WO2018186340A1 - 電荷輸送性ワニス - Google Patents
電荷輸送性ワニス Download PDFInfo
- Publication number
- WO2018186340A1 WO2018186340A1 PCT/JP2018/014084 JP2018014084W WO2018186340A1 WO 2018186340 A1 WO2018186340 A1 WO 2018186340A1 JP 2018014084 W JP2018014084 W JP 2018014084W WO 2018186340 A1 WO2018186340 A1 WO 2018186340A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- carbon atoms
- bis
- substituted
- charge transporting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- 0 CC(C)(C)C1C=C(C(C)(C)**c2cc(cccc3)c3c3c2cccc3)C=C1 Chemical compound CC(C)(C)C1C=C(C(C)(C)**c2cc(cccc3)c3c3c2cccc3)C=C1 0.000 description 9
- RQHPWKYMWIAXHM-UHFFFAOYSA-N CC(CC1)=CC=C1C(F)(F)F Chemical compound CC(CC1)=CC=C1C(F)(F)F RQHPWKYMWIAXHM-UHFFFAOYSA-N 0.000 description 1
- PQSYFJQSBZQZOI-UHFFFAOYSA-N CC(CC1)=CC=C1F Chemical compound CC(CC1)=CC=C1F PQSYFJQSBZQZOI-UHFFFAOYSA-N 0.000 description 1
- SIOOGJSWBDMDDJ-UHFFFAOYSA-N CC(c(c(C)c1F)cc(C#N)c1F)=C Chemical compound CC(c(c(C)c1F)cc(C#N)c1F)=C SIOOGJSWBDMDDJ-UHFFFAOYSA-N 0.000 description 1
- GRSGSAMFHSOISO-UHFFFAOYSA-N CC(c(c(C)c1F)cc(F)c1[N+]([O-])=O)=C Chemical compound CC(c(c(C)c1F)cc(F)c1[N+]([O-])=O)=C GRSGSAMFHSOISO-UHFFFAOYSA-N 0.000 description 1
- AKEFXGBDRFREHR-UHFFFAOYSA-N Cc(c(C1CC1)cc(F)c1C#N)c1F Chemical compound Cc(c(C1CC1)cc(F)c1C#N)c1F AKEFXGBDRFREHR-UHFFFAOYSA-N 0.000 description 1
- MRIZGNKJOPNUFQ-UHFFFAOYSA-N Cc(c(F)c(c(F)c1)Br)c1F Chemical compound Cc(c(F)c(c(F)c1)Br)c1F MRIZGNKJOPNUFQ-UHFFFAOYSA-N 0.000 description 1
- OHRFGDNZHOXPGA-UHFFFAOYSA-N Cc(c(F)c(c(F)c1)Cl)c1F Chemical compound Cc(c(F)c(c(F)c1)Cl)c1F OHRFGDNZHOXPGA-UHFFFAOYSA-N 0.000 description 1
- QWMNQJQGZZQXKS-UHFFFAOYSA-N Cc(c(F)c(c(F)c1)F)c1F Chemical compound Cc(c(F)c(c(F)c1)F)c1F QWMNQJQGZZQXKS-UHFFFAOYSA-N 0.000 description 1
- QQUZGTWTKCYWMJ-UHFFFAOYSA-N Cc(c(F)c(c([N+]([O-])=O)c1)F)c1F Chemical compound Cc(c(F)c(c([N+]([O-])=O)c1)F)c1F QQUZGTWTKCYWMJ-UHFFFAOYSA-N 0.000 description 1
- POMGTQLCZJZYAM-UHFFFAOYSA-N Cc(c(F)c(cc1F)F)c1F Chemical compound Cc(c(F)c(cc1F)F)c1F POMGTQLCZJZYAM-UHFFFAOYSA-N 0.000 description 1
- DDRHZPVRVMUATR-UHFFFAOYSA-N Cc(c(F)c1C(F)(F)F)c(C2CC2)cc1F Chemical compound Cc(c(F)c1C(F)(F)F)c(C2CC2)cc1F DDRHZPVRVMUATR-UHFFFAOYSA-N 0.000 description 1
- FJMMRXAZCRYJET-UHFFFAOYSA-N Cc(c(F)cc(C(F)(F)F)c1)c1F Chemical compound Cc(c(F)cc(C(F)(F)F)c1)c1F FJMMRXAZCRYJET-UHFFFAOYSA-N 0.000 description 1
- HZCVONJWZPKKBI-UHFFFAOYSA-N Cc(c(F)cc(F)c1)c1F Chemical compound Cc(c(F)cc(F)c1)c1F HZCVONJWZPKKBI-UHFFFAOYSA-N 0.000 description 1
- VCZNNAKNUVJVGX-UHFFFAOYSA-N Cc(cc1)ccc1C#N Chemical compound Cc(cc1)ccc1C#N VCZNNAKNUVJVGX-UHFFFAOYSA-N 0.000 description 1
- ZPTVNYMJQHSSEA-UHFFFAOYSA-N Cc(cc1)ccc1[N+]([O-])=O Chemical compound Cc(cc1)ccc1[N+]([O-])=O ZPTVNYMJQHSSEA-UHFFFAOYSA-N 0.000 description 1
- KUQQONVKIURIQU-UHFFFAOYSA-N Cc(ccc(C#N)c1)c1F Chemical compound Cc(ccc(C#N)c1)c1F KUQQONVKIURIQU-UHFFFAOYSA-N 0.000 description 1
- MPXDAIBTYWGBSL-UHFFFAOYSA-N Cc(ccc(F)c1)c1F Chemical compound Cc(ccc(F)c1)c1F MPXDAIBTYWGBSL-UHFFFAOYSA-N 0.000 description 1
- KALJGRPKITWSTB-UHFFFAOYSA-N Nc1cccc2c1ccc1c2C=CCC1 Chemical compound Nc1cccc2c1ccc1c2C=CCC1 KALJGRPKITWSTB-UHFFFAOYSA-N 0.000 description 1
- VYYPCBCJASPIID-UHFFFAOYSA-N c(cc1)ccc1Sc(cc1)ccc1S(c1ccccc1)c1ccccc1 Chemical compound c(cc1)ccc1Sc(cc1)ccc1S(c1ccccc1)c1ccccc1 VYYPCBCJASPIID-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/657—Polycyclic condensed heteroaromatic hydrocarbons
- H10K85/6572—Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
- C09D5/24—Electrically-conducting paints
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D209/00—Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
- C07D209/56—Ring systems containing three or more rings
- C07D209/80—[b, c]- or [b, d]-condensed
- C07D209/82—Carbazoles; Hydrogenated carbazoles
- C07D209/88—Carbazoles; Hydrogenated carbazoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to carbon atoms of the ring system
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/16—Nitrogen-containing compounds
- C08K5/17—Amines; Quaternary ammonium compounds
- C08K5/18—Amines; Quaternary ammonium compounds with aromatically bound amino groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/49—Phosphorus-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
- C09D5/22—Luminous paints
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/60—Additives non-macromolecular
- C09D7/63—Additives non-macromolecular organic
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/06—Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/10—Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/14—Carrier transporting layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/14—Carrier transporting layers
- H10K50/15—Hole transporting layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/14—Carrier transporting layers
- H10K50/16—Electron transporting layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/10—Organic polymers or oligomers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/631—Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/631—Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
- H10K85/636—Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1003—Carbocyclic compounds
- C09K2211/1007—Non-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/18—Metal complexes
- C09K2211/186—Metal complexes of the light metals other than alkali metals and alkaline earth metals, i.e. Be, Al or Mg
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/17—Carrier injection layers
Definitions
- the present invention relates to a charge transporting varnish.
- organic electroluminescence element In an organic electroluminescence (hereinafter referred to as organic EL) element, a charge transporting thin film made of an organic compound is used as a light emitting layer or a charge injection layer.
- the hole injection layer is responsible for charge transfer between the anode and the hole transport layer or the light emitting layer, and plays an important function to achieve low voltage driving and high luminance of the organic EL element.
- the method of forming the hole injection layer is roughly divided into a dry process typified by vapor deposition and a wet process typified by spin coating. Compared with these processes, the wet process is flatter in a larger area. A highly efficient thin film can be produced efficiently.
- the present invention has been made in view of the above circumstances, and an object thereof is to provide a charge transporting varnish that gives a charge transporting thin film excellent in charge transporting property, flatness and uniformity with good reproducibility.
- the present inventor has obtained a charge transport property from a varnish obtained by dissolving a charge transport material and a predetermined fluorinated alkyl phosphate onium salt in an organic solvent.
- the present inventors have found that a charge transporting thin film having excellent flatness and uniformity can be obtained with good reproducibility, and that an organic EL device having excellent luminance characteristics can be obtained by using the thin film as a hole injection layer. Was completed.
- a fluorinated alkyl phosphoric acid comprising a charge transporting substance, a fluorinated alkyl phosphate onium salt, and an organic solvent, wherein the fluorinated alkyl phosphate onium salt comprises an anion represented by formula (a1) and a counter cation
- a charge transporting varnish comprising an onium salt;
- R represents an alkyl group having 1 to 10 carbon atoms, a fluoroalkyl group having 1 to 10 carbon atoms, an aralkyl group having 7 to 10 carbon atoms, or a fluoroaralkyl group having 7 to 10 carbon atoms.
- a method for producing a charge transporting thin film characterized in that any one of the charge transporting varnishes 1 to 3 is applied onto a substrate and the solvent is evaporated.
- the charge transporting varnish of the present invention By using the charge transporting varnish of the present invention, a charge transporting thin film excellent in charge transporting property, flatness and uniformity can be obtained.
- the charge transporting thin film having such characteristics can be suitably used as a thin film for electronic devices including organic EL elements.
- an organic EL element with a low driving voltage can be obtained.
- the charge transporting varnish of the present invention can produce a thin film with excellent charge transportability with good reproducibility even when using various wet processes that can be formed into a large area, such as a spin coating method and a slit coating method, It can sufficiently cope with recent progress in the field of organic EL elements.
- the thin film obtained from the charge transportable varnish of this invention is excellent in charge transportability, it can also be expected to be used as an anode buffer layer, an antistatic film or the like of an organic thin film solar cell.
- the charge transporting varnish according to the present invention includes a charge transporting substance, a fluorinated alkyl phosphate onium salt, and an organic solvent, wherein the fluorinated alkyl phosphate onium salt is represented by the formula (a1): It contains a fluorinated alkyl phosphate onium salt comprising a counter cation.
- the charge transportability is synonymous with conductivity, and is also synonymous with hole transportability.
- the charge transporting varnish of the present invention may itself have charge transporting properties, or the solid film obtained using the varnish may have charge transporting properties.
- R represents an alkyl group having 1 to 10 carbon atoms, a fluoroalkyl group having 1 to 10 carbon atoms, an aralkyl group having 7 to 10 carbon atoms, or a fluoroaralkyl group having 7 to 10 carbon atoms.
- the alkyl group having 1 to 10 carbon atoms may be linear, branched, or cyclic.
- Chain alkyl group cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, cyclononyl group, cyclodecyl group, bicyclobutyl group, bicyclopentyl group, bicyclohexyl group, bicycloheptyl group, bicyclooctyl
- the alkyl group is more preferably an alkyl group having 1 to 6 carbon atoms.
- Examples of the aralkyl group having 7 to 10 carbon atoms include groups obtained by substituting at least one hydrogen atom of an alkyl group with an aryl group.
- benzyl group, 1-naphthylmethylene group, 2-naphthylmethylene group, phenylethylene Group, 1-naphthylethylene group, 2-naphthylmethylene group and the like, and an aralkyl group having 7 to 9 carbon atoms is preferable.
- fluoroalkyl group having 1 to 10 carbon atoms include groups in which at least one hydrogen atom of the alkyl group having 1 to 10 carbon atoms is substituted with a fluorine atom.
- C7-10 fluoroaralkyl group examples include groups in which at least one hydrogen atom of the C7-10 aralkyl group is substituted with a fluorine atom.
- Specific examples thereof include perfluorobenzyl group, pentafluorophenylmethylene group, heptafluoro-1-naphthylmethylene group, heptafluoro-2-naphthylmethylene group, heptafluoro-1-naphthylethylene group, heptafluoro-2-naphthyl group.
- An ethylene group etc. are mentioned.
- Examples of the anion of the above formula (a1) that can be suitably used in the present invention include those represented by the following formula, but are not limited thereto.
- the counter cation is not particularly limited, but a cation represented by the formula (c1) is preferable.
- E in the formula (c1) represents an element having a valence n of Group 15 to 17, and therefore n represents an integer of 1 to 3 corresponding to the valence of E.
- n + 1 are bonded to E, and they represent a monovalent organic group independently of each other.
- two or more R ′ may be directly or —O—, —S—, —SO
- a ring structure may be formed together with the element E by bonding via —, —SO 2 —, —NH—, —CO—, —COO—, —CONH—, an alkylene group or a phenylene group.
- the monovalent organic group is not particularly limited, but is substituted with an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, an alkynyl group having 2 to 20 carbon atoms, or Z.
- An aryl group having 6 to 20 carbon atoms which may be substituted is preferable, and an aryl group having 6 to 14 carbon atoms which may be substituted with Z is more preferable.
- the alkyl group having 1 to 20 carbon atoms may be linear, branched or cyclic.
- an n-undecyl group for example, an n-undecyl group, n- Examples include dodecyl group, n-tridecyl group, n-tetradecyl group, n-pentadecyl group, n-hexadecyl group, n-heptadecyl group, n-octadecyl group, n-nonadecyl group, n-eicosanyl group, etc.
- An alkyl group having 1 to 18 carbon atoms is preferable, and an alkyl group having 1 to 8 carbon atoms is more preferable.
- alkenyl group having 2 to 20 carbon atoms include ethenyl group, n-1-propenyl group, n-2-propenyl group, 1-methylethenyl group, n-1-butenyl group, n-2-butenyl group, n-3-butenyl group, 2-methyl-1-propenyl group, 2-methyl-2-propenyl group, 1-ethylethenyl group, 1-methyl-1-propenyl group, 1-methyl-2-propenyl group, n- Examples thereof include a 1-pentenyl group, an n-1-decenyl group, and an n-1-eicosenyl group.
- alkynyl group having 2 to 20 carbon atoms examples include ethynyl group, n-1-propynyl group, n-2-propynyl group, n-1-butynyl group, n-2-butynyl group, and n-3-butynyl.
- aryl group having 6 to 20 carbon atoms include phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthryl group, 2-anthryl group, 9-anthryl group, 1-phenanthryl group, 2-phenanthryl group.
- Group, 3-phenanthryl group, 4-phenanthryl group, 9-phenanthryl group and the like, and aryl groups having 6 to 14 carbon atoms are preferable.
- Z is an alkyl group having 1 to 20 carbon atoms, a haloalkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, an alkynyl group having 2 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, a carbon number 2-20 heteroaryl group, nitro group, hydroxyl group, cyano group, alkoxy group having 1-8 carbon atoms, aryloxy group having 6-20 carbon atoms, acyl group having 1-20 carbon atoms, 1-20 carbon atoms An acyloxy group, an alkylthio group having 1 to 8 carbon atoms, an arylthio group having 6 to 20 carbon atoms, an alkylamino group having 1 to 8 carbon atoms, an arylamino group having 6 to 20 carbon atoms, an amino group, or a halogen atom. Examples of these alkyl group, alkenyl group, alkynyl group, and
- halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, and a fluorine atom is preferable.
- heteroaryl group having 2 to 20 carbon atoms include 2-thienyl group, 3-thienyl group, 2-furanyl group, 3-furanyl group, 2-oxazolyl group, 4-oxazolyl group, 5-oxazolyl group, Oxygen-containing heteroaryl groups such as 3-isoxazolyl group, 4-isoxazolyl group, 5-isoxazolyl group, 2-thiazolyl group, 4-thiazolyl group, 5-thiazolyl group, 3-isothiazolyl group, 4-isothiazolyl group, 5-isothiazolyl group Sulfur-containing heteroaryl groups such as 2-imidazolyl group, 4-imidazolyl group, 2-pyridyl group, 3-pyridyl group, 4-pyridyl group, 2-pyrazyl group, 3-pyrazyl group, 5-pyrazyl group, 6 -Pyrazyl group, 2-pyrimidyl group, 4-pyrimidyl group, 5-pyrimidyl group,
- haloalkyl group having 1 to 8 carbon atoms include groups obtained by substituting at least one hydrogen atom of the alkyl group having 1 to 8 carbon atoms with a halogen atom among the alkyl groups exemplified above.
- the halogen atom may be any of chlorine, bromine, iodine and fluorine atoms. Of these, a fluoroalkyl group is preferable, and a perfluoroalkyl group is more preferable.
- Specific examples of the fluoroalkyl group include the same ones as described above.
- alkoxy group having 1 to 8 carbon atoms include methoxy group, ethoxy group, n-propoxy group, i-propoxy group, c-propoxy group, n-butoxy group, i-butoxy group, s-butoxy group, Examples thereof include t-butoxy group, n-pentoxy group, n-hexoxy group, n-heptyloxy group, n-octyloxy group and the like.
- aryloxy group having 6 to 20 carbon atoms include phenoxy group, 1-naphthyloxy group, 2-naphthyloxy group, 1-anthryloxy group, 2-anthryloxy group, and 9-anthryloxy group. 1-phenanthryloxy group, 2-phenanthryloxy group, 3-phenanthryloxy group, 4-phenanthryloxy group, 9-phenanthryloxy group and the like.
- acyl group having 1 to 20 carbon atoms include formyl group, acetyl group, propionyl group, butyryl group, isobutyryl group, valeryl group, isovaleryl group, benzoyl group and the like.
- acyloxy group having 1 to 20 carbon atoms include formyloxy group, acetoxy group, propionyloxy group, butyryloxy group, isobutyryloxy group, valeryloxy group, isovaleryloxy group, benzoyloxy group and the like.
- alkylthio group having 1 to 8 carbon atoms include methylthio group, ethylthio group, n-propylthio group, isopropylthio group, n-butylthio group, isobutylthio group, s-butylthio group, t-butylthio group, n- Examples thereof include a pentylthio group, an n-hexylthio group, an n-heptylthio group, and an n-octylthio group.
- arylthio group having 6 to 20 carbon atoms include phenylthio group, 1-naphthylthio group, 2-naphthylthio group, 1-anthrylthio group, 2-anthrylthio group, 9-anthrylthio group, 1-phenanthrylthio group, 2 -Phenanthrylthio group, 3-phenanthrylthio group, 4-phenanthrylthio group, 9-phenanthrylthio group and the like.
- alkylamino group having 1 to 8 carbon atoms include dimethylamino group, diethylamino group, di-n-propylamino group, dii-propylamino group, din-butylamino group, dii-butylamino group, Examples thereof include a di n-pentylamino group, a di n-hexylamino group, a di n-heptylamino group, a di n-octylamino group, and a methylethylamino group.
- diamino group having 6 to 20 carbon atoms include diphenylamino group, 1-naphthylphenylamino group, di (1-naphthyl) amino group, 1-naphthyl-2-naphthylamino group, di (2-naphthyl group) ) Amino group and the like.
- E is preferably O (oxygen), N (nitrogen), P (phosphorus), S (sulfur) or I (iodine) among the elements of group 15 to 17, and is particularly stable and easy to handle.
- S, I, N, and P that give a simple onium ion are more preferable, and S and I are even more preferable.
- Corresponding onium ions are oxonium, ammonium, phosphonium, sulfonium, iodonium.
- onium ion represented by the above (R ′) n + 1 -E + include, but are not limited to, the following.
- Specific examples of the oxonium ion include trimethyloxonium, diethylmethyloxonium, triethyloxonium, oxonium such as tetramethylenemethyloxonium; 4-methylpyrrinium, 2,4,6-trimethylpyrrinium, 2,6 -Pyririnium such as di-t-butylpyrrinium and 2,6-diphenylpyrrinium; chromium and isochromenium such as 2,4-dimethylchromenium and 1,3-dimethylisochromenium.
- ammonium ions include tetraalkylammonium such as tetramethylammonium, ethyltrimethylammonium, diethyldimethylammonium, triethylmethylammonium and tetraethylammonium; N, N-dimethylpyrrolidinium, N-ethyl-N-methylpyrrolidi Pyrrolidinium such as N, N, N-diethylpyrrolidinium; N, N′-dimethylimidazolinium, N, N′-diethylimidazolinium, N-ethyl-N′-methylimidazolinium, 1,3, 4-trimethylimidazolinium, imidazolinium such as 1,2,3,4-tetramethylimidazolinium; tetrahydropyrimidinium such as N, N′-dimethyltetrahydropyrimidinium; N, N′-dimethylmol Morolini such as holinium Piperid
- phosphonium ions include tetraarylphosphonium such as tetraphenylphosphonium, tetra-p-tolylphosphonium, tetrakis (2-methoxyphenyl) phosphonium, tetrakis (3-methoxyphenyl) phosphonium, and tetrakis (4-methoxyphenyl) phosphonium.
- Triarylphosphonium such as triphenylbenzylphosphonium, triphenylphenacylphosphonium, triphenylmethylphosphonium, triphenylbutylphosphonium; triethylbenzylphosphonium, tributylbenzylphosphonium, tetraethylphosphonium, tetrabutylphosphonium, tetrahexylphosphonium, triethylphenacylphosphonium Tetraalkylphosphines such as tributylphenacylphosphonium Bromide and the like.
- sulfonium ion examples include triphenylsulfonium, tri-p-tolylsulfonium, tri-o-tolylsulfonium, tris (4-methoxyphenyl) sulfonium, 1-naphthyldiphenylsulfonium, 2-naphthyldiphenylsulfonium, tris (4 -Fluorophenyl) sulfonium, tri-1-naphthylsulfonium, tri-2-naphthylsulfonium, tris (4-hydroxyphenyl) sulfonium, 4- (phenylthio) phenyldiphenylsulfonium, 4- (p-tolylthio) phenyldi-p-tolyl Sulfonium, 4- (4-methoxyphenylthio) phenylbis (4-methoxyphenyl) sulfonium
- iodonium ions include diphenyliodonium, di-p-tolyliodonium, bis (4-dodecylphenyl) iodonium, bis (4-methoxyphenyl) iodonium, (4-octyloxyphenyl) phenyliodonium, bis (4- Decyloxy) phenyliodonium, 4- (2-hydroxytetradecyloxy) phenylphenyliodonium, 4-isopropylphenyl (p-tolyl) iodonium, 4-isobutylphenyl (p-tolyl) iodonium, and the like.
- the fluorinated alkyl phosphate onium salts may be used singly or in combination of two or more. Moreover, you may use together other well-known other fluorinated alkyl phosphoric acid onium salts as needed.
- the fluorinated alkyl phosphate onium salt can be synthesized by a known method described in, for example, JP 2012-246456 A.
- the fluorinated alkyl phosphate onium salt may be dissolved in advance in an organic solvent in order to facilitate dissolution in the charge transporting varnish.
- organic solvents include carbonates such as propylene carbonate, ethylene carbonate, 1,2-butylene carbonate, dimethyl carbonate, and diethyl carbonate; ketones such as acetone, methyl ethyl ketone, cyclohexanone, methyl isoamyl ketone, and 2-heptanone; ethylene Glycol, ethylene glycol monoacetate, diethylene glycol, diethylene glycol monoacetate, propylene glycol, propylene glycol monoacetate, dipropylene glycol, monomethyl ether, monoethyl ether, monopropyl ether, monobutyl ether or monophenyl ether of dipropylene glycol monoacetate, etc.
- cyclic ethers such as dioxane Class: ethyl formate, methyl lactate, ethyl lactate, methyl acetate, ethyl acetate, butyl acetate, methyl pyruvate, methyl acetoacetate, ethyl acetoacetate, ethyl pyruvate, ethyl ethoxyacetate, methyl methoxypropionate, ethyl ethoxypropionate, Methyl 2-hydroxypropionate, ethyl 2-hydroxypropionate, ethyl 2-hydroxy-2-methylpropionate, methyl 2-hydroxy-3-methylbutanoate, 3-methoxybutyl acetate, 3-methyl-3-methoxybutyl acetate, Esteers such as toluene; aromatic hydrocarbons such as toluene, xylene, 3-phenoxytoluene, 4-methoxytoluen
- the use ratio is preferably 15 to 1,000 parts by mass, more preferably 30 to 500 parts by mass with respect to 100 parts by mass of the fluorinated alkyl phosphate onium salt.
- the charge transporting substance used in the present invention is not particularly limited and can be appropriately selected from those conventionally known in the field of organic EL and the like. Specific examples include oligoaniline derivatives, N, N′-diarylbenzidine derivatives, arylamine derivatives such as N, N, N ′, N′-tetraarylbenzidine derivatives, oligothiophene derivatives, thienothiophene derivatives, thienobenzothiophenes.
- Examples include various hole transport materials such as thiophene derivatives such as derivatives and pyrrole derivatives such as oligopyrrole, among which arylamine derivatives and thiophene derivatives are preferable, arylamine derivatives are more preferable, and formula (1) or (2 An aniline derivative represented by
- the molecular weight of the charge transporting substance is not particularly limited, but is preferably 200 to 9,000 from the viewpoint of preparing a uniform varnish that gives a thin film with high flatness, and has a high solvent resistance. Is more preferably 300 or more, more preferably 400 or more, and more preferably 8,000 or less, and 7,000 or less from the viewpoint of preparing a uniform varnish that gives a highly flat thin film with good reproducibility. Is more preferably 6,000 or less, and most preferably 5,000 or less.
- the charge transporting material preferably has no molecular weight distribution (dispersity is 1) (that is, preferably has a single molecular weight). ).
- R 1 and R 2 are each independently a hydrogen atom, a halogen atom, a nitro group, a cyano group, or an alkyl group having 1 to 20 carbon atoms which may be substituted with a halogen atom, Represents an alkenyl group having 2 to 20 carbon atoms, an alkynyl group having 2 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, or a heteroaryl group having 2 to 20 carbon atoms, and specific examples thereof include the above formula (c1 And the same groups as described in the above.
- R 1 and R 2 are each a hydrogen atom, a fluorine atom, a cyano group, an alkyl group having 1 to 20 carbon atoms which may be substituted with a halogen atom, or a carbon atom having 6 to 20 carbon atoms which may be substituted with a halogen atom.
- a heteroaryl group having 2 to 20 carbon atoms which may be substituted with a halogen atom, preferably a hydrogen atom, a fluorine atom, a cyano group or an alkyl having 1 to 10 carbon atoms which may be substituted with a halogen atom
- a phenyl group which may be substituted with a group or a halogen atom is more preferable, a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group is more preferable, and a hydrogen atom is most preferable.
- Ph 1 in the above formulas (1) and (2) represents a group represented by the formula (P1).
- R 3 to R 6 are each independently a hydrogen atom, a halogen atom, a nitro group, a cyano group, or an alkyl group having 1 to 20 carbon atoms which may be substituted with a halogen atom, or 2 carbon atoms
- a hydrogen atom, a fluorine atom, a cyano group, an alkyl group having 1 to 20 carbon atoms which may be substituted with a halogen atom, or a carbon atom having 6 to 6 carbon atoms which may be substituted with a halogen atom 20 aryl groups and heteroaryl groups having 2 to 20 carbon atoms which may be substituted with a halogen atom are preferred, and those having 1 to 10 carbon atoms which may be substituted with a hydrogen atom, a fluorine atom, a cyano group or a halogen atom
- An alkyl group and a phenyl group which may be substituted with a halogen atom are more preferable, a hydrogen atom, a fluorine atom, a methyl group and a trifluoromethyl group are more preferable, and a hydrogen atom is most preferable.
- Ar 1 in the above formula (1) independently of each other represents a group represented by any one of the formulas (B1) to (B11).
- R 7 to R 27 , R 30 to R 51 and R 53 to R 154 may each independently be substituted with a hydrogen atom, a halogen atom, a nitro group, a cyano group, or a halogen atom.
- R 28 and R 29 independently of each other represent an aryl group having 6 to 20 carbon atoms or a heteroaryl group having 2 to 20 carbon atoms which may be substituted with Z 1
- R 52 represents hydrogen atom may be substituted with Z 4, alkyl group having 1 to 20 carbon atoms, which may be substituted with alkenyl or alkynyl group having 2 to 20 carbon atoms having 2 to 20 carbon atoms, or Z 1,, carbon atoms 6-20 aryl groups or Represents a heteroaryl group having 2 to 20 carbon atoms
- Z 1 is a halogen atom, a nitro group, a cyano group, or an alkyl group having 1 to 20 carbon atoms which may be substituted with Z 2
- Z 2 is an aryl group or carbon atom having 6 to 20 carbon atoms which may be substituted with a halogen
- Alkyl group Represents an alkenyl group having 2 to 20 carbon atoms or an alkynyl group having 2 to 20 carbon atoms, and these halogen atoms, alkyl groups having 1 to 20 carbon atoms, alkenyl groups having 2 to 20 carbon atoms, and alkynyl groups having 2 to 20 carbon atoms
- Specific examples of the aryl group having 6 to 20 carbon atoms and the heteroaryl group having 2 to 20 carbon atoms include the same groups as those described in the above formula (c1).
- R 7 to R 27 , R 30 to R 51 and R 53 to R 154 are each substituted with a hydrogen atom, a fluorine atom, a cyano group, a diphenylamino group which may be substituted with a halogen atom, or a halogen atom.
- Preferred are an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms which may be substituted with a halogen atom, and a heteroaryl group having 2 to 20 carbon atoms which may be substituted with a halogen atom.
- a hydrogen atom, a fluorine atom, a cyano group, an alkyl group having 1 to 10 carbon atoms which may be substituted with a halogen atom, or a phenyl group which may be substituted with a halogen atom is more preferable. And a trifluoromethyl group is more preferable, and a hydrogen atom is most preferable.
- R 28 and R 29 are preferably an aryl group having 6 to 14 carbon atoms which may be substituted with Z 1 , or a heteroaryl group having 2 to 14 carbon atoms which may be substituted with Z 1.
- an aryl group which may having 6 to 14 carbon atoms optionally substituted with 1 a phenyl group which may be substituted with Z 1, which may be substituted with Z 1 1-naphthyl group, substituted with Z 1
- An optionally substituted 2-naphthyl group is even more preferred.
- an aryl group of Z 1 is carbon atoms 6 also be ⁇ 20 substituted with a heteroaryl group which have 2-20 carbon atoms substituted with Z 1, with Z 4 alkyl group substituted-1 carbon atoms which may be 20, more preferably a hydrogen atom, Z 1 substituted by optionally 6 carbon atoms which may be ⁇ 14 aryl group, Z 1 carbon atoms which may be substituted with 2 A heteroaryl group having ⁇ 14, an alkyl group having 1 to 10 carbon atoms which may be substituted with Z 4 , more preferably a hydrogen atom, an aryl group having 6 to 14 carbon atoms which may be substituted with Z 1 , Z even more preferably an alkyl group having a nitrogen-containing heteroaryl group, Z 4 carbon atoms which may be substituted with 1 to 10 also 1-2 carbon atoms 14 substituted with 1, hydrogen atom is substituted with Z 1 Optionally substituted with a phenyl group, Z 1 Good
- Ar 4 independently represents an aryl group having 6 to 20 carbon atoms which may be substituted with an arylamino group having 6 to 20 dicarbon atoms.
- Specific examples of the aryl group having 6 to 20 carbon atoms and the arylamino group having 6 to 20 carbon atoms include the same groups as those described in formula (c1).
- Ar 4 includes phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthryl group, 2-anthryl group, 9-anthryl group, 1-phenanthryl group, 2-phenanthryl group, 3-phenanthryl group, 4- Phenanthryl group, 9-phenanthryl group, p- (diphenylamino) phenyl group, p- (1-naphthylphenylamino) phenyl group, p- (di (1-naphthyl) amino) phenyl group, p- (1-naphthyl-) A 2-naphthylamino) phenyl group and a p- (di (2-naphthyl) amino) phenyl group are preferred, and a p- (diphenylamino) phenyl group is more preferred.
- R 52 represents the same meaning as described above.
- Ar 2 in the formula (1) independently represents a group represented by any one of the formulas (A1) to (A18).
- R 155 is a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, or an alkynyl group having 2 to 20 carbon atoms, which may be substituted with Z 4 , Or an aryl group having 6 to 20 carbon atoms or a heteroaryl group having 2 to 20 carbon atoms which may be substituted with Z 1 , and R 156 and R 157 are each independently substituted with Z 1 Represents an aryl group having 6 to 20 carbon atoms or a heteroaryl group having 2 to 20 carbon atoms, DPA represents a diphenylamino group, and Ar 4 , Z 1 , Z 3 to Z 5 have the same meaning as described above.
- halogen atoms alkyl groups having 1 to 20 carbon atoms, alkenyl groups having 2 to 20 carbon atoms, alkynyl groups having 2 to 20 carbon atoms, aryl groups having 6 to 20 carbon atoms, and heteroaryl groups having 2 to 20 carbon atoms
- alkyl groups having 1 to 20 carbon atoms alkenyl groups having 2 to 20 carbon atoms
- alkynyl groups having 2 to 20 carbon atoms alkynyl groups having 2 to 20 carbon atoms
- aryl groups having 6 to 20 carbon atoms aryl groups having 6 to 20 carbon atoms
- heteroaryl groups having 2 to 20 carbon atoms Specific examples include the same groups as those described in the above formula (c1).
- an aryl group of Z 1 is carbon atoms 6 also be ⁇ 20 substituted with a heteroaryl group which have 2-20 carbon atoms substituted with Z 1, with Z 4 alkyl group substituted-1 carbon atoms which may be 20, more preferably a hydrogen atom, Z 1 substituted by optionally 6 carbon atoms which may be ⁇ 14 aryl group, Z 1 carbon atoms which may be substituted with 2 A heteroaryl group having ⁇ 14, an alkyl group having 1 to 10 carbon atoms which may be substituted with Z 4 , more preferably a hydrogen atom, an aryl group having 6 to 14 carbon atoms which may be substituted with Z 1 , Z even more preferably an alkyl group having a nitrogen-containing heteroaryl group, Z 4 carbon atoms which may be substituted with 1 to 10 also 1-2 carbon atoms 14 substituted with 1, hydrogen atom is substituted with Z 1 which may be a phenyl group, optionally substituted with a phenyl group, optionally substituted
- R 156 and R 157 are preferably an aryl group having 6 to 14 carbon atoms which may be substituted with Z 1 , or a heteroaryl group having 2 to 14 carbon atoms which may be substituted with Z 1. More preferably an aryl group which may having 6 to 14 carbon atoms optionally substituted with 1, a phenyl group which may be substituted with Z 1, which may be substituted with Z 1 1-naphthyl group, substituted with Z 1 An optionally substituted 2-naphthyl group is even more preferred.
- the aniline derivative represented by the formula (1-1) is more preferably the aniline derivative represented by the formula (1).
- the aniline derivative represented by the formula (1-1) is preferable.
- Ph 1 and k represent the same meaning as described above, and Ar 5 represents a group represented by any of formulas (D1) to (D13). A group represented by any one of D1 ′) to (D13 ′) is preferred. Specific examples of Ar 5 include the same groups as those described above as specific examples of groups suitable as Ar 1 .
- the aniline derivative represented by formula (1) is preferably an aniline derivative represented by formula (1-2).
- Ar 6 represents a group represented by any one of formulas (E1) to (E14).
- R 52 represents the same meaning as described above.
- Ar 3 in the above formula (2) represents a group represented by any one of the formulas (C1) to (C8), and in particular, a group represented by any one of (C1 ′) to (C8 ′) is preferable. .
- k represents an integer of 1 to 10, and is preferably 1 to 5, more preferably 1 to 3, more preferably 1 or 2, from the viewpoint of increasing the solubility of the compound in an organic solvent.
- 1 is optimal.
- 1 represents 1 or 2.
- Z 1 represents a halogen atom, a nitro group, a cyano group, an alkyl group having 1 to 10 carbon atoms which may be substituted with Z 2
- Z is an alkenyl group having 2 to 10 carbon atoms which may have, alkynyl group which 2 carbon atoms which may be ⁇ 10 substituted with Z 2 preferably substituted by 2
- halogen atom, nitro group, cyano group, substituted with Z 2 is 1 carbon atoms which may be 1-3 alkyl group
- Z 4 is preferably a halogen atom, a nitro group, a cyano group, or an aryl group having 6 to 14 carbon atoms which may be substituted with Z 5.
- An atom, a nitro group, a cyano group, or an aryl group having 6 to 10 carbon atoms which may be substituted with Z 5 is more preferable, and a fluorine atom or an aryl group having 6 to 10 carbon atoms which may be substituted with Z 5 is Even more preferred are a fluorine atom and a phenyl group optionally substituted with Z 5 .
- Z 2 is preferably a halogen atom, a nitro group, a cyano group, or a Z 3 optionally substituted aryl group having 6 to 14 carbon atoms.
- a nitro group, a cyano group, and an aryl group having 6 to 10 carbon atoms which may be substituted with Z 3 more preferably a fluorine atom and an aryl group having 6 to 10 carbon atoms which may be substituted with Z 3. More preferred are a fluorine atom and a phenyl group optionally substituted with Z 3 .
- Z 5 is a halogen atom, a nitro group, a cyano group, an alkyl group which 1 carbon atoms which may be ⁇ 10 substituted by Z 3, with Z 3
- Z 3 is preferably a halogen atom, more preferably a fluorine atom.
- Z 1 is a halogen atom, a nitro group, a cyano group, or an alkyl having 1 to 3 carbon atoms that may be substituted with Z 2.
- group an alkenyl group of Z 2 ⁇ 2 carbon atoms which may be substituted with 1-3, an alkynyl group having 2 to 3 carbon atoms are preferable optionally substituted by Z 2, a halogen atom, optionally substituted by Z 2
- More preferred are alkyl groups having 1 to 3 carbon atoms, and even more preferred are a fluorine atom and a methyl group optionally substituted with Z 2 .
- Z 4 represents a halogen atom, a nitro group, a cyano group, or an aryl group having 6 to 10 carbon atoms that may be substituted with Z 5.
- a halogen atom more preferably an aryl group which may having 6 to 10 carbon atoms optionally substituted by Z 5, a fluorine atom, a phenyl group optionally substituted by Z 5 is more preferable.
- Z 2 represents a halogen atom, a nitro group, a cyano group, or an aryl group having 6 to 10 carbon atoms which may be substituted with Z 3. preferably, a halogen atom, more preferably an aryl group which may having 6 to 10 carbon atoms substituted with Z 3, fluorine atoms, the phenyl group which may be substituted with Z 3 more preferred.
- Z 5 is a halogen atom, a nitro group, a cyano group, an alkyl group having 1 to 3 carbon atoms that may be substituted with Z 3 , Z 3-substituted 2 carbon atoms which may be 1-3 alkenyl group is preferably an alkynyl group which may having 2 or 3 carbon atoms optionally substituted by Z 3, halogen atom, optionally substituted by Z 3 An alkyl group having 1 to 3 carbon atoms is more preferable, and a fluorine atom and a methyl group which may be substituted with Z 3 are even more preferable.
- Z 3 is preferably a halogen atom, more preferably a fluorine atom.
- R 52 and R 155 include the following groups, but are not limited thereto.
- Carbon number of the said alkyl group, alkenyl group, and alkynyl group becomes like this.
- it is 10 or less, More preferably, it is 6 or less, More preferably, it is 4 or less.
- carbon number of the said aryl group and heteroaryl group becomes like this.
- it is 14 or less, More preferably, it is 10 or less, More preferably, it is 6 or less.
- the aniline derivative represented by the above formula (1) can be produced by reacting an amine compound represented by the formula (3) and an aryl compound represented by the formula (4) in the presence of a catalyst.
- X represents a halogen atom or a pseudohalogen group
- Ar 1 , Ar 2 , Ph 1 and k have the same meaning as described above.
- the aniline derivative represented by formula (1-1) can be produced by reacting an amine compound represented by formula (5) with an aryl compound represented by formula (6) in the presence of a catalyst. .
- the aniline derivative represented by the formula (1-2) can be produced by reacting bis (4-aminophenyl) amine with an aryl compound represented by the formula (7) in the presence of a catalyst.
- the aniline derivative represented by the above formula (2) can be produced by reacting the amine compound represented by the formula (8) and the aryl compound represented by the formula (9) in the presence of a catalyst.
- Examples of the halogen atom are the same as described above.
- Examples of pseudohalogen groups include (fluoro) alkylsulfonyloxy groups such as methanesulfonyloxy group, trifluoromethanesulfonyloxy group, and nonafluorobutanesulfonyloxy group; aromatic sulfonyloxy groups such as benzenesulfonyloxy group and toluenesulfonyloxy group Is mentioned.
- the charge ratio with respect to the compound can be equal to or greater than the equivalent amount of the aryl compound relative to the amount of all NH groups in the amine compound or bis (4-aminophenyl) amine, but is preferably about 1 to 1.2 equivalents. is there.
- Examples of the catalyst used in the above reaction include copper catalysts such as copper chloride, copper bromide, copper iodide; Pd (PPh 3 ) 4 (tetrakis (triphenylphosphine) palladium), Pd (PPh 3 ) 2 Cl 2 (bis (triphenylphosphine) dichloropalladium), Pd (dba) 2 (bis (dibenzylideneacetone) palladium), Pd 2 (dba) 3 (tris (dibenzylideneacetone) dipalladium), Pd (Pt Examples thereof include palladium catalysts such as —Bu 3 ) 2 (bis (tri (t-butylphosphine)) palladium) and Pd (OAc) 2 (palladium acetate).
- copper catalysts such as copper chloride, copper bromide, copper iodide
- Pd (PPh 3 ) 4 tetrakis (triphenylphosphine) palladium
- These catalysts may be used alone or in combination of two or more. These catalysts may be used together with a known appropriate ligand.
- ligands include triphenylphosphine, tri-o-tolylphosphine, diphenylmethylphosphine, phenyldimethylphosphine, trimethylphosphine, triethylphosphine, tributylphosphine, tri-tert-butylphosphine.
- the amount of the catalyst used can be about 0.2 mol with respect to 1 mol of the aryl compound represented by the formula (4), (6), (7) or (9), but about 0.15 mol is preferable. It is. When a ligand is used, the amount used can be 0.1 to 5 equivalents relative to the metal complex to be used, but 1 to 2 equivalents is preferred.
- the above reactions are carried out in a solvent.
- a solvent the type is not particularly limited as long as it does not adversely affect the reaction.
- Specific examples include aliphatic hydrocarbons (pentane, n-hexane, n-octane, n-decane, decalin, etc.), halogenated aliphatic hydrocarbons (chloroform, dichloromethane, dichloroethane, carbon tetrachloride, etc.), aromatic Group hydrocarbons (benzene, nitrobenzene, toluene, o-xylene, m-xylene, p-xylene, mesitylene, etc.), halogenated aromatic hydrocarbons (chlorobenzene, bromobenzene, o-dichlorobenzene, m-dichlorobenzene, p-dichlorobenzene, etc
- the reaction temperature may be appropriately set within the range from the melting point to the boiling point of the solvent to be used, but is preferably about 0 to 200 ° C, more preferably 20 to 150 ° C.
- the desired aniline derivative can be obtained by post-treatment according to a conventional method.
- the amine compound represented by the formula (3 ′) that can be used as a raw material is an amine compound represented by the formula (10) and the formula (11). Can be efficiently produced by reacting in the presence of a catalyst.
- the above-described method for producing an amine compound represented by the formula (3 ′) is a reaction in which an amine compound represented by the formula (10) and an aryl compound represented by the formula (11) are coupled.
- the preparation of the amine compound represented by the formula (10) and the aryl compound represented by the formula (11) is preferably about 2 to 2.4 aryl compounds with respect to the amine compound 1 in terms of the substance amount ratio. is there.
- the conditions regarding the catalyst, ligand, solvent, reaction temperature, etc. in the coupling reaction are the same as the above-described conditions described for the method for producing the aniline derivative represented by the formula (1).
- Ar 1 is a group represented by Formula (B4) or a group represented by Formula (B10) in which R 52 is a hydrogen atom, or Ar 2 is represented by Formula (B).
- R 52 is a hydrogen atom
- Ar 2 is represented by Formula (B).
- aryl compounds having a known protecting group on the amino group may be used.
- a highly soluble solvent that can dissolve the charge transporting substance and the fluorinated alkyl phosphate onium salt satisfactorily can be used.
- highly soluble solvents include cyclohexanone, N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone, 1,3-dimethyl-2-imidazolidinone, diethylene glycol monomethyl ether, 3 -Organic solvents such as, but not limited to, phenoxytoluene, 4-methoxytoluene, toluene, anisole, cyclohexylbenzene, methyl benzoate, tetralin, and isophorone. These solvents can be used alone or in combination of two or more, and the amount used can be 5 to 100% by mass with respect to the total solvent used in the varnish.
- the varnish has a viscosity of 10 to 200 mPa ⁇ s, particularly 35 to 150 mPa ⁇ s at 25 ° C., and a boiling point of 50 to 300 ° C., particularly 150 to 250 ° C. at normal pressure (atmospheric pressure).
- a viscosity 10 to 200 mPa ⁇ s, particularly 35 to 150 mPa ⁇ s at 25 ° C., and a boiling point of 50 to 300 ° C., particularly 150 to 250 ° C. at normal pressure (atmospheric pressure).
- the high viscosity organic solvent examples include cyclohexanol, ethylene glycol, ethylene glycol diglycidyl ether, 1,3-octylene glycol, diethylene glycol, dipropylene glycol, triethylene glycol, tripropylene glycol, 1,3-butanediol, Examples include, but are not limited to, 2,3-butanediol, 1,4-butanediol, propylene glycol, hexylene glycol, and the like. These solvents may be used alone or in combination of two or more.
- the addition ratio of the high-viscosity organic solvent to the entire solvent used in the varnish of the present invention is preferably within a range where no solid precipitates, and the addition ratio is preferably 5 to 90% by mass as long as no solid precipitates.
- solvents are used in an amount of 1 to 90% by mass, preferably It is also possible to mix at a ratio of 1 to 50% by mass.
- solvents include propylene glycol monomethyl ether, ethylene glycol monobutyl ether, diethylene glycol diethyl ether, diethylene glycol dimethyl ether, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, dipropylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, and diethylene glycol.
- Examples include, but are not limited to, monoethyl ether, diacetone alcohol, ⁇ -butyrolactone, ethyl lactate, and n-hexyl acetate. These solvents can be used alone or in combination of two or more.
- the viscosity of the varnish of the present invention is appropriately set according to the thickness of the thin film to be produced and the solid content concentration, but is usually 1 to 50 mPa ⁇ s at 25 ° C., and its surface tension is usually 20 to 50 mN / m.
- the solid content concentration of the charge transporting varnish is appropriately set in consideration of the viscosity and surface tension of the varnish, the thickness of the thin film to be produced, etc., but is usually 0.1 to 10.0 mass. In consideration of improving the coatability of the varnish, it is preferably about 0.5 to 5.0% by mass, more preferably about 1.0 to 3.0% by mass.
- the method for preparing the varnish is not particularly limited.
- a method in which the fluorinated alkyl phosphate onium salt is first dissolved in a solvent and a charge transporting substance is sequentially added thereto, or the fluorinated alkyl is added.
- An example is a method of dissolving a mixture of an onium phosphate salt and a charge transporting substance in a solvent.
- organic solvents for example, in a solvent that well dissolves the fluorinated alkyl phosphate onium salt and the charge transporting substance, these may be dissolved first, and other solvents may be added thereto.
- the fluorinated alkyl phosphate onium salt and the charge transporting substance may be dissolved sequentially or simultaneously in a mixed solvent of the above organic solvents.
- the charge transporting varnish is obtained by dissolving the fluorinated alkyl phosphate onium salt, the charge transporting compound and the like in an organic solvent, It is desirable to filter using a filter or the like.
- the charge transporting thin film of the present invention can be formed on a substrate by applying the above-described charge transporting varnish on the substrate and baking it.
- the coating method of the varnish is not particularly limited, and examples thereof include a dipping method, a spin coating method, a transfer printing method, a roll coating method, a brush coating, an ink jet method, a spray method, and a slit coating method. Accordingly, it is preferable to adjust the viscosity and surface tension of the varnish.
- the firing atmosphere is not particularly limited, and a thin film having a uniform film formation surface and a high charge transport property not only in the air atmosphere but also in an inert gas such as nitrogen or in a vacuum. Although it can be obtained, depending on the type of the charge transporting compound or the like, a thin film having higher charge transportability may be obtained with good reproducibility by firing the varnish in an air atmosphere.
- the firing temperature is appropriately set within a range of about 100 to 260 ° C. in consideration of the intended use of the obtained thin film, the degree of charge transportability imparted to the obtained thin film, the type and boiling point of the solvent, and the like.
- the obtained thin film is used as a hole injection layer of an organic EL device, it is preferably about 140 to 250 ° C., more preferably about 145 to 240 ° C.
- a temperature change of two or more steps may be applied for the purpose of developing a higher uniform film forming property or causing the reaction to proceed on the substrate. What is necessary is just to perform using suitable apparatuses, such as oven.
- the film thickness of the charge transporting thin film is not particularly limited, but is preferably 5 to 200 nm when used as a hole injection layer, a hole transport layer or a hole injection transport layer of an organic EL device.
- a method of changing the film thickness there are methods such as changing the solid content concentration in the varnish and changing the amount of the solution on the substrate during coating.
- the organic EL device of the present invention has a pair of electrodes, and has the above-described charge transporting thin film of the present invention between these electrodes.
- Typical examples of the organic EL element include (a) to (f) below, but are not limited thereto.
- an electron blocking layer or the like can be provided between the light emitting layer and the anode, and a hole (hole) blocking layer or the like can be provided between the light emitting layer and the cathode.
- the hole injection layer, the hole transport layer, or the hole injection transport layer may have a function as an electron block layer or the like, and the electron injection layer, the electron transport layer, or the electron injection transport layer is a hole.
- Anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode (b) Anode / hole injection layer / hole transport layer / light emission layer / electron injection transport layer / Cathode (c) anode / hole injection transport layer / light emitting layer / electron transport layer / electron injection layer / cathode (d) anode / hole injection transport layer / light emitting layer / electron injection transport layer / cathode (e) anode / positive Hole injection layer / hole transport layer / light emitting layer / cathode (f) anode / hole injection transport layer / light emitting layer / cathode
- “Hole injection layer”, “hole transport layer” and “hole injection transport layer” are layers formed between a light emitting layer and an anode, and transport holes from the anode to the light emitting layer.
- a hole injection transport layer In the case where only one layer of a hole transporting material is provided between the light emitting layer and the anode, it is a “hole injection transport layer”, and between the light emitting layer and the anode,
- the layer close to the anode is a “hole injection layer”, and the other layers are “hole transport layers”.
- the hole injection (transport) layer a thin film that is excellent not only in accepting holes from the anode but also injecting holes into the hole transport (light emitting) layer is used.
- Electrode injection layer “Electron injection layer”, “electron transport layer” and “electron injection transport layer” are layers formed between a light emitting layer and a cathode, and have a function of transporting electrons from the cathode to the light emitting layer.
- the layer of the electron transporting material is disposed between the light emitting layer and the cathode.
- the layer close to the cathode is an “electron injection layer” and the other layers are “electron transport layers”.
- the “light emitting layer” is an organic layer having a light emitting function, and includes a host material and a dopant material when a doping system is employed.
- the host material mainly has a function of encouraging recombination of electrons and holes and confining excitons in the light emitting layer, and the dopant material efficiently emits excitons obtained by recombination. It has a function.
- the host material mainly has a function of confining excitons generated by the dopant in the light emitting layer.
- the charge transporting thin film of the present invention can be suitably used as a hole injection layer, a hole transport layer, and a hole injection transport layer in an organic EL device, and can be more suitably used as a hole injection layer.
- Examples of materials used and methods for producing an organic EL device using the charge transporting varnish of the present invention include the following, but are not limited thereto.
- the electrode substrate to be used is preferably cleaned in advance by liquid cleaning with a detergent, alcohol, pure water or the like.
- the anode substrate is subjected to surface treatment such as UV ozone treatment or oxygen-plasma treatment immediately before use. It is preferable.
- the surface treatment may not be performed.
- the example of the manufacturing method of the organic EL element which has a positive hole injection layer which consists of a thin film obtained from the charge transportable varnish of this invention is as follows.
- the charge transporting varnish of the present invention is applied onto the anode substrate and baked to produce a hole injection layer on the electrode.
- a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and a cathode are provided in this order.
- the hole transport layer, the light-emitting layer, the electron transport layer, and the electron injection layer may be formed by either a vapor deposition method or a coating method (wet process) depending on the characteristics of the material used.
- anode material examples include transparent electrodes typified by indium tin oxide (ITO) and indium zinc oxide (IZO), metal anodes typified by aluminum, alloys thereof, and the like. What performed the chemical conversion process is preferable. Polythiophene derivatives and polyaniline derivatives having high charge transporting properties can also be used. Other metals constituting the metal anode include scandium, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, gallium, yttrium, zirconium, niobium, molybdenum, ruthenium, rhodium, palladium, cadmium.
- Materials for forming the hole transport layer include (triphenylamine) dimer derivative, [(triphenylamine) dimer] spirodimer, N, N′-bis (naphthalen-1-yl) -N, N′-bis (Phenyl) -benzidine ( ⁇ -NPD), N, N′-bis (naphthalen-2-yl) -N, N′-bis (phenyl) -benzidine, N, N′-bis (3-methylphenyl)- N, N′-bis (phenyl) -benzidine, N, N′-bis (3-methylphenyl) -N, N′-bis (phenyl) -9,9-spirobifluorene, N, N′-bis ( Naphthalen-1-yl) -N, N′-bis (phenyl) -9,9-spirobifluorene, N, N′-bis (3-methylphenyl) -N, N′-bis (phenyl) -9,9-spir
- Materials for forming the light emitting layer include tris (8-quinolinolato) aluminum (III) (Alq 3 ), bis (8-quinolinolato) zinc (II) (Znq 2 ), bis (2-methyl-8-quinolinolato)- 4- (p-phenylphenolate) aluminum (III) (BAlq), 4,4′-bis (2,2-diphenylvinyl) biphenyl, 9,10-di (naphthalen-2-yl) anthracene, 2-t -Butyl-9,10-di (naphthalen-2-yl) anthracene, 2,7-bis [9,9-di (4-methylphenyl) -fluoren-2-yl] -9,9-di (4- Methylphenyl) fluorene, 2-methyl-9,10-bis (naphthalen-2-yl) anthracene, 2- (9,9-spirobifluoren-2-yl) -9,9-spir
- luminescent dopants examples include 3- (2-benzothiazolyl) -7- (diethylamino) coumarin, 2,3,6,7-tetrahydro-1,1,7,7-tetramethyl-1H, 5H, 11H-10-.
- Materials for forming the electron transport layer include 8-hydroxyquinolinolate-lithium, 2,2 ′, 2 ′′-(1,3,5-benztolyl) -tris (1-phenyl-1-H-benzimidazole) ), 2- (4-biphenyl) 5- (4-t-butylphenyl) -1,3,4-oxadiazole, 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline, 4, 7-diphenyl-1,10-phenanthroline, bis (2-methyl-8-quinolinolate) -4- (phenylphenolato) aluminum, 1,3-bis [2- (2,2′-bipyridin-6-yl) -1,3,4-oxadiazo-5-yl] benzene, 6,6′-bis [5- (biphenyl-4-yl) -1,3,4-oxadiazo-2-yl] -2,2′- Bipyridine, 3- (4-bipyridine Phen
- Materials for forming the electron injection layer include lithium oxide (Li 2 O), magnesium oxide (MgO), alumina (Al 2 O 3 ), lithium fluoride (LiF), sodium fluoride (NaF), magnesium fluoride ( MgF 2 ), cesium fluoride (CsF), strontium fluoride (SrF 2 ), molybdenum trioxide (MoO 3 ), aluminum, Li (acac), lithium acetate, lithium benzoate and the like.
- Examples of the cathode material include aluminum, magnesium-silver alloy, aluminum-lithium alloy, lithium, sodium, potassium, cesium and the like.
- the other example of the preparation methods of the organic EL element which has a positive hole injection layer which consists of a thin film obtained from the charge transport varnish of this invention is as follows.
- a hole transport layer hereinafter referred to as a hole transporting polymer layer
- a light emitting layer hereinafter referred to as a “light emitting layer”.
- the organic EL device having a charge transporting thin film formed by the charge transporting varnish of the present invention can be produced by sequentially forming the light emitting polymer layer.
- the charge transporting varnish of the present invention is applied on the anode substrate to prepare a hole injection layer by the above method, and a hole transporting polymer layer and a light emitting polymer layer are sequentially formed thereon. Then, a cathode electrode is vapor-deposited to obtain an organic EL element.
- the hole transporting polymer layer and the light emitting polymer layer can be formed by adding a solvent to a hole transporting polymer material or a light emitting polymer material, or a material obtained by adding a dopant substance to the hole transporting polymer material. And a method of forming a film by uniformly dispersing and coating the film on a hole injection layer or a hole transporting polymer layer and then firing the respective layers.
- Examples of the light-emitting polymer material include polyfluorene derivatives such as poly (9,9-dialkylfluorene) (PDAF), poly (2-methoxy-5- (2′-ethylhexoxy) -1,4-phenylenevinylene) (MEH). And polyphenylene vinylene derivatives such as -PPV), polythiophene derivatives such as poly (3-alkylthiophene) (PAT), and polyvinylcarbazole (PVCz).
- polyfluorene derivatives such as poly (9,9-dialkylfluorene) (PDAF), poly (2-methoxy-5- (2′-ethylhexoxy) -1,4-phenylenevinylene) (MEH).
- polyphenylene vinylene derivatives such as -PPV
- polythiophene derivatives such as poly (3-alkylthiophene) (PAT)
- PVCz polyvinylcarbazole
- Examples of the solvent include toluene, xylene, chloroform, and the like.
- Examples of the dissolution or uniform dispersion method include methods such as stirring, heating and stirring, and ultrasonic dispersion.
- the application method is not particularly limited, and examples thereof include an inkjet method, a spray method, a dipping method, a spin coating method, a transfer printing method, a roll coating method, and a brush coating method.
- the application is preferably performed under an inert gas such as nitrogen or argon.
- Examples of the firing method include a method of heating in an oven or a hot plate under an inert gas or in a vacuum.
- the example of the manufacturing method of the EL element which has a positive hole transport layer which consists of a thin film obtained from the charge transportable varnish of this invention is as follows.
- a hole injection layer is formed on the anode substrate.
- the charge transporting varnish of the present invention is applied and baked by the above-described method to produce a hole transporting layer.
- a light emitting layer, an electron transport layer, an electron injection layer, and a cathode are provided in this order. Examples of the formation method and specific examples of the light emitting layer, the electron transport layer, and the electron injection layer are the same as described above.
- the hole injection layer may be formed by either a vapor deposition method or a coating method (wet process) depending on the characteristics of the material used.
- Materials for forming the hole injection layer include copper phthalocyanine, titanium oxide phthalocyanine, platinum phthalocyanine, pyrazino [2,3-f] [1,10] phenanthroline-2,3-dicarbonitrile, N, N, N ′.
- N′-tetrakis (4-methoxyphenyl) benzidine 2,7-bis [N, N-bis (4-methoxy-phenyl) amino] -9,9-spirobifluorene, 2,2′-bis [N , N-bis (4-methoxy-phenyl) amino] -9,9-spirobifluorene, N, N′-diphenyl-N, N′-di [4- (N, N-ditolylamino) phenyl] benzidine, N , N′-diphenyl-N, N′-di [4- (N, N-diphenylamino) phenyl] benzidine, N 4 , N 4 ′ -(biphenyl-4,4′-diyl) bis (N 4 , N 4 ', N 4' - birds E sulfonyl-biphenyl-4,4'-diamine) N 1, N 1 '- ( biphenyl
- 2010/058777 International Publication No. 2010/058776, International Publication No. 2013/042623, International Publication No. Examples thereof include charge transport materials described in 2013/129249, International Publication No. 2014/115865, International Publication No. 2014/12917, International Publication No. 2014/141998, and International Publication No. 2014/132934.
- Examples of the anode material, the light emitting layer, the light emitting dopant, the material for forming the electron transport layer and the electron block layer, and the cathode material include the same materials as described above.
- the example of the manufacturing method of the organic EL element which has a positive hole injection transport layer which consists of a thin film obtained from the charge transportable varnish of this invention is as follows.
- a hole injection transport layer is formed on the anode substrate, and a light emitting layer, an electron transport layer, an electron injection layer, and a cathode are provided in this order on the hole injection transport layer.
- Examples of the formation method and specific examples of the light emitting layer, the electron transport layer, and the electron injection layer are the same as described above.
- Examples of the anode material, the light emitting layer, the light emitting dopant, the material for forming the electron transport layer and the electron block layer, and the cathode material include the same materials as described above.
- a hole block layer, an electron block layer, or the like may be provided between the electrode and any of the above layers as necessary.
- a hole block layer, an electron block layer, or the like may be provided between the electrode and any of the above layers as necessary.
- tris (phenylpyrazole) iridium etc. are mentioned as a material which forms an electronic block layer.
- the materials constituting the anode and the cathode and the layer formed between them differ depending on whether a device having a bottom mission structure or a top emission structure is manufactured, and accordingly, the material is appropriately selected in consideration of this point.
- a transparent anode is used on the substrate side, and light is extracted from the substrate side
- a reflective anode made of metal is used in the opposite direction to the substrate. Because light is extracted from a certain transparent electrode (cathode) side, for example, regarding the anode material, a transparent anode such as ITO is used when manufacturing a device with a bottom emission structure, and Al is used when manufacturing a device with a top emission structure.
- a reflective anode such as / Nd is used.
- the organic EL device of the present invention may be sealed together with a water catching agent or the like according to a standard method in order to prevent deterioration of characteristics.
- P-1 represented by the above formula was synthesized according to the method described in Production Example 9 of Japanese Patent No. 5828679.
- Example 1-2 To a mixture of 291 mg of T-2 represented by the following formula synthesized in accordance with the method described in Preparation Example 23 of International Publication No. 2015/050253, and 130 mg of P-1 obtained in Synthesis Example 1, 4 g of 3-phenoxytoluene and 4 g of 4-methoxytoluene was added and dissolved by stirring at room temperature, and the resulting solution was filtered through a syringe filter having a pore size of 0.2 ⁇ m to obtain a charge transporting varnish.
- Example 1-3 Add 4 g of 3-phenoxytoluene and 4 g of 4-methoxytoluene to a mixture of 129 mg of T-1, 154 mg of T-2, and 138 mg of P-1 synthesized in Synthesis Example 1, and dissolve by stirring at room temperature. The solution obtained was filtered through a syringe filter having a pore size of 0.2 ⁇ m to obtain a charge transporting varnish.
- Example 2-1 Fabrication and characteristic evaluation of organic EL device
- the varnish obtained in Example 1-1 was applied to an ITO substrate using a spin coater and then baked at 200 ° C. for 10 minutes in an air atmosphere to form a uniform thin film of 50 nm on the ITO substrate.
- a glass substrate of 25 mm ⁇ 25 mm ⁇ 0.7 t in which indium tin oxide (ITO) is patterned on the surface with a film thickness of 150 nm is used, and an O 2 plasma cleaning apparatus (150 W, 30 seconds) before use.
- ITO indium tin oxide
- ⁇ -NPD N, N′-di (1-naphthyl) -N, N′-diphenyl
- a vapor deposition apparatus degree of vacuum 1.0 ⁇ 10 ⁇ 5 Pa
- Benzidine was deposited to a thickness of 30 nm at 0.2 nm / second.
- CBP and Ir (PPy) 3 were co-evaporated. In the co-evaporation, the deposition rate was controlled so that the concentration of Ir (PPy) 3 was 6%, and the layers were laminated to 40 nm.
- an organic EL element was obtained by sequentially laminating thin films of BAlq, lithium fluoride, and aluminum.
- the deposition rate was 0.2 nm / second for BAlq and aluminum and 0.02 nm / second for lithium fluoride, and the film thicknesses were 20 nm, 0.5 nm, and 80 nm, respectively.
- the characteristic was evaluated. Sealing was performed according to the following procedure. In a nitrogen atmosphere with an oxygen concentration of 2 ppm or less and a dew point of ⁇ 85 ° C.
- the organic EL element is placed between the sealing substrates, and the sealing substrate is adhesive (MORESCO Co., Ltd., Mores Moisture Cut WB90US (P)) Was pasted together.
- a water trapping agent manufactured by Dynic Co., Ltd., HD-071010W-40 was placed in a sealing substrate together with the organic EL element.
- the bonded sealing substrate was irradiated with UV light (wavelength: 365 nm, irradiation amount: 6,000 mJ / cm 2 ), and then annealed at 80 ° C. for 1 hour to cure the adhesive.
- Example 2-2 An organic EL device was produced in the same manner as in Example 2-1, except that the charge transporting varnish obtained in Example 1-2 was used instead of the charge transporting varnish obtained in Example 1-1. did.
- Example 2-3 An organic EL device was produced in the same manner as in Example 2-1, except that the charge transporting varnish obtained in Example 1-3 was used instead of the charge transporting varnish obtained in Example 1-1. did.
- Table 19 shows drive voltage, current density, current efficiency, light emission efficiency, and external light emission quantum yield (EQE) when the device was made to emit light at 5,000 cd / m 2 .
- Table 20 shows the half life of the element luminance (initial luminance: 5,000 cd / m 2 ).
- the EL device provided with the charge transporting thin film of the present invention was suitably driven.
- the life characteristics were excellent.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Optics & Photonics (AREA)
- Manufacturing & Machinery (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Electroluminescent Light Sources (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
Abstract
Description
正孔注入層の形成方法は、蒸着法に代表されるドライプロセスと、スピンコート法に代表されるウェットプロセスとに大別され、これら各プロセスを比べると、ウェットプロセスの方が大面積に平坦性の高い薄膜を効率的に製造できる。それゆえ、有機ELディスプレイの大面積化が進められている現在、ウェットプロセスで形成可能な正孔注入層が望まれている。
このような事情に鑑み、本発明者は、各種ウェットプロセスに適用可能であるとともに、有機EL素子の正孔注入層に適用した場合に優れたEL素子特性を実現できる薄膜を与える電荷輸送性材料や、それに用いる有機溶媒に対する溶解性の良好な化合物を開発してきている(例えば特許文献1~4参照)。
しかし、正孔注入層用のウェットプロセス材料に関しては常に改善が求められており、特に、電荷輸送性に優れた薄膜を与えるウェットプロセス材料が求められている。
1. 電荷輸送性物質と、フッ素化アルキルリン酸オニウム塩と、有機溶媒とを含み、前記フッ素化アルキルリン酸オニウム塩が、式(a1)で表されるアニオンと対カチオンからなるフッ素化アルキルリン酸オニウム塩を含むことを特徴とする電荷輸送性ワニス、
2. 前記電荷輸送性物質が、アニリン誘導体およびチオフェン誘導体から選ばれる少なくとも1種である1の電荷輸送性ワニス、
3. 前記電荷輸送性物質が、アニリン誘導体である2の電荷輸送性ワニス、
4. 1~3のいずれかの電荷輸送性ワニスから得られる電荷輸送性薄膜、
5. 4の電荷輸送性薄膜を有する有機エレクトロルミネッセンス素子、
6. 1~3のいずれかの電荷輸送性ワニスを基材上に塗布し、溶媒を蒸発させることを特徴とする電荷輸送性薄膜の製造方法
を提供する。
また、このような特性を有する電荷輸送性薄膜は、有機EL素子をはじめとした電子デバイス用薄膜として好適に用いることができる。特に、この薄膜を有機EL素子の正孔注入層に適用することで、低駆動電圧の有機EL素子を得ることができる。
さらに、本発明の電荷輸送性ワニスは、スピンコート法やスリットコート法等、大面積に成膜可能な各種ウェットプロセスを用いた場合でも電荷輸送性に優れた薄膜を再現性よく製造できるため、近年の有機EL素子の分野における進展にも十分対応できる。
そして、本発明の電荷輸送性ワニスから得られる薄膜は、電荷輸送性に優れることから、有機薄膜太陽電池の陽極バッファ層、帯電防止膜等として使用されることも期待できる。
本発明に係る電荷輸送性ワニスは、電荷輸送性物質と、フッ素化アルキルリン酸オニウム塩と、有機溶媒とを含み、フッ素化アルキルリン酸オニウム塩が、式(a1)で表されるアニオンと対カチオンからなるフッ素化アルキルリン酸オニウム塩を含むものである。
なお、電荷輸送性とは、導電性と同義であり、正孔輸送性とも同義である。また、本発明の電荷輸送性ワニスは、それ自体に電荷輸送性があるものでもよく、ワニスを使用して得られる固体膜に電荷輸送性があるものでもよい。
炭素数1~10のアルキル基としては、直鎖状、分岐鎖状、環状のいずれでもよく、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基等の炭素数1~10の直鎖または分岐鎖状アルキル基;シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基、ビシクロブチル基、ビシクロペンチル基、ビシクロヘキシル基、ビシクロヘプチル基、ビシクロオクチル基、ビシクロノニル基、ビシクロデシル基等の炭素数3~10の環状アルキル基などが挙げられるが、炭素数1~8のアルキル基が好ましく、炭素数1~6のアルキル基がより好ましい。
その具体例としては、フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、ペンタフルオロエチル基、2,2,2-トリフルオロエチル基、ヘプタフルオロプロピル基、2,2,3,3,3-ペンタフルオロプロピル基、2,2,3,3-テトラフルオロプロピル基、2,2,2-トリフルオロ-1-(トリフルオロメチル)エチル基、ノナフルオロブチル基、4,4,4-トリフルオロブチル基、ウンデカフルオロペンチル基、2,2,3,3,4,4,5,5,5-ノナフルオロペンチル基、2,2,3,3,4,4,5,5-オクタフルオロペンチル基、トリデカフルオロヘキシル基、2,2,3,3,4,4,5,5,6,6,6-ウンデカフロオロヘキシル基、2,2,3,3,4,4,5,5,6,6-デカフルオロヘキシル基、3,3,4,4,5,5,6,6,6-ノナフルオロヘキシル基等が挙げられる。
その具体例としては、パーフルオロベンジル基、ペンタフルオロフェニルメチレン基、ヘプタフルオロ-1-ナフチルメチレン基、ヘプタフルオロ-2-ナフチルメチレン基、ヘプタフルオロ-1-ナフチルエチレン基、ヘプタフルオロ-2-ナフチルエチレン基等が挙げられる。
上記R′は、n+1個がEに結合しており、それらは互いに独立して一価の有機基を表すが、2個以上のR′が互いに直接または-O-、-S-、-SO-、-SO2-、-NH-、-CO-、-COO-、-CONH-、アルキレン基もしくはフェニレン基を介して結合して元素Eとともに環構造を形成してもよい。
一価の有機基としては、特に限定されるものではないが、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、またはZで置換されていてもよい炭素数6~20のアリール基が好ましく、Zで置換されていてもよい炭素数6~14のアリール基がより好ましい。
炭素数2~20のアルキニル基の具体例としては、エチニル基、n-1-プロピニル基、n-2-プロピニル基、n-1-ブチニル基、n-2-ブチニル基、n-3-ブチニル基、1-メチル-2-プロピニル基、n-1-ペンチニル基、n-2-ペンチニル基、n-3-ペンチニル基、n-4-ペンチニル基、1-メチル-n-ブチニル基、2-メチル-n-ブチニル基、3-メチル-n-ブチニル基、1,1-ジメチル-n-プロピニル基、n-1-ヘキシニル基、n-1-デシニル基、n-1-ペンタデシニル基、n-1-エイコシニル基等が挙げられる。
これら、アルキル基、アルケニル基、アルキニル基、アリール基としては、上記と同様のものが挙げられる。
フルオロアルキル基の具体例としては、上記と同様のものが挙げられる。
炭素数6~20のアリールオキシ基の具体例としては、フェノキシ基、1-ナフチルオキシ基、2-ナフチルオキシ基、1-アントリルオキシ基、2-アントリルオキシ基、9-アントリルオキシ基、1-フェナントリルオキシ基、2-フェナントリルオキシ基、3-フェナントリルオキシ基、4-フェナントリルオキシ基、9-フェナントリルオキシ基等が挙げられる。
炭素数1~20のアシロキシ基の具体例としては、ホルミルオキシ基、アセトキシ基、プロピオニルオキシ基、ブチリルオキシ基、イソブチリルオキシ基、バレリルオキシ基、イソバレリルオキシ基、ベンゾイルオキシ基等が挙げられる。
炭素数6~20のアリールチオ基の具体例としては、フェニルチオ基、1-ナフチルチオ基、2-ナフチルチオ基、1-アントリルチオ基、2-アントリルチオ基、9-アントリルチオ基、1-フェナントリルチオ基、2-フェナントリルチオ基、3-フェナントリルチオ基、4-フェナントリルチオ基、9-フェナントリルチオ基等が挙げられる。
ジ炭素数6~20アリールアミノ基の具体例としては、ジフェニルアミノ基、1-ナフチルフェニルアミノ基、ジ(1-ナフチル)アミノ基、1-ナフチル-2-ナフチルアミノ基、ジ(2-ナフチル)アミノ基等が挙げられる。
オキソニウムイオンの具体例としては、トリメチルオキソニウム、ジエチルメチルオキソニウム、トリエチルオキソニウム、テトラメチレンメチルオキソニウム等のオキソニウム;4-メチルピリリニウム、2,4,6-トリメチルピリリニウム、2,6-ジ-t-ブチルピリリニウム、2,6-ジフェニルピリリニウム等のピリリニウム;2,4-ジメチルクロメニウム、1,3-ジメチルイソクロメニウム等のクロメニウムおよびイソクロメニウムなどが挙げられる。
また、必要に応じて公知のその他のフッ素化アルキルリン酸オニウム塩を併用してもよい。
なお、上記フッ素化アルキルリン酸オニウム塩は、例えば、特開2012-246456号公報等に記載された公知の方法で合成することができる。
このような有機溶媒としては、プロピレンカーボネート、エチレンカーボネート、1,2-ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート等のカーボネート類;アセトン、メチルエチルケトン、シクロヘキサノン、メチルイソアミルケトン、2-ヘプタノン等のケトン類;エチレングリコール、エチレングリコールモノアセテート、ジエチレングリコール、ジエチレングリコールモノアセテート、プロピレングリコール、プロピレングリコールモノアセテート、ジプロピレングリコール、ジプロピレングリコールモノアセテートのモノメチルエーテル、モノエチルエーテル、モノプロピルエーテル、モノブチルエーテルまたはモノフェニルエーテル等の多価アルコールおよびその誘導体類;ジオキサン等の環式エーテル類;蟻酸エチル、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸ブチル、ピルビン酸メチル、アセト酢酸メチル、アセト酢酸エチル、ピルビン酸エチル、エトキシ酢酸エチル、メトキシプロピオン酸メチル、エトキシプロピオン酸エチル、2-ヒドロキシプロピオン酸メチル、2-ヒドロキシプロピオン酸エチル、2-ヒドロキシ-2-メチルプロピオン酸エチル、2-ヒドロキシ-3-メチルブタン酸メチル、3-メトキシブチルアセテート、3-メチル-3-メトキシブチルアセテート等のエステル類;トルエン、キシレン、3-フェノキシトルエン、4-メトキシトルエン等の芳香族炭化水素類などが挙げられ、これらは単独で用いても、2種以上組み合わせて用いてもよい。
有機溶媒を使用する場合、その使用割合は、上記フッ素化アルキルリン酸オニウム塩100質量部に対して、15~1,000質量部が好ましく、30~500質量部がより好ましい。
その具体例としては、オリゴアニリン誘導体、N,N'-ジアリールベンジジン誘導体、N,N,N',N'-テトラアリールベンジジン誘導体等のアリールアミン誘導体、オリゴチオフェン誘導体、チエノチオフェン誘導体、チエノベンゾチオフェン誘導体等のチオフェン誘導体、オリゴピロール等のピロール誘導体などの各種正孔輸送性物質が挙げられるが、中でも、アリールアミン誘導体、チオフェン誘導体が好ましく、アリールアミン誘導体がより好ましく、式(1)または(2)で示されるアニリン誘導体がより一層好ましい。
なお、薄膜化した場合に電荷輸送性物質が分離することを防ぐ観点から、電荷輸送性物質は分子量分布のない(分散度が1)ことが好ましい(すなわち、単一の分子量であることが好ましい)。
特に、R3~R6としては、水素原子、フッ素原子、シアノ基、ハロゲン原子で置換されていてもよい炭素数1~20のアルキル基、ハロゲン原子で置換されていてもよい炭素数6~20のアリール基、ハロゲン原子で置換されていてもよい炭素数2~20のヘテロアリール基が好ましく、水素原子、フッ素原子、シアノ基、ハロゲン原子で置換されていてもよい炭素数1~10のアルキル基、ハロゲン原子で置換されていてもよいフェニル基がより好ましく、水素原子、フッ素原子、メチル基、トリフルオロメチル基がより一層好ましく、水素原子が最適である。
また、R28およびR29としては、Z1で置換されていてもよい炭素数6~14のアリール基、Z1で置換されていてもよい炭素数2~14のヘテロアリール基が好ましく、Z1で置換されていてもよい炭素数6~14のアリール基がより好ましく、Z1で置換されていてもよいフェニル基、Z1で置換されていてもよい1-ナフチル基、Z1で置換されていてもよい2-ナフチル基がより一層好ましい。
そして、R52としては、水素原子、Z1で置換されていてもよい炭素数6~20のアリール基、Z1で置換されていてもよい炭素数2~20のヘテロアリール基、Z4で置換されていてもよい炭素数1~20のアルキル基が好ましく、水素原子、Z1で置換されていてもよい炭素数6~14のアリール基、Z1で置換されていてもよい炭素数2~14のヘテロアリール基、Z4で置換されていてもよい炭素数1~10のアルキル基がより好ましく、水素原子、Z1で置換されていてもよい炭素数6~14のアリール基、Z1で置換されていてもよい炭素数2~14の含窒素ヘテロアリール基、Z4で置換されていてもよい炭素数1~10のアルキル基がより一層好ましく、水素原子、Z1で置換されていてもよいフェニル基、Z1で置換されていてもよい1-ナフチル基、Z1で置換されていてもよい2-ナフチル基、Z1で置換されていてもよい2-ピリジル基、Z1で置換されていてもよい3-ピリジル基、Z1で置換されていてもよい4-ピリジル基、Z4で置換されていてもよいメチル基がさらに好ましい。
炭素数6~20のアリール基、ジ炭素数6~20のアリールアミノ基の具体例としては、式(c1)で説明した基と同様のものが挙げられる。
Ar4としては、フェニル基、1-ナフチル基、2-ナフチル基、1-アントリル基、2-アントリル基、9-アントリル基、1-フェナントリル基、2-フェナントリル基、3-フェナントリル基、4-フェナントリル基、9-フェナントリル基、p-(ジフェニルアミノ)フェニル基、p-(1-ナフチルフェニルアミノ)フェニル基、p-(ジ(1-ナフチル)アミノ)フェニル基、p-(1-ナフチル-2-ナフチルアミノ)フェニル基、p-(ジ(2-ナフチル)アミノ)フェニル基が好ましく、p-(ジフェニルアミノ)フェニル基がより好ましい。
また、R156およびR157としては、Z1で置換されていてもよい炭素数6~14のアリール基、Z1で置換されていてもよい炭素数2~14のヘテロアリール基が好ましく、Z1で置換されていてもよい炭素数6~14のアリール基がより好ましく、Z1で置換されていてもよいフェニル基、Z1で置換されていてもよい1-ナフチル基、Z1で置換されていてもよい2-ナフチル基がより一層好ましい。
また、後述するように原料化合物として比較的安価なビス(4-アミノフェニル)アミンを用いて比較的簡便に合成できるとともに、有機溶媒に対する溶解性に優れていることからも、式(1)で表されるアニリン誘導体は、式(1-1)で表されるアニリン誘導体が好ましい。
なお、Ar5の具体例としては、Ar1として好適な基の具体例として上述したものと同様のものが挙げられる。
上記式(2)におけるlは、1または2を表す。
また、上記アリール基およびヘテロアリール基の炭素数は、好ましくは14以下であり、より好ましくは10以下であり、より一層好ましくは6以下である。
擬ハロゲン基としては、メタンスルホニルオキシ基、トリフルオロメタンスルホニルオキシ基、ノナフルオロブタンスルホニルオキシ基等の(フルオロ)アルキルスルホニルオキシ基;ベンゼンスルホニルオキシ基、トルエンスルホニルオキシ基等の芳香族スルホニルオキシ基などが挙げられる。
このような配位子としては、トリフェニルフォスフィン、トリ-o-トリルフォスフィン、ジフェニルメチルフォスフィン、フェニルジメチルフォスフィン、トリメチルフォスフィン、トリエチルフォスフィン、トリブチルフォスフィン、トリ-tert-ブチルフォスフィン、ジ-t-ブチル(フェニル)フォスフィン、ジ-tert-ブチル(4-ジメチルアミノフェニル)フォスフィン、1,2-ビス(ジフェニルフォスフィノ)エタン、1,3-ビス(ジフェニルフォスフィノ)プロパン、1,4-ビス(ジフェニルフォスフィノ)ブタン、1,1'-ビス(ジフェニルフォスフィノ)フェロセン等の3級フォスフィン、トリメチルフォスファイト、トリエチルフォスファイト、トリフェニルフォスファイト等の3級フォスファイトなどが挙げられる。
また、配位子を用いる場合、その使用量は、使用する金属錯体に対し0.1~5当量とすることができるが、1~2当量が好適である。
反応終了後は、常法にしたがって後処理をし、目的とするアニリン誘導体を得ることができる。
その他、当該カップリング反応における触媒、配位子、溶媒、反応温度等に関する諸条件は、式(1)で表されるアニリン誘導体の製造方法について説明した上記条件と同じである。
このような高溶解性溶媒としては、例えば、シクロヘキサノン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン、1,3-ジメチル-2-イミダゾリジノン、ジエチレングリコールモノメチルエーテル、3-フェノキシトルエン、4-メトキシトルエン、トルエン、アニソール、シクロヘキシルベンゼン、安息香酸メチル、テトラリン、イソホロン等の有機溶媒が挙げられるが、これらに限定されるものではない。これらの溶媒は1種単独で、または2種以上混合して用いることができ、その使用量は、ワニスに使用する溶媒全体に対して5~100質量%とすることができる。
高粘度有機溶媒としては、例えば、シクロヘキサノール、エチレングリコール、エチレングリコールジグリシジルエーテル、1,3-オクチレングリコール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、トリプロピレングリコール、1,3-ブタンジオール、2,3-ブタンジオール、1,4-ブタンジオール、プロピレングリコール、へキシレングリコール等が挙げられるが、これらに限定されるものではない。これらの溶媒は単独で用いてもよく、2種以上混合して用いてもよい。
本発明のワニスに用いられる溶媒全体に対する高粘度有機溶媒の添加割合は、固体が析出しない範囲内であることが好ましく、固体が析出しない限りにおいて、添加割合は、5~90質量%が好ましい。
このような溶媒としては、例えば、プロピレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、ジプロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテル、ジアセトンアルコール、γ-ブチロラクトン、エチルラクテート、n-ヘキシルアセテート等が挙げられるが、これらに限定されるものではない。これらの溶媒は1種単独で、または2種以上混合して用いることができる。
また、電荷輸送性ワニスの固形分濃度は、ワニスの粘度および表面張力等や、作製する薄膜の厚み等を勘案して適宜設定されるものではあるが、通常、0.1~10.0質量%程度であり、ワニスの塗布性を向上させることを考慮すると、好ましくは0.5~5.0質量%程度、より好ましくは1.0~3.0質量%程度である。
また、有機溶媒が複数ある場合は、例えば、上記フッ素化アルキルリン酸オニウム塩と電荷輸送性物質をよく溶解する溶媒に、まずこれらを溶解させ、そこへその他の溶媒を加えてもよく、複数の有機溶媒の混合溶媒に、上記フッ素化アルキルリン酸オニウム塩、電荷輸送性物質を順次、あるいはこれらを同時に溶解させてもよい。
ワニスの塗布方法としては、特に限定されるものではなく、ディップ法、スピンコート法、転写印刷法、ロールコート法、刷毛塗り、インクジェット法、スプレー法、スリットコート法等が挙げられ、塗布方法に応じてワニスの粘度および表面張力を調節することが好ましい。
なお、焼成の際、より高い均一成膜性を発現させたり、基材上で反応を進行させたりする目的で、2段階以上の温度変化をつけてもよく、加熱は、例えば、ホットプレートやオーブン等、適当な機器を用いて行えばよい。
有機EL素子の代表的な構成としては、以下(a)~(f)が挙げられるが、これらに限定されるわけではない。なお、下記構成において、必要に応じて、発光層と陽極の間に電子ブロック層等を、発光層と陰極の間にホール(正孔)ブロック層等を設けることもできる。また、正孔注入層、正孔輸送層あるいは正孔注入輸送層が電子ブロック層等としての機能を兼ね備えていてもよく、電子注入層、電子輸送層あるいは電子注入輸送層がホール(正孔)ブロック層等としての機能を兼ね備えていてもよい。
(a)陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極
(b)陽極/正孔注入層/正孔輸送層/発光層/電子注入輸送層/陰極
(c)陽極/正孔注入輸送層/発光層/電子輸送層/電子注入層/陰極
(d)陽極/正孔注入輸送層/発光層/電子注入輸送層/陰極
(e)陽極/正孔注入層/正孔輸送層/発光層/陰極
(f)陽極/正孔注入輸送層/発光層/陰極
「電子注入層」、「電子輸送層」および「電子注入輸送層」とは、発光層と陰極との間に形成される層であって、電子を陰極から発光層へ輸送する機能を有するものであり、発光層と陰極の間に、電子輸送性材料の層が1層のみ設けられる場合、それが「電子注入輸送層」であり、発光層と陰極の間に、電子輸送性材料の層が2層以上設けられる場合、陰極に近い層が「電子注入層」であり、それ以外の層が「電子輸送層」である。
「発光層」とは、発光機能を有する有機層であって、ドーピングシステムを採用する場合、ホスト材料とドーパント材料を含んでいる。このとき、ホスト材料は、主に電子と正孔の再結合を促し、励起子を発光層内に閉じ込める機能を有し、ドーパント材料は、再結合で得られた励起子を効率的に発光させる機能を有する。燐光素子の場合、ホスト材料は主にドーパントで生成された励起子を発光層内に閉じ込める機能を有する。
使用する電極基板は、洗剤、アルコール、純水等による液体洗浄を予め行って浄化しておくことが好ましく、例えば、陽極基板では使用直前にUVオゾン処理、酸素-プラズマ処理等の表面処理を行うことが好ましい。ただし陽極材料が有機物を主成分とする場合、表面処理を行わなくともよい。
上記の方法により、陽極基板上に本発明の電荷輸送性ワニスを塗布して焼成し、電極上に正孔注入層を作製する。
この正孔注入層の上に、正孔輸送層、発光層、電子輸送層、電子注入層、陰極をこの順で設ける。正孔輸送層、発光層、電子輸送層および電子注入層は、用いる材料の特性等に応じて、蒸着法、塗布法(ウェットプロセス)のいずれかで形成すればよい。
陽極材料としては、インジウム錫酸化物(ITO)、インジウム亜鉛酸化物(IZO)に代表される透明電極や、アルミニウムに代表される金属やこれらの合金等から構成される金属陽極が挙げられ、平坦化処理を行ったものが好ましい。高電荷輸送性を有するポリチオフェン誘導体やポリアニリン誘導体を用いることもできる。
なお、金属陽極を構成するその他の金属としては、スカンジウム、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、ガリウム、イットリウム、ジルコニウム、ニオブ、モリブデン、ルテニウム、ロジウム、パラジウム、カドミウム、インジウム、スカンジウム、ランタン、セリウム、プラセオジム、ネオジム、プロメチウム、サマリウム、ユウロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、ハフニウム、タリウム、タングステン、レニウム、オスミウム、イリジウム、プラチナ、金、チタン、鉛、ビスマスやこれらの合金等が挙げられるが、これらに限定されるわけではない。
陰極材料としては、アルミニウム、マグネシウム-銀合金、アルミニウム-リチウム合金、リチウム、ナトリウム、カリウム、セシウム等が挙げられる。
上記EL素子作製において、正孔輸送層、発光層、電子輸送層、電子注入層の真空蒸着操作を行う代わりに、正孔輸送層(以下、正孔輸送性高分子層)、発光層(以下、発光性高分子層)を順次形成することによって本発明の電荷輸送性ワニスによって形成される電荷輸送性薄膜を有する有機EL素子を作製することができる。
具体的には、陽極基板上に本発明の電荷輸送性ワニスを塗布して上記の方法により正孔注入層を作製し、その上に正孔輸送性高分子層、発光性高分子層を順次形成し、さらに陰極電極を蒸着して有機EL素子とする。
正孔輸送性高分子層および発光性高分子層の形成法としては、正孔輸送性高分子材料もしくは発光性高分子材料、またはこれらにドーパント物質を加えた材料に溶媒を加えて溶解するか、均一に分散し、正孔注入層または正孔輸送性高分子層の上に塗布した後、それぞれ焼成することで成膜する方法が挙げられる。
塗布方法としては、特に限定されるものではなく、インクジェット法、スプレー法、ディップ法、スピンコート法、転写印刷法、ロールコート法、刷毛塗り等が挙げられる。なお、塗布は、窒素、アルゴン等の不活性ガス下で行うことが好ましい。
焼成する方法としては、不活性ガス下または真空中、オーブンまたはホットプレートで加熱する方法が挙げられる。
陽極基板上に正孔注入層を形成する。その層の上に、上記の方法により本発明の電荷輸送性ワニスを塗布して焼成し、正孔輸送層を作製する。
この正孔輸送層の上に、発光層、電子輸送層、電子注入層、陰極をこの順で設ける。発光層、電子輸送層および電子注入層の形成方法および具体例は上述と同様のものが挙げられる。また、正孔注入層は、用いる材料の特性等に応じて、蒸着法、塗布法(ウェットプロセス)のいずれかで形成すればよい。
陽極基板上に正孔注入輸送層を形成し、この正孔注入輸送層の上に、発光層、電子輸送層、電子注入層、陰極をこの順で設ける。発光層、電子輸送層および電子注入層の形成方法および具体例は上述と同様のものが挙げられる。
通常、ボトムエミッション構造の素子では、基板側に透明陽極が用いられ、基板側から光が取り出されるのに対し、トップエミッション構造の素子では、金属からなる反射陽極が用いられ、基板と反対方向にある透明電極(陰極)側から光が取り出されることから、例えば陽極材料について言えば、ボトムエミッション構造の素子を製造する際はITO等の透明陽極を、トップエミッション構造の素子を製造する際はAl/Nd等の反射陽極を、それぞれ用いる。
(1)1H,19F-NMR:JEOL(株)製 核磁気共鳴装置 AL-300
(2)基板洗浄:長州産業(株)製 基板洗浄装置(減圧プラズマ方式)
(3)ワニスの塗布:ミカサ(株)製 スピンコーターMS-A100
(4)膜厚測定:(株)小坂研究所製 微細形状測定機サーフコーダET-4000
(5)膜の表面観察:レーザーテック社製 共焦点レーザー顕微鏡 リアルタイム走査型レーザー顕微鏡 1LM21D
(6)EL素子の作製:長州産業(株)製 多機能蒸着装置システムC-E2L1G1-N
(7)EL素子の輝度等の測定:(株)イーエッチシー製 多チャンネルIVL測定装置
(8)EL素子の寿命測定(輝度半減期測定):(株)イーエッチシー製 有機EL輝度寿命評価システムPEL-105S
[合成例1](4-フェニルチオフェニル)ジフェニルスルホニウム トリス(ペンタフルオロエチル)トリフルオロリン酸塩(P-1)の合成
[実施例1-1]
国際公開第2015/050253号の製造例12記載の方法に従って合成した下記式で示されるT-1 343mgと、合成例1で得られたP-1 183mgとの混合物に、3-フェノキシトルエン5gおよび4-メトキシトルエン5gを加えて、室温で撹拌して溶解させ、得られた溶液を、孔径0.2μmのシリンジフィルターでろ過して電荷輸送性ワニスを得た。
国際公開第2015/050253号の製造例23記載の方法に従って合成した下記式で示されるT-2 291mgと、合成例1で得られたP-1 130mgとの混合物に、3-フェノキシトルエン4gおよび4-メトキシトルエン4gを加えて、室温で撹拌して溶解させ、得られた溶液を、孔径0.2μmのシリンジフィルターでろ過して電荷輸送性ワニスを得た。
上記T-1 129mgと、上記T-2 154mgと、合成例1で合成したP-1 138mgとの混合物に、3-フェノキシトルエン4gおよび4-メトキシトルエン4gを加えて、室温で撹拌して溶解させ、得られた溶液を、孔径0.2μmのシリンジフィルターでろ過して電荷輸送性ワニスを得た。
[実施例2-1]
実施例1-1で得られたワニスを、スピンコーターを用いてITO基板に塗布した後、大気雰囲気下、200℃で10分間焼成し、ITO基板上に50nmの均一な薄膜を形成した。ITO基板としては、インジウム錫酸化物(ITO)が表面上に膜厚150nmでパターニングされた25mm×25mm×0.7tのガラス基板を用い、使用前にO2プラズマ洗浄装置(150W、30秒間)によって表面上の不純物を除去した。
次いで、薄膜を形成したITO基板に対し、蒸着装置(真空度1.0×10-5Pa)を用いてα-NPD(N,N’-ジ(1-ナフチル)-N,N’-ジフェニルベンジジン)を0.2nm/秒にて30nm成膜した。次に、CBPとIr(PPy)3を共蒸着した。共蒸着はIr(PPy)3の濃度が6%になるように蒸着レートをコントロールし、40nm積層させた。次いで、BAlq、フッ化リチウムおよびアルミニウムの薄膜を順次積層して有機EL素子を得た。この際、蒸着レートは、BAlqおよびアルミニウムについては0.2nm/秒、フッ化リチウムについては0.02nm/秒の条件でそれぞれ行い、膜厚は、それぞれ20nm、0.5nmおよび80nmとした。
なお、空気中の酸素、水等の影響による特性劣化を防止するため、有機EL素子は封止基板により封止した後、その特性を評価した。封止は、以下の手順で行った。酸素濃度2ppm以下、露点-85℃以下の窒素雰囲気中で、有機EL素子を封止基板の間に収め、封止基板を接着剤((株)MORESCO製、モレスコモイスチャーカット WB90US(P))により貼り合わせた。この際、捕水剤(ダイニック(株)製、HD-071010W-40)を有機EL素子と共に封止基板内に収めた。貼り合わせた封止基板に対し、UV光を照射(波長:365nm、照射量:6,000mJ/cm2)した後、80℃で1時間、アニーリング処理して接着材を硬化させた。
実施例1-1で得られた電荷輸送性ワニスのかわりに実施例1-2で得られた電荷輸送性ワニスを用いた以外は、実施例2-1と同様の方法で有機EL素子を作製した。
実施例1-1で得られた電荷輸送性ワニスのかわりに実施例1-3で得られた電荷輸送性ワニスを用いた以外は、実施例2-1と同様の方法で有機EL素子を作製した。
Claims (6)
- 前記電荷輸送性物質が、アニリン誘導体およびチオフェン誘導体から選ばれる少なくとも1種である請求項1記載の電荷輸送性ワニス。
- 前記電荷輸送性物質が、アニリン誘導体である請求項2記載の電荷輸送性ワニス。
- 請求項1~3のいずれか1項記載の電荷輸送性ワニスから得られる電荷輸送性薄膜。
- 請求項4記載の電荷輸送性薄膜を有する有機エレクトロルミネッセンス素子。
- 請求項1~3のいずれか1項記載の電荷輸送性ワニスを基材上に塗布し、溶媒を蒸発させることを特徴とする電荷輸送性薄膜の製造方法。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/500,980 US20200032140A1 (en) | 2017-04-05 | 2018-04-02 | Charge-transporting varnish |
KR1020197032442A KR102579661B1 (ko) | 2017-04-05 | 2018-04-02 | 전하 수송성 바니시 |
CN201880021842.1A CN110476265A (zh) | 2017-04-05 | 2018-04-02 | 电荷传输性清漆 |
CN202410372567.5A CN118284274A (zh) | 2017-04-05 | 2018-04-02 | 电荷传输性清漆 |
EP18781940.4A EP3608983A4 (en) | 2017-04-05 | 2018-04-02 | Charge-transporting varnish |
JP2019511226A JP7163907B2 (ja) | 2017-04-05 | 2018-04-02 | 電荷輸送性ワニス |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017074941 | 2017-04-05 | ||
JP2017-074941 | 2017-04-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018186340A1 true WO2018186340A1 (ja) | 2018-10-11 |
Family
ID=63712547
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/014084 Ceased WO2018186340A1 (ja) | 2017-04-05 | 2018-04-02 | 電荷輸送性ワニス |
Country Status (7)
Country | Link |
---|---|
US (1) | US20200032140A1 (ja) |
EP (1) | EP3608983A4 (ja) |
JP (1) | JP7163907B2 (ja) |
KR (1) | KR102579661B1 (ja) |
CN (2) | CN118284274A (ja) |
TW (1) | TWI811213B (ja) |
WO (1) | WO2018186340A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020091448A1 (ko) | 2018-10-31 | 2020-05-07 | 주식회사 엘지화학 | 리튬 이차전지 |
Citations (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5828679B2 (ja) | 1979-04-25 | 1983-06-17 | 富士通株式会社 | 半導体記憶装置の書込み回路 |
WO2004043117A1 (ja) | 2002-11-07 | 2004-05-21 | Nissan Chemical Industries,Ltd. | 電荷輸送性ワニス |
WO2004105446A1 (ja) | 2003-05-20 | 2004-12-02 | Nissan Chemical Industries, Ltd. | 電荷輸送性ワニス |
WO2005000832A1 (ja) | 2003-06-25 | 2005-01-06 | Nissan Chemical Industries, Ltd. | 1,4-ベンゾジオキサンスルホン酸化合物及び電子受容性物質としての利用 |
WO2005042621A1 (ja) | 2003-10-30 | 2005-05-12 | Nissan Chemical Industries, Ltd. | 電荷輸送性化合物、電荷輸送性材料、電荷輸送性ワニス、電荷輸送性薄膜及び有機エレクトロルミネッセンス素子 |
WO2005043962A1 (ja) | 2003-10-31 | 2005-05-12 | Nissan Chemical Industries, Ltd. | 1,4−ジチイン環を有する化合物を含む電荷輸送性有機材料 |
WO2005107335A1 (ja) | 2004-04-30 | 2005-11-10 | Nissan Chemical Industries, Ltd. | 良溶媒及び貧溶媒を含有するワニス |
WO2006006459A1 (ja) | 2004-07-09 | 2006-01-19 | Nissan Chemical Industries, Ltd. | オリゴアニリン化合物の精製方法およびオリゴアニリン化合物 |
WO2006025342A1 (ja) | 2004-08-31 | 2006-03-09 | Nissan Chemical Industries, Ltd. | アリールスルホン酸化合物及び電子受容性物質としての利用 |
WO2006137473A1 (ja) | 2005-06-24 | 2006-12-28 | Nissan Chemical Industries, Ltd. | 芳香族スルホン酸化合物の製造法 |
WO2007049631A1 (ja) | 2005-10-28 | 2007-05-03 | Nissan Chemical Industries, Ltd. | スプレー又はインクジェット塗布用電荷輸送性ワニス |
WO2007099808A1 (ja) | 2006-02-23 | 2007-09-07 | Nissan Chemical Industries, Ltd. | スルホン酸エステル化合物およびその利用 |
WO2008010474A1 (fr) | 2006-07-18 | 2008-01-24 | Nissan Chemical Industries, Ltd. | Vernis contenant des charges |
WO2008032616A1 (en) | 2006-09-13 | 2008-03-20 | Nissan Chemical Industries, Ltd. | Oligoaniline compounds |
WO2008032617A1 (fr) | 2006-09-13 | 2008-03-20 | Nissan Chemical Industries, Ltd. | Composé d'oligoaniline et son utilisation |
WO2008129947A1 (ja) | 2007-04-12 | 2008-10-30 | Nissan Chemical Industries, Ltd. | オリゴアニリン化合物 |
WO2009096352A1 (ja) | 2008-01-29 | 2009-08-06 | Nissan Chemical Industries, Ltd. | アリールスルホン酸化合物および電子受容性物質としての利用 |
WO2010041701A1 (ja) | 2008-10-09 | 2010-04-15 | 日産化学工業株式会社 | 電荷輸送性ワニス |
WO2010058777A1 (ja) | 2008-11-19 | 2010-05-27 | 日産化学工業株式会社 | 電荷輸送性材料および電荷輸送性ワニス |
WO2010058776A1 (ja) | 2008-11-19 | 2010-05-27 | 日産化学工業株式会社 | 電荷輸送性材料および電荷輸送性ワニス |
WO2011132702A1 (ja) * | 2010-04-22 | 2011-10-27 | 日立化成工業株式会社 | 有機エレクトロニクス材料、重合開始剤及び熱重合開始剤、インク組成物、有機薄膜及びその製造方法、有機エレクトロニクス素子、有機エレクトロルミネセンス素子、照明装置、表示素子、並びに表示装置 |
JP2012246456A (ja) | 2011-05-31 | 2012-12-13 | San Apro Kk | フッ素化アルキルリン酸オニウム塩系酸発生剤 |
JP2013030503A (ja) * | 2011-07-26 | 2013-02-07 | Hitachi Chem Co Ltd | 有機エレクトロニクス材料、インク組成物、有機薄膜及びその製造方法、有機エレクトロニクス素子、有機エレクトロルミネセンス素子、表示素子、照明装置、並びに表示装置 |
WO2013042623A1 (ja) | 2011-09-21 | 2013-03-28 | 日産化学工業株式会社 | 電荷輸送性ワニス |
WO2013129249A1 (ja) | 2012-03-02 | 2013-09-06 | 日産化学工業株式会社 | 電荷輸送性ワニス |
JP2014127585A (ja) * | 2012-12-26 | 2014-07-07 | Hitachi Chemical Co Ltd | 有機エレクトロニクス素子及びその製造方法 |
WO2014115865A1 (ja) | 2013-01-28 | 2014-07-31 | 日産化学工業株式会社 | 電荷輸送性ワニス |
WO2014132834A1 (ja) | 2013-02-26 | 2014-09-04 | 日産化学工業株式会社 | 電荷輸送性ワニス |
WO2014132917A1 (ja) | 2013-02-28 | 2014-09-04 | 日産化学工業株式会社 | 電荷輸送性ワニス |
WO2014141998A1 (ja) | 2013-03-11 | 2014-09-18 | 日産化学工業株式会社 | 電荷輸送性ワニス |
JP2014205624A (ja) | 2013-04-11 | 2014-10-30 | サンアプロ株式会社 | オニウムボレート塩系酸発生剤 |
WO2015050253A1 (ja) | 2013-10-04 | 2015-04-09 | 日産化学工業株式会社 | アニリン誘導体およびその利用 |
WO2015093551A1 (ja) * | 2013-12-18 | 2015-06-25 | 出光興産株式会社 | 化合物、有機エレクトロルミネッセンス素子用材料、インク組成物、有機エレクトロルミネッセンス素子、電子機器、及び化合物の製造方法 |
WO2017033771A1 (ja) * | 2015-08-21 | 2017-03-02 | シャープ株式会社 | 発光デバイス、表示装置、照明装置、電子機器 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100611226B1 (ko) * | 2003-11-25 | 2006-08-09 | 삼성에스디아이 주식회사 | 유기 전계 발광 표시 장치 |
BR112012007329A2 (pt) * | 2009-10-01 | 2016-10-04 | Hitachi Chemical Co Ltd | material para eletrônicos orgânicos , elemento eletrônico orgânico, elemento eletroluminescente orgânico, elemento de exibição que utiliza elemento eletroluminescente orgânico, dispositivo de iluminação e dispositivo de exibição |
JP6181958B2 (ja) * | 2013-03-28 | 2017-08-16 | 日東電工株式会社 | 帯電防止性粘着シート、及び、光学フィルム |
WO2014203818A1 (ja) * | 2013-06-18 | 2014-12-24 | 日産化学工業株式会社 | チオフェン誘導体及びその利用並びにチオフェン誘導体の製造方法 |
-
2018
- 2018-04-02 CN CN202410372567.5A patent/CN118284274A/zh active Pending
- 2018-04-02 CN CN201880021842.1A patent/CN110476265A/zh active Pending
- 2018-04-02 EP EP18781940.4A patent/EP3608983A4/en not_active Withdrawn
- 2018-04-02 KR KR1020197032442A patent/KR102579661B1/ko active Active
- 2018-04-02 JP JP2019511226A patent/JP7163907B2/ja active Active
- 2018-04-02 WO PCT/JP2018/014084 patent/WO2018186340A1/ja not_active Ceased
- 2018-04-02 US US16/500,980 patent/US20200032140A1/en not_active Abandoned
- 2018-04-03 TW TW107111837A patent/TWI811213B/zh active
Patent Citations (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5828679B2 (ja) | 1979-04-25 | 1983-06-17 | 富士通株式会社 | 半導体記憶装置の書込み回路 |
WO2004043117A1 (ja) | 2002-11-07 | 2004-05-21 | Nissan Chemical Industries,Ltd. | 電荷輸送性ワニス |
WO2004105446A1 (ja) | 2003-05-20 | 2004-12-02 | Nissan Chemical Industries, Ltd. | 電荷輸送性ワニス |
WO2005000832A1 (ja) | 2003-06-25 | 2005-01-06 | Nissan Chemical Industries, Ltd. | 1,4-ベンゾジオキサンスルホン酸化合物及び電子受容性物質としての利用 |
WO2005042621A1 (ja) | 2003-10-30 | 2005-05-12 | Nissan Chemical Industries, Ltd. | 電荷輸送性化合物、電荷輸送性材料、電荷輸送性ワニス、電荷輸送性薄膜及び有機エレクトロルミネッセンス素子 |
WO2005043962A1 (ja) | 2003-10-31 | 2005-05-12 | Nissan Chemical Industries, Ltd. | 1,4−ジチイン環を有する化合物を含む電荷輸送性有機材料 |
WO2005107335A1 (ja) | 2004-04-30 | 2005-11-10 | Nissan Chemical Industries, Ltd. | 良溶媒及び貧溶媒を含有するワニス |
WO2006006459A1 (ja) | 2004-07-09 | 2006-01-19 | Nissan Chemical Industries, Ltd. | オリゴアニリン化合物の精製方法およびオリゴアニリン化合物 |
WO2006025342A1 (ja) | 2004-08-31 | 2006-03-09 | Nissan Chemical Industries, Ltd. | アリールスルホン酸化合物及び電子受容性物質としての利用 |
WO2006137473A1 (ja) | 2005-06-24 | 2006-12-28 | Nissan Chemical Industries, Ltd. | 芳香族スルホン酸化合物の製造法 |
WO2007049631A1 (ja) | 2005-10-28 | 2007-05-03 | Nissan Chemical Industries, Ltd. | スプレー又はインクジェット塗布用電荷輸送性ワニス |
WO2007099808A1 (ja) | 2006-02-23 | 2007-09-07 | Nissan Chemical Industries, Ltd. | スルホン酸エステル化合物およびその利用 |
WO2008010474A1 (fr) | 2006-07-18 | 2008-01-24 | Nissan Chemical Industries, Ltd. | Vernis contenant des charges |
WO2008032616A1 (en) | 2006-09-13 | 2008-03-20 | Nissan Chemical Industries, Ltd. | Oligoaniline compounds |
WO2008032617A1 (fr) | 2006-09-13 | 2008-03-20 | Nissan Chemical Industries, Ltd. | Composé d'oligoaniline et son utilisation |
WO2008129947A1 (ja) | 2007-04-12 | 2008-10-30 | Nissan Chemical Industries, Ltd. | オリゴアニリン化合物 |
WO2009096352A1 (ja) | 2008-01-29 | 2009-08-06 | Nissan Chemical Industries, Ltd. | アリールスルホン酸化合物および電子受容性物質としての利用 |
WO2010041701A1 (ja) | 2008-10-09 | 2010-04-15 | 日産化学工業株式会社 | 電荷輸送性ワニス |
WO2010058777A1 (ja) | 2008-11-19 | 2010-05-27 | 日産化学工業株式会社 | 電荷輸送性材料および電荷輸送性ワニス |
WO2010058776A1 (ja) | 2008-11-19 | 2010-05-27 | 日産化学工業株式会社 | 電荷輸送性材料および電荷輸送性ワニス |
WO2011132702A1 (ja) * | 2010-04-22 | 2011-10-27 | 日立化成工業株式会社 | 有機エレクトロニクス材料、重合開始剤及び熱重合開始剤、インク組成物、有機薄膜及びその製造方法、有機エレクトロニクス素子、有機エレクトロルミネセンス素子、照明装置、表示素子、並びに表示装置 |
JP2012246456A (ja) | 2011-05-31 | 2012-12-13 | San Apro Kk | フッ素化アルキルリン酸オニウム塩系酸発生剤 |
JP2013030503A (ja) * | 2011-07-26 | 2013-02-07 | Hitachi Chem Co Ltd | 有機エレクトロニクス材料、インク組成物、有機薄膜及びその製造方法、有機エレクトロニクス素子、有機エレクトロルミネセンス素子、表示素子、照明装置、並びに表示装置 |
WO2013042623A1 (ja) | 2011-09-21 | 2013-03-28 | 日産化学工業株式会社 | 電荷輸送性ワニス |
WO2013129249A1 (ja) | 2012-03-02 | 2013-09-06 | 日産化学工業株式会社 | 電荷輸送性ワニス |
JP2014127585A (ja) * | 2012-12-26 | 2014-07-07 | Hitachi Chemical Co Ltd | 有機エレクトロニクス素子及びその製造方法 |
WO2014115865A1 (ja) | 2013-01-28 | 2014-07-31 | 日産化学工業株式会社 | 電荷輸送性ワニス |
WO2014132834A1 (ja) | 2013-02-26 | 2014-09-04 | 日産化学工業株式会社 | 電荷輸送性ワニス |
WO2014132917A1 (ja) | 2013-02-28 | 2014-09-04 | 日産化学工業株式会社 | 電荷輸送性ワニス |
WO2014141998A1 (ja) | 2013-03-11 | 2014-09-18 | 日産化学工業株式会社 | 電荷輸送性ワニス |
JP2014205624A (ja) | 2013-04-11 | 2014-10-30 | サンアプロ株式会社 | オニウムボレート塩系酸発生剤 |
WO2015050253A1 (ja) | 2013-10-04 | 2015-04-09 | 日産化学工業株式会社 | アニリン誘導体およびその利用 |
WO2015093551A1 (ja) * | 2013-12-18 | 2015-06-25 | 出光興産株式会社 | 化合物、有機エレクトロルミネッセンス素子用材料、インク組成物、有機エレクトロルミネッセンス素子、電子機器、及び化合物の製造方法 |
WO2017033771A1 (ja) * | 2015-08-21 | 2017-03-02 | シャープ株式会社 | 発光デバイス、表示装置、照明装置、電子機器 |
Also Published As
Publication number | Publication date |
---|---|
EP3608983A1 (en) | 2020-02-12 |
KR102579661B1 (ko) | 2023-09-18 |
JP7163907B2 (ja) | 2022-11-01 |
CN110476265A (zh) | 2019-11-19 |
JPWO2018186340A1 (ja) | 2020-02-13 |
KR20190137128A (ko) | 2019-12-10 |
TWI811213B (zh) | 2023-08-11 |
CN118284274A (zh) | 2024-07-02 |
US20200032140A1 (en) | 2020-01-30 |
TW201900663A (zh) | 2019-01-01 |
EP3608983A4 (en) | 2021-01-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6459350B2 (ja) | 電荷輸送性ワニス、電荷輸送性薄膜及び有機エレクトロルミネッセンス素子 | |
JP6717372B2 (ja) | 電荷輸送性ワニス | |
KR20160131102A (ko) | 아닐린 유도체 및 그 이용 | |
JP6760455B2 (ja) | アニリン誘導体およびその製造方法 | |
WO2018147204A1 (ja) | 電荷輸送性ワニス | |
TWI707856B (zh) | 電荷輸送性材料 | |
JP6402724B2 (ja) | アリールスルホン酸化合物及びその利用 | |
JP6011723B2 (ja) | トリフェニルアミン誘導体およびその利用 | |
JP7290149B2 (ja) | アニリン誘導体およびその利用 | |
JP7163907B2 (ja) | 電荷輸送性ワニス | |
JP6601405B2 (ja) | 電荷輸送性ワニス | |
WO2016039360A1 (ja) | 電荷輸送性ワニス | |
JP6132016B2 (ja) | 電荷輸送性ワニス |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18781940 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019511226 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20197032442 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2018781940 Country of ref document: EP Effective date: 20191105 |