電荷輸送性を均 一にするということを考慮すると、分子量分布のない、言い換えると分散度力^のオリ ゴァ-リンィ匕合物であることが好ましい。また、その分子量は、材料の揮発の抑制およ び電荷輸送性発現のために、下限として通常 200以上、好ましくは 400以上であり、 また溶解性向上のために、上限として通常 5000以下、好ましくは 2000以下である。
[0036] 一般式(1)および (4)において、 m+nは、良好な電荷輸送性を発揮させるという点 力も 4以上であることが好ましぐ溶媒に対する溶解性の確保するという点から 16以 下であることが好ましい。
このような化合物の具体例としては、フエ-ルテトラァ-リン、フエ-ルペンタァ-リン 等の有機溶媒に可溶なオリゴァ-リンィ匕合物が挙げられる。
上記オリゴァ-リンィ匕合物の合成法としては特に限定されないが、一般的には、ブ レティン'ォブ'ケミカル'ソサエティ'ォブ 'ジャパン(Bulletin of Chemical Society of Ja pan) , 1994年、第 67卷、 p.1749— 1752、およびシンセティック'メタルズ(Synthetic Metals)、米国、 1997年、第 84卷、 p.119— 120に記載された方法が用いられる。
[0037] 本発明に係る電荷輸送性ワニスは、 Li、 Mg、 Ca、 Fe、 Cu、 Zn、 Ti、 Sn、 Naおよ び Kの各金属成分の含有量が lppm以下のオリゴァ-リンィ匕合物を含むものである。 ここで、金属成分の含有量が低ぐ電子材料用途に好適なオリゴァ-リン化合物で あっても、酸ィ匕体の含有量が多い場合には、そのオリゴァ-リン化合物を用いてなる ワニス力 作製した電荷輸送性薄膜の表面平均粗さ Raが増大し、その結果、この薄 膜を備える有機 EL素子は、均一発光し得な!/、可能性が高!、。
そこで、本発明の電荷輸送性ワニス力 得られる薄膜中の異物発生などを抑制して 薄膜の平坦ィ匕性を高めるとともに、有機 EL素子の発光面の均一化を図るためには、 560nmでの吸光係数 εを好ましくは 400以下、より好ましくは 250以下、さらに好ま しくは 100以下、より一層好ましくは 30以下まで低下させることが望ましい。
このような金属成分および酸ィ匕体の含有量が少ないオリゴァ-リンィ匕合物としては、 例えば、上述の精製方法で得られるオリゴァ-リン化合物が挙げられる。
[0038] この電荷輸送性ワニスを調製する際に用いられる溶媒としては、オリゴァ-リンィ匕合 物を溶解または分散し得るものであれば特に限定はなぐ例えば、シクロへキサノー ル、エチレングリコール、エチレングリコールジクリシジルエーテル、 1, 3—オタチレン グリコール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、ト リプロピレングリコール、 1, 3 ブタンジオール、 1, 4 ブタンジオール、プロピレング リコール、へキシレングリコール、 N, N ジメチルホルムアミド、 N, N ジメチルァセ トアミド、 N—メチルピロリドン、 N—メチルホルムァ-リド、 N, N,—ジメチルイミダゾリ ジノン、ジメチルスルホキシド、クロ口ホルム、トルエン、メタノール等を 1種単独で、ま たは 2種以上混合して用いることができる。
[0039] また、電荷輸送性ワニス中には、従来公知の電子受容性ドーパントゃ正孔輸送性 ドーパントなどの電荷輸送物質を適宜な量で配合することもできる。特に本発明にお いては、下記一般式(5)で示されるスルホン酸誘導体が好ましい。このスルホン酸誘 導体の具体例としては、スルホサリチル酸誘導体、例えば、 5—スルホサリチル酸など が挙げられる。
[化 11]
R17\ SO,H
\ ? ( 5 )
6
(式中、 Dはベンゼン環、ナフタレン環、アントラセン環、フエナントレン環または複素 環を表し、 R16 R17はそれぞれ独立してカルボキシル基もしくはヒドロキシル基を表す o )
[0040] 本発明に係る電荷輸送性薄膜は、上述の電荷輸送性ワニスから作製され、表面平 均粗さ Raが lnm以下のものである。
ここで、 Raが lnmを超えると、有機 EL素子特性における発光効率が低下し、発光 面が不均一になる可能性が高い。
この薄膜は、例えば、電荷輸送性ワニスを基材上に塗布し、溶剤を蒸発させること で、作製できる。ワニスの塗布方法としては特に限定されるものではなぐディップ法、 スピンコート法、転写印刷法、ロールコート法、インクジェット法、スプレー法、刷毛塗 り等が挙げられる。
溶剤の蒸発法は、例えば、ホットプレートやオーブンを用いて、適宜な雰囲気下で 蒸発を行えばよい。焼成温度は溶剤を蒸発させる温度であればよぐ例えば、 40〜2 50°C程度を採用できる。
電荷輸送性薄膜の膜厚は特に限定されないが、有機 EL素子内で電荷注入層とし て用いる場合、 5〜200nmが好適である。
[0041] 上記電荷輸送性薄膜は、有機 EL素子を構成する薄膜として好適に用いることがで きる。
具体的には、陰極および陽極と、これら各極間に介在する、電子輸送層、発光層、 正孔輸送層、電荷注入層などの有機薄膜層とを備える有機 EL素子において、特に 電荷注入層として好適に用いることができる。
なお、有機 EL素子を構成する陰極、陽極、電子輸送層、正孔輸送層および発光 層を構成する材料などは、公知のものから適宜選択して用いればよい。
実施例
[0042] 次に実施例および比較例を挙げて本発明をより具体的に説明する力 本発明は下 記実施例に限定されるものではな 、。
[0043] [合成例 1]
式(6)に示されるフエ-ルテトラァ-リン(以下、 PTAと略す)を、ブレティン'ォブ 'ケ ミカル'ソサエティ'ォブ 'ジャパン(Bulletin of Chemical Society of Japan)、 1994年、 第 67卷、 P.1749— 1752に従って、 p—ヒドロキシジフエ-ルァミンと p—フエ-レンジ ァミンとから合成した (薄青色固体、収率 85%)。
[0044] [化 12]
Figure imgf000017_0001
[ 1 ]オリゴァユリン化合物の精製方法
[実施例 1]
1L三口丸底フラスコに、合成例 1で得た PTA 20g (0. 0452mmol)と、活性炭(純 正化学 (株)製) 2. Og (PTAに対して 10質量%)と、超音波を用いて脱気した脱水 1 , 4—ジォキサン (関東ィ匕学 (株)製) 500gとを、窒素雰囲気下で加えた。 次いで、オイルバスを使用して内温を 90°Cに保持したまま、 1時間加熱攪拌し、 PT Aを完全に溶解させた。その後、桐山ガラス (S— 60)、桐山ろ紙 (3C)、固定相として セライト (セライト 545、純正化学 (株)製) 50gを用いて、温度コントローラ付き水循環 装置を 90°Cに保温したまま熱時ろ過を行い、活性炭を除去した。
[0046] ろ液は、内温が 20°Cになるまで放冷した。放冷後、 PTAが析出した薄紫色溶液は 反応容器に入れたまま、グローブボックスに移し、相対湿度が 5%になるまで窒素フ ローを行った。相対湿度 5%を保持して、 PTAをグローブボックス中でブフナーロート を用いて吸引ろ過した。ブフナーロート上の PTAを、 1, 4 ジォキサン 200mL、脱 水トルエン 200mL、ジェチルエーテル 200mLの順序で洗浄した。洗浄後の PTAを 、グローブボックス中でフッ素榭脂ミクロスパーテルにて lOOmL丸底フラスコに移し 取り、 3方コックを用いて減圧後、窒素パージした。
その後、 120°Cに保持した真空乾燥機中で 24時間減圧乾燥した。白色固体の PT A19. 34g力得られた(回収率 96. 7%)。
なお、超音波を用いて脱気した後の溶媒 (脱水 1, 4 ジォキサン)中の酸素濃度( DO)は 1%未満であった。溶媒中の酸素濃度 (DO)は、蛍光式酸素計〔FO- 960 ( センサー:標準型 WPH—130) , (株)オートマチックシステムリサーチ製〕を用いて 測定した。この際、窒素を測定した時に DOは 0%、空気を測定した時に 20. 9%とし て校正した。
以下、超音波を用いて脱気した溶媒は全て DOが 1%未満であることを確認して使 用した。
[0047] [比較例 1]
1L三口丸底フラスコに、合成例 1で得た PTA 20g (0. 0452mmol)と、超音波を 用 ヽて脱気した脱水 1, 4 ジォキサン 500gとを窒素雰囲気下でカ卩えた。
次いで、オイルバスを使用して内温を 90°Cに保持したまま、 1時間加熱攪拌し、 PT Aを完全に溶解させた。その後、桐山ガラス (S— 60)、桐山ろ紙 (3C)、固定相として セライト(セライト 545) 50gを用いて、温度コントローラ付き水循環装置を 90°Cに保 温したまま熱時ろ過を行った。
[0048] ろ液は、内温が 20°Cになるまで放冷した。放冷後、 PTAが析出した薄紫色溶液は 反応容器に入れたまま、グローブボックスに移し、相対湿度が 5%になるまで窒素フ ローを行った。相対湿度 5%を保持して、 PTAをグローブボックス中でブフナーロート を用いて吸引ろ過した。ブフナーロート上の PTAを、 1, 4 ジォキサン 200mL、脱 水トルエン 200mL、ジェチルエーテル 200mLの順序で洗浄した。洗浄後の PTAを 、グローブボックス中でフッ素榭脂ミクロスパーテルにて lOOmL丸底フラスコに移し 取り、 3方コックを用いて減圧後、窒素パージした。その後、 120°Cに保持した真空乾 燥機中で 24時間減圧乾燥した。白色固体の PTA19. 44g (回収率 97. 2%)が得ら れた。
[0049] [比較例 2]
1L三口丸底フラスコに、合成例 1で得た PTA 20g (0. 0452mmol)と活性炭 2g ( PTAに対して 10質量%)と、超音波を用いて脱気した脱水 1, 4 ジォキサン 500gと を、窒素雰囲気下にて加えた。
次いで、オイルバスを使用して内温を 90°Cに保持したまま、 1時間加熱攪拌し、 PT Aを完全に溶解させた。次いで、桐山ガラス (S— 60)、桐山ろ紙 (3C)、固定相として セライト(セライト 545) 50gを用いて、温度コントローラ付き水循環装置を 90°Cに保 温したまま熱時ろ過を行い、活性炭を除去した。
[0050] ろ液は、内温が 20°Cになるまで放冷した。放冷後、 PTAが析出した薄紫色溶液は 反応容器に入れたまま、グローブボックスに移し、相対湿度が 5%になるまで窒素フ ローを行った。相対湿度 5%を保持して、 PTAをグローブボックス中でブフナーロート を用いて吸引ろ過した。ブフナーロート上の PTAを、 1, 4 ジォキサン 200mL、脱 水トルエン 200mL、ジェチルエーテル 200mLの順序で洗浄した。洗浄後の PTAを 、グローブボックス中でフッ素榭脂ミクロスパーテルにて lOOmL丸底フラスコに移し 取り、 3方コックを用いて減圧後、窒素パージした。その後、 120°Cに保持した真空乾 燥機中で 24時間減圧乾燥した。白色固体の PTA19. 08gが得られた(回収率 95. 4%)。
[0051] 一方、吸引ろ過後の濃紺色のろ液を、グローブボックス中で 1Lの丸底フラスコに移 し、 3方コックを用いて減圧し、窒素パージした後に大気暴露し、エバポレーターを用 いて、溶媒を完全に留去した。 得られた青色の PTAを、グローブボックス中でジェチルエーテル 200mLにて洗浄 した。洗浄後の PTAを、グローブボックス中でフッ素榭脂ミクロスパーテルにて 100m L丸底フラスコに移し取り、 3方コックを用いて減圧後、窒素パージした。その後、 120 °Cに保持した真空乾燥機中で 24時間減圧乾燥した。青色固体の PTAO. 82g (回収 率 4. 1 %)が得られた。
溶媒中で析出した白色固体の PTAと、ろ液から回収した青色固体の PTAとを均一 に混合し、活性炭処理のみの効果を確認する PTAとした。
[0052] [比較例 3]
1L三口丸底フラスコに、合成例 1で得た PTA 20g (0. 0452mmol)と、超音波を 用 ヽて脱気した脱水 1 , 4—ジォキサン 500gとを窒素雰囲気下でカ卩えた。
次いで、オイルバスを使用して内温を 90°Cに保持したまま、 1時間加熱攪拌し、 PT Aを完全に溶解させた。その後、内温が 20°Cになるまで放冷した。放冷後、 PTAが 析出した紫色溶液は反応容器に入れたまま、グローブボックスに移し、相対湿度が 5 %になるまで窒素フローを行った。相対湿度 5%を保持して、 PTAはグローブボック ス中でブフナーロートを用いて吸引ろ過した。ブフナーロート上の PTAを、 1 , 4ージ ォキサン 200mL、脱水トルエン 200mL、ジェチルエーテル 200mLの順序で洗浄し た。洗浄後の PTAをグローブボックス中でフッ素榭脂ミクロスパーテルにて lOOmL 丸底フラスコに移し取り、 3方コックを用いて減圧後、窒素パージした。その後、 120 °Cに保持した真空乾燥機中で 24時間減圧乾燥した。 白色固体の PTA19. 58g (回 収率 97. 9%)が得られた。
[0053] ( 1) 560nmにおける吸光係数 εの測定
ΡΤΑは芳香環由来の 320nm付近に、 PTAの酸化体はキノンジィミン構造由来の 560nm付近に吸収極大を有している。したがって、 560nm付近の吸光係数 εが大 きくなればなるほど、酸ィ匕体を多く含んでいることになる。吸光係数 εは材料によって 固有の数値であることから、定量の信頼性は高い物性値である。そこで、上記実施例 1および比較例 1〜3で得られた ΡΤΑに含有する酸化体の割合を調べるため、紫外 —可視吸収 (UV— VIS)スペクトルを、下記手法により測定し、吸光係数 εを求めた 。なお、溶液調整、測定に要する時間は、溶液中で各々の ΡΤΑが酸ィ匕されて εの値 が不正確にならないように全て規格ィ匕した。なお、 UV— VISスペクトルの測定は、紫 外可視吸光光度計 (UV— 3100PC、(株)島津製作所製)を用いて行った。
[0054] 合成例 1で得られた直後の PTA (対照)、並びに実施例 1および比較例 1〜3で精 製したそれぞれの PTAを、 lOOmLの褐色メスフラスコに 0. 0028g (6. 326 μ mol) 秤量した。次いで、脱気した高速液体カラムクロマトグラフィー用のァセトニトリル (純 度 99. 8%以上、関東化学 (株)製)を加えて完全に PTAを溶解させた後、正確にメ スアップした (溶液濃度は 6. 3260 X 10— 5molZL)。この際、固体を秤量し、メスアツ プし終えるまでに要した時間は 5分間に統一した。
メスアップ後、メスフラスコ内の溶液に濃度勾配が生じないように、 2分間かけて溶 液を振とうした。次いで、 3分間かけてァセトニトリルのベースラインを補正した。完全 に均一に溶解した PTAの調整溶液を UV— VISスペクトルにてベースライン補正の 1 分後に測定した。なお、 UV— VISスペクトル測定に使用したセルは、溶液の厚みが lcmとなる石英セルを使用した。
UV— VISスペクトル測定において、吸収極大波長( λ )が 560nm付近に現れた max
PTAの酸ィ匕体に起因する吸光度 Aを表 1に示す。また、この吸光度 Aからランベルト —ベールの式 (Α= ε cl :溶液の厚み = c[cm]、溶液の濃度 =l[molZL])にしたが つて吸光係数 εを算出した。その値も併せて表 1に示す。
[0055] [表 1]
Figure imgf000021_0001
表 1に示されるように、活性炭処理および再結晶処理を行った実施例 1の吸光係数 εが比較例および対照に比べて著しく低ぐ酸化体含有量が大幅に低減されている ことがわかる。これに対し、再結晶のみの比較例 1およびセライト処理のみの比較例 3 では、酸化体含有量が比較的多ぐ充分に除去されていないことがわ力る。
また、活性炭処理のみの比較例 2では、吸光係数 εが格段に上昇している力 これ は、溶媒を濃縮して得た PTAでは、酸ィ匕体の量が増大していることが原因であると考 えられる。なお、ろ液から取り出した PTAのみを用いて、上記と同様に吸光度を測定 し、吸光係数 εを算出すると 5556. 4338であり、非常に高い値を示した。このことか ら、活性炭処理、ろ液濃縮という操作では、 ΡΤΑを精製できないことがゎカゝる。
[0057] (2)微量金属分析
合成例 1で得られた直後の ΡΤΑ (対照)、並びに実施例 1および比較例 1〜3で精 製したそれぞれの ΡΤΑに含まれる Li、 Mg、 Ca、 Fe、 Cu、 Zn、 Ti、 Sn、 Naおよび K の各金属量を、下記手法により分析した。結果を表 2に示す。
微量金属分析は、誘導結合プラズマ発光分析装置 (Vista— Pro、セイコーインスッ ルメンス社製)を用い、 PTA200mgを硝酸 3mL、硫酸 lmLでマイクロウエーブ分解 後、 20g (100倍希釈)で回収し、 ICP発光にて測定した。
[0058] [表 2]
Figure imgf000022_0001
[0059] 表 2に示されるように、対照として用いた合成直後の PTAには、製造時に人為的あ るいは装置的に混入したと思われる Ca、 Fe、 Naを含み、さらに触媒としてカ卩えたチタ ンアルコシキドに由来する Tiが比較的多く含まれていることがわかる。
これに対し、活性炭処理および再結晶処理を行った実施例 1の PTAは、残存金属 分が Li、 Mg、 Ca、 Fe、 Cu、 Zn、 Ti、 Sn、 Naおよび Kの全てにおいて lppm以下と なっていることがわ力る。
また、再結晶処理のみの比較例 1およびセライト処理のみの比較例 3で得られた PT Aでは、残存 Tiを十分に除去できて 、な 、ことがわかる。
一方、活性炭処理のみを行った比較例 2では、実施例 1同様全ての金属分が lpp m以下となっていることから、微量金属分の除去には、活性炭処理が効果を発揮する ことが伺免る。
以上示したように、 PTAに含まれる酸化体および微量金属成分の双方を、簡便か つ効率的に除去する方法として、活性炭処理および再結晶処理の 2つの処理を施す 実施例 1の精製方法が最適であることがわかる。
[0060] [実施例 2〜7、比較例 4, 5]
活性炭の使用量を、 0. 2g (PTAに対して 1質量%,比較例 4)、 0. 4g (同 2質量% ,比較例 5)、 0. 8g (同 4質量%,実施例 2)、 1. 2g (同 6質量%,実施例 3)、 1. 6g ( 同 8質量%,実施例 4)、 2. Og (同 10質量%,実施例 5)、 3. Og (同 15質量%,実施 例 6)、 4. Og (同 20質量%,実施例 7)に代えた以外は、実施例 1と同様にして、 PT Aを精製した。実施例 2〜7および比較例 4, 5における PTAの回収量および回収率 を表 3に示す。なお、実施例 2〜7および比較例 4, 5で得られた PTAは、全て白色固 体であった。
さらに、実施例 2〜7および比較例 4, 5で精製した各 PTAについて、上記の微量 金属成分を測定した。結果を併せて表 3に示す。
[0061] [表 3]
Figure imgf000023_0001
[0062] 表 3に示されるように、比較例 4, 5の結果から、活性炭処理に使用する活性炭量が PTAに対して 4質量%未満であると、残留 Tiを十分に除去できないことがわかる。 これに対し、 4質量%以上使用している実施例 2〜7では、 Tiを lppm以下まで削減 できていることがわかる。ただし、実施例 6, 7の結果から、活性炭量が 15質量%を超 えると、 PTAの回収率が低下することがわかる。
[0063] [実施例 8] 実施例 1で得られた PTAを、 23°C、相対湿度 45%の環境下で 720日間保存した。 この保存後の PTAについて、再度、実施例 1と同様の精製を行い、白色固体の PTA 19. 30g (回収率 96. 5%)を得た。 720日間保存後の PTA (対照)およびこれを精 製して得られた PTAについて、実施例 1と同様に、溶液を調製後、 UV— VISスぺク トルを測定した。 UV— VISスペクトル測定において、吸収極大波長が 560nm付近 に現れた酸ィ匕体に起因する吸光度 Aおよび吸光係数 εを表 4に示す。
[0064] [表 4]
Figure imgf000024_0002
[0065] 表 4に示されるように、実施例 1による精製後、上記環境下で 720日間保存した PT Aの吸光係数 εは 409. 4214と非常に高い値を示し、保存中、空気酸化などにより 生成した酸ィ匕体が多く含まれていることがわかる。この ΡΤΑを、活性炭処理および再 結晶処理にて精製した ΡΤΑの εは 27. 8090と実施例 1と同等の値を示し、酸ィ匕体 が多く含まれて 、る ΡΤΑであっても、本発明の精製方法で純度の高 、ΡΤΑとし得る ことがわ力ゝる。
[0066] [2]電荷輸送性ワニスおよび電荷輸送性薄膜
[実施例 9]
実施 f列 1で精製した PTA O. 0500g (0. 1130mmol)と、式(7)に示される 5—ス ルホサリチル酸(5— SSA) 0. 0986g (0. 4520mmol)とを、窒素雰囲気下、 N, N —ジメチルァセトアミド (DMAc)O. 8757gに完全に溶解させた。得られた溶液にシク 口へキサノール(c— HexOH) 2. 6270gを加えて攪拌し、電荷輸送性ワニスを調製 した(固形分 4. 2%) 0
[0067] [化 13]
Figure imgf000024_0001
[0068] [実施例 10]
実施例 1で得られた PTAを室温 23°C、湿度 45%で 370日間保存した。 370日間 保存した PTAは、実施例 1と同様にして、溶液を調製後、 UV— VISスペクトルを測 定し、吸収極大波長 560nm付近に現れた酸ィ匕体に起因する吸光係数 εを算出した ところ、 211. 8242と高い値を示し、酸ィ匕体が多く含まれていることがわかった。なお 、 370日間保存後の ΡΤΑは、既に活性炭処理、セライトろ過、再結晶工程からなる精 製を施していることから、微量金属成分およびそれらの含有量は実施例 1と同一であ り、酸ィ匕体の含有量だけが異なっている。
この ΡΤΑを用い、実施例 9と同様にして電荷輸送性ワニスを調製した。
[0069] [実施例 11 ]
実施例 8で精製した ΡΤΑを用い、実施例 9と同様にして電荷輸送性ワニスを調製し た。
[0070] [比較例 6]
実施例 8で調製し、精製に使用した 720日間保存後の ΡΤΑを用い、実施例 9と同 様にして電荷輸送性ワニスを調製した。なお、この ΡΤΑの吸収極大波長 560nm付 近に現れた酸化体に起因する吸光係数 εは上述のとおり、 409. 4214である。この ΡΤΑも、既に活性炭処理、セライトろ過、再結晶工程カゝらなる精製を施していることか ら、微量金属成分およびそれらの含有量は実施例 1と同一であり、酸化体の含有量 だけが異なっている。
[0071] 上記実施例 9〜: L 1および比較例 6で調製した各電荷輸送性ワニスを、 ΙΤΟ付きガ ラス基板上にスピンコート法にて塗布し、 30nmの正孔輸送性薄膜を形成した。 これらの薄膜について、原子間力顕微鏡 (AFM、ナノスコープ IV型 ディメンション 3100、ビーコインスッノレメンッ社デジタノレインスッノレメンッ製)にて観察を行うとともに , Π δ Χ δ μ mの範囲で表面平均粗さ(Ra)を測定した。なお、 AFM測定は、走査が lHz、 zレンジが lOOnmとして Tapping法を使用して行った。
図 1に実施例 9の AFM図を、図 2に実施例 10の AFM図を、図 3に比較例 6の AF M図を示す。また、実施例 9〜: L 1および比較例 6の Ra値を表 5に示す。
[0072] [表 5] 吸光係数 Ra
ε 、nm)
実施例 9 28.4540 0.270
実施例 10 211.8242 0.286
実施例 11 27.8090 0.261
比較例 6 409.4214 6.302
[0073] 表 4に示されるように、酸化体に由来する 560nmでの εが実施例 1の初期値では 2 8. 4540であったのに対し、 370日保存した同 ΡΤΑは 211. 8242、 720日保存した ΡΤΑは 409. 4214となり、 ΡΤΑが空気中で経時的に酸化されていることがわ力る。 比較例 6の結果に示されるように、吸光係数 εが 409. 4214と、酸化体を多く含む ΡΤΑを使用した電荷輸送性ワニス力も得られた電荷輸送性薄膜の Raは、 6. 302η mとなり、実施例 9〜 10の Raと比べて約 20倍程粗くなつていることがわかる。
また、図 1 , 2と図 3とを比較すると、比較例 6の薄膜を示した図 3では、電荷輸送性 薄膜の膜表面に海島状に局在化する 1 μ m前後の異物が発生していることがわかる 。これらの結果から、酸化体が一定量以上含まれていると、成膜性が著しく悪化する ことがわ力ゝる。
[0074] [3]有機 EL素子
[実施例 12]
実施例 9で調製した電荷輸送性ワニスを、 ITO付きガラス基板上にスピンコート法 にて塗布し、 30nmの正孔輸送性薄膜を形成した。その後、薄膜を形成した基板を 真空蒸着装置内に導入し、 a— NPD、 Alq、 LiF、および Alを順次蒸着し、 OLED
3
素子を作製した。膜厚は、それぞれ 40nm、 60nm、 0. 5nm、 lOOnmとし、それぞれ 8 X 10— 4Pa以下の圧力となって力も蒸着操作を行った。その際の蒸着レートは LiF以 外の材料については 0. 3〜0. 4nmZs、 LiFについては 0. 02〜0. 04nmZsとし た。一連の蒸着操作は全ての層を蒸着するまで真空下で行った。
[0075] [実施例 13]
実施例 10で調製した電荷輸送性ワニスを用いた以外は、実施例 12と同様にして O LED素子を作製した。
[0076] [実施例 14] 実施例 11で調製した電荷輸送性ワニスを用いた以外は、実施例 12と同様にして O LED素子を作製した。
[0077] [比較例 7]
比較例 7で調製した電荷輸送性ワニスを用いた以外は、実施例 12と同様にして OL ED素子を作製した。
上記実施例 12〜14および比較例 7で作製した OLED素子にっ 、て、素子特性を 測定した。素子特性、 Ip、導電率を表 6に示す。
[0078] [表 6]
Figure imgf000027_0001
[0079] なお、 OLED素子の特性は、有機 EL発光効率測定装置 (EL1003、プレサイスゲ ージ社製)を使用して測定し、発光開始電圧または 10mAZcm2、 50mAZcm2およ び lOOmA/cm2を閾値とした時の電圧、輝度、発光効率を示した。
導電率は、 ITO付きガラス基板上に正孔輸送性薄膜を形成した後、真空蒸着装置 内に導入し、 A1を lOOnm蒸着し、膜厚 30nm、 lOOmAZcm2通電時の電流—電圧 特性力も算出した。なお、膜厚は表面形状測定装置 (DEKTAK3ST、日本真空技 術社製)を、 Ipは、光電子分光装置 (AC— 2、理研計器社製)を使用して測定した。 さらに、実施例 12で作製した OLED素子を 8Vで駆動した時の発光面を図 4に、実 施例 13で作製した OLED素子を 8Vで駆動した時の発光面を図 5に、実施例 14で 作製した OLED素子を 8Vで駆動した時の発光面を図 6に、比較例 7で作製した OL ED素子を 8Vで駆動した時の発光面を図 7に示す。なお、発光面の観察は、光学顕 微鏡 ECLIPSE ME600 ( (株)ニコン製)を使用し、倍率 10倍で観察し、撮影した。
[0080] 表 6に示されるように、吸光係数 ε力 09. 4214である、酸化体を多く含む ΡΤΑか ら得られた電荷輸送性薄膜を正孔注入層として備える比較例 7の OLED素子では、 これよりも酸ィ匕体の少ない PTAから得られた電荷輸送性薄膜を正孔注入層として備 える実施例 12〜14の OLED素子と比較して、 10、 50、 lOOmAZcm2の全ての閾 値電流において、駆動電圧は低下しているものの、発光効率もかなり低下しているこ とがわかる。有機 EL素子特性上、駆動電圧の低下は好ましい現象である力 発光効 率の低下は好ましくな 、現象である。
駆動電圧が低下するにも関わらず、発光効率が低下する原因は、図 4〜7を比較、 検討するとわかる。すなわち、実施例 12〜14で作製した OLED素子では、図 4〜6 に示されるように、駆動して発光している発光面が均一であることが確認できる。一方 、比較例 7で作製した OLED素子では、図 7に示されるように、発光面内でダークス ポットあるいは輝点などが多ぐ発光面が不均一であることが確認できる。すなわち、 比較例 7の OLED素子では、ダークスポットや輝点部分に電荷が集中し、駆動電圧 は低下するものの、面内での発光均一性が損なわれるために発光効率が低下して 、 ると考えられる。ダークスポットや輝点などの電界発光における不均一部分は、正孔 注入層の表面粗さに関係しているものと推測される力 当該部分は、有機 EL素子の 電気短絡を促進し、発光ムラの原因となり、プロセスマージンを拡大し、安価で生産 効率のよい有機 EL素子が提供できなくなる要因の一つである。
なお、実施例 14から明らかなように、酸ィ匕体が多量に生じた PTAであっても、本発 明の精製方法を用いて再度精製して使用すれば、もとから酸ィ匕体が少ない PTAを 用いた実施例 12と同程度の良好な素子特性を発揮する OLED素子が得られること がわカゝる。

Claims

請求の範囲 [1] 製造後の未精製の式(1)で表されるオリゴァ-リン化合物を、溶媒に溶力してオリゴ ァ-リンィ匕合物含有溶液を調製し、このオリゴァ-リンィ匕合物含有溶液を、前記オリゴ ァ-リンィ匕合物に対して 4〜20質量%の活性炭で処理した後、さらに再結晶処理し、 560nmにおける吸光係数 εが 30以下である式(1)で表されるオリゴァ-リンィ匕合物 を得ることを特徴とするオリゴァ-リンィ匕合物の精製方法。 [化 1] (式中、 R1 R2および R3は、それぞれ独立して、水素、水酸基、ハロゲン基、アミノ基、 シラノール基、チオール基、カルボキシル基、スルホン酸基、リン酸基、リン酸エステ ル基、エステル基、チォエステル基、アミド基、ニトロ基、一価炭化水素基、オルガノ ォキシ基、オルガノアミノ基、オルガノシリル基、オルガノチォ基、ァシル基またはスル ホン基を示し、 Aおよび Bは、それぞれ独立して、下記一般式(2)または(3) [化 2] ( 2 ) ( 3 ) で表される二価の基であり、 R4〜R"は、それぞれ独立して、水素、水酸基、ハロゲン 基、アミノ基、シラノール基、チオール基、カルボキシル基、スルホン酸基、リン酸基、 リン酸エステル基、エステル基、チォエステル基、アミド基、ニトロ基、一価炭化水素 基、オルガノォキシ基、オルガノアミノ基、オルガノシリル基、オルガノチォ基、ァシル 基またはスルホン基を示し、 mおよび nは、それぞれ独立して、 1以上の整数で、 m+ n≤ 20を満足する。) [2] 酸化体を含み、 560nmにおける吸光係数 ε力 ¾0〜: L000である式(1)で表される オリゴァ-リンィ匕合物を、溶媒に溶かしてオリゴァ-リン含有溶液を調製し、このオリゴ ァ-リン含有溶液を、前記オリゴァ-リンィ匕合物に対して 4〜20質量0 /0の活性炭で処 理した後、さらに再結晶処理し、 560nmにおける吸光係数 εが 30以下である式(1) で表されるオリゴァ-リンィ匕合物を得ることを特徴とするオリゴァ-リンィ匕合物の精製 方法。 [化 3]
( 1 )
Figure imgf000030_0001
(式中、 R1 R2および R3は、それぞれ独立して、水素、水酸基、ハロゲン基、アミノ基、 シラノール基、チオール基、カルボキシル基、スルホン酸基、リン酸基、リン酸エステ ル基、エステル基、チォエステル基、アミド基、ニトロ基、一価炭化水素基、オルガノ ォキシ基、オルガノアミノ基、オルガノシリル基、オルガノチォ基、ァシル基またはスル ホン基を示し、 Aおよび Bは、それぞれ独立して、下記一般式(2)または(3)
[化 4]
Figure imgf000030_0002
( 2 ) ( 3 )
で表される二価の基であり、 R4〜R"は、それぞれ独立して、水素、水酸基、ハロゲン 基、アミノ基、シラノール基、チオール基、カルボキシル基、スルホン酸基、リン酸基、 リン酸エステル基、エステル基、チォエステル基、アミド基、ニトロ基、一価炭化水素 基、オルガノォキシ基、オルガノアミノ基、オルガノシリル基、オルガノチォ基、ァシル 基またはスルホン基を示し、 mおよび nは、それぞれ独立して、 1以上の整数で、 m+ n≤ 20を満足する。)
[3] Li、 Mg、 Ca、 Fe、 Cu、 Zn、 Ti、 Sn、 Naおよび Kの各金属成分の含有量が lppm 以下である式(1)で表されるオリゴァ-リンィ匕合物を得る請求項 1または 2記載のオリ ゴァ-リンィ匕合物の精製方法。
[4] 前記オリゴァニリンィ匕合物が、式 (4)で表されるオリゴァニリンィ匕合物である請求項 1〜3のいずれか 1項記載のオリゴァニリンィ匕合物の精製方法。
[化 5]
Figure imgf000031_0001
(式中、 Ri〜R'、 m, nは、前記と同じ意味を示す。 )
[5] Li、 Mg、 Ca、 Fe、 Cu、 Zn、 Ti、 Sn、 Naおよび Kの各金属成分の含有量が lppm 以下であることを特徴とする式(1)で表されるオリゴァ-リンィ匕合物。
[化 6]
Figure imgf000031_0002
(式中、
Figure imgf000031_0003
R2および R3は、それぞれ独立して、水素、水酸基、ハロゲン基、アミノ基、 シラノール基、チオール基、カルボキシル基、スルホン酸基、リン酸基、リン酸エステ ル基、エステル基、チォエステル基、アミド基、ニトロ基、一価炭化水素基、オルガノ ォキシ基、オルガノアミノ基、オルガノシリル基、オルガノチォ基、ァシル基またはスル ホン基を示し、 Aおよび Bは、それぞれ独立して、下記一般式(2)または(3)
[化 7]
Figure imgf000031_0004
( 2 ) ( 3 )
で表される二価の基であり、 R4〜R は、それぞれ独立して、水素、水酸基、ハロゲン 基、アミノ基、シラノール基、チオール基、カルボキシル基、スルホン酸基、リン酸基、 リン酸エステル基、エステル基、チォエステル基、アミド基、ニトロ基、一価炭化水素 基、オルガノォキシ基、オルガノアミノ基、オルガノシリル基、オルガノチォ基、ァシル 基またはスルホン基を示し、 mおよび nは、それぞれ独立して、 1以上の整数で、 m+ n≤ 20を満足する。)
[6] 560nmにおける吸光係数 ε力 400以下である請求項 5記載のオリゴァ-リン化 合物。
[7] 式 (4)で表される請求項 5または 6記載のオリゴァニリンィ匕合物。
[化 8]
Figure imgf000032_0001
(式中、 〜 、 m, nは、前記と同じ意味を示す。 )
[8] 請求項 5〜7のいずれかに記載のオリゴァニリン化合物を含むことを特徴とする電 荷輸送性ワニス。
[9] 請求項 8記載の電荷輸送性ワニスから作製され、表面平均粗さ Raが lnm以下であ ることを特徴とする電荷輸送性薄膜。
[10] 請求項 9記載の電荷輸送性薄膜を備えることを特徴とする有機エレクト口ルミネッセ ンス素子。
PCT/JP2005/012454 2004-07-09 2005-07-06 オリゴアニリン化合物の精製方法およびオリゴアニリン化合物 WO2006006459A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2006528926A JP5374819B2 (ja) 2004-07-09 2005-07-06 オリゴアニリン化合物の精製方法およびオリゴアニリン化合物
KR1020077000424A KR101186938B1 (ko) 2004-07-09 2005-07-06 올리고아닐린 화합물의 정제방법 및 올리고아닐린 화합물
US11/631,034 US20080042557A1 (en) 2004-07-09 2005-07-06 Process for Purification of Oligoanilines and Oligoanilines
CN2005800231289A CN1984941B (zh) 2004-07-09 2005-07-06 低聚苯胺化合物的纯化方法及低聚苯胺化合物
EP05758164.7A EP1767565B1 (en) 2004-07-09 2005-07-06 Process for purification of oligoanilines and oligoanilines

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004202715 2004-07-09
JP2004-202715 2004-07-09

Publications (1)

Publication Number Publication Date
WO2006006459A1 true WO2006006459A1 (ja) 2006-01-19

Family

ID=35783803

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/012454 WO2006006459A1 (ja) 2004-07-09 2005-07-06 オリゴアニリン化合物の精製方法およびオリゴアニリン化合物

Country Status (7)

Country Link
US (1) US20080042557A1 (ja)
EP (1) EP1767565B1 (ja)
JP (1) JP5374819B2 (ja)
KR (1) KR101186938B1 (ja)
CN (1) CN1984941B (ja)
TW (1) TWI398464B (ja)
WO (1) WO2006006459A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008010474A1 (fr) 2006-07-18 2008-01-24 Nissan Chemical Industries, Ltd. Vernis contenant des charges
WO2011118611A1 (ja) * 2010-03-24 2011-09-29 三菱レイヨン株式会社 導電性高分子、導電性高分子の品質管理方法、および導電性高分子の精製方法
WO2015001590A1 (ja) * 2013-07-02 2015-01-08 出光興産株式会社 精製ポリアニリン含有液の製造方法
WO2015050253A1 (ja) 2013-10-04 2015-04-09 日産化学工業株式会社 アニリン誘導体およびその利用
WO2015053320A1 (ja) 2013-10-09 2015-04-16 日産化学工業株式会社 アリールスルホン酸化合物及びその利用並びにアリールスルホン酸化合物の製造方法
WO2017150412A1 (ja) 2016-03-03 2017-09-08 日産化学工業株式会社 電荷輸送性ワニス
WO2017164158A1 (ja) 2016-03-24 2017-09-28 日産化学工業株式会社 アリールアミン誘導体とその利用
WO2018147204A1 (ja) 2017-02-07 2018-08-16 日産化学工業株式会社 電荷輸送性ワニス
WO2018186340A1 (ja) 2017-04-05 2018-10-11 日産化学株式会社 電荷輸送性ワニス

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2143708B1 (en) * 2007-04-12 2016-04-06 Nissan Chemical Industries, Ltd. Oligoaniline compound
EP2759574B1 (en) * 2011-09-21 2019-08-21 Nissan Chemical Corporation Charge-transporting varnish
CN109734605A (zh) * 2019-03-07 2019-05-10 黑龙江省科学院石油化学研究院 一种三芳胺类化合物的超声波辅助纯化方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6210108A (ja) * 1985-07-08 1987-01-19 Showa Denko Kk 電導性高分子の精製法
JPH06239996A (ja) * 1992-12-10 1994-08-30 Korea Res Inst Chem Technol 電導性高分子及びその製造方法
US5641859A (en) * 1995-07-12 1997-06-24 National Science Council Of Taiwan Water-soluble self-acid-doped polyaniline, method of preparation thereof, and polymer blends made therefrom
WO2003071559A1 (fr) * 2002-02-20 2003-08-28 Nissan Chemical Industries, Ltd. Materiau organique conducteur et vernis conducteur
WO2004043117A1 (ja) * 2002-11-07 2004-05-21 Nissan Chemical Industries,Ltd. 電荷輸送性ワニス

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4145271A (en) * 1976-10-12 1979-03-20 Teijin Limited Method for regenerating oxidized photographic developers
JPS5675066A (en) * 1979-11-24 1981-06-20 Lion Corp Production of fried food
JPS62101108A (ja) * 1985-10-28 1987-05-11 Yokogawa Electric Corp ボルテ−ジ・フオロワ
US4904553A (en) * 1987-04-16 1990-02-27 Bridgestone Corporation Polyaniline
US5567356A (en) * 1994-11-07 1996-10-22 Monsanto Company Emulsion-polymerization process and electrically-conductive polyaniline salts
DE4442050A1 (de) * 1994-11-25 1996-05-30 Hoechst Ag Heterospiroverbindungen und ihre Verwendung als Elektrolumineszenzmaterialien
US6160177A (en) * 1996-07-26 2000-12-12 The Trustees Of The University Of Pennsylvania Oligomeric anilines and their synthesis
JP3859284B2 (ja) * 1996-12-17 2006-12-20 三井化学株式会社 有機電界発光素子
WO1999028290A1 (en) * 1997-12-03 1999-06-10 Massachusetts Institute Of Technology Synthesis of oligoarylamines, and uses and reagents related thereto
DE19831878C2 (de) * 1998-07-17 2001-05-17 Aventis Pharma Gmbh Polycyclische Thiazolidin-2-yliden Amine, Verfahren zu ihrer Herstellung und ihre Verwendung als Arzneimittel
JP4269113B2 (ja) * 1998-11-10 2009-05-27 日産化学工業株式会社 芳香族アミン誘導体及び可溶性導電性化合物
AU2623601A (en) * 2000-01-04 2001-07-16 Donaldson Company Inc. Method of production of polyanilines
JP4868099B2 (ja) * 2000-11-09 2012-02-01 日産化学工業株式会社 電界発光素子
JP4239560B2 (ja) * 2002-08-02 2009-03-18 セイコーエプソン株式会社 組成物とこれを用いた有機導電性膜の製造方法
JP5024498B2 (ja) * 2003-09-11 2012-09-12 日産化学工業株式会社 電荷輸送性ワニス、電荷輸送性薄膜および有機エレクトロルミネッセンス素子

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6210108A (ja) * 1985-07-08 1987-01-19 Showa Denko Kk 電導性高分子の精製法
JPH06239996A (ja) * 1992-12-10 1994-08-30 Korea Res Inst Chem Technol 電導性高分子及びその製造方法
US5641859A (en) * 1995-07-12 1997-06-24 National Science Council Of Taiwan Water-soluble self-acid-doped polyaniline, method of preparation thereof, and polymer blends made therefrom
WO2003071559A1 (fr) * 2002-02-20 2003-08-28 Nissan Chemical Industries, Ltd. Materiau organique conducteur et vernis conducteur
WO2004043117A1 (ja) * 2002-11-07 2004-05-21 Nissan Chemical Industries,Ltd. 電荷輸送性ワニス

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1767565A4 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008010474A1 (fr) 2006-07-18 2008-01-24 Nissan Chemical Industries, Ltd. Vernis contenant des charges
US8575392B2 (en) 2006-07-18 2013-11-05 Nissan Chemical Industries, Ltd. Charge-transporting varnish
WO2011118611A1 (ja) * 2010-03-24 2011-09-29 三菱レイヨン株式会社 導電性高分子、導電性高分子の品質管理方法、および導電性高分子の精製方法
JP5790500B2 (ja) * 2010-03-24 2015-10-07 三菱レイヨン株式会社 導電性高分子、導電性高分子の品質管理方法、および導電性高分子の精製方法
WO2015001590A1 (ja) * 2013-07-02 2015-01-08 出光興産株式会社 精製ポリアニリン含有液の製造方法
WO2015050253A1 (ja) 2013-10-04 2015-04-09 日産化学工業株式会社 アニリン誘導体およびその利用
WO2015053320A1 (ja) 2013-10-09 2015-04-16 日産化学工業株式会社 アリールスルホン酸化合物及びその利用並びにアリールスルホン酸化合物の製造方法
WO2017150412A1 (ja) 2016-03-03 2017-09-08 日産化学工業株式会社 電荷輸送性ワニス
WO2017164158A1 (ja) 2016-03-24 2017-09-28 日産化学工業株式会社 アリールアミン誘導体とその利用
WO2018147204A1 (ja) 2017-02-07 2018-08-16 日産化学工業株式会社 電荷輸送性ワニス
WO2018186340A1 (ja) 2017-04-05 2018-10-11 日産化学株式会社 電荷輸送性ワニス

Also Published As

Publication number Publication date
JP5374819B2 (ja) 2013-12-25
EP1767565B1 (en) 2015-04-01
CN1984941A (zh) 2007-06-20
TW200613369A (en) 2006-05-01
KR20070038508A (ko) 2007-04-10
EP1767565A4 (en) 2010-02-03
CN1984941B (zh) 2012-06-20
EP1767565A1 (en) 2007-03-28
JPWO2006006459A1 (ja) 2008-04-24
TWI398464B (zh) 2013-06-11
KR101186938B1 (ko) 2012-09-28
US20080042557A1 (en) 2008-02-21

Similar Documents

Publication Publication Date Title
JP5262717B2 (ja) 電荷輸送性ワニス
JP5196175B2 (ja) 電荷輸送性ワニス
KR101473294B1 (ko) 올리고아닐린 화합물 및 그 이용
TWI597302B (zh) Charge-transporting varnish
CN101039899A (zh) 芳基磺酸化合物及其作为电子接收性物质的利用
EP2143708A1 (en) Oligoaniline compound
CN1726741A (zh) 电荷传输清漆
WO2005000832A1 (ja) 1,4-ベンゾジオキサンスルホン酸化合物及び電子受容性物質としての利用
WO2007099808A1 (ja) スルホン酸エステル化合物およびその利用
JP5374819B2 (ja) オリゴアニリン化合物の精製方法およびオリゴアニリン化合物
CN111492497B (zh) 电荷传输性清漆和电荷传输性薄膜
JP2009051774A (ja) フタロシアニン化合物
EP2206749A1 (en) Phthalocyanine compound
JP4258583B2 (ja) 電界発光素子
JP5217231B2 (ja) オリゴアニリン化合物
CN117121652A (zh) 电荷传输性清漆

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006528926

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2005758164

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11631034

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020077000424

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200580023128.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 2005758164

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020077000424

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 11631034

Country of ref document: US